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Abstract

This paper considers the Panel Vector Autoregressive Models of order 1 (PVAR(1)) with

possibly spatially dependent error terms. We prove that the cointegration testing pro-

cedure of Binder, Hsiao, and Pesaran (2005) is not valid due to the singularity of the

corresponding Hessian matrices under pure unit roots or cointegrated processes. As an

alternative we propose a simple Method of Moments based cointegration test using the

rank test of Kleibergen and Paap (2006) for fixed number of time observations. The test

is shown to be robust to time series heteroscedasticity as well as unbalanced panels. The

novelty of our approach is that we exploit the “weakness” of the Anderson and Hsiao

(1982) moment conditions in the construction of the new test. The finite-sample perfor-

mance of the proposed test statistic is investigated using the simulated data. The results

show that for most scenarios the method performs well in terms of both size and power.

The proposed test is applied to employment and wage equations using Spanish firm data of

Alonso-Borrego and Arellano (1999) and the results show little evidence for cointegration.
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1. Introduction

The standard textbook treatment of econometrics assumes that estimation and hy-

pothesis testing are the two sides of the same coin, with the latter being impossible to im-

plement without the former. More importantly, for most of standard estimation methods

regularity conditions necessary for hypothesis testing are equivalent to those of estimation.

As a prototypical example consider the full rank assumption in the (Generalized) Method

of Moments estimation that is needed both for estimation and hypothesis testing using

Wald test. Unfortunately, for some econometric models this assumption can be too strong,

resulting in a partial identification only, see e.g. Phillips (1989).

In their pioneering work Anderson and Rubin (1949) advocated the idea that it is

possible to perform hypothesis testing for a simultaneous equations model under regularity

conditions weaker than estimation conditions.1 Thus, in some situations it is possible to

avoid the estimation step and to perform the hypothesis testing directly. In this paper we

apply a similar principle by turning a disadvantageous situation from estimating point of

view into an advantageous one for hypothesis testing.

We consider the cointegration testing problem for the Panel VAR model of order 1 with

fixed time dimension. Up to date the only method proposed for cointegration testing is

the Transformed Maximum Likelihood testing procedure of Binder et al. (2005)[henceforth

BHP]. However in the univariate setup it is known that for persistent data this likelihood

approach does not have a Gaussian asymptotic limit. In this paper, we similarly prove that

cointegration testing procedure of Binder et al. (2005) is not valid due to the singularity

of the corresponding Hessian matrices under pure unit roots or cointegrated processes.

To the best of our knowledge currently in the Dynamic Panel Data (DPD) literature

with fixed number of time periods no feasible Method of Moments (MM) alternative to

likelihood based cointegration testing procedures was proposed. The main reason for the

absence of MM alternatives is the partial identification issue of the standard Anderson and

Hsiao (1982)[AH] moment conditions when the process is cointegrated, as the Jacobian

of these moment conditions are of reduced rank. Therefore we propose a rank based

1For more recent papers please refer to Stock and Wright (2000) and Kleibergen (2005) inter alia.
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cointegration test for the Jacobian of the aforementioned moment conditions. We show

that the proposed test is robust to time series heteroscedasticity and, unlike the likelihood

based tests, (e.g. the aforementioned TML estimator requires estimation of all variances

parameters) our test does not require any numerical optimization algorithms.

In the Monte Carlo section of this paper we investigate the finite sample properties of

the proposed procedure. We find that new cointegration testing procedure provides good

size control as well as high power in most designs consider. Furthermore, in situations

where error terms are spatially correlated, but this information is not taken into account,

we found that only minor size distortions are visible.

The paper is structured as follows. In Section 2 we briefly present the model and the

testing problem at hand. In Section 3 we present results for the likelihood based testing

procedure of Binder et al. (2005). Rank-based cointegration testing procedure is formally

introduced in Section 4. In Section 5 we continue with the finite sample performance by

means of a Monte Carlo analysis. In Section 6 we illustrate the testing procedure using the

Spanish manufacturing data of Alonso-Borrego and Arellano (1999). Finally, we conclude

in Section 7.

Here we briefly discuss notation. Bold upper-case Greek letters are used to denote

the original parameters, i.e. {Φ,Σ,Ψ}, while the lower-case Greek letters {φ,σ,ψ} will

denote vec (·) (vech (·) for symmetric matrices) of corresponding parameters, in the uni-

variate setup corresponding parameters will be denoted by {φ, σ2, ψ2}. We use ρ(A) to

denote the spectral radius2 of a matrix A ∈ Rn×n. The commutation matrix Ka,b is de-

fined such that for any [a× b] matrix A, vec(A′) = Ka,b vec(A). The duplication matrix

Dm is defined such that for symmetric [a × a] matrix vecA = Dm vechA. We define

ȳi− ≡ (1/T )
∑T

t=1 yi,t−1 and similarly ȳi ≡ (1/T )
∑T

t=1 yi,t. We will use x̃ to indicate

variables after Within Group transformation (for example ỹi,t ≡ yi,t− ȳi), while ẍ will be

used for variables after a “quasi-averaging” transformation.3. For further details regarding

the notation used in this paper, see Abadir and Magnus (2002). Where necessary to avoid

confusion, we will use the subscript 0 to denote the true value of the parameters, e.g. Φ0

2ρ(A) ≡ maxi(|λi|), where λi’s are (possibly complex) eigenvalues of a matrix A.
3ÿi ≡ ȳi − yi,0 and ÿi− ≡ ȳi− − yi,0.
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or Σ0.

2. Model

In this paper we consider the following PVAR(1) specification:

yi,t = ηi +Φyi,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where yi,t is an [m× 1] vector, Φ is an [m×m] matrix of parameters to be estimated, ηi

is an [m× 1] vector of fixed effects and εi,t is an [m× 1] vector of innovations independent

across i, with zero mean and covariance matrix Σt. If we set m = 1 the model reduces

to the linear DPD model with AR(1) dynamics. Throughout this paper we maintain the

assumption that data in levels {yi,t} is available for all t = {0, . . . , T} and i = {1, . . . , N}.

We assume that ηi satisfy the so-called “common dynamics”(“common factor”) as-

sumption:

ηi = (Im −Φ)µi.

If at least one eigenvalue is equal to unity this assumption ensures that there is no dis-

continuity in DGP, for further discussion, see e.g. BHP. Assuming common dynamics we

can rewrite the model in (1) as:

∆yi,t = Πui,t−1 + εi,t, i = 1, . . . , N, t = 1, . . . , T.

Here we defineΠ = Φ−Im and ui,t−1 ≡ yi,t−1−µi. We say that series yi,t are cointegrated

if the Π matrix is of reduced rank.4 In particular, there exist [m × r] matrices αr and

βr
5 of full column rank such that:

Φ = Im +αrβ
′
r,

where r is the rank of Π . In general matrices αr and βr are not unique as for any [r× r]

invertible matrix U :

αrβ
′
r = αrUU

−1β′r = α∗rβ
∗′
r .

4Note that unlike in pure time series models, we do not define cointegration as a property of time series

because we keep T fixed.
5We slightly abuse the notation in this case, so that it remains consistent with the general practice of

the time series cointegration literature.
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This is the so-called rotation problem. As a result, it is a usual practice in the cointegration

literature to impose identifying restrictions on αr or βr. The exact normalization of βr

matrix is important for existing procedures that are available in the literature, but not for

the testing procedure that we formally introduce in Section 4.

3. Existing procedures. Transformed Maximum Likelihood of Binder et al.

(2005)

We begin this section by recalling the list of Standard Assumptions (SA) used to derive

asymptotic distribution of the estimator in BHP:6

(SA.1) The disturbances εi,t, t ≤ T , are i.i.d. for all i, with E[εi,t] = 0m and E[εi,tε
′
i,s] =

1(s=t)Σ0, Σ0 being a p.d. matrix.

(SA.2) The initial deviation ui,0 ≡ yi,0 − µi are i.i.d. across cross-sectional units, with

E[ui,0] = 0m and finite (constant) variance Ψu,0, where ηi = (Im −Φ0)µi.

(SA.3) The following moment restrictions are satisfied: E[ui,0ε
′
i,t] = Om for all i and

t = {1, . . . , T}.

(SA.4) N →∞, but T is fixed.

(SA.5) Denote by κ a [m2 + 2p × 1] vector of unknown coefficients. κ ∈ Γ , where Γ is

a compact subset of Rm2+2p and κ0 ∈ interior(Γ ), while ρ(Φ0) ≤ 1.

A detailed discussion of these assumptions can be found in Juodis (2014). The main

exception is (SA.5) where we allow maximum eigenvalue of the autoregressive matrix Φ0

to be 1. The exact components of the κ vector are related to a particular parametrization

of the parameter space used for estimation.

The quasi log-likelihood function can then be defined for ∆Yi = vec (∆yi,1, . . . ,∆yi,T )

as follows:

`(κ) = c− N

2
log |Σ∆τ | −

N

2
tr

((
R′Σ−1

∆τR
) 1

N

N∑
i=1

∆Yi∆Y
′
i

)
, (2)

6Here p = 0.5(m(m+ 1)).
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where κ = (φ′,σ′,ψ′)′ and Ψ is the variance-covariance matrix of the initial observation

∆yi,1. The Σ∆τ matrix has a block tridiagonal structure, with −Σ on first lower and

upper off-diagonal blocks, and 2Σ on all but first (1,1) diagonal blocks. The first (1,1)

block is set to Ψ which takes into account the fact that we do not restrict ∆yi,1 to be

covariance stationary.7 The [mT ×mT ] R matrix has Im elements on the diagonal blocks,

and −Φ on the first lower off-diagonal blocks.

In Juodis (2014) it is shown that the log-likelihood function of BHP can be expressed

in the following way:

(3)

`(κ) = c− N
2

(
(T −1) log |Σ|+ tr

(
Σ−1 1

N

N∑
i=1

T∑
t=1

(ỹi,t −Φỹi,t−1)(ỹi,t −Φỹi,t−1)′

))

− N

2

(
log |Θ|+ tr

(
Θ−1 T

N

N∑
i=1

(ÿi −Φÿi−)(ÿi −Φÿi−)′

))
,

where κ = (φ′,σ′,θ′)′ and Θ ≡ T (Ψ −Σ) +Σ. Define:

WN(κ) ≡ Σ−1

N∑
i=1

T∑
t=1

(ỹi,t −Φỹi,t−1)ỹ′i,t−1 + TΘ−1

N∑
i=1

(ÿi −Φÿi−)ÿ′i−,

then the score vector associated with the log-likelihood function (3) is given by:

∇(κ) =


vec (WN(κ))

D′m vec (−N
2

(Σ−1((T − 1)Σ −ZN(κ))Σ−1))

D′m vec (−N
2

(Θ−1(Θ −MN(κ))Θ−1))

 . (4)

When the process {yi,t}Tt=0 is cointegrated and consequently the matrix Φ − Im = αβ′

is of reduced rank r, then this information can be taken into account while deriving

the score and the Hessian of the log-likelihood function. For this purpose we use the

same parametrization as BHP for β′ to avoid rotational indeterminacy. Namely we set

β′ = δ′H ′+b′, where bothH and b are given and δ is an [m−r×r] (assuming 0 < r < m)

matrix. The parameter set in this case is defined as κ = ((vecα)′, (vec δ′)′,σ′,θ′)′.

7However, in this setup we still, for simplicity, assume that the initial observation has a zero mean, i.e.

E[∆yi,1] = 0m.
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Corollary 1. Let Assumptions SA be satisfied. Then the restricted score vector associated

with the log-likelihood function (3) under cointegrating restrictions is given by:

∇r(κ) =


vec (WN(κ)β)

vec (α′WN(κ)H)

D′m vec (−N
2

(Σ−1((T − 1)Σ −ZN(κ))Σ−1))

D′m vec (−N
2

(Θ−1(Θ −MN(κ))Θ−1))

 . (5)

In the special case where m = 2 and r = 1, δ is a scalar while α is a [2 × 1] vector

implying that the corresponding entries of the ∇r(κ) vector do not have a vec (·) operator

in them.

Using fairly standard consistency and asymptotic normality results for M-estimators

Binder et al. (2005) conclude:

Proposition 1 (Asymptotic normality in Binder et al. (2005)). Under Assumptions SA,

the TMLE defined by maximizing (3) is consistent. Furthermore, under these assumptions:

√
N (κ̂− κ0)

d−→ N(0,BQML),

where:

BQML = H−1
` I`H−1

` ,

H` = lim
N→∞

E

[
− 1

N
HN(κ0)

]
, and I` = lim

N→∞
E

[
1

N

N∑
i=1

∇(i)(κ0)∇(i)(κ0)′

]
.

It can be clearly seen that a necessary condition for the limiting distribution to be

well defined is that the H` matrix is p.d.. When both the mean and the variance of ∆yi,1

are unrestricted and treated as free parameters, Bond et al. (2005) showed that the TML

estimator of Hsiao et al. (2002) is locally non-identified at the unit root. Here by local

non-identification we mean singularity of H`. In the next theorem we will show that the

same conclusion holds for more general case with m ≥ 1.

Theorem 1 (Singularity). Let Assumptions SA be satisfied. Then at Φ0 = Im the H`
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matrix is equal to:

H` =
(T − 1)

2


T (Σ0 ⊗Σ−1

0 ) −(Im ⊗Σ−1
0 ) Dm (Im ⊗Σ−1

0 ) Dm

−D′m(Im ⊗Σ−1
0 ) D′m(Σ−1

0 ⊗Σ−1
0 ) Dm Op

D′m(Im ⊗Σ−1
0 ) Op

1
T−1

D′m(Σ−1
0 ⊗Σ−1

0 ) Dm


(6)

furthermore, this matrix is singular.

Proof. In Appendix A.1.

The singularity result in Theorem 1 is of special interest when the inference regarding

the rank of Im−Φ0 is concerned. As this TML estimator can be seen as a non-linear MM

estimator with the score vector defining the moment conditions, singularity of H` matrix

can be translated to the GMM language as a weak instrument problem.

Remark 1. The conclusion of Theorem 1 is in sharp contradiction with Remark 4.1. of

BHP, where they note that:8 “Unlike in time-series models, first differencing in panels

with T fixed still allows identification and estimation of the long-run (level) relations that

are of economic interest, irrespective of the unit root and cointegrating properties of the

yi,t process.”.

It is important to note that despite singularity of H`, the TML estimator κ̂TMLE

remains consistent, but does not have a standard limiting distribution.

Ahn and Thomas (2006) in their study used the approach of Roznitzky, Cox, Bottai,

and Robins (2000) to show that φ̂ converges at rate N1/4 to a non-standard distribution.

Later on their results are extended to i.h.d. setting in Kruiniger (2013) . Furthermore,

it is proved that the limiting distribution of the LR test statistic for H0 : φ0 = 1 is a

mixture of χ2(1) distributed random variable and zero. In this paper we will not attempt

to study the distributional consequences of the singularity for the TMLE and LR test and

leave it for future research, as preliminary numerical simulations suggest that the rank of

H` has rank deficiency larger than one (for m = 2 the rank of H` is equal to 7, while

full rank is 10), hence results of Roznitzky et al. (2000) need to be generalized taking into

8Notation is appropriately adjusted to the notation used in this paper
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account this possibility. Based on recent work of Dovonon and Renault (2009) in the GMM

literature it is know that for general rank deficiencies the maximal rate of convergence is

N1/4. However no results regarding the behavior of the LR ratio test in cases like ours are

available.

Although the case with pure unit roots is not of prime importance for the main topic

of this paper, Theorem 1 provides a natural starting point for intuition of the next result.

Using the block structure of the Hessian matrix it can be easily seen that |H`|∝ |B|.

Here B is given by:9

B = (E[RN ]⊗Σ−1
0 + E[PN ]⊗Θ−1

0 )

−
[

1

T − 1

((
E[QN(κ0)]Σ−1

0

)
⊗
(
E[QN(κ0)]Σ−1

0

)′)
+
((

E[NN(κ0)]Θ−1
0

)
⊗
(
E[NN(κ0)]Θ−1

0

)′)]
Km

−
[

1

T − 1

((
E[QN(κ0)]Σ−1

0 E[QN(κ0)]′
)
⊗Σ−1

0

)
+
((

E[NN(κ0)]Θ−1
0 E[NN(κ0)]′

)
⊗Θ−1

0

)]
For the unit root case (i.e. Φ0 = Im) this expression simplifies dramatically as Σ0 =

Θ0. That allowed us in Theorem 1 to show that |B|= 0 for any value of Σ0 and T .

Unfortunately, no such strong result is available when Π is of reduced rank 0 < r < m.

However, some weaker results can be derived, that provide intuition for singularity of the

Hessian matrix. The next Proposition summarizes results available for T = 2.

Proposition 2. Let Φ0 be such that rk (Φ0 −mIm) = r and T = 2 then:

rkB ≤ 0.5m(m− 1) + r2. (7)

Proof. In Appendix A.2.

This quantity is smaller than m2 for all m ≤ 4. Given that in most cases bivariate

PVAR is considered it follows that expected hessian matrix is singular and the correspond-

ing estimator does not have a normal limiting distribution. Although this paper does not

contain more general results for T > 2, we performed numerous numerical evaluations of

B for larger values of T and different combinations of population matrices in the bivariate

9For exact definitions of RN ,PN ,QN (κ),NN (κ) please refer to Appendix.
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setup.10 For all setups it was found that the expected hessian matrix is singular for r < m

and non-singular otherwise.

Given these results the unit root and cointegration testing procedure of BHP that is

based on asymptotic χ2(·) critical values is not asymptotically valid.

4. Jacobian based cointegration testing

To explain the intuition of our approach lets consider the following (standard) AH

moment conditions for Panel VAR(1) model:

vec E[(∆yi,t −Φ∆yi,t−1)y′i,t−2] = 0m2 , t = 2, . . . , T.

The (minus) Jacobian of these moment conditions is given by:(
E[∆yi,t−1y

′
i,t−2]

)′ ⊗ Im, t = 2, . . . , T. (8)

It follows from the properties of the Kronecker product that the rank of this matrix is

determined by the rank of the matrix in the brackets.11 The expected value of this term is

given by (upon redefining t→ t+1, as the previous expression is well defined for t = T+1):

E[∆yi,ty
′
i,t−1] = Π E[ui,t−1y

′
i,t−1] + E[εi,ty

′
i,t−1]. (9)

Under usual regularity conditions of the DPD literature12 the second term is equal to

Om, while the first term is the product of rank r and rank m matrices. As a result

rk (E[∆yi,ty
′
i,t−1]) is equal to r and leads to violation of the “relevance” condition for the

Instrumental Variable (IV) estimator. In such situation we can not estimate Φ consistently

from the AH moment conditions. However, we can use the Jacobian matrix directly

avoiding the estimation step to test for cointegration.

4.1. Regularity conditions

In the previous section we have presented the intuition of the proposed method, but it

still remains to be investigated under which conditions the E[∆yi,ty
′
i,t−1] term is of reduced

10In particular, setups of BHP were considered.
11See e.g. Magnus and Neudecker (2007).
12That we will state formally in the next section.
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rank if and only if Π is of reduced rank. We assume that the initial conditions yi,0 are of

the following form:

yi,0 = Υµi + εi,0.

Here Υ is an [m×m] matrix that allows for a possible effect non-stationarity13 of the initial

condition if Υ 6= Im. For the purpose of this section instead of considering assumptions

SA, we consider more primitive assumptions.

(A.1) The error terms εi,t are i.i.d. across cross sectional units and uncorrelated over

time E[εi,tε
′
i,s] = Om for s 6= t. Variance of the error terms is a constant p.d.

matrix var εi,t = Σt for t > 0. Furthermore, the higher order moment condition

E[‖εi,t‖4] <∞ holds ∀t.

(A.2) The fixed effects µi are i.i.d. across cross sectional units and have zero mean with a

p.d. variance-covariance matrixΣµ. Furthermore, for all i and t ≥ 0 E[µiε
′
i,t] = Om.

The higher order moment condition E[‖µi‖4] <∞ holds.

Particularly we allow εi,t to be heteroscedastic over time.

E[εi,ty
′
i,t−1] = Om is a direct implication of Assumptions (A.1)-(A.2). However, they

do not ensure that Π E[ui,t−1y
′
i,t−1] has a reduced rank if and only if yi,t are cointegrated.

Lets investigate this issue more closely by expanding the E[ui,t−1y
′
i,t−1] term (for t ≥ 2):

E[ui,t−1y
′
i,t−1] = E

[(
Φt−1ui,0 +

t−2∑
s=0

Φsεi,t−s−1

)(
µi +Φt−1ui,0 +

t−2∑
s=0

Φsεi,t−s−1

)′]

= E

[(
Φt−1(Υ − Im)µi +

t−1∑
s=0

Φsεi,t−s−1

)(
(Im +Φt−1(Υ − Im))µi +

t−1∑
s=0

Φsεi,t−s−1

)′]
= Φt−1(Υ − Im)Σµ(Φt−1(Υ − Im))′︸ ︷︷ ︸

p.s.d

+Φt−1(Υ − Im)Σµ

+
t−2∑
s=0

ΦsΣt−1−sΦ
s′

︸ ︷︷ ︸
p.d.

+ E[Φt−1εi,0ε
′
i,0(Φt−1)′]

In the effect-stationary case (Υ = Im) all terms involving Υ are equal to Om. However,

if that is not the case we have that the first term is a p.s.d. matrix, while it is not

13It is often called “mean non-stationarity” by other scholars.
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immediately clear what happens with the second term. The third term is a p.d. matrix

as all Σs’s matrices are positive definite. The analysis of the last term is more subtle as

it requires explicit assumptions regarding the DGP for εi,0. In general, we are looking at

εi,0 such that at least the product matrix E[Φt−1εi,0ε
′
i,0(Φt−1)′] is well defined and non-

negative definite. Below we summarize a few DGP’s for εi,0 currently used in the literature

that satisfy this condition.

(DGP.1) εi,0 ∼ IID(0,Σ0) with Σ0 constant p.s.d. matrix (independent of other DGP

parameters).

(DGP.2) εi,0 =
∑M

l=0Φ
lεi,−l. Here M is assumed to be finite.

(DGP.3) εi,0 =
∑∞

l=0

(
Φl −C

)
εi,−l + Cξi. Here ξi is an [m × 1] vector of the (inde-

pendent) individual-specific initialization effects, while C = β⊥ (α′⊥β⊥)−1α′⊥ is an

m− r rank matrix.

For simplicity in what follows, we assume that all εi,−l are homoscedastic over time.

To simplify matters we assume that all random variables in (DGP.1)-(DGP.3) satisfy

assumptions (A.1)-(A.2). The (DGP.3) initialization was used in the Monte Carlo stud-

ies of BHP and is motivated by the Granger Representation Theorem, see e.g. Johansen

(1995)[Theorem 4.2]. The (DGP.2), among others, was used in Hayakawa (2013).

It is important to emphasize that all three DGP’s are well defined for all rank values

of r. For ρ(Φ) < 1 we have C = Om resulting in stationary initialization. On the other

hand, Φ = Im implies C = Im (by definition) so that (DGP.3) and (DGP.2) coincide

(by redefining M to M + 1).

For (DGP.3) by construction of theC matrix we have thatΠC = Om, and thusΦt−1C =

C. Combining these results

E[ΠΦt−1εi,0ε
′
i,0(Φt−1)′] = ΠΦt−1

(
∞∑
l=0

(
Φl −C

)
Σ
(
Φl −C

)′)
(Φt−1)′,

where existence of
∑∞

l=0

(
Φl −C

)
Σ
(
Φl −C

)′
is implied by the absolute summability of

{Φl−C}∞l=0, see e.g. Lütkepohl (2006). Furthermore, it is obvious that
∑∞

l=0

(
Φl −C

)
Σ
(
Φl −C

)′
is a p.s.d. matrix and consecutively that

(
E[Φt−1εi,0ε

′
i,0(Φt−1)′]

)
is a p.s.d. matrix.
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If we can ensure that Φt−1(Υ −Im)Σµ is such that E[ui,t−1y
′
i,t−1] has full rank m, then

E[Πui,t−1y
′
i,t−1] has reduced rank r if and only if yi,t−1 are cointegrated.14 However, it is

not a trivial task to identify the parameter space of {Φ,Υ ,Σµ} for the aforementioned

condition to be satisfied. One special case is obtained for Υ = Im (effect stationarity) with

other matrices being unrestricted (at least finite). Unfortunately, there is a lot of evidence

in the DPD literature suggesting that in general this assumption can be too restrictive,

see e.g. Arellano (2003b) and Roodman (2009). In the Monte Carlo simulations we will

check the adequacy of the proposed procedure by considering different values of Υ that

are mentioned in the literature.

4.2. Rank Test

In this paper we use the generalized rank test of Kleibergen and Paap (2006)[KP] as a

basis for cointegration testing. We will briefly introduce their testing procedure and later

apply it to our problem. In construction of the rank test KP use the property that any

[k ×m] matrix D can be decomposed as:

D = AqBq +Aq,⊥ΛqBq,⊥,

where all ⊥ matrices are defined in the usual way and Λq is an [(k− q)× (m− q)] matrix.

For Λq = O the rank of D is determined by the rank of AqBq. The procedure in KP is

based on testing if Λq is equal to Om, with matricesAq,Bq,Λq obtained using the singular

value decomposition (SVD). In our case matrix D is the [m×m] matrix E[∆yi,ty
′
i,t−1].

We define the following cross-sectional average:

∆yi,ty′i,t−1 ≡
1

N

N∑
i=1

∆yi,ty
′
i,t−1.

Applying the standard Lindeberg-Levý CLT, it follows that:

√
N vec

(
∆yi,ty′i,t−1 − E[∆yi,ty

′
i,t−1]

) d−→,Nm2(0m2 ,V ), t = 2, . . . , T.

14Note that positive definiteness of E[ui,t−1y
′
i,t−1] is a sufficient, but not a necessary condition. The

term can be negative definite or even indefinite, as long as it has full rank.
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Here the full rank matrix V can be consistently estimated using its finite sample counter-

part:

VN =
1

N

N∑
i=1

vec (∆yi,ty
′
i,t−1) vec (∆yi,ty

′
i,t−1)

′ − vec ∆yi,ty′i,t−1 vec ∆yi,ty′i,t−1

′
.

Consecutively the estimator ∆yi,ty′i,t−1 satisfies sufficient conditions in KP.15 As a result

one can use the Theorem 1 of KP to the problem at hand:

Theorem 2. Let Assumptions (A.1)-(A.2) be satisfied with εi,0 generated by one of

(DGP.1)-(DGP.3), then:
√
N λ̂r

d−→ N(0r,Ωr),

where:

λ̂r = vec Λ̂r, Λ̂r = Â′r,⊥∆yi,ty′i,t−1B̂
′
r,⊥,

Ωr = (Br,⊥ ⊗A′r,⊥)V (Br,⊥ ⊗A′r,⊥)′

Furthermore, under H : rk E[∆yi,ty
′
i,t−1] = r, the test statistic:

rk(r) = N λ̂′rΩ
−1
r λ̂

′
r

converges in distribution to a χ2((m− r)2) distributed random variable.

All A and B variables in Theorem 2 are obtained from the SVD of the ∆yi,ty′i,t−1

matrix. An operational version of the rk(r) test statistic is obtained by replacing the

(unknown) matrix Ωr with some consistent estimator. An obvious choice for Ω̂r is given

by:

Ω̂r = (B̂r,⊥ ⊗ Â′r,⊥)VN(B̂r,⊥ ⊗ Â′r,⊥)′.

The test statistic in Theorem 2 is based only on one time series observation (in a sense

that if T > 2, then we can construct test statistic for every value of t, but t = 1). Of

15∆yi,ty′i,t−1 satisfies Assumption 1 (asymptotic normal distribution), while V satisfies Assumption

2(full rank).
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course, it is not the most efficient way of how the information can be used. Instead, all

time series observations can be pooled into one test statistic for testing rank of:16

∆yi,ty′i,t−1T
=

1

N

N∑
i=1

1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1. (10)

For any fixed value of T , the ∆yi,ty′i,t−1T
term satisfies the sufficient conditions for the

CLT, so that the results of Theorem 2 can be extended trivially, with VN for this case

given by:

(11)
VN =

1

N

N∑
i=1

vec

(
1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1

)
vec

(
1

T − 1

T∑
t=2

∆yi,ty
′
i,t−1

)′
− vec ∆yi,ty′i,t−1T

vec ∆yi,ty′i,t−1T

′
.

In the next section we will use “rk-J” to denote the Jacobian based cointegration test for

∆yi,ty′i,t−1T
.

Up to this stage we considered only the Jacobian of Anderson and Hsiao (1982) moment

conditions, however for T > 2 further lags can be used. The particular choice of lags used

is subject to the same “arbitrariness” as the choice of moment conditions for the Arellano

and Bond (1991)[AB] estimator. More importantly, it is not clear that the use of lags

larger than 1 still ensures that E[∆yi,ty′i,t−jT ] has reduced rank r if and only if rkΠ = r

(even in the effect stationary case). Moreover, the power of the test might be substantially

affected by the choice of lags, as with any alternative close to the unit circle we encounter

the weak instruments problem for any distanced lags. On the other hand, we can expect

better test power to alternatives with substantially lower ρ(Φ).

Remark 2. If the model contains time effects λt, the test statistic is based on variables in

deviations from the cross-sectional averages y̌i,t ≡ yi,t− (1/N)
∑N

i=1 yi,t rather than levels

(similarly to the standard GMM treatment).

Remark 3. One important advantage of the proposed test statistic is the additional

flexibility while dealing with unbalanced panels. As long as for every individual i at

16In principle, other pooling schemes with weighted averages are possible, but for ease of exposition in

this paper we consider simple time average.
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least one ∆yi,ty
′
i,t−1 (t > 1) term is available, the test statistic can be computed. The

only difference as compared to the unbalanced case is that individual contributions to

∆yi,ty′i,t−1T
are no longer simple averages with T − 1 terms involved, but have individual

specific number of observations T (i)− 1.

Remark 4. The testing procedure remains valid if instead of ∆yi,ty′i,t−1T
we can in-

vestigate the rank of GN∆yi,ty′i,t−1T
FN as suggested by KP, for any full rank matrices

plimN→∞GN = G and plimN→∞ FN = F . One interesting case is obtained when we set

GN = Im and F−1
N = 1

N

∑N
i=1

1
T−1

∑T
t=2 yi,t−1y

′
i,t−1, as in this case we are testing the rank

of pooled OLS estimator Π̂ . Even though the estimator itself is inconsistent (due to the

presence of fixed effects in the model), it can be used for consistent estimation of rkΠ0.

5. Monte Carlo

To the best of our knowledge only the BHP study provides results on cointegration

analysis for panels with fixed T.17 Hence, for the main building blocks of the finite-sample

studies performed in this paper we take the setups from BHP, but we provide extended

range of scenarios. Only bivariate panels are considered, thus the only null hypothesis we

are testing is:

H0 : rkΠ = 1 (12)

For simplicity we will use (DGP.2) for initialization:

yi,0 = Υiµi + εi,0. (13)

To allow for possible spatial dependence, the εi,t for all t are generated with Spatial MA

process:

εi,t = θ
N∑
j=1

ωi,jζj,t + ζi,t, i = 1, . . . , N ; t = 0, . . . , T.

ζi,t ∼ IID(02,Σ), i = 1, . . . , N ; t > 0, . . . , T.

ζi,0 ∼ IID

(
02,

M∑
j=0

ΦjΣΦj′

)
, i = 1, . . . , N.

17Other studies, like Mutl (2009) adapted setups of BHP.
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In what follows we will alow for cross-sectional heterogeneity in Υi but not in Σ. We

set M = 5018 and the number of Monte Carlo replications B = 10000.

We generate the individual heterogeneity µi using exactly the same procedure as in BHP:

µi = τ

(
qi − 1√

2

)
η̌i, qi ∼ χ2(1), η̌i ∼ N(02,Σ). (14)

We assume that the error terms are normally distributed i.i.d. both across individuals and

time with zero mean and variance-covariance matrix Σ (to be specified later).

Before summarizing the Design parameters for this Monte Carlo study recall that Π

can be rewritten as (for m = 2):

Π = αβ′ + λα⊥β
′
⊥

We set λ = 0 to study the size of the test, while non-zero values of λ are used to investigate

power. In order to reduce the dimensionality of the parameter space we assume that vectors

α and β are of the following structure:

α = αı2, β′ = (1,−0.2).

All Design parameters are summarized in Table 1.19

Comparing our Designs to those present in the literature, we can see that Design 3 of

BHP is achieved when α = −0.5.

The θ parameter controls the degree of cross-sectional dependence between units. For

θ = 0 we have i.i.d. dataset, while for θ 6= 0 the cross-sectional units are weakly correlated.

Spatial correlation matrix WN is assumed to be 1 ahead - 1 behind circular, so that

every individual i is directly linked only with individuals i− 1 and i+ 1.20 The particular

choice of the spatial matrixWN is motivated by the study in Baltagi et al. (2007), where in

the context of the panel unit root testing it is shown that the tests are mostly distorted for

this choice of spatial matrix.21 Thus, we suspect that by choosing this particular matrix

18Results for M = 5 are qualitatively and quantitatively similar to the ones presented in this paper.
19Later we will use notation Υ (i) with i indicating the particular row of Table 1.
20The circle is closed by connecting i = 1 with i = N .
21For a graphical illustration see Figure 2 of the aforementioned paper.
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Table 1: Design parameters.

N T τ α θ λ vechΣ Υ

50 3 1 -.1 .0 -.700 (.05, .03, .05)′ 0.5I2

250 5 5 -.5 .5 -.300 I2

500 7 -.100 1.5I2

-.050 I2 −Φ10

-.010

 .85 .15

.00 .85


-.005

.000

we will put the proposed cointegration test under close to the least favorable conditions in

terms of size distortions.

As we have discussed in Section 2 in the effect non-stationary case the particular choice

of {Υ ,Σ} and τ might substantially influence the performance of the test statistic. For

this reason we consider two different choices of Σ matrix.

The choice of Υ (4) is motivated by the finite start-up assumption, so that the individual

specific effects are accumulated only over 9 periods. The particular choice of S = 10 was

rather arbitrary and is not empirically or theoretically motivated.22 Υ (5) is based on the

estimates in Arellano (2003a) obtained from the bivariate panel of Spanish firm data.

In terms of the test power, we suspect that it should be decreasing with |λ|, with almost

no power against alternatives with λ ≈ 0. However, it is very likely that for general Υ

matrices the power curve might not be monotonic because λ not only controls the rank of

Π but as well (indirectly) the eigenvalues of the E[ui,t−1y
′
i,t−1] matrix. Hence, for some

specific choices of Υ we can observe the weak instruments problem of the AB moment

conditions that is not caused by the reduced rank of Π matrix.

22Setting S = 50 would be another option, but it is of similar arbitrariness.
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5.1. Results

The Results for all Designs are summarized in Tables B.3-B.6, henceforth Tables. All

rejection frequencies are rounded two digits. Empty spots indicate maximal power of 1.00.

Numbers in bold indicate that the actual size is equal to the nominal one.

General Trends. First of all, we can observe that rejection frequencies are mono-

tonically declining in |λ| for the vast majority of Designs without spatial dependence. As

we have discussed in Section 4.2 this property should not be taken as granted for the

rk-J test (as dependence on Φ is non-linear). For lower values of N the test tends to be

undersized for T = 3 and oversized for T = 7.23 In the effect stationary case τ does not

play substantial role and only affects the V matrix, but we can still observe that higher

value of τ is associated with slightly lower power. For N = 500, the rk-J test has notable

power even when λ is very close to 0. For instance, all rejection frequencies in the effect

stationary designs at λ = 0.005 are above 30% and 25% for α = −0.5 and α = −0.1

respectively.

As we have mentioned in the previous section, the comparison between different values

of α is not totally fair and should be interpreted with caution (in the effect stationary

case R2
∆ for α = −0.5 is roughly 5 times higher than the one for α = −0.1.). In the

vast majority of cases with size distortions being of similar magnitude, the test power for

α = −0.5 tends to be higher than for α = −0.1.

Spatial Dependence. Evidence of the uniform upward shift in the size can be ob-

served when designs with spatial dependence (θ = 0.5) are considered. This upward

movement does not come as a surprise because similar patterns have been documented in

the panel unit root testing literature. However, the same conclusion can not be reached

regarding the test power, as for most scenarios it changes marginally and does not show

any clear patterns in terms of magnitude and direction. More importantly, major size

23As in this case orders of magnitude for N and T are not substantially different we suspect that critical

values obtained as N,T →∞ (jointly) might be more appropriate.
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distortions do not disappear for N = 500, thus as can be expected the fact that we use

the variance-covariance matrix that ignores the presence of spatial dependence has a pro-

nounced result. On the other hand, the fact that by ignoring the spatial dependence the

rank based test statistic is only mildly oversized, suggests that the procedure developed

in this paper is relatively robust to deviations from i.i.d. assumption.

Effect Non-stationarity and Non-monotonic power curves. Firstly, we consider

rejection frequencies for Υ = 0.5Im as this case is most exceptional in terms of observed

patters. In this case we observe power curves that are not monotonic for α = −0.1

(especially for N = 250) and sharply decreasing for α = −0.5 if τ = 5 and T = 3. It can

be intuitively explained as in this case the effect non-stationarity term in E[∆yi,ty
′
i,t−1] is

negative, driving the whole expression towards zero matrix (recall the analysis in Hayakawa

(2009) for the univariate case). Thus, we have a weak instrument problem under the

alternative hypothesis that is not induced by cointegration. These patterns are present

irrespective of whether spatial dependence is present or not.24 By varying λ parameter

we directly vary the relative contributions of fixed effects and idiosyncratic parts of the

variance components in varyi,t. For larger values of |λ| the fixed effects part is more

pronounced, resulting in substantial effects of the “negative” effect stationarity. On the

other hand, for |λ|≈ 0 the idiosyncratic part is dominant and there is no substantial effects

of the “negative” effect non-stationary initialization.

As it can be expected, the results for Υ = 1.5Im are more straightforward. In this case

the power curves are monotonic, and rejection frequencies are uniformly dominating the

ones from effect stationary case irrespective of other design parameters. Results for Υ (4)

seem to combine the properties of both Υ (3) and Υ (1).25 Finally, the results of Υ (5) are

24Some preliminary MC results, not presented in this paper suggest that effect of τ in this setup is

not-monotonic. In the sense that higher values of τ will lead to increase of power rather than further

decrease. At least for this particular design it seems that τ = 5 represents the close to worst possible

scenario as minimum is reached for τ ≈ 6.2.
25From Υ (1) some non-monotonicities are inherited. Apart from that, the superior test power properties

(as compared to the effect stationary case) of Υ (3) are dominant. This combined behavior is due to the

fact that Υ (4) is changing with λ. In designs with λ substantially lower than 0 we have Υ (4) ≈ Im,

20



λ

R
ej

ec
tio

n 
F

re
qu

en
ci

es

●

●

●

●

● ● ●

●

●

●

●

●
●

●

Power curves at N=50, T=3, τ=5

Red for Y=0.5, Blue for stationary initialization

−0.7 −0.3 −0.1 −0.05 −0.01 −0.005 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

R
ej

ec
tio

n 
F

re
qu

en
ci

es

● ●
●

●

●

●

●

● ●

●

●

●

●

●

Power curves at N=250, T=3, τ=5

Red for Y=0.5, Blue for stationary initialization

−0.7 −0.3 −0.1 −0.05 −0.01 −0.005 0

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

Figure 1: Red (squares) Υ = 0.5I2, Blue (circles) Υ = I2. No Spatial Dependence θ = 0. Straight line

α = −0.1. Dashed line α = −0.5.

somewhat in between those of Υ (1) and Υ (2), but are slightly closer to Υ (2). It serves as

an indication that the off-diagonal element in Υ (5) is not of any great importance (given

the particular choice of other design parameters).

6. Empirical Illustration

In this section, we use the rk-J procedure to test for cointegration in Spanish firm panel

dataset covering 1983-1990 of 738 manufacturing companies as in Alonso-Borrego and

Arellano (1999). We construct a bivariate PVAR(1) model where dependent variables are

log’s of employment and wages. It is reasonable to assume that time effects are present in

the model so we explicitly consider variables in their deviations from the cross-sectional

averages. Several alternative approaches for cointegration testing are considered.

Firstly, we apply the rk test of KP directly to GMM estimates Π̂ . We restrict set

of GMM estimators to two step estimators that are also presented in BHP: “AB-GMM”

stands for the estimator of Arellano and Bond (1991), while “Sys-GMM” is the “System”

estimator of Blundell and Bond (1998) which incorporates moment conditions based on the

initial condition. Secondly, the LR tests based on the Transformed Maximum Likelihood

function of BHP (LR-TMLE) and Conditional Maximum Likelihood function of Arellano

(2003a) (LR-CMLE) are considered. Finally, the rk-J test of Section 4.2 is considered.

Under H0 : rkΠ = 1 all tests have limiting χ2 distribution with one degree of freedom.

consecutively the weak instrument problem under alternative is less pronounced.
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Note that we present results for AB-GMM for informal comparison, as under H0 this

estimator is not consistent. Results are summarized in Table 2:

Name Test Statistic

AB-GMM 14.46 (7.20)

Sys-GMM 4.88** (1.31)

LR-TMLE 0.59

LR-CMLE 0.55

rk-J 13.35***

Table 2: Cointegration testing. The 5% critical value is 3.84. In the parenthesis for GMM estimators test

statistics based on Windmeijer (2005) corrected 2-step S.E.

From Table 2 we can see that only the rk-J test based on the AH moment conditions

clearly rejects H0. Results for Sys-GMM estimator are mixed, as based on Windmeijer

(2005) corrected S.E. the null hypothesis is not rejected, while using conventional two-step

S.E. hypothesis is rejected (with p− value of 0.0272). Numerous reasons might account

for differences in conclusions. First of all, we suspect that the initialization moment

conditions of the System estimator are not valid and it does not come as a surprise that

this estimator fails to reject H0. Hayakawa and Nagata (2012) provide some evidence based

on an incremental Sargan test in support of the latter statement.26 Another explanation

of results in Table 2 might be the low power of cointegration test used directly on the

estimate of Π . Some preliminary MC results suggest that for the System estimator it

might be the case, because the (size adjusted) power of the rk-J test dominates the power

of rk-SysGMM in most setups of Table 1.

Now we turn our attention to Likelihood Ratio tests. Based on analytical results in

this paper for T = 2 we can suspect that likelihood procedures under H0 of cointegration

do not control size, as χ2(1) is a poor approximation of the finite sample distribution.

Furthermore, we know that both likelihood methods are robust to violations of mean

stationarity, but are not so to time-series heteroscedasticity. Thus, we can not rule out

26However, this testing procedure can not be used if series are cointegrated.
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the possibility that it can be one of the reasons for divergence in conclusions.27

7. Conclusions

In this paper we have studied the properties of the standard Anderson and Hsiao (1982)

moment conditions in a PVAR(1) when the process is cointegrated. Under the assumptions

similar to Binder et al. (2005) we have shown that these moment conditions are of reduced

rank if and only if the process is cointegrated. Based on this observation we have proposed

a rank based test to test the null hypothesis of cointegration, that is robust to time-series

heteroscedasticity and can accommodate unbalanced sampling. Furthermore, we have

proved that cointegration testing procedure in Binder et al. (2005) is not valid due to the

singularity of the Hessian matrix both under unit roots and cointegration. In the Monte

Carlo study we found evidence that the new test is reasonably sized and has good power

properties in most cases but might exhibit non-monotonic power curves for models with

substantial effect non-stationarity. We have applied our testing procedure to the Spanish

manufacturing data of Alonso-Borrego and Arellano (1999) and unlike the test of BHP we

have rejected the null hypothesis of cointegration.
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Appendices

Appendix A. Transformed Maximum Likelihood

Firstly, we define a set of new auxiliary variables, which will be handy during the

derivations of differentials:

ZN(κ) ≡ 1

N

N∑
i=1

T∑
t=1

(ỹi,t −Φỹi,t−1)(ỹi,t −Φỹi,t−1)′, QN(κ) ≡ 1

N

N∑
i=1

T∑
t=1

ỹi,t−1(ỹi,t −Φỹi,t−1)′,

MN(κ) ≡ T

N

N∑
i=1

(ÿi −Φÿi−)(ÿi −Φÿi−)′, NN(κ) ≡ T

N

N∑
i=1

ÿi−(ÿi −Φÿi−)′,

RN ≡
1

N

N∑
i=1

T∑
t=1

ỹi,t−1ỹ
′
i,t−1, PN ≡

T

N

N∑
i=1

ÿi−ÿ
′
i−, Ξ ≡

T−2∑
l=0

(T − 1− l)Φl
0.

Appendix A.1. Identification with unit roots

Theorem 1. In order to evaluate the Expected Hessian Matrix, we need to separately

calculate the expected value for every term presented in the formula for the second dif-

ferential at the DGP values κ0. First of all, we note that E[(T − 1)Σ0 − ZN(κ0)] = Om

as well as E[Θ0 −MN(κ0)] = Om, hence the contribution to the Hessian matrix of the

first four terms in the expression for d2`(κ) is zero. Following, e.g. Juodis (2013) it can

be shown:

E [QN(κ0)] = − 1

T

(
T−2∑
l=0

(T − 1− l)Φl
0

)
Σ0. (A.1)
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Due to the fact that exact expressions for other terms are rather messy in the general case,

they will be derived only for the particular case where Φ0 = Im. Under this assumption

and assumptions of Binder et al. (2005), it then follows that Θ0 = Σ0. The DGP in this

case under restriction of common dynamics, simplifies to:

yi,t = yi,t−1 + εi,t = yi,0 +
t∑

k=1

εi,k, t ≥ 1.

At first we consider expectations of the NN(κ0) term which we can evaluate based on the

general result derived in Lemma A.2 Juodis (2014):

E[NN(κ0)′] = (Im −Φ0) E
[
ui,0u

′
i,0

]
(Im −Φ0)′Ξ ′ +

1

T
Σ0Ξ

′

=
1

T
Σ0Ξ

′ =
(T − 1)T

2T
Σ0 =

T − 1

2
Σ0.

It then similarly follows from the general result in Lemma A.1 Juodis (2014) that:

E[PN ] = E

[
T

N

N∑
i=1

ÿi−ÿ
′
i−

]

=
1

T
Ξ(Im −Φ0) E

[
ui,0u

′
i,0

]
(Im −Φ0)′Ξ ′ +

1

T

T−2∑
t=0

(
t∑

j=0

Φj
0)Σ0(

t∑
j=0

Φj
0)′

=
1

T

T−2∑
t=0

(t+ 1)2Σ0 =
(T − 1)(2T − 1)

6
Σ0.

What is left is to evaluate the term involving RN :

E[RN ] = E

[
T−1∑
t=0

yi,ty
′
i,t − T ȳi−ȳ′i−

]

= E

[
T−1∑
t=1

(
t∑

k=1

εi,k

)(
t∑

k=1

εi,k

)′
− 1

T

(
T−2∑
k=0

(T − 1− k)εi,1+k

)(
T−2∑
k=0

(T − 1− k)εi,1+k

)′]

= E

[
T−1∑
t=1

(
t∑

k=1

εi,kε
′
i,k

)
− 1

T

(
T−2∑
k=0

(T − 1− k)2εi,1+kε
′
i,1+k

)]

=

(
T−1∑
t=1

(
t∑

k=1

1

)
− 1

T

(
T−2∑
k=0

(T − 1− k)2

))
Σ0

=

(
T−1∑
t=1

(t− t2

T
)

)
Σ0 =

(
T (T − 1)

2
− (2T − 1)(T − 1)

6

)
Σ0 =

(T + 1)(T − 1)

6
Σ0.
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In Juodis (2014) it is shown that the Hessian matrix is of the following form (if we

neglect terms that evaluated at the true values κ0 have expectation O):

HN(κ) = −N


RN ⊗Σ−1 + PN ⊗Θ−1 (QNΣ

−1 ⊗Σ−1) Dm (NNΘ
−1 ⊗Θ−1) Dm

D′m(Σ−1Q′N ⊗Σ−1) (T−1)
2

D′m(Σ−1 ⊗Σ−1) Dm Op

D′m(Θ−1N ′N ⊗Θ−1) Op
1
2
D′m(Θ−1 ⊗Θ−1) Dm

 .

(A.2)

Plugging in these expressions into the formula for the Hessian and evaluating it at the

true value κ0:

H` =
(T − 1)

2


T (Σ0 ⊗Σ−1

0 ) −(Im ⊗Σ−1
0 ) Dm (Im ⊗Σ−1

0 ) Dm

−D′m(Im ⊗Σ−1
0 ) D′m(Σ−1

0 ⊗Σ−1
0 ) Dm Op

D′m(Im ⊗Σ−1
0 ) Op

1
T−1

D′m(Σ−1
0 ⊗Σ−1

0 ) Dm

 .

(A.3)

Using the formula for the determinant of Partitioned Matrix, that:

|H`|∝
(
|B|×

∣∣∣∣ 1

T − 1
D′m(Σ−1

0 ⊗Σ−1
0 ) Dm

∣∣∣∣× |D′m(Σ−1
0 ⊗Σ−1

0 ) Dm|
)
, (A.4)

with B in this case given by:

B = T
(
(Σ0 ⊗Σ−1

0 )− (Im ⊗Σ−1
0 ) Dm D+

m(Σ0 ⊗Σ0)(Dm D+
m)′(Im ⊗Σ−1

0 )
)

= T
(
(Σ0 ⊗Σ−1

0 )− (Im ⊗Σ−1
0 ) Dm D+

m(Σ0 ⊗Σ0)(Im ⊗Σ−1
0 )
)

= T

(
(Σ0 ⊗Σ−1

0 )− 1

2
(Im ⊗Σ−1

0 )(Im + Km)(Σ0 ⊗Σ0)(Im ⊗Σ−1
0 )

)
=
T

2

(
(Σ0 ⊗Σ−1

0 )− (Im ⊗Σ−1
0 ) Km(Σ0 ⊗Σ0)(Im ⊗Σ−1

0 )
)

=
T

2

(
(Σ0 ⊗Σ−1

0 )−Km

)
.

Then by means of the Matrix determinant Lemma:

|B| ∝ |Im2 − (Im ⊗Σ−1
0 ) Km(Σ0 ⊗ Im)||Km|

∝ |Im2 − (Im ⊗Σ−1
0 ) Km(Σ0 ⊗ Im)|

∝ |Im2 −Km|= 0,

where in the first line we used the fact that Km = K−1
m and the second line follows from

the fact that |Km|= (−1)0.5m(m−1), while |Im2 − Km|= 0 follows trivially from the fact
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that rk (Im2 −Km) = 0.5m(m − 1). Hence we have proved that the H` matrix is not

invertible.

Appendix A.2. Cointegration and T = 2

Proposition 2. Using derivations of previous section it follows that:

E[PN ] = E[RN ] =
1

2
Ψ0

E[NN(κ0)] =
1

2
Θ0

E[QN(κ0)] = −1

2
Σ0

Corresponding B matrix:

B =
1

2
Ψ0 ⊗ (Θ−1

0 +Σ−1
0 )− 1

2
(Im ⊗Σ−1

0 ) Dm D+
m(Σ0 ⊗Σ0)(Dm D+

m)′(Im ⊗Σ−1
0 )

− 1

2
(Im ⊗Θ−1

0 ) Dm D+
m(Θ0 ⊗Θ0)(Dm D+

m)′(Im ⊗Θ−1
0 )

=
1

2
Ψ0 ⊗ (Θ−1

0 +Σ−1
0 )− 1

2
(Σ0 ⊗ Im)(Dm D+

m)′(Im ⊗Σ−1
0 )

− 1

2
(Θ0 ⊗ Im)(Dm D+

m)′(Im ⊗Θ−1
0 )

∝ Ψ0 ⊗ (Θ−1
0 +Σ−1

0 )−Km−
1

2
(Θ0 ⊗Θ−1

0 )− 1

2
(Σ0 ⊗Σ−1

0 )

∝ (Σ0 ⊗Θ−1
0 −Km) + (Θ0 ⊗Σ−1

0 −Km).

We can express Θ0 = Σ0 + aa′ with a being of rank r. Then:

B ∝ (Im ⊗Θ−1
0 ) (Σ0 ⊗Σ0 +Θ0 ⊗Θ0 − 2(Σ0 ⊗Θ0) Km) (Im ⊗Σ−1

0 )

= (Im ⊗Θ−1
0 ) (2(Σ0 ⊗Σ0)(Im2 −Km) + (Σ0 ⊗ aa′)(Im2 −Km) + aa′ ⊗ aa′) (Im ⊗Σ−1

0 )

= (Im ⊗Θ−1
0 ) ((2Σ0 ⊗Σ0 +Σ0 ⊗ aa′)(Im2 −Km) + aa′ ⊗ aa′) (Im ⊗Σ−1

0 ).

Thus using basic inequalities for the rank of matrix sum we can deduce that rkB is no

greater than 0.5m(m− 1) + r2, due to the full rank of (2Σ0⊗Σ0 +Σ0⊗aa′) matrix.

Appendix B. Tables and Graphs

29



T
ab

le
B

.3
:
α

=
−

0.
1.
Υ

(1
)−

(3
)
.

E
m

p
ty

en
tr

ie
s

co
rr

es
p

o
n

d
to

1
0
0
%

em
p

ir
ic

a
l

re
je

ct
io

n
fr

eq
u

en
ci

es
.

Υ
(1

)
Υ

(2
)

Υ
(3

)

θ
{N

,T
,τ
}
\λ

-.
70

-.
30

-.
10

-.
05

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

0.
0

50
,3

,1
.8

3
.8

1
.6

3
.3

6
.0

7
.0

4
.0

3
.9

0
.8

6
.6

4
.3

7
.0

7
.0

4
.0

3
.9

4
.9

0
.7

1
.4

2
.0

8
.0

5
.0

3
50

,3
,5

.2
0

.2
0

.2
1

.1
4

.0
4

.0
3

.0
2

.6
2

.5
7

.3
7

.2
1

.0
5

.0
4

.0
3

.9
4

.8
8

.6
9

.4
3

.0
9

.0
5

.0
3

50
,5

,1
.9

8
.9

5
.9

1
.7

5
.1

6
.0

8
.0

4
.9

9
.9

3
.7

6
.1

7
.0

8
.0

4
.9

9
.9

6
.8

1
.1

9
.0

9
.0

4
50

,5
,5

.6
8

.4
0

.4
0

.3
3

.0
8

.0
4

.0
3

.8
8

.8
3

.6
9

.5
1

.1
2

.0
7

.0
3

.9
9

.9
3

.7
9

.2
0

.1
0

.0
4

50
,7

,1
.9

9
.9

7
.9

2
.2

9
.1

2
.0
5

.9
9

.9
3

.3
0

.1
3

.0
5

.9
5

.3
1

.1
4

.0
5

50
,7

,5
.9

7
.6

3
.5

2
.4

8
.1

5
.0

7
.0

4
.9

5
.9

2
.8

4
.7

1
.2

2
.1

1
.0
5

.9
8

.9
3

.3
1

.1
4

.0
5

25
0,

3,
1

.9
9

.4
1

.1
6

.0
4

.9
9

.4
1

.1
6

.0
4

.4
4

.1
7

.0
4

25
0,

3,
5

.2
1

.2
6

.6
5

.6
6

.1
7

.0
6

.0
2

.9
8

.9
0

.3
0

.1
1

.0
3

.9
9

.4
4

.1
7

.0
4

25
0,

5,
1

.7
7

.3
4

.0
4

.7
7

.3
4

.0
5

.7
8

.3
5

.0
5

25
0,

5,
5

.9
7

.6
5

.8
0

.8
5

.4
6

.1
7

.0
3

.6
5

.2
8

.0
4

.7
6

.3
4

.0
5

25
0,

7,
1

.9
2

.5
1

.0
5

.9
2

.5
1

.0
5

.9
3

.5
2

.0
5

25
0,

7,
5

.9
4

.8
8

.9
0

.6
6

.2
9

.0
4

.8
4

.4
3

.0
5

.9
1

.4
9

.0
5

50
0,

3,
1

.7
5

.3
2

.0
4

.7
5

.3
3

.0
4

.7
7

.3
4

.0
5

50
0,

3,
5

.2
4

.3
1

.8
5

.9
1

.4
5

.1
6

.0
3

.6
2

.2
6

.0
4

.7
5

.3
3

.0
5

50
0,

5,
1

.9
7

.6
2

.0
5

.9
7

.6
1

.0
5

.9
7

.6
2

.0
5

50
0,

5,
5

.8
0

.9
3

.9
6

.7
9

.3
9

.0
3

.9
3

.5
3

.0
5

.9
7

.6
0

.0
5

50
0,

7,
1

.8
0

.0
5

.8
0

.0
5

.8
1

.0
5

50
0,

7,
5

.9
9

.9
7

.9
8

.9
0

.5
8

.0
5

.9
9

.7
2

.0
5

.7
8

.0
5

0.
5

50
,3

,1
.8

4
.8

2
.6

3
.3

7
.0

9
.0

7
.0
5

.8
9

.8
5

.6
4

.3
7

.0
9

.0
6

.0
5

.9
3

.8
8

.6
9

.4
1

.1
0

.0
7

.0
5

50
,3

,5
.2

7
.2

7
.2

7
.1

8
.0

6
.0

5
.0

4
.6

7
.6

1
.4

0
.2

4
.0

7
.0

5
.0

4
.9

3
.8

6
.6

7
.4

1
.1

0
.0

7
.0
5

50
,5

,1
.9

9
.9

7
.9

1
.7

4
.2

0
.1

1
.0

7
.9

9
.9

9
.9

3
.7

5
.2

0
.1

1
.0

7
.9

9
.9

5
.7

9
.2

1
.1

2
.0

7
50

,5
,5

.7
5

.5
0

.4
9

.3
9

.1
1

.0
7

.0
5

.9
1

.8
6

.7
3

.5
3

.1
5

.0
9

.0
6

.9
9

.9
3

.7
7

.2
1

.1
2

.0
7

50
,7

,1
.9

9
.9

8
.9

1
.3

1
.1

6
.0

8
.9

9
.9

2
.3

2
.1

6
.0

8
.9

9
.9

4
.3

3
.1

7
.0

8
50

,7
,5

.9
8

.7
2

.6
3

.5
6

.1
9

.1
1

.0
7

.9
7

.9
4

.8
7

.7
5

.2
5

.1
4

.0
7

.9
8

.9
2

.3
2

.1
7

.0
8

25
0,

3,
1

.9
9

.4
2

.1
9

.0
6

.9
9

.4
2

.1
9

.0
7

.9
9

.4
4

.2
0

.0
7

25
0,

3,
5

.4
0

.4
7

.8
0

.7
8

.2
4

.1
1

.0
4

.9
8

.9
2

.3
3

.1
5

.0
5

.9
9

.4
3

.2
0

.0
7

25
0,

5,
1

.7
5

.3
6

.0
8

.7
4

.3
6

.0
8

.7
5

.3
7

.0
8

25
0,

5,
5

.9
8

.8
1

.9
1

.9
3

.5
5

.2
3

.0
5

.6
5

.3
1

.0
7

.7
4

.3
6

.0
8

25
0,

7,
1

.9
0

.5
2

.0
9

.9
0

.5
1

.0
9

.9
1

.5
2

.0
8

25
0,

7,
5

.9
7

.9
5

.9
6

.7
4

.3
8

.0
7

.8
4

.4
5

.0
8

.8
9

.5
0

.0
8

50
0,

3,
1

.7
2

.3
4

.0
8

.7
2

.3
4

.0
8

.7
3

.3
5

.0
8

50
0,

3,
5

.5
0

.6
1

.9
5

.9
7

.5
4

.2
2

.0
6

.6
3

.2
8

.0
7

.7
2

.3
4

.0
7

50
0,

5,
1

.9
5

.6
1

.0
8

.9
5

.6
0

.0
8

.9
6

.6
1

.0
8

50
0,

5,
5

.9
2

.9
8

.9
9

.8
6

.4
7

.0
7

.9
2

.5
4

.0
8

.9
5

.6
0

.0
8

50
0,

7,
1

.7
7

.0
8

.7
7

.0
8

.7
8

.0
8

50
0,

7,
5

.9
9

.9
9

.9
6

.6
5

.0
7

.9
9

.7
1

.0
8

.9
9

.7
6

.0
8

30



T
ab

le
B

.4
:
α

=
−

0
.1

.
Υ

(4
),
(6

)
.

E
m

p
ty

en
tr

ie
s

co
rr

es
p

o
n

d
to

1
0
0
%

em
p

ir
ic

a
l

re
je

ct
io

n
fr

eq
u

en
ci

es
.

Υ
(4

)
Υ

(5
)

θ
{N

,T
,τ
}
\λ

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

0.
0

50
,3

,1
.9

2
.8

9
.6

6
.3

8
.0

7
.0

4
.0

3
.8

8
.8

4
.6

4
.3

7
.0

7
.0

4
.0

3
50

,3
,5

.7
9

.8
1

.5
2

.2
1

.0
4

.0
3

.0
3

.3
6

.3
9

.3
0

.1
9

.0
5

.0
3

.0
2

50
,5

,1
.9

9
.9

4
.7

6
.1

7
.0

8
.0

4
.9

9
.9

7
.9

2
.7

6
.1

7
.0

8
.0

4
50

,5
,5

.9
7

.9
8

.8
5

.5
0

.0
9

.0
5

.0
3

.6
6

.5
9

.5
6

.4
5

.1
1

.0
6

.0
3

50
,7

,1
.9

9
.9

3
.2

9
.1

2
.0
5

.9
9

.9
8

.9
2

.3
0

.1
3

.0
5

50
,7

,5
.9

9
.9

5
.7

1
.1

7
.0

9
.0

4
.8

4
.7

3
.7

0
.6

3
.2

1
.1

0
.0

4
25

0,
3,

1
.4

3
.1

6
.0

4
.9

9
.4

1
.1

6
.0

4
25

0,
3,

5
.9

4
.2

2
.0

8
.0

3
.7

4
.8

5
.9

2
.8

5
.2

9
.1

1
.0

3
25

0,
5,

1
.7

9
.3

5
.0
5

.7
7

.3
4

.0
5

25
0,

5,
5

.9
9

.5
2

.1
9

.0
4

.9
5

.9
3

.9
7

.9
7

.6
3

.2
7

.0
4

25
0,

7,
1

.9
3

.5
2

.0
5

.9
2

.5
1

.0
5

25
0,

7,
5

.7
1

.3
2

.0
4

.9
9

.9
7

.9
9

.9
9

.8
3

.4
2

.0
5

50
0,

3,
1

.7
7

.3
3

.0
4

.7
5

.3
2

.0
4

50
0,

3,
5

.5
0

.1
8

.0
3

.8
9

.9
6

.9
9

.9
9

.6
2

.2
5

.0
4

50
0,

5,
1

.9
8

.6
3

.0
5

.9
7

.6
1

.0
5

50
0,

5,
5

.8
1

.4
0

.0
4

.9
9

.9
9

.9
2

.5
2

.0
4

50
0,

7,
1

.8
1

.0
5

.8
0

.0
5

50
0,

7,
5

.9
2

.6
0

.0
5

.9
9

.7
2

.0
5

0.
5

50
,3

,1
.8

7
.8

4
.6

3
.3

7
.1

0
.0

6
.0
5

.8
7

.8
4

.6
3

.3
7

.1
0

.0
6

.0
5

50
,3

,5
.4

4
.4

5
.3

5
.2

2
.0

7
.0

5
.0

4
.4

4
.4

5
.3

5
.2

2
.0

7
.0

5
.0

4
50

,5
,1

.9
9

.9
8

.9
2

.7
4

.2
0

.1
1

.0
7

.9
9

.9
8

.9
2

.7
4

.2
0

.1
1

.0
7

50
,5

,5
.7

5
.6

8
.6

3
.4

9
.1

5
.0

9
.0

6
.7

5
.6

8
.6

3
.4

9
.1

5
.0

9
.0

6
50

,7
,1

.9
8

.9
2

.3
2

.1
6

.0
8

.9
8

.9
2

.3
2

.1
6

.0
8

50
,7

,5
.8

9
.8

1
.7

7
.6

8
.2

4
.1

3
.0

7
.8

9
.8

1
.7

7
.6

8
.2

4
.1

3
.0

7
25

0,
3,

1
.9

9
.4

2
.1

9
.0

7
.9

9
.4

2
.1

9
.0

7
25

0,
3,

5
.8

7
.9

3
.9

5
.8

8
.3

2
.1

5
.0
5

.8
7

.9
3

.9
5

.8
8

.3
2

.1
5

.0
5

25
0,

5,
1

.7
4

.3
6

.0
8

.7
4

.3
6

.0
8

25
0,

5,
5

.9
8

.9
7

.9
9

.9
9

.6
4

.3
0

.0
7

.9
8

.9
7

.9
9

.9
9

.6
4

.3
0

.0
7

25
0,

7,
1

.9
0

.5
1

.0
9

.9
0

.5
1

.0
9

25
0,

7,
5

.9
9

.9
9

.8
3

.4
5

.0
8

.9
9

.9
9

.8
3

.4
5

.0
8

50
0,

3,
1

.7
2

.3
4

.0
8

.7
2

.3
4

.0
8

50
0,

3,
5

.9
7

.9
9

.9
9

.6
2

.2
8

.0
6

.9
7

.9
9

.9
9

.6
2

.2
8

.0
6

50
0,

5,
1

.9
5

.6
0

.0
8

.9
5

.6
0

.0
8

50
0,

5,
5

.9
1

.5
4

.0
8

.9
1

.5
4

.0
8

50
0,

7,
1

.7
7

.0
8

.7
7

.0
8

50
0,

7,
5

.9
8

.7
1

.0
8

.9
8

.7
1

.0
8

31



T
ab

le
B

.5
:
α

=
−

0.
5.
Υ

(1
)−

(3
)
.

E
m

p
ty

en
tr

ie
s

co
rr

es
p

o
n

d
to

1
0
0
%

em
p

ir
ic

a
l

re
je

ct
io

n
fr

eq
u

en
ci

es
.

Υ
(1

)
Υ

(2
)

Υ
(3

)

θ
{N

,T
,τ
}
\λ

-.
70

-.
30

-.
10

-.
05

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

0.
0

50
,3

,1
.9

9
.8

8
.5

9
.3

6
.0

8
.0

5
.0

4
.9

9
.9

7
.7

2
.4

5
.1

0
.0

6
.0

4
.8

4
.5

4
.1

2
.0

7
.0

3
50

,3
,5

.9
4

.3
4

.0
9

.0
8

.0
3

.0
2

.0
2

.8
6

.6
4

.3
6

.2
3

.0
8

.0
5

.0
3

.9
9

.9
7

.8
3

.5
4

.1
3

.0
8

.0
4

50
,5

,1
.9

9
.9

1
.7

9
.2

5
.1

3
.0

6
.9

7
.8

5
.2

9
.1

5
.0

7
.9

9
.8

9
.3

0
.1

6
.0

6
50

,5
,5

.8
8

.2
6

.2
1

.0
8

.0
5

.0
3

.9
7

.8
9

.7
4

.5
9

.2
2

.1
3

.0
6

.9
7

.9
9

.9
6

.8
5

.2
7

.1
4

.0
6

50
,7

,1
.9

8
.9

4
.4

3
.2

3
.1

0
.9

7
.4

5
.2

4
.1

0
.9

8
.4

5
.2

3
.0

9
50

,7
,5

.9
9

.5
4

.4
0

.1
8

.1
0

.0
6

.9
7

.9
0

.8
0

.3
7

.2
1

.0
9

.9
5

.9
9

.9
8

.9
5

.4
0

.2
1

.0
7

25
0,

3,
1

.9
9

.9
8

.4
2

.1
6

.0
3

.9
9

.4
7

.2
0

.0
4

.4
9

.2
2

.0
5

25
0,

3,
5

.9
5

.0
9

.1
4

.0
8

.0
4

.0
2

.9
5

.8
7

.3
6

.1
6

.0
4

.4
7

.2
1

.0
5

25
0,

5,
1

.8
2

.4
2

.0
6

.8
2

.4
2

.0
6

.8
2

.4
2

.0
5

25
0,

5,
5

.5
6

.2
4

.1
3

.0
6

.0
2

.9
9

.7
2

.3
7

.0
6

.7
8

.3
9

.0
5

25
0,

7,
1

.9
5

.6
0

.0
7

.9
4

.6
0

.0
7

.9
5

.6
0

.0
6

25
0,

7,
5

.9
2

.6
6

.4
0

.2
2

.0
4

.8
9

.5
4

.0
7

.9
3

.5
5

.0
6

50
0,

3,
1

.7
6

.3
5

.0
4

.7
8

.3
7

.0
5

.7
9

.3
8

.0
5

50
0,

3,
5

.0
9

.2
0

.2
0

.0
8

.0
2

.9
9

.6
7

.3
1

.0
4

.7
6

.3
6

.0
5

50
0,

5,
1

.9
8

.6
8

.0
6

.9
8

.6
8

.0
5

.9
8

.6
8

.0
5

50
0,

5,
5

.7
9

.2
3

.1
4

.0
7

.0
3

.9
4

.6
1

.0
5

.9
7

.6
4

.0
5

50
0,

7,
1

.8
5

.0
6

.8
5

.0
6

.8
5

.0
6

50
0,

7,
5

.9
9

.7
9

.4
8

.3
0

.0
4

.9
9

.7
9

.0
6

.8
2

.0
5

0.
5

50
,3

,1
.9

9
.9

2
.6

4
.4

0
.1

2
.0

8
.0

6
.9

7
.7

3
.4

7
.1

4
.0

9
.0

6
.8

3
.5

4
.1

5
.0

9
.0

6
50

,3
,5

.9
4

.3
9

.1
2

.1
0

.0
4

.0
4

.0
3

.9
0

.7
1

.4
1

.2
7

.1
0

.0
7

.0
5

.9
8

.8
1

.5
3

.1
5

.1
0

.0
6

50
,5

,1
.9

9
.9

3
.8

0
.2

9
.1

7
.1

0
.9

8
.8

4
.3

1
.1

9
.1

1
.9

9
.8

7
.3

2
.1

9
.1

1
50

,5
,5

.8
9

.3
5

.2
8

.1
1

.0
7

.0
5

.9
8

.9
3

.7
8

.6
3

.2
6

.1
6

.1
0

.9
8

.9
9

.9
7

.8
4

.3
0

.1
7

.0
9

50
,7

,1
.9

9
.9

5
.4

5
.2

7
.1

4
.9

6
.4

6
.2

7
.1

4
.9

7
.4

5
.2

7
.1

3
50

,7
,5

.9
9

.6
4

.5
1

.2
3

.1
4

.0
9

.9
8

.9
3

.8
3

.4
0

.2
5

.1
3

.9
7

.9
9

.9
5

.4
2

.2
4

.1
0

25
0,

3,
1

.9
8

.4
5

.2
1

.0
6

.9
9

.4
8

.2
3

.0
7

.4
9

.2
4

.0
8

25
0,

3,
5

.9
3

.1
7

.1
4

.0
6

.0
3

.0
2

.9
7

.8
9

.3
8

.1
9

.0
6

.9
9

.4
6

.2
3

.0
8

25
0,

5,
1

.7
9

.4
3

.0
9

.7
9

.4
4

.0
9

.7
9

.4
4

.0
9

25
0,

5,
5

.6
8

.4
5

.2
3

.1
1

.0
3

.7
2

.3
9

.0
9

.7
6

.4
0

.0
8

25
0,

7,
1

.9
2

.5
9

.1
1

.9
2

.5
9

.1
1

.9
3

.5
9

.1
0

25
0,

7,
5

.9
5

.8
3

.5
9

.3
4

.0
7

.8
8

.5
5

.1
0

.9
1

.5
5

.0
9

50
0,

3,
1

.7
4

.3
8

.0
7

.7
5

.3
8

.0
8

.7
6

.3
9

.0
8

50
0,

3,
5

.2
0

.1
4

.1
0

.0
5

.0
2

.6
7

.3
4

.0
7

.7
4

.3
7

.0
7

50
0,

5,
1

.9
6

.6
6

.0
9

.9
6

.6
6

.0
9

.9
6

.6
6

.0
9

50
0,

5,
5

.8
6

.5
3

.3
1

.1
6

.0
3

.9
4

.6
1

.0
8

.9
6

.6
3

.0
8

50
0,

7,
1

.8
3

.1
0

.8
2

.1
0

.8
3

.0
9

50
0,

7,
5

.9
9

.9
3

.7
7

.5
3

.0
7

.9
9

.7
8

.0
9

.8
0

.0
8

32



T
ab

le
B

.6
:
α

=
−

0
.5

.
Υ

(4
),
(6

)
.

E
m

p
ty

en
tr

ie
s

co
rr

es
p

o
n

d
to

1
0
0
%

em
p

ir
ic

a
l

re
je

ct
io

n
fr

eq
u

en
ci

es
.

Υ
(4

)
Υ

(5
)

θ
{N

,T
,τ
}
\λ

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

-.
7
0

-.
3
0

-.
1
0

-.
0
5

-.
0
1

-.
0
0
5

.0
0

0.
0

50
,3

,1
.9

5
.7

4
.4

6
.1

1
.0

6
.0

4
.9

8
.9

2
.6

8
.4

3
.1

0
.0

6
.0

4
50

,3
,5

.5
0

.4
5

.2
6

.0
9

.0
5

.0
4

.5
8

.3
0

.2
2

.1
7

.0
7

.0
4

.0
3

50
,5

,1
.9

9
.9

8
.8

6
.3

0
.1

5
.0

7
.9

8
.9

5
.8

3
.2

8
.1

5
.0

7
50

,5
,5

.6
8

.8
2

.6
3

.2
7

.1
4

.0
7

.9
2

.5
7

.4
4

.4
3

.1
9

.1
1

.0
5

50
,7

,1
.9

7
.4

7
.2

5
.1

0
.9

9
.9

5
.4

5
.2

4
.1

0
50

,7
,5

.8
4

.9
4

.8
1

.4
6

.2
5

.1
0

.8
2

.6
2

.6
2

.3
4

.2
0

.0
8

25
0,

3,
1

.9
9

.5
0

.2
1

.0
4

.9
9

.4
7

.2
0

.0
4

25
0,

3,
5

.9
5

.9
8

.8
9

.4
7

.2
0

.0
4

.9
1

.5
9

.5
8

.6
0

.2
8

.1
3

.0
3

25
0,

5,
1

.8
4

.4
4

.0
6

.8
2

.4
2

.0
5

25
0,

5,
5

.9
7

.9
9

.8
4

.4
7

.0
6

.8
9

.8
1

.8
8

.6
7

.3
5

.0
5

25
0,

7,
1

.9
6

.6
3

.0
7

.9
4

.6
0

.0
7

25
0,

7,
5

.9
9

.9
5

.6
6

.0
7

.9
9

.9
2

.9
6

.8
7

.5
4

.0
6

50
0,

3,
1

.8
1

.3
9

.0
5

.7
8

.3
7

.0
5

50
0,

3,
5

.9
9

.9
9

.8
0

.3
9

.0
4

.9
8

.7
8

.8
1

.8
5

.5
7

.2
7

.0
3

50
0,

5,
1

.9
8

.7
1

.0
5

.9
8

.6
8

.0
5

50
0,

5,
5

.9
9

.7
3

.0
5

.9
7

.9
4

.9
8

.9
3

.6
0

.0
5

50
0,

7,
1

.8
7

.0
6

.8
5

.0
6

50
0,

7,
5

.8
8

.0
6

.9
8

.9
9

.8
0

.0
6

0.
5

50
,3

,1
.9

6
.7

4
.4

9
.1

4
.1

0
.0

7
.9

9
.9

4
.7

0
.4

6
.1

4
.0

9
.0

6
50

,3
,5

.5
8

.4
8

.3
0

.1
1

.0
8

.0
5

.6
8

.3
9

.2
8

.2
1

.0
9

.0
6

.0
4

50
,5

,1
.9

8
.8

5
.3

3
.1

9
.1

1
.9

9
.9

6
.8

3
.3

1
.1

9
.1

1
50

,5
,5

.7
6

.8
5

.6
6

.3
0

.1
8

.1
0

.9
5

.6
7

.5
4

.5
0

.2
3

.1
5

.0
8

50
,7

,1
.9

6
.4

7
.2

8
.1

4
.9

9
.9

5
.4

6
.2

7
.1

4
50

,7
,5

.9
0

.9
6

.8
4

.4
7

.2
8

.1
4

.8
8

.7
1

.6
9

.3
7

.2
3

.1
2

25
0,

3,
1

.9
9

.5
0

.2
4

.0
7

.9
9

.4
8

.2
3

.0
7

25
0,

3,
5

.9
7

.9
9

.9
1

.4
7

.2
3

.0
6

.9
6

.7
8

.7
3

.7
1

.3
3

.1
7

.0
5

25
0,

5,
1

.8
1

.4
5

.1
0

.7
9

.4
4

.0
9

25
0,

5,
5

.9
9

.9
9

.8
1

.4
6

.0
9

.9
5

.9
2

.9
5

.7
0

.3
8

.0
9

25
0,

7,
1

.9
3

.6
0

.1
0

.9
2

.5
9

.1
1

25
0,

7,
5

.9
4

.6
3

.1
0

.9
7

.9
9

.8
7

.5
5

.1
0

50
0,

3,
1

.7
7

.4
1

.0
8

.7
5

.3
9

.0
8

50
0,

3,
5

.7
7

.4
0

.0
7

.9
9

.9
3

.9
2

.9
3

.6
2

.3
1

.0
6

50
0,

5,
1

.9
7

.6
8

.0
9

.9
6

.6
6

.0
9

50
0,

5,
5

.9
7

.7
0

.0
8

.9
9

.9
8

.9
9

.9
3

.6
1

.0
8

50
0,

7,
1

.8
4

.1
0

.8
3

.1
0

50
0,

7,
5

.8
5

.0
9

.9
9

.7
9

.0
9

33


	CoverDP1408
	1408

