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Abstract
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1. Introduction

For over three decades GMM (generalized method of moments) excels as the generic

orthogonality conditions based optimal technique for semiparametric estimation. It sub-

sumes the majority of linear and nonlinear econometric estimators. The status of GMM

seems undisputable: the standard GMM technique of Hansen (1982) deals optimally

with both any nonsphericality of the disturbances and any overidenti�cation, given the

actual set of instrumental variables that is being used.

However, as discussed in Newey (1993) and Arellano (2003a,b), this does not nec-

essarily imply that the conditional moment conditions as such are being exploited op-

timally. These allow to exploit as instruments also non-trivial transformations of in-

strumental variables. In line with Davidson and MacKinnon (2004), we will show that

especially in models with heteroskedasticity a GLS-like model transformation leads to

orthogonality conditions from which much stronger instruments may emerge. These will

not only lead to reduced bias and variance, but also to a better correspondence between

actual distribution in �nite samples and its asymptotic approximation. This all sup-

ports a strategy for �nding instrumental variables close to the original IV (instrumental

variables) approach suggested by Sargan (1958, 1959).1

For the sake of simplicity we will focus here on both unfeasible and feasible standard

and modi�ed implementations of GMM just in linear cross-sectional models with het-

eroskedasticity. However, we conjecture that the results will have implications for more

general models too. A similar analysis regarding serial correlation (the major worry

in Sargan�s approach) in models for dependent observations is left for future research.

Our analysis of possibilities to improve on the e¢ ciency of the standard implementation

of GMM under heteroskedasticity leads to the conclusion that in practice one should

aim to weigh observations �rst in order to get as close to homoskedasticity as possible.

Not before, but after that, one should design a matrix of instruments according to the

adopted orthogonality conditions in terms of the weighted variables. Similar conclusions

have been drawn at various places in di¤erent contexts in the literature, see Bowden

and Turkington (1984), White (1986), Baltagi and Li (1992), Wooldridge (2010 p.351,

2013 p.516) and Iglesias and Phillips (2012). Models with endogenous regressors and

heteroskedasticity have also been considered in another line of research (for a recent

contribution see the references in and the study by Hausman et al., 2012), but there

1For an overview which puts the IV and GMM approaches into historical perspective see Arellano
(2002) and for a monograph on GMM see Hall (2005).
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the purpose is not to improve estimator e¢ ciency, but to make the variance estimates

of suboptimal estimators robust in the presence of heteroskedasticity.

To reveal the actual e¢ ciency gains of the modi�ed implementation of GMM requires

some well-designed simulation investigations. For feasible implementations, a parametric

setup, where use is made of a proper speci�cation of the determining factors of the

(conditional) heteroskedasticity, yields substantial e¢ ciency gains in comparison with

the standard GMM estimator. We �nd that under nonextreme circumstances root mean

squared errors may reduce by about 50%. When this can be estimated consistently one

can employ instruments which asymptotically attain the e¢ ciency bound achieved by

the unfeasible optimal instruments.

The structure of this study is as follows. In section 2 we show how GMM can be

interpreted in terms of transformed IV. Optimality of instruments is also discussed.

Section 3 considers a modi�ed GMM estimator and a feasible implementation. It also

discusses the estimation of the variance of coe¢ cient estimators. Section 4 presents a

Monte Carlo design for a typical family of simultaneous heteroskedastic cross-section

models followed in Section 5 by simulation results which demonstrate the huge potential

e¢ ciency gains by modifying GMM. In Section 6 alternative implementations of feasi-

ble GMM are applied to empirical data to illustrate the practical consequences of the

suggested modi�cations. Section 7 concludes.

2. GMM and optimality under heteroskedasticity in linear mod-
els

We consider the linear regression model yi = x0i� + "i; i = 1; :::; n, or in matrix form

y = X� + "; (2.1)

where the n�K regressor matrix X = (x1 ::: xn)
0 is supposed to have full column rank.

Some regressors may be endogenous, hence possibly E(xi"i) 6= 0: Available are also L
instrumental variables zi based on moment assumptions

E("ijzi) = 0: (2.2)

Z = (z1 ::: zn)
0 is an n�L matrix of rank L � K. Provided Z 0X has rank K the IV (or

2SLS) estimator is given by

�̂IV = (X
0PZX)

�1X 0PZy; (2.3)
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where PA = A(A0A)�1A0 for any full column rank matrix A.

If " = ("1 ::: "n)0 � (0;�); with a nonspherical n � n matrix �, then the preferred
estimator of � is obtained by GMM, given by

�̂GMM = [X 0Z(Z 0
Z)�1Z 0X]�1X 0Z(Z 0
Z)�1Z 0y; (2.4)

where 
 can be any non-zero scalar multiple of �: It is convenient to de�ne


 = �=�2" with �
2
" = tr(�)=n; so that tr(
) = n: (2.5)

The GMM estimator is optimal in the sense that (under standard asymptotics) the

variance of its limiting distribution

n1=2(�̂GMM � �)
d! N(0; plimn[X 0Z(Z 0�Z)�1Z 0X]�1) (2.6)

is minimal in a matrix sense. GMM simpli�es to IV when � = �2"I or 
 = I:

In the special case that L = K the matrix Z 0X is invertible and, irrespective of the

value of 
; we obtain �̂GMM = (Z 0X)�1Z 0y = �̂IV : When the regressors are exogenous,

substituting X for Z we �nd, also when 
 6= I;

�̂GMM = (X 0X)�1X 0y = �̂OLS: (2.7)

However, it is well know that in that case the optimal estimator is

�̂GLS = (X
0
�1X)�1X 0
�1y: (2.8)

Apparently, the optimality of GMM is not universal. We will clarify this disturbing

result2 below, but �rst we shall demonstrate that in linear models GMM is equivalent

to applying IV to a properly transformed model.

Let 
�1 = 	0	; where 	 has full rank but is generally non-unique. Premultiplication

of (2.1) by 	 yields the transformed model

y� = X�� + "�; (2.9)

where y� = 	y; X� = 	X and "� = 	" � (0; �2"I). De�ne Z
y = (	0)�1Z: Because

"� � (0; �2"I) we may estimate the transformed model (2.9) by IV, which yields

(X�0PZyX
�)�1X�0PZyy

� = [X 0Z(Z 0
Z)�1Z 0X]�1X 0Z(Z 0
Z)�1Z 0y = �̂GMM ; (2.10)

2Our clari�cation is less abstract than those presented by Davidson and MacKinnon (2004, p.358),
Cameron and Trivedi (2005, p.747) and Wooldridge (2010, p.542).
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where PZy = (	0)�1Z(Z 0
Z)�1Z 0	�1: Hence, GMM corresponds algebraically to apply-

ing IV to a "GLS-like" transformed model, exploiting instruments Zy = (	0)�1Z, instead

of Z� = 	Z. Since E(Zy0"�) = E(Z 0") = 0; the instruments Zy used for estimating the

transformed model (2.9) exploit still exactly the original moment conditions.

Assume that X = (X1; X2); where X1 contains K1 > 0 exogenous regressors, i.e.,

E(" j X1) = 0, and X2 contains K2 = K � K1 � 0 possibly endogenous regressors.

Because E(" j X1) = 0 implies E("� j X�
1 ) = E(	" j 	X1) = 0 it is obvious that when

estimating the transformed model (2.9) by IV we should preferably include X�
1 in the

matrix of instruments. However, standard GMM would include X1 in the matrix of

instruments for the untransformed model, implying that Xy
1 = (	

0)�1X1 is a component

of the instrument matrix it employs to the transformed model. Note, though, that it is

unlikely that in the �rst-stage regression ofX� on the instruments Zy = (Xy
1 Z

y
2) a perfect

�t will be realized for X�
1 ; whereas this occurs when including X

�
1 in the instrument set

for the transformed model.

Standard GMM does not automatically use regressors which are exogenous in the

transformed model as instruments for estimating the transformed model. The optimality

of standard GMM is achieved over the sample moment conditions expressed in terms of

the chosen instruments Z: The above illustrates that e¢ ciency gains seem possible by

allowing to consider transformations of Z as well.

Newey (1993) and Arellano (2003a, Appendix B) address the optimality of instru-

ments in a setup, where (yi; x0i; z
0
i) are i.i.d. and the conditional moment assumption

E(yi � x0i�jzi) = 0 is made. Then the optimal instruments3 are shown to be given by
the K � 1 vector

�g(zi) = E(xijzi)=E("2i jzi): (2.11)

The corresponding unfeasible optimal (UO) GMM estimator uses �g(zi) as instruments.

It has asymptotic variance

VUO = fE(xijzi)[E("2i jzi)]�1E(x0ijzi)g�1 = E("2i jzi)f�g(zi)�g(zi)0g�1: (2.12)

Newey (1993) shows that this variance VUO is a lower bound for the asymptotic variance

of all IV/GMM estimators for the present model, exploiting (2.2), and even in a stronger

sense, achieving the semi-parametric e¢ ciency bound (Chamberlain, 1987). When zi

contains some exogenous elements of xi; so xi = (x01i; x
0
2i)

0 and zi = (x01i; z
0
2i)

0; then

E(x0ijzi) = (x01i; E(x02ijzi)) ;
3See also Cameron and Trivedi (2005, p.188).
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which indicates that the optimal instrument matrix should have a component propor-

tional to 
�1X1; which vindicates our earlier more informal derivations.

The optimal instruments for the linear model under conditions E("ijzi) = 0 are also
discussed in Davidson and MacKinnon (2004, Chapter 9) for dependent data. They show

that the matrix of optimal instruments is given by ��2" 

�1 �X; where �X = (�x1; � � � ; �xn)0

and �xi is de�ned as E(xij�i); where �i contains the set of all deterministic functions of
the elements of (zi; :::; z1): It easily follows that an expression for the asymptotic variance

of the GMM estimator using these optimal instruments is

�2" plimn( �X
0
�1 �X)�1;

which corresponds to (2.12). Since �X is not observable, Davidson and MacKinnon (2004,

p.361) suggest to use instruments 
�1Z:When the span of �X is a subset of that of Z, the

GMM estimator using instruments 
�1Z has the same asymptotic variance, implying

that 
�1Z should be used as optimal instrument matrix. This estimator is only feasible

when 
 is known.

3. Modi�ed GMM and implementations

When � and 
 are diagonal, say � = diag(�1; :::; �n) with �i = �2"!i and
Pn

i=1 !i = n

with all !i > 0; then the moment conditions E(zi"i) = 0 are equivalent with E(zi"i=!i) =

0: Hence, a possible modi�cation of GMM is using instrument matrix 
�1Z; rather than

Z: This yields the modi�ed GMM (MGMM) estimator

�̂MGMM = [X 0
�1Z(Z 0
�1Z)�1Z 0
�1X]�1X 0
�1Z(Z 0
�1Z)�1Z 0
�1y; (3.1)

or equivalently, �̂MGMM = [X 0��1Z(Z 0��1Z)�1Z 0��1X]�1X 0��1Z(Z 0��1Z)�1Z 0��1y

with limiting distribution

n1=2(�̂MGMM � �)
d! N(0; plimn[X 0��1Z(Z 0��1Z)�1Z 0��1X]�1): (3.2)

Since �̂MGMM = (X�0PZ�X
�)�1X�0PZ�y

�, MGMM corresponds algebraically to applying

IV to the transformed model, using instruments Z� = 	Z. MGMM4 would be more

e¢ cient than GMM when the di¤erence between the matrices plimn�1X�0PZ�X
� and

plimn�1X�0PZyX
� is positive (semi-)de�nite.

When 
 is unknown, we could � as in feasible GLS �parametrize the functional

form of the skedastic function, for instance as �i = h(z0i
): From consistent estimates

4Bowden and Turkington (1984, p.69) consider this estimator, but suppose it to be of limited value.

6



�̂i = h(z
0
i
̂) a consistent estimate �̂ can be obtained.

5 This enables to obtain the feasible

parametric MGMM estimator, which uses the instruments �̂�1Z to the untransformed

model, and is given by

�̂FpMGMM = [X 0�̂�1Z(Z 0�̂�1Z)�1Z 0�̂�1X]�1X 0�̂�1Z(Z 0�̂�1Z)�1Z 0�̂�1y: (3.3)

Here E("2i ) = h(z
0
i
) establishes a moment condition that is nonlinear in �; which could

be exploited directly when deriving a method of moments estimator. In our implemen-

tations, however, we use a simple 2-step procedure, in which 
̂ is obtained by regressing

h�1("̂2i ) on zi; where "̂i = yi � x0i�̂IV is consistent for the disturbance "i.
The standard GMM estimator (2.4) is unfeasible for unspeci�ed heteroskedasticity,

whereas its feasible nonparametric alternative is

�̂FnpGMM = [X 0ZŜ�1zz Z
0X]�1X 0ZŜ�1zz Z

0y; (3.4)

where Ŝzz = n�1
Pn

i=1 "̂
2
i ziz

0
i is a consistent estimator for Z

0�Z=n using IV residuals "̂i.

In the simulations to follow, we will focus on the relatively simple case of het-

eroskedasticity in cross-sections. First, we examine standard GMM and its modi�cation

MGMM for the unrealistic situation that 
 is supposed to be known. Exploiting the

true value of 
 will disclose what the potential di¤erences will be between the for prac-

titioners more interesting feasible implementations. Next, we examine what the actual

losses are in terms of RMSE (root mean squared error) when 
 is assessed in the im-

plementations described above. We will also make comparisons with IV, and with the

under simultaneity inconsistent estimators ordinary and weighted least squares (OLS

and WLS).

In addition to comparing bias, actual standard deviation, and root mean squared

error, we will examine also how well the various consistent estimators are able to assess

their actual e¢ ciency, by examining the bias in the estimates provided by the standard

expressions for their standard errors. These calculations will be based on square roots

of the diagonal elements of the following list of variance estimators:dV ar(�̂GMM) = �̂
2
" [X

0Z(Z 0
Z)�1Z 0X]�1; �̂2" = (y �X�̂GMM)
0(y �X�̂GMM)=ndV ar(�̂FnpGMM) = n[X

0ZŜ�1zz Z
0X]�1dV ar(�̂MGMM) = �̂

2
" [X

�0PZ�X
�]�1; �̂2" = (y

� �X��̂MGMM)
0(y� �X��̂MGMM)=ndV ar(�̂FpMGMM) = [X

0�̂�1Z(Z 0�̂�1Z)�1Z 0�̂�1X]�1; �̂i = h(z
0
i
̂)dV ar(�̂IV ) = �̂2" [X 0PZX]

�1; �̂2" = (y �X�̂IV )0(y �X�̂IV )=ndV arnp(�̂IV ) = n[X 0PZX]
�1X 0Z(Z 0Z)�1Ŝzz(Z

0Z)�1Z 0X[X 0PZX]
�1

5Newey (1993) discusses how the assessment of asymptotically optimal instruments 
�1Z should be
approached in a nonparametric context.
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dV ar(�̂IV ) is improper in case 
 6= I; but a nonparametric robusti�cation for this variance
is provided by dV arnp(�̂IV ).
4. Simulation design for a heteroskedastic cross-section model

We shall design a data generating process (DGP) in which we can easily change the

seriousness and characteristics of the heteroskedasticity, the degree of simultaneity, the

strength of the instruments, the signi�cance of individual regressors and the general �t

of the relationship. To assure that the �rst two moments of IV estimators exist we

choose the degree of overidenti�cation to be 2. In the DGP we allow for the presence

of an intercept, another exogenous regressor and one possibly endogenous regressor,

hence K1 = 2; K2 = 1 and K = 3. The two exogenous regressors, which are also

used as instruments (L1 = K1); are xi1 = 1 and xi2 � iidN(0; 1); the three external

instruments (L2 = 3) are generated too as mutually independent zij � iidN(0; 1) for

j = 3; 4; 5; i = 1; :::; n: Of course, the two endogenous variables xi3 and yi; and the

pattern of the heteroskedasticity (!1; :::; !n) in the disturbances "i; where the !i are

the diagonal elements of 
; have to be designed such that these seem very realistic for

typical cross-section applications.

The structural form equation will be generated as

yi = �1 + �2xi2 + �3xi3 + "i (4.1)

and the reduced form equation for xi3 by

xi3 = �31 + �32xi2 + �33zi3 + �34zi4 + �35zi5 + vi; (4.2)

where

vi = �v!
1=2
i v�i ; with v

�
i � iidN(0; 1); (4.3)

"i = �"!
1=2
i

�
�v�i + (1� �2)1=2"�i

�
; with "�i � iidN(0; 1): (4.4)

Hence, the reduced form disturbances vi � N(0; �2v!i) and the structural equation dis-
turbances "i � N(0; �2"!i) are a¤ected by the same heteroskedasticity pattern. Parame-
ter � 2 (�1;+1) is the correlation coe¢ cient of "i and vi and expresses the degree of
simultaneity.

Using n�1
Pn

i=1E(v
2
i ) = �

2
vn

�1Pn
i=1 !i = �

2
v ; the joint strength of the three external

instruments is determined by the scaled concentration parameter inspired scalar quantity

�2 =
n

3

�233 + �
2
34 + �

2
35

�2v
; (4.5)
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which implies V ar(xi3) = �232+ �
2
v(3�

2=n+!i): All the external instruments and exoge-

nous regressor xi2 have normalized variance unity. Thus, treating endogenous regressor

xi3 similarly requires �232 + �
2
v(3�

2=n+ 1) = 1: Therefore we will choose

�2v =
1� �232
3�2=n+ 1

: (4.6)

Note that �232 < 1; since �32 is the correlation coe¢ cient determining the multicollinearity

between the structural form regressors xi2 and xi3: To have all three external instruments

equally weak or strong, we should take

�33 = �34 = �35 = j��vj =
p
n: (4.7)

The heteroskedasticity pattern will follow a so-called multiplicative form determined

by the iidN(0; 1) series xi2 and zi3 (hence by one internal and one external instru-

ment), but could be driven by another in practice unobserved independent variable

��i � iidN(0; 1) as well. A parameter � � 0 determines the seriousness of the het-

eroskedasticity, where � = 0 implies homoskedasticity. When � > 0 a parameter �;

with 0 � � � 1; determines the relative importance of the observed variables (xi2 and
zi3) and the unobserved variable (��i ) regarding the heteroskedasticity. And, if � > 0; a

parameter �; with 0 � � � 1; determines the relative importance of xi2 and zi3 regarding
any heteroskedasticity. This is achieved by generating the variable

gi = ��2=2 + �f�1=2[�1=2xi2 + (1� �)1=2zi3] + (1� �)1=2��i g � iidN(��2=2; �2); (4.8)

and taking

!i = exp(gi); (4.9)

which follows a lognormal distribution with E(!i) = 1 and V ar(!i) = exp(�2)�1: Since
about 99% of the drawings gi will be in the interval [��2=2�2:58�;��2=2+2:58�]; also
99% of the drawings !i will fall in the interval

[exp(��2=2� 2:58�); exp(��2=2 + 2:58�)]: (4.10)

Table 4.1 presents the bounds of these intervals, both for !i and for !
1=2
i ; for particular

values of �: From these we learn that � � 1 implies pretty serious heteroskedasticity,

whereas we may qualify it mild when � < 0:3; say.
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Table 4.1 Heteroskedasticity for di¤erent values of �
� bounds of 99% intervals

!
1=2
i !i

0.2 0.76 1.28 0.59 1.64
0.4 0.57 1.61 0.33 2.59
0.6 0.42 1.98 0.18 3.93
0.8 0.30 2.39 0.09 5.72
1.0 0.21 2.83 0.05 8.00
1.2 0.15 3.28 0.02 10.76
1.4 0.10 3.73 0.01 13.90
1.6 0.07 4.15 0.00 17.25

The design de�ned above, with the deliberate choices (4.6) and (4.7), has yet, apart

from the sample size n; 11 free parameters, namely: �1; �2; �3 and �"; �; �31; �32 and �2;

and �; � and �: For all the estimation techniques to be examined their estimation errors

are invariant with respect to �: For instance, �̂OLS � � = (X 0X)�1X 0" and �̂IV � � =
(X 0PZX)

�1X 0PZ", etc. Therefore, the bias, variance and mean squared errors of the

coe¢ cient estimates will for all techniques be invariant with respect to � too. So, from

that point of view we may choose any values for the structural coe¢ cients. However,

since the estimation errors do depend on " and hence on �"; by imposing the habitual

normalization �" = 1; the magnitude of the estimation errors will be a¤ected and thus

the �ndings for the bias, variance and mean squared errors too. This is of less concern,

though, when we focus on the relative magnitude of the estimation errors for the di¤erent

techniques to be examined. Moreover, we can choose values for �2 and �3 such that, in

combination with �" = 1; values (averaged over all replications) for t and F tests or for

R2 are found which are not uncommon in cross-section regression analysis. A loosely

de�ned population coe¢ cient of determination for simultaneous heteroskedastic model

(4.1) is given by

R2p = 1�
Pn

i=1 V ar("i)Pn
i=1[V ar(�2xi2 + �3xi3) + V ar("i)]

= 1� 1

�22 + 2�2�3�32 + �
2
3 + 1

: (4.11)

Taking equal values for the two slope coe¢ cients then yields

�22 = �
2
3 = R

2
p=[2(1�R2p)(1 + �32)]:

For 0:1 � R2p � 0:2 and 0 � �32 � 0:8 this implies positive solutions in the range

0:18 � �2 = �3 � 0:35: What we will do is simply take �2 = �3 = 0:25 and calculate

over all the replications of the Monte Carlo the average of particular statistics which

enable to monitor the practical relevance of the cases examined. In these cases we take

particular combinations from the grid given in Table 4.2.
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Table 4.2 Grid of design parameter values in the simulation
n = f50; 200g
�1 = 0 �2 = 0:25 �3 = 0:25 �" = 1
� = f0:1; 0:5g �31 = 0 �32 = f0; 0:8g �2 = f2; 10; 50g
� = f0:5; 1g � = f0; 0:2; 0:5; 1g � = f0:2; 0:5; 0:8g

Choosing �1 = 0 and �31 = 0; but incorporating the intercept always in the model

and in the matrix of instruments, will not a¤ect the �ndings regarding inference on �2

and �3: We limit the analysis to just 12 di¤erent cases as de�ned in Table 4.3.

Table 4.3 Examined cases of design parameter value combinations, and results
on �v; R2 and F3;n�L (�1 = 0; �2 = �3 = 0:25; �" = 1; �31 = 0)

Case n � �32 �2 � � � �v R2 F3;n�L
A 200 0.5 0 50 1 1 0.5 0.76 0.35 (0.07) 52.56 (13.36)
B 200 0.5 0 10 1 1 0.5 0.93 0.43 (0.08) 11.47 (4.61)
C 200 0.5 0 2 1 1 0.5 0.99 0.45 (0.08) 3.24 (2.10)
D 200 0.5 0 10 0.5 1 0.5 0.93 0.43 (0.06) 11.16 (4.21)
E 200 0.1 0 10 1 1 0.5 0.93 0.17 (0.07) 11.47 (4.61)
F 200 0.5 0.8 10 1 1 0.5 0.56 0.43 (0.07) 11.47 (4.61)
G 200 0.5 0 10 1 1 0.2 0.93 0.43 (0.08) 11.58 (4.77)
H 200 0.5 0 10 1 1 0.8 0.93 0.43 (0.08) 11.35 (4.44)
I 50 0.5 0 10 1 1 0.5 0.79 0.39 (0.14) 11.92 (6.01)
J 200 0.5 0 10 1 0.5 0.5 0.93 0.43 (0.07) 11.27 (4.35)
K 200 0.5 0 10 1 0.2 0.5 0.93 0.43 (0.06) 11.16 (4.21)
L 200 0.5 0 10 1 0 0.5 0.93 0.43 (0.05) 11.07 (4.11)

Table 4.3 also presents the value of �v that results according to (4.6). The �nal

two columns contain the average (with standard deviation between parentheses) over

all replications of the standard OLS R2 statistic (thus neglecting the simultaneity and

any heteroskedasticity) in the structural model (4.1) and of the F3;n�L test statistic on

the joint signi�cance of the external instruments in the reduced form equation (4.2)

when estimated by OLS (thus again neglecting any heteroskedasticity). Both measures

have their drawbacks, but they are only used here to give a rough impression of major

characteristics of the DGPs, namely their �t and the strength of the external instruments.

Note that there is a reasonable correspondence between the values of �2 and the average

F3;n�L statistic. Due to the inconsistency of OLS results in the structural model, only in

case E (where the simultaneity is very mild) the average R2 statistic is in the range of the

aimed at R2p value. In the next section further evidence will be discussed regarding the
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empirical relevance of the chosen designs. The simulation estimates have been obtained

from 10,000 Monte Carlo replications. In each replication new independent realizations

have been drawn for "�i ; xi2; zi3; zi4; zi5; v
�
i and �

�
i ; so the Monte Carlo averages estimate

unconditional moments.6

5. Simulation results

In Table 5.1 we collect results for the cases A, B and C. They all concern the larger sample

size, have serious heteroskedasticity, substantial simultaneity, and no multicollinearity

between xi2 and xi3: These three cases just di¤er in the strength of the three external

instruments, as can be seen from Table 4.3.7

6Advantages and disadvantages of conditioning or not on exogenous variables in simulation experi-
ments are discussed in Kiviet (2012).

7Regarding the empirical relevance of the models examined in cases A, B and C it is useful to examine
the quantities �2=sd(�̂2) and �3=sd(�̂3) for the di¤erent techniques. This ratio has correspondences with
the inverse of the coe¢ cient of variation and with a stylized t-ratio. For case A it is found to be in the
range (2.12, 5.43), for case B in the range (1.19, 5.68) and for C in (0.45, 6.25). Note that in case C
the estimators based on external weak instruments have for the estimate of �3 such a large standard
deviation in comparison to the true coe¢ cient value of 0.25 that they do not enable to produce very
useful inference.
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Table 5.1 Simulation results on coe¢ cient estimates for cases A, B and C
�2 �3

Case bias st:dv rmse rrmse bias st:dv rmse rrmse
A: GMM 0.002 0.081 0.081 1.000 0.005 0.115 0.115 1.000

FnpGMM 0.002 0.081 0.081 0.998 0.005 0.114 0.114 0.999
MGMM 0.001 0.045 0.045 0.551 0.002 0.068 0.068 0.590
FpMGMM 0.001 0.047 0.047 0.572 0.002 0.070 0.070 0.610
IV 0.001 0.086 0.086 1.051 0.005 0.118 0.118 1.027
OLS 0.001 0.078 0.078 0.958 0.375 0.091 0.386 3.366
WLS 0.003 0.046 0.046 0.565 0.225 0.058 0.232 2.028

B: GMM 0.002 0.082 0.082 1.000 0.020 0.211 0.212 1.000
FnpGMM 0.002 0.082 0.082 0.999 0.020 0.211 0.212 1.001
MGMM 0.001 0.045 0.045 0.547 0.007 0.123 0.123 0.582
FpMGMM 0.001 0.047 0.047 0.568 0.008 0.127 0.127 0.602
IV -0.000 0.086 0.086 1.048 0.022 0.215 0.216 1.022
OLS 0.001 0.075 0.075 0.912 0.465 0.095 0.474 2.243
WLS 0.003 0.044 0.044 0.532 0.386 0.062 0.390 1.846

C: GMM 0.005 0.089 0.089 1.000 0.117 0.528 0.541 1.000
FnpGMM 0.004 0.091 0.091 1.018 0.118 0.553 0.566 1.046
MGMM 0.001 0.046 0.046 0.512 0.037 0.268 0.271 0.500
FpMGMM 0.001 0.047 0.047 0.529 0.040 0.276 0.279 0.516
IV 0.001 0.091 0.091 1.028 0.124 0.528 0.542 1.002
OLS 0.001 0.074 0.074 0.829 0.492 0.097 0.502 0.928
WLS 0.002 0.040 0.040 0.454 0.471 0.062 0.475 0.878

Because the regressors x2 and x3 are uncorrelated it can easily be derived that even

the inconsistent coe¢ cient vector estimators (both the least-squares variants) yield a

consistent estimator for element �2; the coe¢ cient of the exogenous regressor x2: So,

it should not surprise that all estimators produce almost unbiased results for �2; also

when instruments are weak. Regarding �3 it are only the consistent estimators that have

moderate bias, provided the instruments are not weak. For the weak instrument case

C also the consistent estimators of �3 show substantial bias, in particular IV and those

based on standard GMM. The most remarkable result, however, is that the MGMM and

FpMGMM estimators are substantially more e¢ cient than standard GMM. In these

three cases they reduce the RMSE by about 40 or 50%, irrespective of the strength of

the instruments, as can be seen easily from the rrmse (relative RMSE) columns which

presents the RMSE divided by that of unfeasible standard GMM.

Further note that the nonparametric feasible implementation of standard GMM is

very close to the unfeasible estimator. Also the parametric feasible version of MGMM
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works well. It is also noteworthy that we �nd that standard GMM is in fact not all that

much better than IV, illustrating that the e¢ ciency gain due to taking 
 into account

is largely o¤set by the fact that the instruments used by the standard implementation

of GMM are weaker than those used by IV. This weakening is prevented by MGMM

through weighing the instruments by the same weights as used for the variables in the

transformed model, inducing remarkable reductions both in bias and standard deviation.

Another interesting �nding from Table 5.1 is that on the basis of their RMSE the in-

consistent estimators often outperform consistent GMM and occasionally even MGMM

(just for �2). This is in line with results reported on OLS and IV in Kiviet (2013):

weakness of instruments is often more detrimental to estimator accuracy than invalidity

of instruments.

In all the further cases to be examined, we shall keep �2 = 10; so the instruments

are not very weak, but certainly not strong. Thus, from now on, case B should be

considered the reference case. Case D in Table 5.2 is similar to case B, apart from the

seriousness of the heteroskedasticity. We see that � = 0:5 leads to similar though more

moderate relative di¤erences, with e¢ ciency gains by MGMM still around 15%. All

remaining cases have � = 1 again. Table 5.2 also contains cases E and F. In case E

the simultaneity is mild. This is seen to have no e¤ects on the relative performance of

MGMM, but now the inconsistent estimators have minor bias for both coe¢ cients and

therefore they have better RMSE. Case F di¤ers from B just regarding the occurrence

of substantial multicollinearity between xi2 and xi3, which reduces the value of �v. Note

that the rrmse results on �3 are invariant regarding �23; but not those for �2: The least-

squares based estimators for �2 are now inconsistent too. All standard deviations are

much higher and the bias in estimates for �3 infects the estimates of �2 with bias. As

before, MGMM and FpMGMM perform best.
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Table 5.2 Simulation results on coe¢ cient estimates for cases D, E and F
�2 �3

Case bias st:dv rmse rrmse bias st:dv rmse rrmse
D: GMM 0.002 0.075 0.075 1.000 0.019 0.204 0.205 1.000

FnpGMM 0.001 0.075 0.075 1.007 0.019 0.206 0.207 1.009
MGMM 0.001 0.063 0.063 0.844 0.014 0.176 0.177 0.863
FpMGMM 0.001 0.065 0.065 0.872 0.015 0.182 0.182 0.888
IV 0.001 0.075 0.075 1.006 0.019 0.205 0.206 1.003
OLS 0.001 0.066 0.066 0.883 0.466 0.070 0.471 2.297
WLS 0.001 0.057 0.057 0.757 0.450 0.063 0.455 2.217

E: GMM 0.001 0.083 0.083 1.000 0.003 0.211 0.211 1.000
FnpGMM 0.001 0.083 0.083 1.000 0.002 0.211 0.211 1.000
MGMM 0.001 0.045 0.045 0.547 0.002 0.124 0.124 0.589
FpMGMM 0.001 0.047 0.047 0.568 0.002 0.128 0.128 0.607
IV 0.000 0.087 0.087 1.051 0.003 0.216 0.216 1.023
OLS 0.001 0.085 0.085 1.021 0.093 0.108 0.143 0.677
WLS 0.001 0.045 0.045 0.541 0.078 0.065 0.101 0.479

F: GMM -0.024 0.280 0.281 1.000 0.034 0.351 0.353 1.000
FnpGMM -0.024 0.280 0.281 0.999 0.033 0.351 0.353 1.001
MGMM -0.009 0.169 0.170 0.603 0.012 0.205 0.205 0.582
FpMGMM 0.001 0.047 0.047 0.568 0.002 0.128 0.128 0.607
IV -0.029 0.284 0.285 1.014 0.036 0.359 0.360 1.022
OLS -0.619 0.145 0.636 2.259 0.775 0.159 0.791 2.243
WLS -0.511 0.092 0.520 1.847 0.643 0.103 0.651 1.846

Cases G and H in Table 5.3 di¤er from B only in �; so in whether either xi2 or zi3 is

the major source of the heteroskedasticity. The e¤ects of � are found to be moderate and

both cases again show spectacular e¢ ciency gains by (feasible parametric) MGMM. The

only di¤erence between cases I and B is the smaller sample size. This clearly mitigates

the gains by MGMM over standard GMM, but they are still around 30%.
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Table 5.3 Simulation results on coe¢ cient estimates for cases G, H and I
�2 �3

Case bias st:dv rmse rrmse bias st:dv rmse rrmse
G: GMM 0.002 0.075 0.075 1.000 0.021 0.215 0.216 1.000

FnpGMM 0.002 0.075 0.075 0.998 0.021 0.215 0.216 1.001
MGMM 0.001 0.044 0.044 0.594 0.007 0.123 0.123 0.571
FpMGMM 0.001 0.046 0.046 0.613 0.008 0.127 0.127 0.588
IV 0.000 0.077 0.077 1.035 0.024 0.223 0.224 1.039
OLS 0.001 0.068 0.068 0.904 0.465 0.096 0.475 2.199
WLS 0.002 0.043 0.043 0.572 0.386 0.063 0.391 1.810

H: GMM 0.002 0.091 0.091 1.000 0.019 0.204 0.205 1.000
FnpGMM 0.002 0.091 0.091 0.998 0.019 0.204 0.205 1.001
MGMM 0.001 0.045 0.045 0.500 0.007 0.123 0.123 0.601
FpMGMM 0.001 0.047 0.047 0.522 0.008 0.127 0.127 0.621
IV 0.000 0.094 0.094 1.036 0.020 0.206 0.207 1.010
OLS 0.001 0.081 0.081 0.897 0.465 0.095 0.474 2.315
WLS 0.002 0.044 0.044 0.489 0.385 0.061 0.390 1.903

I: GMM -0.002 0.165 0.165 1.000 0.027 0.247 0.248 1.000
FnpGMM -0.003 0.168 0.168 1.014 0.027 0.250 0.251 1.010
MGMM -0.002 0.101 0.101 0.610 0.010 0.162 0.162 0.652
FpMGMM -0.003 0.116 0.116 0.701 0.013 0.180 0.180 0.725
IV -0.008 0.177 0.177 1.072 0.029 0.258 0.260 1.044
OLS -0.004 0.157 0.158 0.953 0.390 0.176 0.428 1.721
WLS 0.004 0.099 0.099 0.597 0.262 0.122 0.289 1.163

In Table 5.4 we examine cases that di¤er from B only in that 0 � � < 1; hence the
heteroskedasticity does also depend now on a factor that one cannot capture in a feasible

parametric technique. In case J � = 0:5; in K it is 0:2 and � = 0 in case L. In the latter

case, where the heteroskedasticity is not related to any of the instruments, we note that

the bias and variance results for GMM and IV are almost similar. This is due to

plimn�1Z 0
Z = plimn�1
Xn

i=1
!iziz

0
i (5.1)

= plimn�1
Xn

i=1
ziz

0
i + plimn

�1
Xn

i=1
(!i � 1)ziz0i = plimn�1Z 0Z;

because here !i = exp(��2=2 + ���i ) with E(!i j zi) = 1; thus the law of large numbers
implies

plimn�1
Xn

i=1
(!i � 1)ziz0i = limn�1

Xn

i=1
E[E(!i � 1 j zi)ziz0i] = O:

A similar result yields the asymptotic equivalence of the standard and the heteroskedas-

ticity consistent OLS variance estimators in models with just exogenous regressors which
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are unrelated with the disturbance variance. However, even for � = 0; MGMM beats

GMM and IV. That MGMM does not converge to IV in this case follows from

plimn�1X 0
�1Z = plimn�1
Xn

i=1
!�1i xiz

0
i

= plimn�1
Xn

i=1
xiz

0
i + plimn

�1
Xn

i=1
(!�1i � 1)xiz0i

= plimn�1X 0Z + plimn�1
Xn

i=1
E[E(!�1i � 1 j zi)xiz0i]

6= plimn�1X 0Z; (5.2)

because E(!�1i ) 6= 1=E(!i) = 1: The results on the feasible MGMM estimators does re-

veal, however, that we have not managed yet to materialize this remarkable theoretical

and experimental superiority of unfeasible MGMM for case L in a feasible implementa-

tion.

Table 5.4 Simulation results on coe¢ cient estimates for cases J, K and L
�2 �3

Case bias st:dv rmse rrmse bias st:dv rmse rrmse
J: GMM 0.002 0.078 0.078 1.000 0.020 0.207 0.207 1.000

FnpGMM 0.002 0.078 0.078 1.005 0.019 0.208 0.209 1.007
MGMM 0.001 0.055 0.055 0.708 0.011 0.153 0.153 0.740
FpMGMM 0.001 0.058 0.058 0.750 0.012 0.160 0.161 0.776
IV 0.001 0.079 0.079 1.017 0.020 0.208 0.209 1.008
OLS 0.001 0.069 0.069 0.889 0.465 0.079 0.472 2.276
WLS 0.002 0.051 0.051 0.652 0.428 0.062 0.433 2.085

K: GMM 0.002 0.074 0.074 1.000 0.019 0.203 0.204 1.000
FnpGMM 0.001 0.075 0.075 1.007 0.019 0.205 0.206 1.010
MGMM 0.001 0.063 0.063 0.843 0.014 0.176 0.176 0.863
FpMGMM 0.001 0.067 0.067 0.902 0.016 0.186 0.187 0.914
IV 0.001 0.074 0.074 1.004 0.019 0.204 0.205 1.003
OLS 0.001 0.065 0.065 0.880 0.466 0.071 0.471 2.309
WLS 0.001 0.056 0.056 0.757 0.449 0.063 0.454 2.223

L: GMM 0.001 0.071 0.071 1.000 0.018 0.200 0.201 1.000
FnpGMM 0.001 0.072 0.072 1.007 0.018 0.203 0.204 1.012
MGMM 0.001 0.068 0.068 0.957 0.017 0.193 0.194 0.962
FpMGMM 0.001 0.074 0.074 1.035 0.018 0.207 0.207 1.030
IV 0.001 0.071 0.071 1.000 0.018 0.201 0.201 1.001
OLS 0.001 0.063 0.063 0.879 0.466 0.065 0.471 2.339
WLS 0.001 0.060 0.060 0.847 0.461 0.063 0.466 2.314

Next we examine the estimated standard errors. In Tables 5.5 through 5.7 for both

�2 and �3 �rst the Monte Carlo estimate of the true standard deviation is repeated and
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next the average over the replications of the square root of the variance estimators given

at the end of section 3 (indicated as st.er) are presented, followed by their ratio, which

directly indicates the degree of over or under assessment of the true standard deviation.

Table 5.5 Simulation results on standard errors, cases A, B, C, D
�2 �3

Case st:dv st.er ratio st:dv st.er ratio
A: GMM 0.081 0.084 1.038 0.115 0.117 1.019

FnpGMM 0.081 0.078 0.959 0.114 0.109 0.951
MGMM 0.045 0.044 0.993 0.068 0.067 0.996
FpMGMM 0.047 0.024 0.522 0.070 0.037 0.526
IV 0.086 0.071 0.828 0.118 0.108 0.915
VnpIV 0.086 0.084 0.976 0.118 0.114 0.966

B: GMM 0.082 0.100 1.218 0.211 0.246 1.170
FnpGMM 0.082 0.079 0.969 0.211 0.199 0.945
MGMM 0.045 0.045 0.997 0.123 0.123 0.998
FpMGMM 0.047 0.025 0.526 0.127 0.067 0.529
IV 0.086 0.072 0.843 0.215 0.197 0.917
VnpIV 0.086 0.085 0.988 0.215 0.208 0.966

C: GMM 0.089 0.131 1.475 0.528 0.628 1.189
FnpGMM 0.091 0.089 0.986 0.553 0.468 0.846
MGMM 0.046 0.046 1.017 0.268 0.266 0.993
FpMGMM 0.047 0.026 0.546 0.276 0.147 0.534
IV 0.091 0.083 0.912 0.528 0.464 0.879
VnpIV 0.091 0.095 1.037 0.528 0.488 0.925

D: GMM 0.075 0.092 1.224 0.204 0.240 1.176
FnpGMM 0.075 0.074 0.983 0.206 0.197 0.956
MGMM 0.063 0.064 1.011 0.176 0.175 0.994
FpMGMM 0.065 0.034 0.519 0.182 0.093 0.512
IV 0.075 0.072 0.961 0.205 0.198 0.967
VnpIV 0.075 0.076 1.003 0.205 0.200 0.978

In Table 5.5 we �nd for cases A through C that standard unfeasible GMM (sub-

stituting 
; but estimating �2") is reasonable for strong instruments, but is more and

more too pessimistic when instruments get weaker. This problem is primarily due to

the estimation of �2" :
8 The nonparametric implementation of standard GMM seemingly

works well, irrespective of the strength of the instruments. Unfeasible MGMM is �ne,

8In additional simulations not presented here we found similar results when using estimator �̂�2" =

(y� �X��̂GMM )
0(y� �X��̂GMM )=n, whereas using the true value gave reasonable results for �2 � 10:
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but its feasible parametric version is much too optimistic. The standard IV implemen-

tation, which neglects the heteroskedasticity completely, is found to be optimistic. The

variant which aims to repair this by employing a nonparametrically robusti�ed variance

(VnpIV) works remarkably well.

Table 5.5 also contains case D (mild heteroskedasticity). Also when heteroskedastic-

ity is mild there is yet no feasible variant for the superior estimator MGMM for which

its standard errors are on average reasonably accurate for its true standard deviation.

Table 5.6 Simulation results on standard errors, cases E, F, G, H
�2 �3

Case st:dv st.er ratio st:dv st.er ratio
E: GMM 0.083 0.083 1.004 0.211 0.205 0.974

FnpGMM 0.083 0.080 0.971 0.211 0.200 0.950
MGMM 0.045 0.045 0.993 0.124 0.123 0.990
FpMGMM 0.047 0.025 0.528 0.128 0.068 0.531
IV 0.087 0.074 0.844 0.216 0.198 0.920
VnpIV 0.086 0.086 0.988 0.216 0.209 0.970

F: GMM 0.280 0.328 1.169 0.351 0.410 1.170
FnpGMM 0.280 0.266 0.949 0.351 0.332 0.945
MGMM 0.169 0.169 0.998 0.205 0.204 0.998
FpMGMM 0.175 0.093 0.528 0.212 0.112 0.529
IV 0.284 0.272 0.960 0.359 0.329 0.917
VnpIV 0.284 0.275 0.969 0.359 0.346 0.966

G: GMM 0.075 0.098 1.309 0.215 0.270 1.255
FnpGMM 0.075 0.073 0.978 0.215 0.203 0.944
MGMM 0.044 0.044 0.999 0.123 0.123 0.999
FpMGMM 0.046 0.024 0.530 0.127 0.067 0.530
IV 0.077 0.072 0.932 0.223 0.197 0.885
VnpIV 0.077 0.077 0.996 0.223 0.215 0.964

H: GMM 0.091 0.103 1.136 0.204 0.224 1.096
FnpGMM 0.091 0.087 0.959 0.204 0.194 0.951
MGMM 0.045 0.045 0.994 0.123 0.122 0.996
FpMGMM 0.047 0.025 0.523 0.127 0.067 0.529
IV 0.094 0.073 0.774 0.206 0.197 0.957
VnpIV 0.094 0.092 0.981 0.206 0.200 0.972

In Table 5.6 case E learns that also under mild simultaneity the parametric feasible

FpMGMM estimates its variance poorly. Cases F, G and H support the wider validity

of the earlier conclusions.
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In Table 5.7 case I illustrates that all techniques tend more towards too optimistic

standard error estimates when the sample size is smaller. From cases J through L we

learn that the qualities of standard error estimates depend very little on the value of �;

except for IV. Note that for � = 0 (instruments and heteroskedasticity unrelated) the

asymptotic equivalence of GMM and IV already shows up at n = 200 for the coe¢ cient

estimates, but less so for their variance estimators.

Table 5.7 Simulation results on standard errors, cases I, J, K, L
�2 �3

Case st:dv st.er ratio st:dv st.er ratio
I: GMM 0.165 0.157 0.953 0.247 0.231 0.935

FnpGMM 0.168 0.142 0.846 0.250 0.214 0.858
MGMM 0.101 0.096 0.950 0.162 0.152 0.940
FpMGMM 0.116 0.055 0.475 0.180 0.087 0.487
IV 0.177 0.143 0.810 0.258 0.230 0.893
VnpIV 0.177 0.157 0.886 0.258 0.232 0.901

J: GMM 0.078 0.096 1.238 0.207 0.246 1.190
FnpGMM 0.078 0.076 0.976 0.208 0.198 0.952
MGMM 0.055 0.055 1.007 0.153 0.152 0.995
FpMGMM 0.058 0.030 0.515 0.160 0.082 0.513
IV 0.079 0.072 0.915 0.208 0.198 0.950
VnpIV 0.079 0.079 0.998 0.208 0.203 0.974

K: GMM 0.074 0.092 1.242 0.203 0.243 1.196
FnpGMM 0.075 0.073 0.983 0.205 0.196 0.957
MGMM 0.063 0.063 1.013 0.176 0.174 0.991
FpMGMM 0.067 0.034 0.510 0.186 0.094 0.504
IV 0.074 0.072 0.971 0.204 0.198 0.972
VnpIV 0.074 0.075 1.004 0.204 0.199 0.979

L: GMM 0.071 0.085 1.193 0.200 0.231 1.152
FnpGMM 0.072 0.071 0.989 0.203 0.195 0.960
MGMM 0.068 0.069 1.016 0.193 0.190 0.987
FpMGMM 0.074 0.037 0.506 0.207 0.102 0.496
IV 0.071 0.072 1.014 0.201 0.198 0.988
VnpIV 0.071 0.072 1.007 0.201 0.197 0.981

The major �ndings from these simulations are that if 
 were known MGMM would

be much more attractive than GMM, uniformly over all designs examined, because it has

smaller bias, much smaller true standard deviation and also its standard errors establish

much more accurate estimates of its actual standard deviation. Moreover, it is found
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to be less vulnerable to weakness of the instruments chosen for the original model spec-

i�cation. However, although a feasible parametric implementation of MGMM is often

almost as e¢ cient, its standard asymptotic variance estimate is very seriously biased and

underestimates its actual dispersion. The robust GMM implementation provides reason-

ably accurate standard errors, provided the sample is not too small and the instruments

not too weak. However, simply sticking to IV estimation and using nonparametric het-

eroskedasticity robust standard errors (VnpIV) is almost equally e¤ective as employing

robust GMM, because the latter su¤ers from weakened instruments due to weighing the

observations. In order to fully exploit in practice the impressive e¢ ciency gains achieved

by feasible parametric MGMM it is yet required to develop a more accurate assessment

of its actual e¢ ciency, possibly by bootstrapping. We leave this topic for future research.

6. Empirical illustrations

To illustrate our theoretical �ndings in practice, we �rst set out to extend the 2SLS and

GMM comparison for an actual cross-section data set as presented in Wooldridge (2001)

with operational MGMM �ndings. However, the wage equation analyzed in that study

does not seem to be in�icted with much heteroskedasticity, so in such a situation IV, pos-

sibly using heteroskedasticity consistent variance estimates, is self-evidently the prefer-

able technique. Heteroskedasticity seems evident in a data set stemming from Sander

(1992) on the e¤ect of women�s schooling on fertility, also addressed in Wooldridge (2010,

Problem 6.8, dataset fertil1).

The sample comprises 1129 US women. We regressed number of kids on education,

age, age-squared a racial dummy and dummies for regions (east, west, north-central) and

types of agglomeration (town, small-city, farm, other rural) and an intercept and year

dummies. Education could be endogenous and is instrumented by years of education

of the father and of the mother. Hence, the degree of overidenti�cation is just one.9

Some mothers may have yet relatively few years of education because they already

care for children. This would explain the positive di¤erence between the OLS and IV

coe¢ cient estimates. That positive di¤erence may also be the result of omitted control

variables which have a positive e¤ect on fertility and are negatively correlated with years

9The F -test on the exclusion of the two external instruments in the reduced form equation for
education is 155.8 so they are certainly not weak. However, the endogeneity problem does not seem
severe. The DWH statistic has p-value 0.48, so many researchers would happily accept exogeneity of
all regressors. However, the power of such a test is not always impressive, see Kiviet and Pleus (2015),
so imposing exogeneity could be rash, especially because there are good theoretical reasons to assume
endogeneity of years of schooling.
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of education (or vice versa, such as, for instance, being aware of birth control methods).

Classic tests for heteroskedasticity after OLS estimation are all highly signi�cant.

Employing the instruments in the various GMM techniques examined here does not

provide any evidence of instrument invalidity by the Sargan-Hansen J test, as can be

seen from Table 6.1, which does not mention the results for the included demographic

and year-dummy controls.

In Table 6.1 we ran a regression of the log of the squared IV residuals10 on all the

instruments, their squares and their cross-products, leaving out redundant contributions

such as the squares of dummies and the cross-products of two annual dummies, of two

regional dummies and of two agglomeration dummies (giving 149 regressors in addition

to the constant).11 We obtained a series of positive �̂i values by taking the exponential

function of the �tted values of this (unrestricted) auxiliary regression. Next, by dividing

these by their sample average we obtained a series !̂i with sample average unity. This

series has empirical quantiles q0:005(!̂i) = 0:094 and q0:995(!̂i) = 7:970; which matches

with a � in the range 0.8-1.0 according to Table 4.1.

Table 6.1 Empirical �ndings on fertility
OLS IV IV(Vnp) FnpGMM FpMGMM

educ -0.128 -0.153 -0.153 -0.153 -0.168
(0.018) (0.039) (0.041) (0.041) (0.033)

age 0.532 0.524 0.524 0.523 0.421
(0.138) (0.139) (0.141) (0.141) (0.127)

agesq -0.006 -0.006 -0.006 -0.006 -0.005
(.002) (0.002) (0.002) (0.002) (0.001)

black 1.076 1.073 1.073 1.072 0.881
(0.174) (0.174) (0.201) (0.201) (0.177)

J (p-val.) - 0.88 0.88 0.88 0.90
(standard errors between parentheses)

10The log of the squared IV residuals have skewness 0.26 and kurtosis 3.98. Hence, although they
are signi�cantly nonnormal, their distribution is not completely out of line with those of gi in (4.8).
Their sample mean is -0.47 and sample variance 0.66. Interpreting these as re�ecting the expectation
and variance of gi they would imply � to be 0.69 or 0.81 respectively.
11This regression yields an R2 of only 0.128; this we associate with a value of � in (4.8) as low

as about 0.13. Although some individual coe¢ cients in this auxiliary regression have substantial t-
ratio�s the overall F -test has p-value 0.61. So, one could conclude that heteroskedasticity determined
by the instrumental variables is insigni�cant (although in a more parsimonious speci�cation signi�cant
heteroskedasticity would emerge).
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Although we should always realize that a di¤erence in empirical standard errors

does not necessarily represent a similar di¤erence in true standard deviations, the most

remarkable �nding from Table 6.1 is undoubtedly that the standard errors of MGMM

are in agreement with the in the simulations established superiority of FpMGMM over

FnpGMM (when � > 0).12

We also employed the various techniques to data analyzed in Wu et al. (2015). We

re-analyzed one of its two structural equations for land and house prices using data

for 2011 on the 35 major Chinese cities. Table 6.2 presents the e¤ect of house price

(hp) on land price, but does not mention results on further control variables, such as

lagged budget de�cit, construction costs, agricultural GDP and available land. External

instruments used are disposable income, total population, sex ratio and expenditure on

education, giving a degree of overidenti�cation of 4. The DWH statistic has p-value

0.043, the 2SLS results yield a J-statistic with a p-value of 0.40, but in the reduced form

equation the external instruments produce an F -value of only 6.87. Hence, it seems

that house prices are endogenous and the employed instruments are valid though weak,

although such a small sample of course hardly allows �rm inferences of this nature.

The auxiliary regression of the log of the squared 2SLS residuals on all 10 instruments

yields an R2 of 0.21 (we left out squares and cross-products because that would slurp

all remaining degrees of freedom). From its �tted values we obtained a series for !̂i as

before. Again we note the attractive standard errors of FpMGMM.

Table 6.2 Empirical �ndings on land prices
OLS IV IV(Vnp) FnpGMM FpMGMM

hp 1.179 1.706 1.706 1.321 1.638
(0.309) (0.426) (0.461) (0.476) (0.317)

J (p-val.) - 0.40 0.40 0.31 0.72
(standard errors between parentheses)

7. Conclusions

We reveal an inherent unfavorable and yet generally unperceived feature of GMM as it is

currently usually implemented. Extracting from the assumed orthogonality conditions

12Given our �ndings regarding �; � and the strength of the instruments these empirical results can
probably best be interpreted against the background of our simulation results for cases A and K,
although the sample size in this application is much larger. In the simulation the cases A and K
suggest similar performance regarding rmse by IV and the robust GMM technique. The similarity in
the standard error results for FnpGMM and the nonparametrically robusti�ed standard errors of IV,
which are slightly larger than the (incorrect) standard IV standard errors, is in agreement with our
simulation �ndings.
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instrumental variables such that they are reasonably e¤ective (strong) for the regressors

in the habitual sense, as understood for IV estimation, implies that these very same

instruments will be much weaker in the context of GMM. This is because, implicitly,

GMM estimates a transformed model, in order to get rid of any non-sphericity of the

disturbances, but at the same time this transformation a¤ects the instruments in such

a way that they will actually be much weaker than the researcher realizes. It is shown,

however, that relatively simple precautions enable to neutralize this weakening process

of the instruments. This also allows to improve on IV and equivalent GMM in just

identi�ed models with heteroskedasticity.

By simulation it is shown that empirically relevant forms of heteroskedasticity under-

mine the quality of standard GMM estimates and a modi�ed implementation of GMM

yields estimates that show both less bias and smaller standard deviations. Reductions

of the root mean squared errors of the coe¢ cient estimates of the alleged optimal stan-

dard GMM technique by a factor 2 or more are shown to be not exceptional when

heteroskedasticity is prominent. We also examine the accuracy of empirical standard

errors for the underlying true standard deviations.

In this paper we only examined GMM estimators for cross-sectional models that are

linear in the regressor coe¢ cients. However, we conjecture that these results have impli-

cations for general nonlinear models too13, and also for the analysis of time-series data

and especially for dynamic panel data models where GMM is used frequently. Next

to our simulation �ndings, we also examined for empirical data sets what the practi-

cal consequences are. Interpreting these, one should keep in mind, that the synthetic

simulation experiments produce accurate assessments of true bias and true standard

deviations, whereas for the empirical �ndings any bias cannot be assessed, because the

true parameter values are unknown, and the obtained estimated standard errors may

be misleading for the underlying unknown true standard deviations. Nevertheless, we

do �nd substantially smaller estimated standard errors and therefore we recommend the

use of parametric MGMM, the modi�ed form of feasible GMM as developed here.
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