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Abstract

Method of moment estimators are generally obtained by adopting orthogonal-
ity conditions, in which particular functions in terms of the observed data and
unknown parameters are supposed to have zero expectation. For regression mod-
els this implies exploiting presumed uncorrelatedness of the model disturbances
and identifying instrumental variables. Here, utilizing non-orthogonality condi-
tions is examined for linear cross-section multiple simultaneous regression models.
Employing �exible bounds on the correlations between disturbances and regressors
one avoids: (i) adoption of often incredible and unveri�able strictly zero correlation
assumptions, and (ii) imprecise inference due to possibly weak or invalid instru-
ments. The asymptotic validity of the suggested alternative form of inference is
proved and its �nite sample accuracy is demonstrated by simulation. It enables
to produce inference on coe¢ cient values that within constraints is endogeneity
robust. Also a sensitivity analysis of standard least-squares or instrument-based
inference is possible, and even a test of the in the standard approach unavoidable
though "non-testable" exclusion restrictions regarding external instruments. The
practical relevance is illustrated in a few applications borrowed from the textbook
literature.

1. Introduction

The standard quasi-experimental approach in applied econometric research requires the
adoption of so-called orthogonality conditions. An initial set of such conditions has to
be justi�ed on the basis of persuasive common sense or economic-theoretical arguments.
However, contenders may easily disqualify these arguments as opportunistic subjective
beliefs, since these conditions cannot be vindicated by empirical statistical evidence
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without the adoption of further non-testable conditions. Although the formal testing
of any overidenti�cation restrictions is feasible, its interpretation is contingent on the
validity of the initial just-identifying set of non-testable orthogonality conditions. For
the analysis of single regression equations this implies that at least as many excluded
variables have to be proclaimed as being uncorrelated with the unobservable random
disturbances of the equation as there are unknown coe¢ cients of the endogenous ex-
planatory variables, which are those that could be correlated with the disturbances. So
these excluded variables, also addressed as the external instruments, should have no di-
rect e¤ect on the dependent variable of the equation of interest. Moreover, for yielding
e¤ective inference, they should at the same time have a substantial correlation with the
endogenous regressors of the relationship.
Here it will be shown that there is an alternative route towards identi�cation by

adopting non-orthogonal moment conditions, which may in fact be more credible than
the just-identifying orthogonality conditions, because the moments concerned do not
have to be strictly zero but may vary over an interval. A simple implementation of
this yields a mutation of the ordinary least-squares (OLS) estimator. It is consistent
if the correlation between all regressors and the disturbance is known. The limiting
distribution of this unfeasible estimator enables to construct feasible asymptotic test
procedures for regression coe¢ cients. These exploit, in addition to some standard or-
thogonality conditions with respect to any exogenous regressors, also bounds on the
degree of non-orthogonality or simultaneity of the endogenous regressors. In simulations
it is demonstrated that even in quite small samples these tests have appropriate level
control and impressive power. They can be converted into feasible asymptotic con�dence
intervals with conservative coverage, which are often more informative than intervals ob-
tained by instrumental variables (IV) methods, especially when some instruments are
weak.
Moreover, this robusti�ed OLS-based inference enables to test exclusion restrictions

in the following way: it can produce the set of values of simultaneity correlations which
endorses the exclusion restrictions, as well as the set under which these are rejected at
a chosen signi�cance level. Thus, depending on the span and the location of these two
sets, the credibility of exclusion restrictions can in this way be supported or wiped away
by even in small samples very accurate statistical evidence.
The methods developed here are based on di¤erent assumptions than those made

under the standard approach. Fewer assumptions, because no external instruments and
corresponding exogeneity assumptions are required. On the other hand, some extra
assumptions have to be adopted, namely on the third and fourth moments of the regres-
sors and disturbances because these determine the variance of the adapted least-squares
estimator. And, when it comes to making decisions on the basis of the produced infer-
ence, this has to be confronted with an opinion of the researcher on the likely degree
of endogeneity. So, basically, strict exogeneity assumptions on external instruments are
exchanged for interval assumptions with respect to the endogeneity of the regressors.
The techniques developed here are a generalization of (now allowing for an arbitrary

number of endogenous and exogenous regressors) and an extension to (also enabling
general tests of linear restrictions on the coe¢ cients of both endogenous and exogenous
regressors) some basic initial results already published in Kiviet (2013, Section 4) and
further justi�ed in Kiviet (2016). This approach, addressed as kinky least-squares (KLS),
was triggered by some rudimentary �ndings dating back to Goldberger (1964, p.359) and
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Rothenberg (1972). That even the standard OLS estimator often beats IV or two-stage
least-squares (TSLS) on a mean squared errors criterion has already been demonstrated
in Kiviet and Niemczyk (2012), Kiviet (2013) and Doko Chatoka and Dufour (2016).
That the here presented generalized KLS procedures are preferable to standard OLS,
and in many cases also to IV, is because they enable accurate statistical inference in
models with endogenous regressors, while avoiding the hazards of weakness or invalidity
of instruments.
For an overview of complicating issues undermining the accuracy of statistical in-

ference in models with endogenous regressors due to employment of weak or invalid
external instruments, see for instance Dufour (2003). In essence these complications are
fourfold: (i) under weak though valid instruments standard asymptotic IV inference is
inaccurate (yields seriously biased non-normal coe¢ cient estimates with poorly assessed
standard errors, resulting in bad level control of tests), (ii) employing more sophisticated
weak-instrument techniques may result in improved level control, but yields con�dence
sets which are often very wide or even unbounded, (iii) the use of invalid instruments
produces as a rule highly inaccurate inference, whereas (iv) testing the validity of par-
ticular instruments seems only possible when a su¢ cient number of valid instruments is
already available. During the last decades (i) and (ii) received a lot of attention in the
literature. The present study addresses the two more fundamental problems (iii) and
(iv). It escapes from problem (iii) by developing a formal frequentist approach to pro-
duce accurate inference in simultaneous models not employing any external instrumental
variables at all by incorporating into the analysis an interval assumption on the degree
of simultaneity. When implemented as an exclusion restrictions test this approach also
allows to break out of the vicious circle of problem (iv) through testing the validity
of instruments without requiring any untested orthogonality conditions. Various other
studies have addressed problem (iii). The degree of invalidity of instruments is incorpo-
rated into a frequentist analysis by Ashley (2009)1 and by Bayesian methods in Kraay
(2012). Nevo and Rosen (2012) derive set estimates under assumptions on the signs and
relative magnitudes of the simultaneity and instrument invalidity. Conley et al. (2012)
augment the model with the instruments and make assumptions on its coe¢ cients (which
would be zero under correct exclusion) which next allow frequentist or Bayesian methods
to obtain inference allowing for instrument invalidity. However, unlike ours, all these
approaches still employ IV methods and so do not escape from problem (i) nor (ii). To
our knowledge feasible tests for (iv) have not been developed before, apart from various
informal procedures, such as suggested in, for instance, Bound and Jaeger (2000) and
Altonji et al. (2005).
In Section 2, after having reviewed how in a linear multiple regression equation with

some endogenous regressors consistent estimators can be obtained by exploiting classic
identifying orthogonality conditions, we demonstrate how this can also be achieved by
adopting non-orthogonality conditions. This yields an adapted least-squares estimator
which is a function of the nuisance parameter vector containing the correlations between
all the regressors and the disturbances. The limiting distribution of this unfeasible
estimator is presented in Section 3 (and derived in Appendices); from this a feasible
test procedure for a set of general restrictions on the coe¢ cient values readily follows.
Section 4 demonstrates how this procedure can be employed for testing any exclusion

1Kiviet (2016) addresses �aws in the asymptotic derivations in o¤springs of this study.
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restrictions relevant within the context of a classic instrumental variables based analysis.
Section 5 provides simulation results on size and power of exclusion restriction tests in
simultaneous models with one or two endogenous regressors. Section 6 demonstrates
how the various techniques can be employed in practice by analyzing three empirical
data sets used for illustrative purposes in well-known textbooks. Section 7 concludes.

2. Two distinct approaches towards identi�cation

Consider a sample of n independent and identically distributed observations fyi; x0i; i =
1; :::; ng on a linear causal relationship given by

yi = x
0
i� + ui; with xi � (0;�xx) and ui � (0; �2u); (2.1)

where � is an unknown constant K � 1 coe¢ cient vector, K �K matrix �xx is positive
de�nite with all its elements �nite and 0 < �2u < 1: Vector x0i = (x

(1)0
i ; x

(2)0
i ) has

K1 +K2 = K elements, such that

E(x
(1)
i ui) = �x(1)u and E(x

(2)
i ui) = 0; (2.2)

with �x(1)u 2 RK1 which in practice is generally unknown.
Model (2.1) with zero mean regressors may actually originate from a model with the

same disturbances, the same K slope coe¢ cients corresponding to regressors with an
arbitrary observation speci�c mean, and including as well an unknown intercept. Then
taking all observations in deviation from their expectation annihilates the intercept and
results in model (2.1) with zero-mean regressors.
A non-zero but constant correlation between elements of the K1 � 1 vector of re-

gressors x1i and the disturbance ui may be due either to simultaneity (elements of x
(1)
i ;

while constituting causes for yi, are causally dependent on yi themselves too), or to
measurement errors in x(1)i ; or perhaps to particular omissions in the regression speci�-
cation. Generally, such non-zero correlations render all elements of the OLS estimator
�̂OLS = (�ni=1xix

0
i)
�1�ni=1xiyi biased for � and inconsistent under common regularity

conditions. A standard method to achieve consistent estimators is reviewed in the next
subsection, followed in a second subsection by the development of an alternative non-
standard procedure which in a sense repairs the inconsistency of least-squares.

2.1. Exploiting orthogonality conditions

The standard approach to achieve identi�cation and consistent estimation of � is to �nd
a L2� 1 vector of observations z(2)i ; such that for the L� 1 vector z0i = (x

(2)0
i ; z

(2)0
i ); with

L = K2 + L2 � K; one is willing to assume validity of the orthogonality conditions

E(ziui) = 0; 8i: (2.3)

These imply
E(ziyi) = E(zix

0
i)�; 8i:

Next, the "analogy principle" of the method of moments, by which expectations are
replaced by corresponding sample averages, suggests as an estimator for � the "best"
solution �̂ of n�1�ni=1ziyi = (n

�1�ni=1zix
0
i) �̂; hence of

Z 0y = Z 0X�̂;
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where X = (x1; :::; xn)
0; y = (y1; :::; yn)

0 and Z = (z1; :::; zn)0: In case L = K and Z 0X
has full rank there is a unique solution, namely

�̂IV = (Z
0X)�1Z 0y; (2.4)

which realizes Z 0(y � X�̂IV ) = 0; thus achieving orthogonality of the residuals ûIV =
y �X�̂IV and the instruments in the sample, similar to the zero moments E(Z 0u) = 0:
If L > K; while X 0Z has rank K and Z 0Z has rank L; then orthogonality of all

individual instruments and the residuals cannot be achieved, but a unique solution
is found by minimizing a quadratic form in the vector Z 0(y � X�̂); namely (Z 0y �
Z 0X�̂)0W (Z 0y � Z 0X�̂); where W is some symmetric positive de�nite weighing matrix.
This yields the estimator �̂WIV = (X

0ZWZ 0X)�1X 0ZWZ 0y: Under standard regularity
conditions �̂WIV (like �̂IV ) is consistent and has a limiting normal distribution. When
L > K the e¢ cient Generalized Method of Moment (GMM) estimator is obtained by
choosing W proportional to [Z 0V ar(u)Z]�1; where u = (u1; :::; un)

0: Because we have
here V ar(u) = �2uI this simpli�es to the TSLS estimator

�̂TSLS = (X
0PZX)

�1X 0PZy; (2.5)

where PZ = Z(Z 0Z)�1Z 0: If L > K it does not realize in the sample orthogonality of Z
and ûTSLS = y�X�̂TSLS; but it does realize the orthogonality relationships X̂ 0ûTSLS = 0;
with X̂ = PZX the orthogonal projection of the K regressors X on the L dimensional
sub-space spanned by the instrumental variables Z:
In the above approach, validity of all inference is based especially on validity of the

orthogonality conditions (2.3). In case L = K no statistical evidence can be produced
from the sample under study on this validity, because then Z 0(y � X�̂IV ) equals zero
by construction. Self-evidently, validity (orthogonality) of the instruments z(2)i requires
validity of the L2 zero restrictions �

(2)
z = 0 when model (2.1) is extended with z(2)0i �

(2)
z ;

because �(2)z 6= 0 would jeopardize E(z(2)i ui) = 0: Thus, these zero or exclusion restric-
tions should be valid.2 However, they cannot be properly tested unless we would have
another K1 valid instruments in order to cope with the endogeneity of x

(1)
i . But, for

these we would only be able to test their exclusion restrictions unless ..., and so on.
More generally, when the model with L � K instruments forms the starting point and
K of these instruments are presupposed to be valid, then the validity of only L � K
exclusion restrictions, establishing L�K over-identi�cation restrictions, can be tested.
This is equivalent with testing the validity of L�K instruments in addition to K valid
�though untested�instruments. Within the present context, testing the validity of this
initial just-identifying set of K instruments is simply impossible.3

This impossibility is highly uncomfortable, because the interpretation of the out-
come of overidenti�cation or instrument validity tests is conditional on the legitimacy
of adopting K non-testable zero correlation assumptions. This embodies the Achilles
heel of many applied econometric studies. This vulnerability can only be concealed by
wrapping this limb into non-statistical often highly speculative rhetoric arguments. Such
a verbal cover-up often provides just meager protection against dissident views.

2For more on the correspondence between testing (incremental or di¤erence) overidentifying restric-
tions by Sargan-Hansen tests and testing exclusion restrictions see Kiviet (2017).

3On the impossibility to test the exogeneity of all the instruments, see for instance Stock and Watson
(2003, p.352): "Assessing whether the instruments are exogenous necessarily requires making an expert
judgement based on personal knowledge of the application."
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2.2. Exploiting some non-orthogonality conditions as well

Next consider an alternative to the above standard approach regarding achieving iden-
ti�cation. Instead of adopting L � K orthogonality conditions E(ziui) = 0; which
imply zero correlation between each instrument and the disturbance, consider adopt-
ing a numerical assumption concerning the K elements of the correlation vector �xu =
(�x1u; :::; �xKu)

0; where

�xju = E(xjiui)=(�u�j); j = 1; :::; K;

with �2j equal to the j-th diagonal element of matrix �xx: Hence, suppose we replace the
assumption �zu = (�z1u; :::; �zLu)

0 = 0 by

�xu = r; (2.6)

where r = (r1; :::; rK)
0 with scalar rj the adopted value of the correlation between xij

and ui; so jrjj < 1; 8j: This implies adopting the K moment conditions

E(xijui) = �xju = rj�u�j; j = 1; :::; K: (2.7)

If we are still convinced of the exogeneity of the regressors x(2)i we could have

rj = 0 for j = K1 + 1; :::; K and rj 6= 0 otherwise.

Then we adopt K2 standard orthogonality conditions and K1 non-orthogonality condi-
tions.
One may object that in practice one generally would not know the true values of the

elements of �xu; so r will generally di¤er from �xu: Although true, this will turn out to
be of moderate concern, because in the analysis to follow rj will not necessarily be kept
�xed, but may vary within the interval (�1;+1): Moreover, in the classic approach the
adopted strictly zero values for the L elements of �zu may be false too, raising far more
serious credibility issues, because this approach does not allow for non-zero correlations
between instruments and disturbances.
Using

�x = diag(�1; :::; �K) (2.8)

(2.7) implies

E(xiui) = �xu = E[xi(yi � x0i�)] = E(xiyi)� E(xix0i)� = �u�xr:

Invoking again the "analogy principle" this suggests for the method of moments estima-
tor the solution �̂; where

n�1X 0y � n�1X 0X�̂ = �uSxr:

Here Sx is the sample equivalent of �x: The j-th diagonal element of Sx could either be
taken as the square root of n�1�ni=1x

2
ij (since the regressors have zero expectation) or

(n�1)�1�ni=1(xij� �xj)2 with �xj = n�1�ni=1xij (which may be bene�cial in small samples
where �xj may deviate seriously from zero). This yields solution

�̂(r; �u) = (X
0X)�1X 0y � �u(n�1X 0X)�1Sxr

= �̂OLS � �u(n�1X 0X)�1Sxr: (2.9)
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This estimator involves a correction to the OLS estimator, aiming to correct its incon-
sistency when �xu 6= 0:
Estimator �̂(r; �u) is unfeasible as long as �u has not been replaced by a sample

equivalent. Of course, the standard OLS estimator of �2u; which is given by �̂
2
u;OLS =

û0OLSûOLS=(n�K); where ûOLS = y �X�̂OLS; is inconsistent, like �̂OLS; when �xu 6= 0;
since

plim �̂2u;OLS = plimu
0[I �X(X 0X)�1X 0]u=n

= �2u � plimn�1u0X(plimn�1X 0X)�1 plimn�1X 0u

= �2u(1� �0xu�x��1xx�x�xu):

Thus, a feasible though r-based estimator, which attempts to correct �̂2u;OLS for its
inconsistency, is

�̂2u(r) = �̂
2
u;OLS=(1� r0SxS�1xx Sxr); (2.10)

where element j; k of Sxx equals either n�1�ni=1xijxik or (n�1)�1�ni=1(xij� �xj)(xik� �xk):
Now a feasible estimator which attempts to correct �̂OLS for its inconsistency is

�̂(r) = �̂OLS � �̂u(r)S�1xx Sxr: (2.11)

It is obvious that the correction terms of (2.10) and (2.11) only really succeed in dis-
carding the OLS estimators from their inconsistency if r = �xu:

3. KLS inference for multiple regressions

In order to examine the expedience of estimator (2.11) for producing inference on � we
shall �rst examine its limiting distribution under the (unrealistic) assumption that the
K values r equal the true correlations �xu: Under the assumptions made above, it is
found that consistent (though unfeasible) least-squares estimator �̂(�xu) has a limiting
normal distribution with in general a rather involved variance matrix. Its asymptotic
variance appears to be a¤ected by the skewness and kurtosis of the distributions of ui
and xi: Substantial simpli�cations occur when the third and fourth moments correspond
to those of the normal distribution and especially in models with just one endogenous
explanatory variable a remarkably neat result emerges.
For the unfeasible estimator �̂(�xu); which generalizes for multiple structural regres-

sion models the KLS estimator of Kiviet (2013, Section 4), we �nd the following result
(proof in Appendix B) for models with an arbitrary number of endogenous regressors,
where all regressors and disturbances are identically distributed and have their �rst four
moments similar to normally distributed variables.

Theorem 1: In zero mean IID cross-section model (2.1), where E(xiui) = �xu; while
E(u3i ) = 0; E(u

4
i ) = 3�

4
u; E(x

3
ij) = 0 and E(x

4
ij) = 3�

4
j for j = 1; :::; K and i = 1; :::; n;

we �nd for �̂(�xu) = �̂OLS � �̂u(�xu)S�1xx Sx�xu the limiting distribution

n1=2[�̂(�xu)� �]
d! N [0; �2uV (�xu)];
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with V (�xu) = ��1xx��
�1
xx ; where

� = �xx � �xxR2 �R2�xx � ��1(�xxR2��1xx� + ��
�1
xxR2�xx)

� 0:5��1(�R2 +R2�) + [��1 + ��2(0:5� �0xu�x��1xx�xR2�xu)]�

+ 0:5(I + ��1���1xx )R��1x (�xx � �xx)��1x R(I + ��1��1xx�):

Here R =diag(�xu) is the diagonal matrix with the elements of �xu on its main diagonal,
� = 1� �0xu�x��1xx�x�xu and � = �x�xu�0xu�x:

The following corollaries readily follow.

Corollary 1.1: If in the situation of Theorem 1 one has K = 1, thus �xx = �2x and
R = �xu are scalar, then � = �2x so that V (�xu) = �

�2
x is invariant with respect to �xu;

and n1=2[�̂(�xu)� �]
d! N (0; �2u=�2x):

A proof of Corollary 1.1 can already be found in Kiviet (2013).
Another interesting special case of Theorem 1 considers the situation where just

one regressor (say the �rst one) is endogenous (K1 = 1) and all further regressors are
exogenous. This leads to the following.

Corollary 1.2: If in the situation of Theorem 1 �xu = (�1; 0; :::; 0)
0 then, denoting

�̂(�xu) now as �̂(�1); we have n1=2[�̂(�1)� �]
d! N [0; �2uV (�1)] with

V (�1) = �
�1
xx � ��1�21fe1e01��1xx + ��1xx e1e01 � [1 + ��1(1� �21)]�21��1xx e1e01��1xxg;

where � = 1 � �21�21�11 with �11 = (��1xx )1;1: Moreover, for the �rst element of vector
�̂(�1), denoted �̂1(�1); this yields

n1=2[�̂1(�1)� �1]
d! N (0; �2u�11);

which is invariant with respect to �1:

Note that surprisingly the limiting distribution of the coe¢ cient of the one and only
endogenous regressor of the inconsistency corrected least-squares estimator (KLS), irre-
spective of the occurrence in the model of any further exogenous regressors, is equivalent
to that of OLS in case all regressors are exogenous. This is no longer the case when
K1 > 1:
To produce feasible inference the result of Theorem 1 can be exploited as follows.

Suppose we are interested in testing jointly h (� K) linear restrictions on the coe¢ cients
� of model (2.1), given by H0 : Q� = q; where Q is a known h � K matrix of rank h
and q a h� 1 known vector. Now consider the feasible test statistic

W (Q; q; r) = [Q�̂(r)� q]0[n�1QV̂ (r)Q0]�1[Q�̂(r)� q]=�̂2u(r); (3.1)

where V̂ (r) = S�1xx �̂S
�1
xx ; with

�̂ = Sxx � SxxR2 �R2Sxx � �̂�1(SxxR2S�1xx �̂ + �̂S�1xxR2Sxx)
� 0:5�̂�1(�̂R2 +R2�̂) + [�̂�1 + �̂�2(0:5� r0SxS�1xx SxR2r)]�̂
+ 0:5(I + �̂�1�̂S�1xx )RS

�1
x (Sxx � Sxx)S�1x R(I + �̂�1��1xx �̂);
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and �̂ = 1� r0SxS�1xx Sxr; �̂ = Sxrr0Sx and R = diag(r): Under H0 and the conditions of
Theorem 1 we have

W (Q; q; �xu)
d! �2(h): (3.2)

Now for r = (
0; 00)0 and �21��(h) the (1 � �) � 100% quantile of the chi-squared
distribution with h degrees of freedom, the set

C0(Q; q; �) =
�

 2 RK1 : T (Q; q; r) < �21��(h)

	
(3.3)

represents all possible values of �x(1)u for which H0 does not have to be rejected at
asymptotic signi�cance level �: Likewise, the compliment of C0(Q; q; �) in RK1 ; given by
C1(Q; q; �) � RK1nC0(Q; q; �); represents all possible values of �x(1)u for which H0 should
be rejected at asymptotic signi�cance level �:
The sets C0(Q; q; �) and C1(Q; q; �) enable to supplement standard OLS inference on

H0 with an indication of its robustness or sensitivity regarding simultaneity. Suppose
that the K1� 1 zero vector is in set C0(Q; q; �); then this set represents also all non-zero
values of �x(1)u which corroborate under simultaneity the non-rejection of H0 established
under full exogeneity. The OLS decision not to reject H0 is robust regarding simultane-
ity as long as it obeys the restrictions set by C0(Q; q; �); whereas for values of �x(1)u
in C1(Q; q; �) H0 should be rejected. When the zero vector is in set C1(Q; q; �); thus
standard OLS inference rejects H0; this decision can be extended under simultaneity
represented by all vectors �x(1)u in C1(Q; q; �); but should be reversed for values of �x(1)u
in C0(Q; q; �):
It is obvious that the inference based on KLS as just described will be fully robust

with respect to simultaneity only if C0(Q; q; �) is RK1 or ?. This seems highly unlikely,
as becomes clear when we examine the case K1 = 1 as in Kiviet (2013). It just extends
the asymptotic validity of standard OLS for the case �x(1)u = 0 to asymptotic validity
for either �x(1)u 2 C0(Q; q; �) or �x(1)u 2 C1(Q; q; �): This could be labelled constraint
robustness.
Of course, the actual numerical assessment and representation of the above sets may

be quite complicated in practice, especially when K1 is (much) larger than 1, and when
the number of tested restrictions h is too. In the special case K1 = 1 � K and h = 1;
while the tested restriction concerns just the coe¢ cient of the endogenous regressor, it
is actually quite simple, as already exposed in Kiviet (2013, 2016). In more general
cases obvious problems regarding the numerical feasibility of this approach will occur in
samples, and choices of r; where the correction of �̂2u does no longer make sense, which
is the case when r0SxS�1xx Sxr � 1: We will monitor this in Sections 5 and 6.

4. Testing exclusion restrictions

One of the paradigms of classic econometric theory is that the exclusion restrictions in
a just identi�ed model cannot be tested, and that in overidenti�ed models one cannot
test all exclusion restrictions but just a limited number of them equal to the degree of
overidenti�cation. Hence, in both cases some exclusion restrictions seem non-testable.
By the methodology exposed above, however, it is possible to a certain extent to test

any exclusion restrictions. It enables to assess, at a chosen nominal signi�cance level,
the set of all possible �xu values for which any arbitrary subset of exclusion restrictions
should be rejected. If this set seems to cover the area in which the true value of �xu may
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reside, then one should reject validity of the variables associated with these exclusion
restrictions as instruments. On the other hand, when it seems likely that the true value
of �xu will not be in the assessed set, or when this set is empty, rejection of validity of
the instruments under test is not indicated. Hence, at the stage of deciding whether or
not the true value of �xu seems covered by a particular non-empty set, expert knowledge
is required to decide on the validity or not of an instrument, as in the case regarding
adopting �zu = 0 or not. However, the assessed set regarding �zu may turn out to be so
wide (or so narrow) that the decision becomes relatively easy. By calculating P -values
of T (Q; q; r) for deliberately chosen Q and r and all relevant values of r; we will show in
the illustrations below how evidence on the (in)validity of instruments can be produced
which in many cases may be more convincing than evidence just based on pure rethoric
arguments.
Note that the procedure just sketched is not an alternative to the test for overidenti-

fying restrictions, often addressed as Sargan-Hansen test. This test presupposes validity
of a number of external instruments equal to the number of endogenous regressors in
the model, which just-identify the model, and then tests the validity of additional over-
identifying instruments. The procedure discussed here can be implemented such that it
produces inference on the validity of any set of candidate instruments, so also on this
initial set on which standard (and incremental or di¤erence) overidentifying restrictions
tests build without any prior statistical veri�cation.
Here we will �rst work out in detail this test for just-identifying exclusion restrictions

for the model introduced in section 2.1 focussing on the special case K1 = 1; whereas
L = K: Hence, the structural multiple regression model is just identi�ed, xi1 is the one
and only endogenous regressor, and the question is whether external scalar variable zi2
is exogenous and thus can be used as an instrument next to the K�1 regressor variables
x
(2)
i , which are maintained to be exogenous. Hence, we will test the validity of zi2 as an
instrument, or the assumption E(zi2ui) = 0: This is untestable by the Sargan-Hansen
approach, because it requires L > K:
Attempting to test E(zi2ui) = 0 could be done by including zi2 in the regression and

test by an appropriate method whether its coe¢ cient is signi�cant. Its insigni�cance
would endorse (although certainly not guarantee) its valid exclusion from the regression
and use as an external instrument. To test by the established methods in model4

yi = xi1�1 + x
(2)0
i �2 + zi2�z + ui; (4.1)

the exclusion hypothesis He : �z = 0; while respecting at the same time the simultaneity
of regressor xi1; would require yet another valid external instrument, which would bring
their number to L + 1 = K + 1; whereas we assumed that, apart from the K � 1
exogenous regressors x(2)i ; the only further candidate instrument is zi2: So, testing the
exclusion restriction �z = 0 seems impossible indeed.
Though, in the present situation, the �rst result of Corollary 1.2 applies, after trans-

lating it from model (2.1) into the context of augmented model (4.1). The latter we will
denote as y = X���+u; where X� = (X; z2) and �� = (�0; �z)0. With 1�(K+1) matrix
Q = (0; :::; 0; 1) = e0K+1 and q = 0; and r1 still indicating the assumed value for �x1u; we

4In correspondence with our set-up in Section 2, we may assume that the arbitrary intercept in
the relationship has been partialled out, from yi; xi1; x

(2)
i and zi2; by taking these sample values in

deviation from their sample mean.
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may use for this single hypothesis the test statistic

tK+1(r1) = �̂z(r1)=[n
�1�̂�2u (r1)e

0
K+1V̂

�(r1)eK+1]
1=2; (4.2)

where, when using the notation S�1x�x� = (n
�1X�0X�)�1; and e1 now representing the unit

vector with K + 1 elements, we have

�̂z(r1) = e
0
K+1(�̂

� � �̂�u(r1)S�1x�x�e1s1r1) = �̂z � �̂�u(r1)s1r1(e0K+1S�1x�x�e1) (4.3)

and

e0K+1V̂
�(r1)eK+1 = e

0
K+1S

�1
x�x�eK+1+r

2
1[1+(1�r21)=�̂�(r1)]s21(e01S�1x�x�eK+1)2=�̂�(r1); (4.4)

with

�̂z = [z
0
2(I � PX)z2]�1z02(I � PX)y; (4.5)

�̂�(r1) = 1� r21s21(e01S�1x�x�e1); (4.6)

�̂�2u (r1) = ~n
�1y0(I � PX�)y=�̂�(r1); (4.7)

where ~n could simply be chosen n; or if one wants to employ a small sample adjustment
it could be taken n � K � 1 or, when all variables have been taken in deviation from
their sample average, n�K � 2:
It is easy to show that � of Theorem 1 is always positive. To achieve this for �̂�(r1)

too, we should not vary r1 over the whole (�1;+1) interval, but just examine r21 <
(e01S

�1
x�x�e1)=s

2
1: However, also in samples where �̂

�(r1) happens to be positive but much
smaller than its true value �� estimators �̂�2u (r1); �̂z(r1) and its estimated standard
deviation may be seriously a¤ected. This may lead to unpleasant consequences for the
distribution of the test statistic. Such consequences seem more likely when n is small
and when �� is small. We will monitor this in the simulations in the next Section.
Extending the assumptions of Theorem 1 to model (4.1) and evaluating (4.2) in �1;

we have tK+1(�1)
d! N (0; 1) under He: Hence, if �1 were known an asymptotically exact

test would be available. If �1 is unknown, and when testing two-sided, we should seek
the set of all r1 values for which [tK+1(r1)]2 > �21��(1) or

[�̂z(r1)]
2 � [n�1�̂�2u (r1)e0K+1V̂ �(r1)eK+1]� �21��(1) > 0: (4.8)

The left hand side of this inequality is non-linear in the scalar r1: Assuming that �nding
the roots of [�̂z(r1)]2 � [n�1�̂�2u (r1)e0K+1V̂ �(r1)eK+1]� �21��(1) = 0 over domain jr1j < 1
is feasible, �nding the set of r1 values for which inequality (4.8) holds will be feasible
too. Under the assumption that the true value of �1 is contained in this set, the hypoth-
esis �z(2)u = 0 should be rejected. This procedure has an asymptotic signi�cance level
not larger than �: Small sample performance may improve upon replacing �21��(1) by
F1��(1; ~n):
Instead of �nding the roots of (4.8) at a particular � an easier and more informa-

tive approach is to construct a graph over all relevant values of r1; satisfying r21 <
(e01S

�1
x�x�e1)=s

2
1; of the P -values of t

2
K+1(r1) with respect to the F (1; ~n) distribution. For

any � this immediately shows the range of values for �x1u where the test statistic rejects
(or not) the exclusion restriction.
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Of course, for any L�2 � 1 subset z�i from L2 � 1 vector z(2)i its valid exclusion from
model (2.1) can be tested in a similar way, also in models where K1 � 1. This involves
a special implementation of test (3.1). Now let X� = (X;Z�) and �� = (�0; �0z�)

0 with
�̂z� = (Z

�0MXZ
�)�1Z�0MXy whereas Q� = (O; IL�2): Consider test statistic

W �(Q�; r) = �̂0z� [n
�1Q�V̂ �(r)Q�0]�1�̂z�=[L

�
2 � �̂2u(r)]; (4.9)

where V̂ �(r) = S�1x�x��̂
�S�1x�x� ; with �̂

� the appropriate adaptation of �̂ below (3.1) to

the present extended model. When E(z�i ui) = 0 then L�2 � W �(Q�; �xu)
d! �2(L�2):

Calculating the P -value of W �(Q�; r) with respect to the F (L�2; ~n) distribution over all
relevant values r indicates for which values �xu validity of the instruments z�i seems
(un)likely.

5. Simulation results

In this section we want to produce simulation evidence on the �nite sample behavior of
the inference techniques suggested in this study. As always such a study is only feasible
when one strongly restrains the number of parameters of the simulation design. For
practical reasons one also has to constrain the grid of parameter values from the design
parameter space for which the techniques are actually examined. Therefore simulated
models do often not fully mimic all aspects of empirically relevant models, but just their
major basic characteristics. However, sometimes one can prove that the phenomenon
of interest is in fact invariant with respect to particular parameters, which implies that
relatively few calculations for a discrete choice of parameter values can represent the
relevant properties for a whole subspace of the design parameter space. The model
introduced in Section 2 is primarily characterized by the values n; K1; K2 and L2; where
L2 � K1 � 1; L1 = K2 � 0 and n � L1 + L2 � K1 + K2; and also by �; �xx; �zz;
�zx; �

2
u; �xu and �zu In Kiviet (2013) very favorable results have been produced on the

�nite sample accuracy of KLS inference on � in the very simple case L2 = K1 = 1 with
L1 = K2 = 0 when �xu were known. But, also for the more realistic situation where
�xu is unknown and an (in)correct interval [�Lxu; �

U
xu] is adopted which is supposed to

contain the true value, it is shown that KLS inference is often much more useful than
standard or Anderson-Rubin instrument-based inference. Because one may suppose that
the simulated data in these experiments have been obtained after partialling out any
exogenous regressors, the results are invariant regarding the chosen value for K2; so they
represent the situation for any K � K1 = 1: For this situation, also the actually chosen
values for �; �xx; �zz and �2u have been shown not to a¤ect this KLS based test.
Below, in the �rst subsection, we will consider the same simulation design as used in

Kiviet (2013), but examine now the �nite sample behavior of the exclusion restriction
test, under situations where �xu is either known or unknown. Next we will present sim-
ulation results on KLS inference regarding � and exclusion restrictions tests for models
where K � K1 = L2 = 2: All presented results are based on 250,000 replications.

5.1. The simplest possible implementation of the exclusion restriction test

For the very simple model with K = K1 = L = L2 = 1 we will examine here some of the
small sample qualities of test (4.2) on a single just-identifying exclusion restriction. Due
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to invariance, the results will also represent cases where L1 = K2 > 0 and K = L > 1:
The Monte Carlo design is constructed as follows. Let "i; �i and �i be three mutually
independent series (i = 1; :::; n) of standard normal drawings. From these we construct
the three series

ui = �u"i � N (0; �2u); (5.1)

xi = �x[(1� �2xu)1=2�i + �xu"i] � N (0; �2x); (5.2)

zi = �z(�z��i + �z��i + �zu"i) � N (0; �2z); (5.3)

where all � coe¢ cients do not exceed 1 in absolute value; moreover,

�2z� + �
2
z� + �

2
zu = 1: (5.4)

Obviously, �xu = �xu�x�u; �zu = �zu�z�u and �zx = �z�x[�z�(1��2xu)1=2+�zu�xu]; hence
�zx = �z�(1� �2xu)1=2 + �zu�xu; which yields

�z� = (�zx � �zu�xu)(1� �2xu)�1=2; (5.5)

for �2xu < 1: From (5.4) we also have

�z� = (1� �2z� � �2zu)1=2: (5.6)

Hence, when values for �u > 0; �x > 0; �z > 0; j�xuj < 1; j�zxj � 1 and j�zuj � 1 are
chosen, we can generate the series for ui and xi and �nd matching values for �z� from
(5.5) and for �z� from (5.6) so that series zi can be generated as well. However, the three
chosen correlations should obey

(�zx � �zu�xu)2 � (1� �2xu)(1� �2zu); (5.7)

in order to ensure that 0 � �2z� � 1 and 0 � �2z� � 1:
For each realization of the series ui; xi and zi in the simulation replications, we may

�rst subtract their respective sample average from each observation. In that way an
arbitrary intercept of an underlying model with one further regressor and one external
potential instrument (each distributed with a possibly non-zero arbitrary mean) has
been partialled out.
The dependent variable is generated by the model

yi = xi� + zi�z + ui; (5.8)

where coe¢ cient �z has true value zero. Its standard least-squares estimator (4.5) sim-
pli�es to

�̂z =
z0u� z0x(x0x)�1x0u
z0z � z0x(x0x)�1z0x =

rzu � rzxrxu
1� r2zx

su
sz
; (5.9)

where we de�ne the sample statistics as rz0u = z0u=(z0zu0u)1=2; su =j
p
s2u j with s2u =

u0u=n1 (and similar for rzx; rxu; sx and sz), where n1 is either n� 1 or n; depending on
whether deviations from sample average have been taken or not.
For this special model we further have from (4.6), taking r1 as appraisal of �1 = �xu;

�̂�(r1) = 1�
r21s

2
xs
2
z

s2xs
2
z(1� r2zx)

=
1� r21 � r2zx
1� r2zx

; (5.10)
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and, because y0(I�PX�)y � 0 specializes here to u0u[1�(r2xu�2rxurzxrzu+r2zu)=(1�r2zx)];
we �nd for (4.7) the expression

�̂�2u (r1) =
u0u

~n

1� r2zx � r2zu + 2rzxrzur1 � r21
1� r21 � r2zx

; (5.11)

which will be positive (as a variance estimate should) provided r21+r
2
zx < 1 or �̂

�(r1) > 0:
Clearly, practical problems may emerge in cases where r1 is chosen large in absolute value
and r2zx happens to be larger than �

2
zx: In the simulations we will monitor the occurrence

of �̂�(r1) � 0 (which may be frequent, especially when n is small and the variance of rzx
large) but will skip such replications, because �̂z(r1) is only de�ned when �̂�(r1) > 0: In
this simple model it specializes to

�̂z(r1) = �̂z + �̂
�
u(r1)

r1rzx
1� r2zx

1

sz

=

rzu � rzxr1
�
1�

�
n1(1�r2zx�r2zu+2rzxrzur1�r21)

~n(1�r21�r2zx)

�1=2�
1� r2zx

su
sz
: (5.12)

For its estimated asymptotic variance, assuming r1 = �1; we �nd

n1
~nn

1� r2zx � r2zu + 2rzxrzur1 � r21
(1� r2zx)2�̂�(r1)

h
1 + r21r

2
zx[1 + (1� r21)=�̂�(r1)]=�̂�(r1)

i s2u
s2z
: (5.13)

From the expressions (5.12), (5.13) and (5.10) we observe that in this special model
both �̂z(r1) and its asymptotic standard error are invariant with respect to � and to
sx; whereas both are a multiple of su=sz: Hence, in this simple model the exclusion
restriction test statistic (4.2) will be invariant to �; �2u; �

2
x and �

2
z : Therefore, without

loss of generality, we may set in the simulation: � = 0 and �u = �x = �z = 1: Another
invariance result is the following. If r1 = �xu and from two of the three correlations �xu;
�zx and �zu we change their sign, then the square of the exclusion test statistic does not
change. Hence, considering in the simulations only cases where these three correlations
are nonnegative (as we will) is not as restrictive as it seems at �rst sight.
We also �nd

plim �̂z(r1) =

�zu � �zxr1
�
1�

�
1 + �zu

2�zxr1��zu
1�r21��2zx

�1=2�
1� �2zx

�u
�z
;

which is zero when �zu = 0: Because it seems to be mostly non-zero for �zu 6= 0; we
are hopeful that a test based on KLS estimator �̂z(r1) may have power for testing the
invalidity of instrument zi for the regression of yi on xi. From (5.9) we �nd that the
pseudo-true-value of �̂z is

plim �̂z =
�zu � �1�zx
1� �2zx

�u
�z
;

which is non-zero in general, unless �zu = �1�zx: Hence, even when �zu = 0 it may be
non-zero, unless also �1 = 0 or �zx = 0: So obviously, the exclusion restriction should
not be tested on the basis of the standard OLS estimator �̂z:
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In Tables 1 (n = 500) and 2 (n = 50) we report the rejection frequency of the two-
sided unfeasible test based on the square of statistic (4.2), where we substituted the
true value of �1 for r1: Since we took the generated data series in deviation from their
sample mean we used n1 = n � 1 and, employing the 5% nominal critical value of the
F-distribution, we took it at 1 and n� 3 degrees of freedom.

Table 1: Rejection frequency (in %) of the unfeasible exclusion restriction test (n = 500;� = 0:05)

�zu = 0 �zu = 0:05 �zu = 0:1 �zu = 0:2

�xu �zx �zx �zx �zx
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 5.09 5.09 5.09 20.1 23.0 46.2 61.0 68.8 96.3 99.4 99.9 100
0.2 5.09 5.07 5.01 20.1 22.7 43.9 61.0 67.9 95.1 99.4 99.8 100
0.4 5.05 4.99 4.68 20.1 22.1 37.2 61.1 66.8 92.7 99.5 99.8 100
0.6 5.02 4.86 100# 20.0 20.4 0.15# 61.2 64.5 0.00# 99.5 99.7 6.09#
0.8 4.84 4.14 - 19.9 10.7 - 61.7 53.4 - 99.6 99.5 -

In the block of results for �zu = 0 we observe in Table 1 that the asymptotic test
using the true value of �1 demonstrates very good size control5 when n = 500. According
to inequality (5.7) the model is not de�ned for cases where �zu is moderate and both �xu
and �zx are large in absolute value (indicated by "-" in the tables). As already predicted,
for cases where �2xu+�

2
zx is close to unity we observe deterioration of the performance of

the test. Settings for which some experiments did produce negative �̂�(�1) realizations
are indicated by a hashtag. In fact, unde�nedness of KLS occurred for those cases in
about 50% of the replications. At this large sample size the power of the test is already
remarkable for �zu = 0:05; impressive for �zu = 0:1 and outright splendid for �zu � 0:2:
Apart from close to the non existence region the rejection probability is found to be
almost invariant with respect to the degree of simultaneity �xu: For �zu 6= 0 the rejection
probability increases with the absolute value of �zx; but is also very good for �zx = 0;
so the KLS exclusion restriction test does not su¤er in any way from weak instrument
problems.

Table 2: Rejection frequency (in %) of the unfeasible exclusion restriction test (n = 50;� = 0:05)

�zu = 0 �zu = 0:1 �zu = 0:2 �zu = 0:3

�xu �zx �zx �zx �zx
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 5.16 5.16 5.16 10.8 11.8 21.3 28.8 33.4 66.7 56.9 65.0 96.6
0.2 5.12 5.08 4.86 10.8 11.4 17.7 28.8 31.8 57.4 57.1 62.3 91.7
0.4 4.97 4.80 4.20* 10.6 10.2 1.98* 28.9 29.2 22.5* 57.5 58.9 67.1*
0.6 4.47 3.75 100# 10.2 5.54 1.54# 29.0 21.1 0.02# 58.8 50.6 0.03#
0.8 2.17 5.56* - 7.87 0.64* - 29.0 0.23* - 63.7 4.41* 5.11#

Table 2 presents similar �ndings for sample size n = 50: Note that all results marked
by an asteriks or hashtag have been obtained from fewer than 250,000 replications,
because when �̂�(�1) turned out to be non-positive have been skipped (this occurred
with frequency less than 5% for cases indicated by an asteriks and over 50% for cases
indicated by a hashtag). Because in smaller samples rzx may deviate much more from
�zx we note deterioration of the test qualities over a larger band of cases approaching
the non existence area. Otherwise, however, the size properties of the test are still
appropriate and power improves with the absolute value of �zu; but self-evidently not as
sharply as for larger samples.
In practice r1 will usually deviate from �1: Therefore, as in Kiviet (2013) for inference

on �, we will now examine the merits of a feasible exclusion restriction test in this simple
model when employed on the basis of an interval [rL1 ; r

U
1 ] which is supposed to contain �1:

5Given the number of replications used a probability of 5% will be estimated here with an error that
could exceed �0:1 with a probability of about 2%.
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We investigate the three cases rL1 = �1�0:1; rU1 = �1+0:1; rL1 = �1�0:2; rU1 = �1+0:2; and
rL1 = 0; r

U
1 = 0:3: From Table 3 where n = 100 we see that when �xu 2 [rL1 ; rU1 ] the test

is undersized, and still has remarkable power away from the non existence region. The
bottom two rows, where �xu =2 [rL1 ; rU1 ], show that the test can be either conservative or
liberal. Far away from the non existence region the test may still help to produce useful
inference on instrument (in)validity, but its results become uninterpretable otherwise. In
this table the asteriks stands for a frequency to obtain an unde�ned test not exceeding
5% and a hashtag for a frequency exceeding 45%.

Table 3: Rejection frequency (in %) of the feasible exclusion restriction test (n = 100;� = 0:05)
�zu = 0 �zu = 0:2 �zu = 0:4

�xu rLxu rUxu �zx �zx �zx
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 -0.1 0.1 4.14 1.72 0.10 48.1 41.5 53.4 98.3 98.5 100
0.2 0.1 0.3 4.10 1.63 0.09 47.8 41.5 49.6 98.2 98.4 100
0.4 0.3 0.5 3.99 1.39 0.05 46.6 39.8 21.1* 97.8 98.1 83.7*
0.6 0.5 0.7 3.66 0.80 100# 43.5 43.6 0.00* 96.9 97.7 0.02#

0.0 -0.2 0.2 3.19 0.50 0.00 43.7 24.7 9.30 97.7 95.0 99.4
0.2 0.0 0.4 3.17 0.44 0.00 42.9 26.2 9.88 97.3 95.7 98.9
0.4 0.2 0.6 3.00 0.31 0.00# 40.1 25.5 0.10* 95.7 95.9 21.5#
0.6 0.4 0.8 2.48 0.06* 100# 32.2 15.6* 0.00* 90.0 88.1* 0.00#

0.0 0.0 0.3 3.66 2.60 3.04 44.8 59.1 92.8 97.6 99.6 100
0.2 0.0 0.3 3.64 1.06 0.05 46.4 26.2 9.88 98.1 95.7 99.0
0.4 0.0 0.3 3.63 7.67 42.2 52.2 6.78 5.38 99.2 82.7 30.3
0.6 0.0 0.3 3.63 46.9 100 64.8 0.96 42.9 99.9 59.3 4.46

5.2. Findings for a model with two endogenous regressors

As Section 3 on the simulation study of Kiviet and Pleus (2016) shows, designing a just
identi�ed simultaneous model with two endogenous variables such that one can easily
control the degree of simultaneity, the strength of the instruments and the multicollinear-
ity between the regressors is not self-evident. For the present purpose the situation is
even more complex, because we will have to allow for possible invalidity of the instru-
ments as well when analyzing the power of exclusion restriction tests. We proceed as
follows.
Let the 5 � 1 vectors �i contain (for i = 1; :::; n) independent drawings from a �ve

element multivariate standard normal distribution. Now consider the linear transforma-
tion

di = (x
(1)
i ; x

(2)
i ; z

(1)
i ; z

(2)
i ; ui)

0 = A�i; (5.14)

with A = (ajl) a 5 � 5 upper-diagonal real valued matrix. To realize that all elements
of di have unit variance, the �ve rows of matrix A should all have inner-product unity.
This directly implies a55 = 1 and ui = �i5: Note that the �nal column of A actually
represents (�x(1)u; �x(2)u; �z(1)u; �z(2)u; 1)

0: In the simulation we will control these four cor-
relation parameters by choosing empirically relevant values for them, as well as for six
other relevant correlations, all in the (�1;+1) interval. The 10 yet unknown elements of
A will follow from these these 6+4 correlations, the �rst four equations of (5.14), which
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are

x
(1)
i = a11�i1 + a12�i2 + a13�i3 + a14�i4 + �x(1)u�i5 (5.15)

x
(2)
i = a22�i2 + a23�i3 + a24�i4 + �x(2)u�i5 (5.16)

z
(1)
i = a33�i3 + a34�i4 + �z(1)u�i5 (5.17)

z
(2)
i = a44�i4 + �z(2)u�i5; (5.18)

and the imposed unit variance of all elements of di: The unit variance of (5.18) implies

a44 = (1� �2z(2)u)
1=2: (5.19)

By controlling the value of �z(1)z(2) ; which follows from (5.17) and (5.18) to be �z(1)u�z(2)u+
a34a44; we �nd

a34 = (�z(1)z(2) � �z(1)u�z(2)u)=a44: (5.20)

Correlating (5.18) and (5.16) we �nd �z(2)x(2) = a44a24 + �z(2)u�x(2)u; so

a24 = (�z(2)x(2) � �z(2)u�x(2)u)=a44; (5.21)

and correlating (5.18) and (5.15) gives �z(2)x(1) = a44a14 + �z(2)u�x(1)u; hence

a14 = (�z(2)x(1) � �z(2)u�x(1)u)=a44: (5.22)

Due to the unit variance of (5.17) we have

a33 = (1� a234 � �2z(1)u)
1=2: (5.23)

Then from �z(1)x(2) = a33a23 + a34a24 + �z(1)u�x(2)u we obtain

a23 = (�z(1)x(2) � a34a24 � �z(1)u�x(2)u)=a33; (5.24)

and from �z(1)x(1) = a33a13 + a34a14 + �z(1)u�x(1)u we �nd

a13 = (�z(1)x(1) � a34a14 � �z(1)u�x(1)u)=a33: (5.25)

The unit variance of (5.16) yields

a22 = (1� a223 � a224 � �2x(2)u)
1=2; (5.26)

and from �x(1)x(2) = a12a22 + a13a23 + a14a24 + �x(1)u�x(2)u we get

a12 = (�x(1)x(2) � a13a23 � a14a24 � �x(1)u�x(2)u)=a22; (5.27)

and at long last
a11 = (1� a212 � a213 � a214 � �2x(1)u)

1=2: (5.28)

So, all elements of matrix A can be expressed in the 10 correlations �x(1)u; �x(2)u;
�z(1)u; �z(2)u; �x(1)x(2) ; �z(1)x(1) ; �z(1)x(2) ; �z(2)x(1) ; �z(2)x(2) and �z(1)z(2) : Not all combinations
of values for these correlations in the (�1; 1) interval will be compatible though. Obvious
requirements are

a234 + �
2
z(1)u

< 1;
a223 + a

2
24 + �

2
x(2)u

< 1;
a212 + a

2
13 + a

2
14 + �

2
x(1)u

� 1:

9=; (5.29)
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We will examine just a few compatible combinations of the ten correlations which seem
relevant and just considered solutions on the basis of the positive square roots for the
diagonal elements of A:
That all elements of di have unit variance does not lead to loss of generality. The

values to be chosen for �1 and �2 can compensate for the unit variance of x
(1)
i and x(2)i

in the model yi = x
(1)
i �1 + x

(2)
i �2 + ui: The KLS based test of joint restrictions on �1

and �2 can be shown to be invariant with respect to �1 and �2 when the null is true,
and so is the KLS based test on the joint signi�cance of z(1)i and z(2)i when added to this
model, both under the null and alternatives, and it is also invariant to the scale of all
regressors. So when investigating the size of the KLS test of joint restrictions on �1 and
�2 and the rejection probability both under the null and under alternatives for the joint
exclusion restrictions test we may without loss of generality set �1 = �2 = 0:
In the simulations we will again take all vectors di in deviation from sample averages,

so the results are actually about models that include an intercept as well, whereas they in
fact also hold for models which yield similar vectors di after partialling out any number
of arbitrary further exogenous regressors. Table 4 presents some results for the two
types of KLS tests for the ideal (but unrealistic) situation that r = �xu (true value of
the degree of simultaneity is known). We examined all 1024 combinations of �x(1)u 2
f0:2; 0:5g; �x(2)u 2 f0:0; 0:3g; �z(1)u 2 f0:0; 0:4g; �z(2)u 2 f0:0; 0:2g; �x(1)x(2) 2 f0:2; 0:6g;
�z(1)x(1) 2 f0:3; 0:6g; �z(1)x(2) 2 f0:0; 0:3g; �z(2)x(1) 2 f0:1; 0:3g; �z(2)x(2) 2 f0:2; 0:5g and
�z(1)z(2) 2 f0:0; 0:3g; but present only 64 of them in Table 4. The table has two panels.
In the left one we present all 32 results for the lower values of �z(1)x(1) ; �z(1)x(2) ; �z(2)x(1) ;
�z(2)x(2) and �z(1)z(2) ; and in the right-hand panel those for their higher values. In all
experiments the chosen correlation coe¢ cients obeyed the compatibility criteria (5.29).
Rx represents the rejection frequency (representing the estimated actual signi�cance
level) of the joint signi�cance test on x(1)i and x(2)i : This test existed in all experiments
because we always found �̂(r) > 0: Rz is the rejection frequency of the joint exclusion
restriction test on z(1)i and z(2)i ; which represents its estimated actual signi�cance level for
cases where �z(1)u = �z(2)u = 0: For Rz results marked with an asteriks we found �̂(r) � 0
in less than 0.1% of the replications. However, in a few of the cases not included in the
table we found the exclusion test to be unde�ned much more frequently.
From Table 4 we observe that the size properties of both unfeasible KLS test pro-

cedures are also very reasonable in the more general model, whereas the power of the
exclusion restrictions test seems �ne. This being the case for the ideal situation in which
�x(1)u and �x(2)u are supposed to be known provides the appropriate starting point for
reasonably successful implementations under more realistic assumptions, as we saw in
the preceding subsection.
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Table 4 : R ejection frequencies (in % ) of unfeasib le KLS tests (K1 = L2 = 2;n = 100;� = 0:05)

�
z(1)z(2)

= 0:0; �
z(2)x(2)

= 0:2; �
z(2)x(1)

= 0:1; �
z(1)z(2)

= 0:3; �
z(2)x(2)

= 0:5; �
z(2)x(1)

= 0:3;

�
z(1)x(2)

= 0:0; �
z(1)x(1)

= 0:3; �
z(1)x(2)

= 0:3; �
z(1)x(1)

= 0:6;

�
x(1)x(2)

�
z(2)u

�
z(1)u

�
x(2)u

�
x(1)u

Rx Rz �
x(1)x(2)

�
z(2)u

�
z(1)u

�
x(2)u

�
x(1)u

Rx Rz

0.2 0.0 0.0 0.0 0.2 5.13 5.15 0.2 0.0 0.0 0.0 0.2 5.14 5.15
0.5 5.03 4.73 0.5 5.03 4.12

0.3 0.2 5.18 5.09 0.3 0.2 5.09 4.89
0.5 5.07 4.65 0.5 5.00 4.05*

0.4 0.0 0.2 5.12 97.7 0.4 0.0 0.2 5.15 99.8
0.5 5.03 96.9 0.5 5.02 99.2

0.3 0.2 5.16 97.9 0.3 0.2 5.08 99.8
0.5 5.06 97.1 0.5 5.01 97.4*

0.2 0.0 0.0 0.2 5.14 42.9 0.2 0.0 0.0 0.2 5.15 55.0
0.5 5.04 42.1 0.5 5.02 51.1

0.3 0.2 5.18 41.7 0.3 0.2 5.10 50.3
0.5 5.07 40.3 0.5 5.02 36.0*

0.4 0.0 0.2 5.14 99.5 0.4 0.0 0.2 5.16 100
0.5 5.03 99.3 0.5 5.04 99.8

0.3 0.2 5.16 99.5 0.3 0.2 5.09 99.9
0.5 5.07 99.2 0.5 5.05 97.3*

0.6 0.0 0.0 0.0 0.2 5.14 5.11 0.6 0.0 0.0 0.0 0.2 5.11 5.11
0.5 4.72 3.81 0.5 4.74 4.02*

0.3 0.2 5.20 5.09 0.3 0.2 5.10 5.06
0.5 5.09 4.71 0.5 5.06 4.11

0.4 0.0 0.2 5.14 98.1 0.4 0.0 0.2 5.12 99.8
0.5 4.71 96.0 0.5 4.71 91.6*

0.3 0.2 5.17 98.7 0.3 0.2 5.11 99.9
0.5 5.12 97.5 0.5 5.06 99.2

0.2 0.0 0.0 0.2 5.15 43.1 0.2 0.0 0.0 0.2 5.11 56.5
0.5 4.74 43.0 0.5 4.73 59.9*

0.3 0.2 5.19 41.8 0.3 0.2 5.11 51.4
0.5 5.10 41.6 0.5 5.07 50.7

0.4 0.0 0.2 5.15 99.5 0.4 0.0 0.2 5.11 99.9
0.5 4.72 99.0 0.5 4.72 95.2*

0.3 0.2 5.18 99.7 0.3 0.2 5.12 99.8
0.5 5.13 99.3 0.5 5.05 99.1

6. Empirical illustrations

We will produce empirical results for three di¤erent cross-section data sets.

6.1. A wage equation for employed women

As a �rst illustration we closely follow a textbook example on IV/TSLS estimation given
in Carter Hill et al. (2012, p.415). It concerns a subset of data originating from Mroz,
namely a few variables on a sample of n = 428 employed women. After taking all these
variables in deviation from their mean, the relationship considered is a special case of
model (2.1), namely

yi = �1x
(1)
i + x

(2)0
i �2 + ui; (6.1)

with K1 = 1 and K2 = 2; where yi is the log of wage, x
(1)
i is education in years and

vector x(2)i contains the variables experience in years and its square. It is assumed that
x
(1)
i is actually a proxy for the unavailable variable �x(1)i ; which should express ability or
intelligence. So, implicitly it is assumed that applying OLS to the model

yi = ��1�x
(1)
i + x

(2)0
i
��2 +�ui (6.2)

would yield consistent estimates, hence E(�x(1)i �ui) = 0 and E(x
(2)
i �ui) = 0:

However, regression (6.2) being unfeasible, the use in model (6.1) of L2 = 2 external
instrumental variables z(2)i = (z

(2)
i1 ; z

(2)
i2 ) is being considered, where z

(2)
i1 is the education in

years of the mother and z(2)i2 of the father of the woman concerned. The two variables in
x
(2)
i are used as internal instruments, which requires E(x(2)i ui) = 0; next to E(z

(2)
i ui) = 0:
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It does not seem unreasonable to assume that the proxy variable x(1)i can be decom-
posed as

x
(1)
i = �1�x

(1)
i + x

(2)0
i �2 + vi; (6.3)

where �1 > 0; and remainder vi is such that E(�x
(1)
i vi) = 0 and E(x(2)i vi) = 0: Then

substituting (6.3) into (6.2) gives

yi = ��1�
�1
1 (x

(1)
i � x(2)0i �2 � vi) + x(2)0i

��2 +�ui

= ��1�
�1
1 x

(1)
i + x

(2)0
i (��2 � ��1��11 �2) +�ui � ��1��11 vi;

which implies for model (6.1) that �1 = ��1��11 ; �2 = ��2���1��11 �2 and ui =�ui���1��11 vi:
From this we �nd

E(x
(1)
i ui) = E[(�1�x

(1)
i + x

(2)0
i �2 + vi)(�ui � ��1��11 vi)]

= E(vi�ui)� �1E(v2i ):

It seems plausible to assume E(vi�ui) = 0; because otherwise x(1)i would in fact be an
omitted variable from regression (6.2). So, we �nd

�1 =
E(x

(1)
i ui)

�1�u
= ��1

E(v2i )

�1�u
= ���1�1

�u
; (6.4)

assuming that E(v2i ) = ��
2
1; where, say, 0:1 < � < 0:4: Coe¢ cient 100 � �1 represents

the percentage wage increase per extra year of education. Since we expect 0 < �1 < 0:1;
we may suppose �1 < �1 < 0; so that the OLS estimate of �1 will have a negative bias.
If �1�1=�u is about 2 (which it would be on the basis of the TSLS �ndings), then we
should have a special interest in examining the range �0:8 < �1 < �0:2:
Because we deduced that E(x(1)i ui) 6= 0; variable x(1)i is endogenous in regression

(2.1). Its endogeneity is not due to classic simultaneity or dual or reciprocal causality,
but it simply stems from an omitted explanatory variable which has been replaced by
a proxy variable, so the origin of the endogeneity is actually measurement error. Thus,
the endogeneity of x(1)i is not intrinsic here, but incurred. That x(1)i is the one and only
endogenous regressor in (6.1) is due to the untested assumption E(x(2)i �ui) = 0; which
yields E(x(2)i ui) = E[x

(2)
i (�ui � ��1��11 vi)] = ��1E(x

(2)
i vi) = 0:

Figure 1 shows over a wide range of r1 values the P -values of the single just-identifying
exclusion restriction tests for the variables z(1)i and z(2)i respectively. Over the range
�0:9 < �1 < �0:1 (which we suppose to contain the true value of �1) for both variables
all calculated P -values are below 5%. Testing their joint exclusion (results not presented)
leads to the same conclusion. Thus, overwhelming evidence has been found forcing to
conclude that these instruments are invalid. Nevertheless, the standard methods strongly
support the TSLS results for the chosen speci�cation. In reduced form regressions for
x
(1)
i ; where next to x

(2)
i just z(2)i1 is added, its F -test value is 73.95, whereas this is

87.74 for z(2)i2 ; so both instruments seem pretty strong. Jointly they have an F -value of
55.40. Also, the Sargan test for the single over-identi�cation restriction when using both
instruments has P -value 0.54. So, according to standard practice methods, acceptance of
the TSLS results seems vindicated; the invalidity of the instruments remains undetected.
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Figure 1: P -values of single just-identifying exclusion restriction tests
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There is an aspect overlooked by Carter Hill et al. (2014), which seems to reveal
the inconsistency of TSLS for the present model. They �nd a larger estimate of �1 by
OLS than by TSLS and argue that this is to be expected if variable x(1)i is positively
correlated with the omitted factors in the error term. However, as we demonstrate
above, we expect �1 to be negative, and hence the inconsistency of the OLS estimator
of �1 should be negative too. So, supposing TSLS to be consistent, one should expect
OLS to yield a smaller estimate than TSLS. The negative sign of �1 implies that the
KLS estimator of �1 will turn out to be larger than the OLS estimator.
Figure 2 shows the TSLS asymptotic 95% con�dence interval for �1 (red dotted lines),

which is invariant regarding �1; and is centered at the TSLS estimate 0.0614 (red line). It
also shows the KLS estimator (blue line), which varies with r1 and the KLS asymptotic
95% con�dence interval (blue dotted lines). The right-hand-side graph zooms in on the
area which we suppose to comprise the true value of �1: The standard OLS nominal 95%
con�dence interval is indicated at r1 = 0, centered around 0.108. Figure 2 shows that
for substantially negative values of �1 the consistent (when the assumptions of Section
2 apply) KLS estimators produce ludicrous values for �1: Hence, the conclusion must
not simply be that the two external instruments are invalid for model (6.1), as Figure
1 shows, but that more serious speci�cation problems undermine this model than just
endogeneity of x(1)i : These problems do not emerge from a standard TSLS analysis, but
show up by applying KLS.

Figure 2: Inference on �1 based on (non-)orthogonality conditions

r1

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2

C
oe

ff
ic

ie
nt

 E
du

c

­0.5

0

0.5

1

1.5

2

2.5

3
KLS and TSLS Confidence In tervals for coefficient o f Educ

r1

­0.3 ­0.25 ­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

C
oe

ff
ic

ie
nt

 E
du

c

­0.15

­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

KLS and TSLS Confidence In tervals for coefficient o f Educ

21



6.2. An analysis of the weight of newborns

We shall present another simple illustration. In Wooldridge (2010, p.116) an exercise
is presented in which it is analyzed for n = 1388 newborns whether smoking by their
mother during pregnancy a¤ects birth weight. A model like (6.1) is analyzed with
K1 = 1 but now K2 = 3; where yi is the log of birth weight, x

(1)
i is the average number

of packs of cigarettes smoked during pregnancy and vector x(2)i contains a dummy for
the gender of the baby, a variable parity, which is the birth order of the child, and the
log of family income. It is assumed that x(1)i is correlated with the disturbance term,
because various further determinants of birth weight may be correlated with smoking
behavior, such as alcohol use, health consciousness, �tness activity, stress, food, sleep
and many more, and these have all been omitted from the model. It is suggested to
use the price of cigarettes as an instrumental variable, because economic theory predicts
that it is negatively correlated with packs smoked, whereas it does not seem likely that
this price has a direct e¤ect on birth weight.
OLS yields a coe¢ cient estimate for packs of -0.084 with standard error 0.017, which

(when consistent) would suggest that each extra cigarette smoked per day (each package
containing 20 cigarettes) reduces birth weight by about 0.4%. TSLS yields an outrageous
coe¢ cient of 0.651 (positive!) with standard error 0.854. These are clearly a¤ected
by weakness of the instrument (price elasticity will be moderate because smoking is
addictive) since the relevant F -value in the �rst-stage regression is only 1.00.
To this standard evidence the procedures developed in this study can add the follow-

ing. The analysis presented at the start of this section can now be interpreted as follows.
Suppose x(1)i is used here as a proxy for the comprehensive latent variable "life-style risks
for baby�s birth weight". Then we have again �1 > 0; but expect now �1 < 0: So here
�1 > 0; which would render the OLS estimator of �1 positively biased which suggests
that an extra cigarette per day may reduce birth weight by more than 0.4%. Suppose
that in fact �0:08 > �1 > �0:15; 0:2 < � < 0:8 and 0:5 < �1=�u < 2 then it follows from
(6.4) that 0:008 < �1 < 0:24: From the left-hand side of Figure 3 we can see that over
this area the validity of the instrument lacks strong support. Although the exclusion test
does not force to reject at a signi�cance level smaller than 10%, in order to justify the
use of the instrument a P -value much larger, say exceeding 50%, would provide much
more comfort. The relatively low P -values for �1 > 0 also do not encourage to move on
to applying weak instrument techniques.
Assuming that the conditions to apply KLS do hold, the right-hand-side graph in

Figure 3 shows that if we knew �1 we would be able to produce highly accurate KLS
inference on �1 (blue lines; the con�dence interval is so narrow that the �gure barely
shows it). For instance, it enables to infer rejection of the hypothesis �1 > 0; provided
�1 > �0:05: KLS also allows a sensitivity analysis of TSLS: It shows that the extremely
wide (and hence pretty useless) TSLS con�dence interval is conservative at the nominal
95% level, provided �0:95 < �1 < 0:9: Zooming in on this �gure yields the left-hand
side of Figure 4, from which we can deduce that for 0 � �1 � 0:35 (which does not
seem unrealistic) the con�dence set �0:36 � �1 � �0:05 has asymptotic con�dence
coe¢ cient 0.95. In the right-hand side of Figure 4 we produce KLS inference on one of
the coe¢ cients of the exogenous regressors, namely the log of family income. The TSLS
estimate of this coe¢ cient is 0.064 and its 95% con�dence interval is (�0:048; 0:175), but
KLS learns that for realistic values of �1 this coe¢ cient is much smaller and signi�cantly
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negative. Hence, for realistic values of �1 the TSLS interval is liberal here (actual
con�dence coe¢ cient smaller than the nominal coe¢ cient), whereas it is predominantly
conservative in the right-hand side of Figure 3.

Figure 3: Inference on birth weight data based on (non-)orthogonality conditions
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Figure 4: KLS inference on coe¢ cients of birth weight data
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6.3. A wage equation for young men

The above illustrations required using the simple Corollary 1.2 only, because they con-
cern models with just one endogenous regressor. Next we will exploit Theorem 1 in its
full complexity in an empirical model where K1 = 2 which is based on a classic data set
originating from work by Griliches and also used for illustrative purposes on a subset
(n = 758) of these data on young men in Hayashi (2000, p.251). In Kiviet and Pleus
(2017, p.18) we used the same data to illustrate tests on establishing the endogeneity of
subsets of regressors. These are built on assuming validity of two untestable (according
to the classic approach) identifying orthogonality conditions. Like in the �rst illustration
log wage is the dependent variable, but next to schooling also an iq test score is a possibly
endogenous regressor in addition to a range of exogenous controls (K2 = 11), including
age and experience. The external instruments used are (L2 = 4): age2 (age squared),
expr2 (experience squared), kww (another test score) and kww2 (kww squared). The
overall Sargan test (2 degrees of freedom) has satisfying P -value 0.89, but it leaves two
underlying just-identifying restrictions untested.
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Figure 5 shows (colored) contour plots for the P -values of the KLS based exclusion
restrictions tests (L2 = 2) of age2 and expr2 (left-hand) and kww and kww2 (right-hand)
respectively. These plots have been obtained by calculating test statisticW � of (4.9) over
a range of values for the simultaneity correlations, where r1 refers to schooling and r2 to
iq score. For both the grid values -0.99:0.01:0.99 have been examined. For cases where
r0SxS

�1
xx Sxr > 0:99 we did set the P -value at 1.1, to be interpreted as "not de�ned".

Both plots show that the statistic is de�ned over an ellipse. The exclusion restriction
regarding the squares of both included regressors age and expr does not have to be
rejected whatever the true values of �1 and �2 will be, since all P -values exceed 0.75.
This is pretty hard evidence (although not irrefutable) on the possible validity of these
two instruments. For score test variable kww and its square the situation is di¤erent.
Over a substantial area of (�1; �2) combinations their exclusion test has P -values well
below 0.1, whereas the area where it exceeds 0.7 forms just a narrow shell, covering
cases where �21 + �

2
2 is relatively large. Especially when the simultaneity is nonexistent

or mild the validity of kww and kww2 as instruments seems doubtful. Assuming that
both schooling and iq are positively related to "ability", we expect both �1 and �2 to be
mildly positive.

Figure 5: P -values of two just-identifying exclusion restriction tests

In the left-hand side contour plot of Figure 6 we test the exclusion of the L2 = 4
variables jointly. Now no P -values are obtained below 0.18. This demonstrates that the
exclusion test may have limited power when some rightly (age2 and expr2) and some
wrongly (kww and kww2) excluded regressors are tested jointly. In the right-hand side
of Figure 6 we test the model in which kww has been included as an exogenous regressor
(K2 = 12), and it is tested whether the L2 = 3 squared variables seem valid external
instruments for the two endogenous regressors schooling and iq. Figure 6 highlights that
the inference on endogeneity of these two regressors as presented in Kiviet and Pleus
(2017), which uses the model and instruments of the left-hand contour plot, although
supported by a large P -value of the Sargan test, should better have been executed in the
model and with the external instruments of the right-hand contour plot, because this
does not discourage the use of these three instruments irrespective of the actual values
of �1 and �2.
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Figure 6: P -values of exclusion restriction tests in two di¤erent models

The results just found can either be used to precede a traditional TSLS analysis,
as performed in Kiviet and Pleus (2017). Or it can be interpreted as supporting the
speci�cation of the model which includes kww as an extra regressor and excludes the
three squared variables (K2 = 12), while treating both schooling and iq as endogenous
(K1 = 2), and next �avoiding the use of possibly weak or invalid instruments�analyze
its coe¢ cients on the basis of KLS inference. We will do the latter here, just focussing on
the coe¢ cients of iq and kss. We perform one sided tests on the single hypothesis that
these coe¢ cients exceed some particular value. For this value we chose their estimated
values as obtained by OLS, which are 0.0029 and 0.0045 respectively. From the contours
of Figure 7 one can see that, roughly, this hypothesis is rejected for iq when �1 > 2�2
and for kss when �1 > �0:9�2: Assuming both �1 and �2 to be about 0.3 it seems likely
that the coe¢ cient of iq is smaller than 0.0029 and that of kss larger than 0.0045.

Figure 7: KLS inference on particular coe¢ cients

To depict similar inference results when we would allow kss to be endogenous too
becomes of course much more complicated. However, it is not impossible. One could
produce, next to the above results where kss is supposed to be exogenous (which could be
expressed as �3 = 0), also contours for some cases where, for instance, �3 = 0:1 : 0:1 : 0:5:
Hence, such contour plots allow to examine the sensitivity of OLS or TSLS coe¢ cient
estimates, but also to produce inference on either instrument validity or regression co-
e¢ cients conditional on speci�c assumptions regarding simultaneity or to some degree
robust to simultaneity.

25



7. Conclusion

By incremental or di¤erence Sargan-Hansen tests for over-identifying restrictions the va-
lidity of a subgroup of instruments can be tested, provided a su¢ cient number of valid
(i.e. exogenous) and relevant (i.e. su¢ ciently strong) over- or just-identifying instru-
ments are already available. When one wants to verify whether these latter instruments
are really valid indeed, the only route provided by the standard approach is: �rst adopt
another non-testable set of valid identifying instruments. Thus, providing statistical
evidence on the validity of all instruments is simply impossible by these tools. It mimics
a situation where for a proof by mathematical induction one can prove the induction
step, whereas proof of the truth of a base case is yet missing, and its proof seems even
completely beyond reach.
However, a particular implementation of the KLS-based test procedure developed

in this study, by which general linear restrictions can be tested in a multiple regression
model with an arbitrary number of endogenous regressors without exploiting any external
instruments �which is of substantial practical relevance by itself�also allows to generate
statistical evidence on the tenability of exclusion restrictions. In situations where in
this way a just-identifying or over-identifying set of acceptable instruments has been
established, it provides for a series of incremental Sargan-Hansen tests the essential
underlying building block which was missing so far. This supporting building block seems
mandatory if one still wants to employ IV-based estimation and inference. However, the
general tools developed in this paper also allow to produce inference on coe¢ cient values
while avoiding the use of external instruments altogether and thus missing out all the
ensuing problems such as sacri�cing credibility, accuracy and power due to possible
weakness or invalidity of instruments.
The tools developed here are not very demanding computationally, and can also be

used to provide a sensitivity analysis of least-squares or instrumental variables based in-
ferences with respect to less strict assumptions regarding the orthogonality assumptions
on which these are built.
Of course, as always, deeper insights and further generalizations are called for. Pre-

ceding the usual Sargan-Hansen tests by a just-identifying exclusion restrictions test
exacerbates the pre-test problems. Theorem 1 presupposes homoskedasticity of both
disturbances and regressors, so if this is not the case one should manage to �rst weigh
all observations such that this is achieved as closely as possible. Developing inference
methods which are robust regarding both simultaneity and heteroskedasticity and at the
same time control size and boost power over the whole model building process remain a
challenge for the future e¤orts.
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Appendices

A. Some basic derivations

We have assumed that f(x0i; ui)0; i = 1; :::; ng are independently and identically distrib-
uted with zero mean and

V ar

�
xi
ui

�
=

�
�xx �xu
�0xu �2u

�
:

All elements of the latter matrix are assumed to be �nite. In addition, we assume
that all elements of (x0i; ui)

0 have a symmetric distribution, whereas E(u4i ) = �u�
4
u and

E(x4ij) = �x�
4
j ; with 1 � �u <1 and 1 � �x <1:We denote the typical element of �xx

by �jk (j; k = 1; :::; K), but for its diagonal elements we will sometimes use �2j = �jj:
The typical element of vector �xu can be denoted �u�j�j; because �j = �xju=(�j�u):
Next to �xx and its sample equivalent Sxx; where for the latter we de�ned two options
at the end of Section 2, we will also use the matrices �2x = diag(�21; :::; �

2
K) and �x =

diag(�1; :::; �K); as well as the diagonal matrices Sx and S2x: The latter has the same
main diagonal as Sxx; and SxSx = S2x:
Invoking a standard version of the central limit theorem, we can now obtain the

following results, which will be exploited later. We have

n1=2(u0u=n� �2u) = n�1=2�ni=1(u2i � �2u)
d! N [0; (�u � 1)�4u]; (A.1)

because V ar(u2i � �2u) = E(u4i )� �4u = (�u � 1)�4u: So, u0u=n� �2u = Op(n�1=2): Also

n1=2(X 0u=n� �xu) = n�1=2�ni=1(xiui � �xu)
d! N [0; �2u�xx + (�u � 2)�xu�0xu]; (A.2)

hence X 0u=n� �xu = Op(n�1=2): This is found by decomposing xi into two components,
xi = �i+�xu�

�2
u ui; where �i is independent of ui: Of course, E(�i) = 0 and E(�iui) = 0; so

E(xiui) = �xu indeed. Since V ar(xi) = �xx = V ar(�i) + ��2u �xu�
0
xu; result (A.2) follows

from V ar(xiui � �xu) = E(u2ixix0i) � �xu�0xu = E(u2i �i�0i) + �xu�0xu��4u E(u4i ) � �xu�0xu =
�2uV ar(�i) + (�u � 1)�xu�0xu = �2u�xx + (�u � 2)�xu�0xu:
For j; k = 1; :::; K we have

n1=2(X 0X=n� �xx)j;k = n�1=2�ni=1(xijxik � �jk)
d! N [0; �2j�2k + (�x � 2)�2jk]: (A.3)

This is proved by decomposing xik = a1xij + a2�ik; where xij and �ik are independent
and �ik has zero mean and unit variance. Because E(x2ik) = �2k = a21�

2
j + a

2
2 and

E(xikxij) = �kj = a1�
2
j we have a1 = �kj�

�2
j and a22 = �2k � �2kj��2j : Now we obtain

E(x2ijx
2
ik) = E[x2ij(a

2
1x
2
ij + 2a1a2xij�ik + a

2
2�
2
ik)] = �x�

2
jk + �

2
j (�

2
k � �2kj��2j ) = �2j�

2
k +

(�x � 1)�2jk; thus V ar(xijxik � �jk) = �2j�2k + (�x � 2)�2jk; from which (A.3) follows. So,
n�1X 0X � �xx = Op(n�1=2):
Another result that we will exploit later, which involves the Hadamard (element by

element) matrix product (denoted �), is

n1=2(S2x � �2x)�xu
d! N [0; (�x � 1)R(�xx � �xx)R]; (A.4)
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where R = diag(�1; :::; �K): Since, following the �rst option for S2x; we have n
1=2(S2x �

�2x)�xu = n
�1=2�ni=1vi with v

0
i = ((x

2
i1 � �21)�1; :::; (x2iK � �2K)�K)0, using the expression

for E(x2ijx
2
ik) just derived we �nd E[(x

2
ij � �2j )(x2ik � �2k)] = (�x � 1)�2jk: Thus E[(x2ij �

�2j )�j(x
2
ik��2k)�k] = (�x�1)�j�2jk�k; which is the typical element of the limiting variance

matrix of (A.4).
In what follows we also need the mutual covariances of scalar (A.1) and vectors (A.2)

and (A.4). We �nd E[(u2i � �2u)(xiui � �xu)] = E[(u2i � �2u)(�iui + �xu��2u u2i � �xu)] =
(�u � 1)�2u�xu; hence

nE[(u0u=n� �2u)(X 0u=n� �xu)] = (�u � 1)�2u�xu: (A.5)

Using xij = �ij + �j�j�
�1
u ui; from E[(u2i � �2u)(x2ij � �2j )�j] = �jE[(u

2
i � �2u)(�2ij +

2�j�
�1
u ui�ij + �

2
j�
2
j�

�2
u u

2
i )] = (�u � 1)�2u�3j�2j we �nd

nE[(u0u=n� �2u)(S2x � �2x)�xu] = (�u � 1)�2u�2xR2�xu: (A.6)

And, using V ar(�i) = �xx � ��2u �xu�0xu; from

E[(�ijui + �j�j�
�1
u u

2
i � �j�j�u)(�2ik + 2�k�k��1u �ikui + �2k�2k��2u u2i � �2k)�k]

= 2�2k�k�u(�xx � ��2u �xu�0xu)jk + (�u � 1)�j�j�u�3k�2k
= 2�u�

2
k�k(�xx)jk + (�u � 3)�u�j�j�3k�2k

we obtain

nE[(X 0u=n� �xu)�0xu(S2x � �2x)] = 2�u�xx�xR2 + (�u � 3)�u�x�xu�0xu�2xR2: (A.7)

B. Proof of Theorem 1

To �nd the limiting distribution of the inconsistency corrected OLS estimator �̂(�xu) =
�̂OLS � n � �̂u(�xu)(X 0X)�1Sx�xu we examine

n1=2[�̂(�xu)� �] = (n�1X 0X)�1[n�1=2X 0u� n1=2�̂u(�xu)Sx�xu]: (B.1)

First, we have to separate from the right-hand side expression the leading Op(1) terms
from op(1) terms. Matrix n�1X 0X = Op(1) can be decomposed as

n�1X 0X = �xx + (n
�1X 0X � �xx); (B.2)

where the �rst component is deterministic and �nite, denoted as �xx = O(1); and the
second component is n�1X 0X��xx = Op(n�1=2); see derivation below (A.3). Exploiting
the smaller order of this second component we �nd

(n�1X 0X)�1 = (�xx + n
�1X 0X � �xx)�1 = ��1xx [I + (n�1X 0X � �xx)��1xx ]�1

= ��1xx [I � (n�1X 0X � �xx)��1xx
+ (n�1X 0X � �xx)��1xx (n�1X 0X � �xx)��1xx � :::]

= ��1xx � ��1xx (n�1X 0X � �xx)��1xx + op(n�1=2): (B.3)

Hence, this inverse has a leading O(1) term, a second term of order Op(n�1=2) plus a
remainder of smaller order.
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The �rst term in the factor between square brackets in (B.1) is

n�1=2X 0u = n1=2�xu + n
1=2(n�1X 0u� �xu); (B.4)

so it can be decomposed in a deterministic O(n1=2) and a random Op(1) component, see
(A.2). To �nd the leading components in decreasing order of the second term in the
factor between square brackets in (B.1) we start by considering S2x = �

2
x + (S

2
x � �2x);

where S2x � �2x = Op(n�1=2); as shown in (A.4). Hence, using Sx and �x as de�ned in
Appendix A,

Sx = �x + 0:5�
�1
x (S

2
x � �2x) + op(n�1=2); (B.5)

which is proved by evaluating SxSx; as this yields �2x + S
2
x � �2x + op(n�1=2) = S2x +

op(n
�1=2):
Next we consider (2.10) evaluated in �xu; which is

�̂2u(�xu) = [1� �0xuSx(n�1X 0X)�1Sx�xu]
�1[n�1u0u� (n�1X 0u)0(n�1X 0X)�1(n�1X 0u)]:

(B.6)
We �rst decompose Sx(n�1X 0X)�1Sx by substituting (B.3) and (B.5), which yields

Sx(n
�1X 0X)�1Sx

= [�x + 0:5�
�1
x (S

2
x � �2x)][��1xx � ��1xx (n�1X 0X � �xx)��1xx ]

� [�x + 0:5��1x (S2x � �2x)] + op(n�1=2)
= �x�

�1
xx�x + 0:5�

�1
x (S

2
x � �2x)��1xx�x � �x��1xx (n�1X 0X � �xx)��1xx�x

+ 0:5�x�
�1
xx�

�1
x (S

2
x � �2x) + op(n�1=2):

As diagonal matrices commute, we have ��1x (S
2
x � �2x) = (S2x � �2x)��1x : De�ning � =

1� �0xu�x��1xx�x�xu; we now obtain

1� �0xuSx(n�1X 0X)�1Sx�xu = � � �0xu�x��1xx��1x (S2x � �2x)�xu
+ �0xu�x�

�1
xx (n

�1X 0X � �xx)��1xx�x�xu + op(n�1=2):

Next the �rst factor of (B.6) can be decomposed as

[1� �0xuSx(n�1X 0X)�1Sx�xu]
�1 = ��1 + ��2�0xu�x�

�1
xx�

�1
x (S

2
x � �2x)�xu

� ��2�0xu�x��1xx (n�1X 0X � �xx)��1xx�x�xu
+ op(n

�1=2);

and for the second factor of (B.6) we �nd, using (B.4) and (B.3),

n�1u0u� (n�1X 0u)0(n�1X 0X)�1(n�1X 0u)

= �2u + (n
�1u0u� �2u)

� [�xu + (n�1X 0u� �xu)]0[��1xx � ��1xx (n�1X 0X � �xx)��1xx ]
� [�xu + (n�1X 0u� �xu)] + op(n�1=2)

= �2u� + (n
�1u0u� �2u)� 2�0xu��1xx (n�1X 0u� �xu)

+ �0xu�
�1
xx (n

�1X 0X � �xx)��1xx�xu + op(n�1=2);
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where we used �xu = �u�x�xu: The above yields for (B.6)

�̂2u(�xu)

= f��1 + ��2[�0xu�x��1xx��1x (S2x � �2x)�xu � �0xu�x��1xx (n�1X 0X � �xx)��1xx�x�xu]g�
[�2u� + (n

�1u0u� �2u)� 2�0xu��1xx (n�1X 0u� �xu) + �0xu��1xx (n�1X 0X � �xx)��1xx�xu]
+ op(n

�1=2)

= �2u + �
�1(n�1u0u� �2u)� 2��1�0xu��1xx (n�1X 0u� �xu) + ��1�0xu��1xx (n�1X 0X � �xx)��1xx�xu

+ �2u�
�1[�0xu�x�

�1
xx�

�1
x (S

2
x � �2x)�xu � �0xu�x��1xx (n�1X 0X � �xx)��1xx�x�xu] + op(n�1=2)

= �2u + �
�1(n�1u0u� �2u)� 2��1�0xu��1xx (n�1X 0u� �xu) + �2u��1�0xu�x��1xx��1x (S2x � �2x)�xu

+ op(n
�1=2);

from which we obtain

�̂u(�xu) = �u + 0:5�
�1
u �

�1(n�1u0u� �2u)� ��1u ��1�0xu��1xx (n�1X 0u� �xu)
+ 0:5�u�

�1�0xu�x�
�1
xx�

�1
x (S

2
x � �2x)�xu + op(n�1=2):

For the factor between square brackets at the right-hand side of (B.1) we �nd now
from the above, upon collecting all op(1) terms in a remainder term,

n�1=2X 0u� n1=2�̂u(�xu)Sx�xu
= n1=2�xu + n

1=2(n�1X 0u� �xu)
� n1=2[�u + 0:5��1u ��1(n�1u0u� �2u)� ��1u ��1�0xu��1xx (n�1X 0u� �xu)

+ 0:5�u�
�1�0xu�x�

�1
xx�

�1
x (S

2
x � �2x)�xu][�x + 0:5��1x (S2x � �2x)]�xu + op(1)

= n1=2[�xu + (n
�1X 0u� �xu)� �u�x�xu � 0:5��1u ��1(n�1u0u� �2u)�x�xu

+ ��1u �
�1�0xu�

�1
xx (n

�1X 0u� �xu)�x�xu
� 0:5�u��1�0xu�x��1xx��1x (S2x � �2x)�xu�x�xu � 0:5�u��1x (S2x � �2x)�xu] + op(1)

= n1=2[(n�1X 0u� �xu) + ��1u ��1�x�xu�0xu��1xx (n�1X 0u� �xu)
� 0:5�u��1�x�xu�0xu�x��1xx��1x (S2x � �2x)�xu � 0:5�u��1x (S2x � �2x)�xu
� 0:5��1u ��1�x�xu(n�1u0u� �2u)] + op(1)

= n1=2[(I + ��1�x�xu�
0
xu�x�

�1
xx )(n

�1X 0u� �xu)
� 0:5�u(I + ��1�x�xu�0xu�x��1xx )��1x (S2x � �2x)�xu
� 0:5��1u ��1�x�xu(n�1u0u� �2u)] + op(1): (B.7)

Note that the three explicit terms of (B.7) all have zero mean, are Op(1) and have
a normal limiting distribution, according to our results of Appendix A. Hence, this
expression has a limiting normal distribution too, say [n�1=2X 0u� n1=2�̂u(�xu)Sx�xu]

d!
N (0; �2u�): Then, given (B.1), the limiting distribution of the inconsistency corrected
OLS estimator is

n1=2[�̂(�xu)� �]
d! N (0; �2u��1xx���1xx ): (B.8)

So, in order to establish this we should obtain �; the variance of the sum of all Op(1)
terms of the vector (B.7).
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Employing the asymptotic variances and covariances derived in Appendix A we �nd,
when specializing for the case �u = 3 and �x = 3;

� = (I + ��1�x�xu�
0
xu�x�

�1
xx )(�xx + �x�xu�

0
xu�x)(I + �

�1��1xx�x�xu�
0
xu�x)

+ 0:5(I + ��1�x�xu�
0
xu�x�

�1
xx )�

�1
x R(�xx � �xx)R��1x (I + ��1��1xx�x�xu�0xu�x)

+ 0:5��2�x�xu�
0
xu�x

� (I + ��1�x�xu�0xu�x��1xx )�xxR2(I + ��1��1xx�x�xu�
0
xu�x)

� (I + ��1�x�xu�0xu�x��1xx )R2�xx(I + �
�1��1xx�x�xu�

0
xu�x)

� ��1(I + ��1�x�xu�0xu�x��1xx )�x�xu�0xu�x
� ��1�x�xu�0xu�x(I + ��1��1xx�x�xu�0xu�x)
+ 0:5��1(I + ��1�x�xu�

0
xu�x�

�1
xx )R2�x�xu�

0
xu�x

+ 0:5��1�x�xu�
0
xu�xR2(I + ��1��1xx�x�xu�

0
xu�x):

First we shall evaluate this for the scalar case K = 1; where �2xu = 1� �: This yields
1 + �2xu=� = �

�1; giving

��2x � = (1 + �
2
xu=�)

2(1 + �2xu) + 0:5[(1 + �
2
xu=�)

2�2xu + �
2
xu=�

2]

� 2[(1 + �2xu=�)2�2xu + �2xu(1 + �2xu=�)=�] + �4xu(1 + �2xu=�)=�
= ��2(1 + �2xu + �

2
xu � 2�2xu � 2�2xu + �4xu)

= ��2(1� �2xu)2

= 1;

which establishes the proof of Corollary 1.1.
For the caseK > 1 such an elegant result proves to be an illusion, generally speaking.

Denoting � = �x�xu�0xu�x and using ��
�1
xx� = (1� �)�; we �nd for the �rst term of �

the expression

(I + ��1�x�xu�
0
xu�x�

�1
xx )(�xx + �x�xu�

0
xu�x)(I + �

�1��1xx�x�xu�
0
xu�x)

= (I + ��1���1xx )(�xx + �)(I + �
�1��1xx�)

= [�xx + �+ �
�1� + ��1(1� �)�](I + ��1��1xx�)

= (�xx + 2�
�1�)(I + ��1��1xx�)

= �xx + [2�
�1 + ��1 + 2��2(1� �)]�

= �xx + (�
�1 + 2��2)�;
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and for the full expression

� = �xx + (�
�1 + 2��2)�

+ 0:5(I + ��1���1xx )�
�1
x R(�xx � �xx)R��1x (I + ��1��1xx�) + 0:5��2�

� �xxR2 � ��1�xxR2��1xx�� ��1�R2 � ��2�R2��1xx�

�R2�xx � ��1R2�� ��1���1xxR2�xx � ��2���1xxR2�

� 2��1�� 2��2���1xx�
+ 0:5��1R2� + 0:5��2���1xxR2� + 0:5��1�R2 + 0:5��2�R2��1xx�

= �xx + [�
�1 + 2��2 + 0:5��2 � 2��1 � 2��2(1� �)]�+

+ 0:5(I + ��1���1xx )R��1x (�xx � �xx)��1x R(I + ��1��1xx�)
� �xxR2 � ��1�xxR2��1xx�� 0:5��1�R2

�R2�xx � 0:5��1R2�� ��1���1xxR2�xx � ��2(�0xu�x��1xx�xR2�xu)�

= �xx � �xxR2 �R2�xx � ��1(�xxR2��1xx� + ��
�1
xxR2�xx)

� 0:5��1(�R2 +R2�) + [��1 + ��2(0:5� �0xu�x��1xx�xR2�xu)]�

+ 0:5(I + ��1���1xx )R��1x (�xx � �xx)��1x R(I + ��1��1xx�):

C. Proof of Corollary 1.2

Evaluating � for the special case where �xu = (�1; 0; :::; 0)
0 a simpler expression for

the limiting variance is found, and again a very elegant solution for the coe¢ cient of
the endogenous regressor. Let e1 be the K � 1 vector with all its elements zero apart
from the �rst one which is unity. Now, given this special case of �xu; R = �1e1e

0
1

and � = �21�
2
1e1e

0
1: Denoting e

0
1�

�1
xx e1 = �11 we have � = 1 � �21�21�11. The we �nd

�xxR2��1xx� = �xx�
2
1e1e

0
1�

�1
xx�

2
1�
2
1e1e

0
1 = �41�

2
1�

11�xxe1e
0
1; �R2 = �21�

2
1e1e

0
1�
2
1e1e

0
1 =

�41�
2
1e1e

0
1; �

0
xu�x�

�1
xx�xR2�xu = �

4
1�
2
1�

11 and (I+��1���1xx )R = (I+��1�21�
2
1e1e

0
1�

�1
xx )�1e1e

0
1 =

��1(�1� + �
3
1�
2
1�

11)e1e
0
1 = �

�1�1e1e
0
1: Substituting all these, we �nd

� = �xx � �21(�xxe1e01 + e1e01�xx)� ��1�41�21�11(�xxe1e01 + e1e01�xx)� ��1�41�21e1e01
+ ��1(1 + 0:5��1)�21�

2
1e1e

0
1 � ��2�61�41�11e1e01 + 0:5��2�21�21e1e01

= �xx � ��1(�21� + �41�21�11)(�xxe1e01 + e1e01�xx)
+ ��2(���21 + � + 1� �41�21�11)�21�21e1e01

= �xx � ��1�21(�xxe1e01 + e1e01�xx) + ��2(� + 1� �21)�21�21e1e01:

Hence, in this special case

V (�xu) = �
�1
xx��

�1
xx

= ��1xx � ��1�21(e1e01��1xx + ��1xx e1e01) + [��1 + ��2(1� �21)]�21�21��1xx e1e01��1xx :
(C.1)

We will now focus on the �rst element of estimator �̂(�xu): The OLS results �̂1; û
and �̂2u regarding �1; u and �

2
u are all invariant under the model transformation given

by y = x1�1 +X2�2 + u = (M2 + P2)x1�1 +X2�2 + u =M2x1�1 +X2[(X
0
2X2)

�1X 0
2�1 +

�2] + u = x
�
1�1 + X2�

�
2 + u; where P2 = X2(X

0
2X2)

�1X 0
2; M2 = I � P2 and X 0

2x
�
1 = 0:
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Therefore, in the model with regressors (x�1; X2); �
2
1 = n

�1x�01 x
�
1 and �

11 = ��21 ; giving
� = 1� �21�21�11 = 1� �21: Then we �nd for V (�xu) of (C.1) that

e01V (�xu)e1 = �
11 � 2��1�21�11 + [��1 + ��2(1� �21)]�21�21(�11)2

= �11[1� 2��1�21 + (��1 + ��2 � ��2�21)(1� �)]
= �11(1� 2��1�21 + ��1 + ��2 � ��2�21 � 1� ��1 + ��1�21)
= ��2�11(1� ��21 � �21)
= �11;

which is invariant with respect to �xu:
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