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Abstract

We construct the large sample distributions of the OLS and GLS R2’s of the second

pass regression of the Fama-MacBeth (1973) two pass procedure when the observed proxy

factors are minorly correlated with the true unobserved factors. This implies an unex-

plained factor structure in the first pass residuals and, consequently, a large estimation

error in the estimated beta’s which is spanned by the beta’s of the unexplained true fac-

tors. The average portfolio returns and the estimation error of the estimated beta’s are

then both linear in the beta’s of the unobserved true factors which leads to possibly large

values of the OLS R2 of the second pass regression. These large values of the OLS R2 are

not indicative of the strength of the relationship. Our results question many empirical

findings that concern the relationship between expected portfolio returns and (macro-)

economic factors.

JEL Classification: G12

Keywords: Fama-MacBeth two pass procedure; factor pricing; stochastic discount factors;

weak identification; (non-standard) large sample distribution; principal components

1 Introduction

An important part of the asset pricing literature is concerned with the relationship between

portfolio returns and (macro-) economic factors. Support for such an relationship is often
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established using the Fama-MacBeth (FM) two pass procedure, see e.g. Fama and MacBeth

(1973), Gibbons (1982), Shanken (1992) and Cochrane (2001). The first pass of the FM two

pass procedure estimates the β’s of the (macro-) economic factors using a linear factor model,

see e.g. Lintner (1965) and Fama and French (1992, 1993, 1996). In the second pass, the average

portfolio returns are regressed on the estimated β’s from the first pass to yield the estimated

risk premia, see e.g. Jagannathan and Wang (1996, 1998), Lettau and Ludvigson (2001), Lustig

and Van Niewerburgh (2005), Li et. al. (2006) and Santos and Veronesi (2006). The ordinary

and generalized least squares R2’s of the second pass regression alongside t-statistics of the

risk premia are used to gauge the strength of the relationship between the expected portfolio

returns and the involved factors.

Recently, the appropriateness of these measures has been put into question when the β’s

are small. An early critique is Kan and Zhang (1999) who show that the second pass t-statistic

increases with the sample size when the true β’s are zero and the expected portfolio returns are

non-zero, so there is no factor pricing. Kleibergen (2009) shows that the second pass t-statistic

also behaves in a non-standard manner when the β’s are non-zero but small and factor pricing

is present so the expected portfolio returns are proportional to the (small) β’s. To remedy these

testing problems, Kleibergen (2009) proposes identification robust factor statistics that remain

trustworthy even when the β’s of the observed factors are small or zero.

Burnside (2010) does not focus on properties of second pass statistics, like R2’s and t-

statistics, but argues that β’s of observed factors which are close to zero, or which cannot

be rejected to be equal to zero, invalidate a relationship between expected portfolio returns

and involved factors. Daniel and Titman (2012) do not focus on the behavior of second pass

statistics either but argue that the relationship between expected portfolio returns and involved

factors depends on the manner in which the portfolios are constructed. When portfolios are

not based on sorting with respect to book-to-market ratios and size, a relationship between

expected portfolios returns and observed factors is often absent.

Lewellen et. al. (2010) criticize the use of the ordinary least squares (OLS) R2 of the second

pass regression. They show that it can be large despite that the β’s of the observed factors are

small or even zero and propose a few remedies. Lewellen et. al. (2010) do not provide a closed

form expression of the large sample distribution of the OLS R2 so it remains unclear why the

OLS R2 can be large despite that the β’s of the observed factors are small or zero. The same

argument applies to one of their remedies which is the generalized least squares (GLS) R2. We

therefore construct the expressions of the large sample distributions of both the OLS and GLS

R2’s when the β’s of the observed factors are small and possibly zero.

We derive the large sample distributions of the OLS and GLS R2’s starting out from factor

pricing based on a small number of true possibly unknown factors. These factors imply an
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unobserved factor structure for the portfolio returns. The observed (proxy) factors used in the

FM two pass procedure proxy for these unobserved true factors. When they are only minorly

correlated with the true factors, a sizeable unexplained factor structure remains in the first

pass residuals. Consequently also a sizeable estimation error in the estimated β’s exists which

is, as we show, to a large extent spanned by the β’s of the unexplained factors. The expected

portfolio returns are linear in the β’s of the unobserved factors so both the average portfolio

returns and the estimation error of the estimated β’s are to a large extent linear in the β’s

of the unobserved true factors when the observed proxy and unobserved true factors are only

minorly correlated. As further shown by the expression of the large sample distribution of the

OLS R2, this produces the large values of the OLS R2 of the second pass regression when we

regress the average portfolio returns on the estimated β’s from the first pass regression and the

observed proxy and unobserved true factors are only minorly correlated.

When the observed factors provide an accurate proxy of the unobserved true factors, the

estimated β’s from the first pass regression are spanned by the β’s of the true factors and the

OLS R2 is large, see Lewellen et. al. (2010). Hence, both when the observed proxy factors are

strongly or minorly correlated with the unobserved true factors, the OLS R2 can be large. In

the latter case, the large value, however, results from the estimation error in the estimated β’s.

An easy diagnostic for how a large value of the OLS R2 should be interpreted therefore results

from the unexplained factor structure in the first pass residuals. When this unexplained factor

structure is considerable, a large value of the OLS R2 is caused by it so the large value of the

OLS R2 is not indicative of the strength of the relationship between the expected portfolio

returns and the (macro-) economic factors.

The expression of the large sample distribution of the GLS R2 shows that it is small when

the observed proxy factors are only minorly correlated with the unobserved true factors. It also

shows, however, that the GLS R2 is rather small in general so a small value of the GLS R2 can

result when the observed factors are strongly or minorly correlated with the unobserved true

factors. This makes it diffi cult to gauge the strength of the relationship between the expected

portfolio returns and the (macro-) economic factors using the GLS R2.

To construct the expressions of the large sample distributions of the OLS and GLS R2’s

which are representative for observed proxy factors that are minorly correlated with the unob-

served true factors, we assume that the parameters in an (infeasible) linear regression of the

true unknown factors on the observed proxy factors are decreasing/drifting with the sample

size. Our assumption implies that statistics that test the significance of the observed proxy

factors for explaining portfolio returns and the unobserved true factors do not increase with

the sample size but stay constant/small when the sample size increases. This is in line with the

values of these statistics that we typically observe in practice. Under the traditional assumption

3



of strong correlation between the observed proxy and unobserved true factors, these statistics

should all be large and proportional to the sample size. Since this is clearly not the case, the

traditional assumption is out of line and provides an inappropriate base for statistical inference

in such instances. Our assumption also implies that the estimated risk premia in the second

pass regression converge to random variables so they cannot be used in a bootstrap procedure

since such a procedure relies upon consistent estimators. The drifting assumption on the regres-

sion parameters provides inference which is closely related to so-called finite sample inference

but it does not require the disturbances to be normally distributed, see e.g. MacKinlay (1987)

and Gibbons et. al. (1989). It is akin to the weak instrument assumption made for the linear

instrumental variables regression model in econometrics, see e.g. Staiger and Stock (1997).

Although we focus on the R2’s, the message conveyed in this paper in principle also applies

to other second pass inference procedures like, for example, t-tests on the risk premia and tests

of factor pricing using J-tests or Hansen and Jagannathan (1997) (HJ) distances. When the

observed factors are minorly correlated with the unobserved true factors, these statistics no

longer converge to their usual distributions when the sample size gets large, see e.g. Kleibergen

(2009). The non-standard distributions of these statistics could further induce the spurious sup-

port for the observed factors that are substantially different from the unobserved true factors,

see Gospodinov et. al. (2014) for results on the HJ distance.

The paper is organized as follows. We first in the second section lay out the factor structure

in portfolio returns. We show that many of the (macro-) economic factors that are commonly

used, like, for example, consumption and labor income growth, housing collateral, consumption-

wealth ratio, labor income-consumption ratio, interactions of either one of the latter three with

other factors, leave a strong unexplained factor structure in the first pass residuals. In the third

section, we discuss the effects of the unexplained factor structure on the OLS and GLS R2 by

constructing expressions for their large sample distributions. The fourth section concludes.

2 Factor Model for Portfolio Returns

Portfolio returns exhibiting an (unobserved) factor structure with k factors result from a statis-

tical model that is characterized by, see e.g. Merton (1973), Ross (1976), Roll and Ross (1980),

Chamberlain and Rothschild (1983) and Connor and Korajczyk (1988, 1989):

rit = µRi + βi1f1t + . . .+ βikfkt + εit, i = 1, . . . , N, t = 1, . . . , T ; (1)

with rit the return on the i-th portfolio in period t; µRi the mean return on the i-th portfolio;

fjt the realization of the j-th factor in period t; βij the factor loading of the j-th factor for the
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i-th portfolio, εit the idiosyncratic disturbance for the i-th portfolio return in the t-th period

and N and T the number of portfolios and time periods. We can reflect the factor model in (1)

as well using vector notation:

Rt = µR + βFt + εt, (2)

with Rt = (r1t . . . rNt)
′, µR = (µR1 . . . µRN)′, Ft = (f1t . . . fkt)

′, εt = (ε1t . . . εNt)
′ and

β =


β11 . . . β1k
...

. . .
...

βN1 . . . βNk

 . (3)

The vector notation of the factor model in (2) shows that, if the factors Ft, t = 1, . . . , T, are

i.i.d. with finite variance and are uncorrelated with the disturbances εt, t = 1, . . . , T, which are

i.i.d. with finite variance as well, the covariance matrix of the portfolio returns reads

VRR = βVFFβ
′ + Vεε, (4)

with VRR, VFF and Vεε the N × N, k × k and N × N dimensional covariance matrices of the

portfolio returns, factors and disturbances respectively.

The factors affect many different portfolios simultaneously which allows us to identify the

number of factors using principal components analysis, see e.g. Anderson (1984, Chap 11).

When we construct the spectral decomposition of the covariance matrix of the portfolio returns,

VRR = PΛP ′, (5)

with P = (p1 . . . pN) the N ×N orthonormal matrix of principal components or characteristic

vectors (eigenvectors) and Λ the N × N diagonal matrix of characteristic roots (eigenvalues)

which are in descending order on the main diagonal, the number of factors can be estimated as

the number of characteristic roots that are distinctly larger than the other characteristic roots.

The literature on selecting the number of factors is vast and contains further refinements of

this factor selection procedure and settings with fixed and increasing number of portfolios. We

do not contribute to this literature but just use some elements of it to shed light on the effect

of the unexplained factor structure on the R2 used in the FM two pass procedure.

2.1 Factor Structure in Observed Portfolio Returns

We use three different data sets to show the relevance of the factor structure. The first one

is from Lettau and Ludvigson (2001). It consists of quarterly returns on twenty-five size and
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book-to-market sorted portfolios from the third quarter of 1963 to the third quarter of 1998 so

T = 141 and N = 25. The second one is from Jagannathan and Wang (1996) and consists of

monthly returns on one hundred size and beta sorted portfolios. The series are from July 1963

to December 1990 so T = 330 and N = 100. The third data set consists of quarterly returns

on twenty-five size and book to market sorted portfolio’s and is obtained from Ken French’s

website. The series are from the first quarter of 1952 to the fourth quarter of 2001 so T = 200

and N = 25.

LL01 JW96 F52-01
1 2720 3116 2434
2 113.8 180.2 140.5
3 98.60 80.6 108.9
4 18.36 28.5 26.7
5 17.61 25.4 19.9
6 13.48 16.2 14.0
7 12.11 14.8 11.6
8 9.31 14.0 10.9
9 8.42 12.6 9.92
10 7.25 12.1 8.18
11 6.02 12.1 7.19
12 5.40 11.4 6.32
13 4.90 11.3 6.17
14 4.38 11.1 5.63
15 4.26 10.8 5.21
16 3.93 10.3 5.02
17 3.50 10.2 4.40
18 3.39 9.9 3.83
19 3.02 9.6 3.43
20 2.71 9.5 2.90
21 2.50 9.2 2.79
22 2.18 9.0 2.75
23 1.74 8.9 2.47
24 1.46 8.7 2.12
25 0.93 8.4 1.77

FACCHECK 95.5% 86% 94.3%

Table 1: Largest twenty five characteristic roots (in descending order) of the covariance matrix of
the portfolio returns (LL01 stands for Lettau and Ludvigson (2001), JW96 stands for Jagannathan
and Wang (1996) and F52-01 stands for the portfolio returns from Ken French’s website during 1952-
2001). FACCHECK equals the percentage of the variation explained by the three largest principal
components.

Table 1 lists the (largest) twenty-five characteristic roots1 of the three different sets of

1The data set from Jagannathan and Wang (1996) consists of one hundred portfolio returns so Table 1, for
reasons of brevity, only shows the largest twenty-five characteristic roots.
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portfolio returns. Table 1 shows that there is a rapid decline of the value of the roots from the

largest to the third largest one and a much more gradual decline from the fourth largest one

onwards. This indicates that the number of factors is (most likely) equal to three.

A measure/check for the presence of a factor structure (with three factors) is the fraction

of the total variation of the portfolio returns that is explained by the three largest principal

components. We measure the total variation by the sum of all characteristic roots.2 The factor

structure check then reads

FACCHECK =
λ1 + λ2 + λ3

λ1 + . . .+ λN
, (6)

with λ1 > λ2 > . . . > λN the characteristic roots in descending order. Table 1 shows that

the factor structure check equals 95.5% for the Lettau-Ludvigson (LL01) data, 86% for the

Jagannathan and Wang (JW96) data and 94.3% for the French (F52-01) data. Using the

statistic proposed in, for example, Anderson (1984, Section 11.7.2), it can be shown that the

hypothesis that the three largest principal components explain less than 80% of the variation

of the portfolio returns is rejected with more than 95% significance for each of these three data

sets.

Similar to the three data sets above, we also find evidence for a factor structure in several

other commonly used data sets of financial assets. For example, one set is the conventional

twenty-five size and book-to-market sorted portfolios augmented by thirty industry portfolios,

as in Lewellen et. al. (2010), and another is the individual stock return data from the Center

for Research in Security Prices (CRSP). We focus on the three data sets mentioned before and

omit the other data sets for brevity since our results and findings extend to these data sets as

well.

2.2 Factor Models with Observed Proxy Factors

Alongside describing portfolio returns using “unobserved factors”, a large literature exists which

explains portfolio returns using observed factors which are to proxy for the unobserved ones.

The observed proxy factors that are used consist both of asset return based factors and (macro-)

economic factors. The observed factor model is identical to the factor model in (2) but with a

value of Ft that is observed and a known value of the number of factors, say m :

Rt = µ+BGt + Ut, (7)

with Gt = (g1t . . . gmt)
′ the m-dimensional vector of observed proxy factors, Ut = (u1t . . . uNt)

′

a N -dimensional vector with disturbances, µ a m-dimensional vector of constants and B the

2This corresponds with using the trace norm of the covariance matrix as a measure of the total variation.
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N×m dimensional matrix that contains the β’s of the portfolio returns with the observed proxy

factors. In the sequel we discuss the observed proxy factors used in seven different articles:

Fama and French (1993), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Li et.

al. (2006), Lustig and van Nieuwerburgh (2005), Santos and Veronesi (2006) and Yogo (2006).

Fama and French (1993) use the return on a value weighted portfolio, a “small minus big”

(SMB) factor which consists of the difference in returns on a portfolio consisting of assets with

a small market capitalization minus the return on a portfolio consisting of assets with a large

market capitalization and a “high minus low” (HML) factor which consists of the difference

in the returns on a portfolio consisting of assets with a high book to market ratio minus the

return on a portfolio consisting of assets with a low book to market ratio. We use the portfolio

returns on the twenty-five size and book to market sorted portfolio’s from Ken French’s website

to estimate the observed factor model.

Table 2 shows the largest five characteristic roots of the covariance matrix of the portfolio

returns and of the covariance matrix of the residuals that result from the observed factor model

with the three Fama-French (FF) factors. The characteristic roots and factor structure check

show that after incorporating the FF factors, there is no unexplained factor structure left in

the residuals.

The characteristic roots of the covariance matrices can be used to test the significance of

the parameters associated with the observed proxy factors. The likelihood ratio (LR) statistic

for testing the null hypothesis that the parameters associated with the observed factors are all

equal to zero, H0 : B = 0, against the alternative hypothesis that they are unequal to zero,

H1 : B 6= 0, equals

LR = T
[
log(

∣∣∣V̂Port∣∣∣)− log(
∣∣∣V̂Res∣∣∣)] = T

∑N
i=1 [log(λi,port)− log(λi,res)] , (8)

with V̂Port and V̂Res estimators of the covariance matrix of the portfolio returns and the residual

covariance matrix that results after regressing the portfolio returns on the observed factors G,

and λi,port, i = 1, . . . , N, the characteristic roots of the covariance matrix of the portfolio

returns, V̂Port, and λi,res, i = 1, . . . , N, the characteristic roots of the covariance matrix of the

residuals of the observed factor model, V̂Res.3 Under H0, the LR statistic in (8) has a χ2(3N)

distribution in large samples. The value of the LR statistic using the FF factors stated in Table

2 is highly significant,4 see also Bai and Ng (2006).
3The expression of the LR statistic in the first part of (8) is standard, see e.g. Campbell, Lo and MacKinlay

(1997, Eq (5.3.28)) in which there is a typo since the Likelihood Ratio statistic equals twice the difference
between the log likelihoods of the restricted and unrestricted models. Upon conducting spectral decompositions
of V̂Port and V̂Res , as in (5), the final expression in (8) results.

4Instead of using the LR statistic, we could also use a Wald statistic to test for the significance of the factors.
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F52-01 JW96
raw FF factors raw FF factors Rvw JW96 factors

1 2434 54.94 3116 70.5 600.6 594.0
2 140.5 38.87 180.2 50.0 81.24 78.9
3 108.9 22.77 80.6 38.6 48.4 48.0
4 26.7 18.24 28.5 27.3 28.5 28.0
5 19.9 12.47 25.4 16.0 17.1 17.0

FACCHECK 94.3% 47.5% 86% 23% 57% 57%

LR against raw 2064
0.000

2994
0.000

1586
0.000

1845
0.000

LR against Rvw 1285
0.000

1408
0.000

259
0.004

F-stat HML-SMB 3.51
0.476

pseudo-R2 FF 1 0.627 0.794
pseudo-R2 0.915 0.823 0.681 0.684

Table 2: The largest five characteristic roots (in descending order) of the covariance matrix of the
portfolio returns and residuals that result using FF factors (French’s website data 1952-2001) and
those that result from using the Jagannathan and Wang (1996) data with different observed factors.
The likelihood ratio (LR) statistic tests against the indicated specification (p-value is listed below).
The F -statistics at the bottom of the table result from testing the significance of the indicated factors
in a regression of either the FF factors or only the HML-SMB factors on them. The pseudo-R2’s of the
regression of the FF factors or the portfolio returns on the observed factors are listed at the bottom of
the table. FACCHECK equals the percentage of the variation explained by the three largest principal
components.

Alongside the LR statistic that tests the significance of all the parameters associated with

the FF factors, Table 2 also lists three more statistics: another LR statistic, an F -statistic and

a goodness of fit measure to which we refer as the pseudo-R2.

The other LR statistic in Table 2 tests the significance of the parameters associated only

with the SMB and HML factors. The expression for this LR statistic is identical to that in (8)

when we replace the characteristic roots of the covariance matrix of the raw portfolio returns,

λi,port, with the characteristic roots of the covariance matrix of the residuals of an observed

factor model that has the value weighted return as the only factor. This LR statistic is highly

significant so the parameters of the SMB and HML factors are significant.

The F -statistic reported in Table 2 is the F -statistic (times number of tested parameters)

that results from regressing either the FF or just the HML and SMB factors on other observed

proxy factors. The F -statistic then results from testing H0 : δ = 0 in the linear model:

Ft = µF + δGt + Vt, (9)

Under homoscedastic independent normal errors, the Wald statistic has an exact F -distribution, see MacKinlay
(1987) and Gibbons et. al. (1989). We use the LR statistic, for whose distribution we have to rely on a large
sample argument, since it is directly connected to the characteristic roots.
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with Ft a 3× 1 vector that contains the FF factors or a 2× 1 vector that consists of the HML

and SMB factors and Gt a m× 1 vector containing other observed proxy factors.5

The pseudo-R2 reported in Table 2 is a goodness of fit measure that reflects the percentage

of the total variation of the portfolio returns that is explained by the observed proxy factors. We

measure the total variation of the portfolio returns by the sum of the characteristic roots of its

covariance matrix and similarly for the total variation of the portfolio returns explained by the

observed proxy factors. Since the latter equals the total variation of the portfolio returns minus

the total variation of the residuals of the regression of the portfolio returns on the observed

factors proxy, the pseudo-R2 reads6

pseudo-R2 = 1−
∑N
i=1 λi,res∑N
i=1 λi,port

. (10)

The pseudo-R2 in Table 2 shows that the FF factors explain 91.5% of the total variation of the

portfolio returns.

Jagannathan and Wang (1996) propose a conditional version of the capital asset pric-

ing model which they estimate using three observed factors: the return on a value weighted

portfolio, a corporate bond yield spread and a measure of per capita labor income growth.

The characteristic roots in Table 2 show that the latter two factors do not explain any of the

(unobserved) factors. This is further emphasized by: the (insignificant) small F -statistic in the

regression of the HML and SMB factors on these factors and the value weighted return, the

small change in the pseudo-R2 from just using the value weighted return to all three factors.

Lettau and Ludvigson (2001) use a number of specifications of an observed factor model

to estimate different conditional asset pricing models. The observed proxy factors that they

consider are the value weighted return (Rvw), the consumption-wealth ratio (cay), consump-

tion growth (∆c), labor income growth (∆y), the FF factors and interactions between the

consumption-wealth ratio and consumption growth (cay∆c), the value weighted return (cayRvw)

and labor income growth (cay∆y). Our results for the Lettau Ludvigson (2001) data are listed

in Table 3.

The characteristic roots in Table 3 show that only the FF factors, which include the value

5The F -statistic in (9) assumes that the unobserved factors are well approximated by the FF factors. This
is mainly done for expository purposes and might not stand up to more formal testing, see Onatski (2012).

6The pseudo-R2 equals the total variation of the explained sum of squares over the total variation of the

portfolio returns so pseudo-R2 =
trace(V̂µ+B̂G)

trace(V̂R)
= 1 − trace(V̂R−µ−B̂G)

trace(V̂R)
= 1 −

∑N
i=1 λi,res∑N
i=1 λi,port

, where the last result

is obtained using the spectral decomposition of V̂R and V̂R−µ−B̂G, see (5), and we used that V̂R = V̂µ+B̂G +

V̂R−µ−B̂G.
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LL01
raw Rvw ∆c FF factors cay,Rvw, cay,∆c, cay,Rvw,∆y,

cayRvw cay∆c cayRvw, cay∆y
1 2720 435 2676 26.5 433 2414 412
2 114 99.5 111 22.3 98.0 105 97.2
3 98.6 26.2 98.6 14.3 26.0 96.0 25.6
4 18.4 18.36 18.1 13.9 17.9 17.9 17.8
5 17.6 13.8 16.8 11.2 12.9 16.7 12.8

FACCHECK 95.5% 82.1% 95.5% 38.2% 82.5% 95.2% 82.1%
LR against raw 765

0.000
36.4
0.064

1940
0.000

856.4
0.000

128.2
0.001

902.5
0.000

LR against Rvw 1175
0.000

91.4
0.000

138.5
0.007

LR against ∆c 91.8
0.000

LR against cay,
Rvw, cayRvw

46.1
0.630

F-stat FF factors 80.1
0.000

3.73
0.292

81.8
0.000

28.9
0.001

90.3
0.000

F-stat HML-SMB 1.91
0.928

10.7
0.381

pseudo-R2 FF 0.63 0.01 1 0.63 0.094 0.64
pseudo-R2 0.78 0.016 0.95 0.78 0.10 0.79

Table 3: The largest five characteristic roots (in descending order) of the covariance matrix of the
portfolio returns and residuals that result using different specifications from Lettau and Ludvigson
(2001). The likelihood ratio (LR) statistic tests against the indicated specification (p-value is listed
below). The F -statistics at the bottom of the table result from testing the significance of the indicated
factors in a regression of either the FF factors or only the HML-SMB factors on them. The pseudo-
R2’s of the regression of the FF factors or the portfolio returns on the observed factors are listed at
the bottom of the table. FACCHECK equals the percentage of the variation explained by the three
largest principal components.

weighted return, explain any of the unobserved factors. Statistics which are functions of the

characteristic roots therefore also show that the other observed factors have minor explanatory

power. For example, the LR statistic shows that only the FF factors and value weighted return

are strongly significant while it is always less than twice the number of tested parameters for

all other observed factors.7 This indicates that although the LR statistic might be significant

at the 95% significance level, the values of the parameters associated with the observed factors

are all close to zero.

The F -statistics of the regression of either the FF factors or just the HML and SMB factors

on the observed factors reiterate the observation from the LR statistic. They only come out

large when the observed factors include one of the FF factors and otherwise at most equal a

small multiple times the number of tested parameters. This shows that the parameters are

close to zero in such a regression.

7For the linear instrumental variables regresssion model Stock and Yogo (2005) have shown that first
stage/pass statistics, like, for example, the LR statistic, have to be ten fold the number of tested parame-
ters to yield standard inference for second stage/pass statistics.
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F52-01
raw Rvw ∆cnondurable FINAN LVX06 LN05 SV06 Y06

1 2434 465.2 2250 2422 2404 2204 439.7 465.1
2 140.5 140.3 139.5 138.9 137.7 137.0 122.7 139.1
3 108.9 36.7 108.8 105.9 103.9 108.0 36.3 36.1
4 26.7 21.6 26.6 26.6 25.1 26.5 21.5 21.6
5 19.9 16.8 19.9 19.5 19.2 19.7 16.3 16.1

FACCHECK 94.3% 81.4% 93.9% 94.3% 94.3% 93.8% 80.5% 81.5%
LR against raw 854

0.000
41.9
0.019

35.2
0.085

111
0.004

93.5
0.07

972
0.000

904
0.00

LR against FINAN 75.87
0.011

LR against ∆cnondurable 51.6
0.41

863
0.000

LR against Rvw 118
0.000

50.4
0.46

F-stat FF factors − 22.4
0.000

6.9
0.074

11.5
0.240

31.2
0.000

− −
pseudo-R2 FF 0.321 0.028 0.015 0.026 0.043 0.374 0.326
pseudo-R2 0.723 0.065 0.007 0.015 0.083 0.739 0.724

Table 4: The largest five characteristic roots (in descending order) of the covariance matrix of the
portfolio returns and residuals that result using different specifications from Li et. al. (2006) (LVX06),
Lustig and Van Nieuwerburgh (2005) (LN05), Santos and Veronesi (2006) (SV06) and Yogo (2006)
(Y06). The likelihood ratio (LR) statistic tests against the indicated specification (p-value is listed
below). The F -statistics at the bottom of the table result from testing the significance of the indicated
factors in a regression of the FF factors on them. The pseudo-R2 of these regressions are listed at
the bottom of the table. FACCHECK equals the percentage of the variation explained by the three
largest principal components.

Li, Vassalou and Xing (2006) use investment growth rate in the household sector (HHOLD),

nonfinancial corporate firms (NFINCO) and financial companies (FINAN) as factors in an ob-

served factor model. We estimate this model using the quarterly portfolio returns from French’s

website. The results in Table 4 show that none of these factors explain any of the unobserved

factors.

Lustig and Van Nieuwerburgh (2005) employ an observed factor model that contains

nondurable consumption growth (∆cnondur), a housing collateral ratio (myfa) and the interaction

between nondurable consumption growth and the housing collateral ratio (∆cnondur×myfa). We
estimate this model using the quarterly portfolio returns from French’s website. The results in

Table 4 show that these factors do not explain the unobserved factors.

Santos and Veronesi (2006) use adaptations of the factors from Lettau and Ludvig-

son (2001). Alongside the value weighted return, Santos and Veronesi (2006) use both the

consumption-wealth ratio (cay), previously used by Lettau and Ludvigson (2001), and a labor

income to consumption ratio (sw) interacted with the value weighted return as factors. We

12



estimate their specification using the portfolio returns from French’s website. Table 4 shows

that except for the value weighted return none of these factors explains any of the unobserved

factors.

Yogo (2006) considers a specification of the observed factor model that alongside the value

weighted return has consumption growth in durables (∆cdur) and nondurables (∆cnondur) as the

three observed factors. We estimate this specification using the portfolio returns from French’s

website. Table 4 again shows that except for the value weighted returns, these factors do not

capture any of the factor structure in the portfolio returns.

3 Implications of Missed Factors for the FM Two Pass

Procedure

Stochastic discount factor models, see e.g. Cochrane (2001), stipulate a relationship between the

expected returns on the portfolios and the β’s of the portfolio returns with their (unobserved)

factors:

E(Rt) = ιNλ0 + βλF , (11)

with ιN the N -dimensional vector of ones, λ0 the zero-β return and λF the k-dimensional vector

of factor risk premia. To estimate the risk premia, Fama and MacBeth (1973) propose a two

pass procedure:

1. Estimate the observed factor model in (7) by regressing the portfolio returns Rt on the

observed factors Gt to obtain the least squares estimator:

B̂ =
∑T

t=1 R̄tḠ
′
t

(∑T
t=1 ḠtḠ

′
t

)−1

, (12)

with Ḡt = Gt − Ḡ, G = 1
T

∑T
t=1Gt, R̄t = Rt − R̄ and R̄ = 1

T

∑T
t=1Rt.

2. Regress the average returns, R̄, on the vector of constants ιN and the estimated B, to

obtain estimates of the zero-β return λ0 and the risk premia λF :(
λ̂0

λ̂F

)
=

[
(ιN

... B̂)′(ιN
... B̂)

]−1

(ιN
... B̂)′R̄. (13)

The FM two pass procedure uses the least squares estimator that results from the observed

factor model to estimate the risk premia. The adequacy of the results that stem from the FM
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two pass regression hinges on the ability of the observed factor model to capture the factor

structure of the portfolio returns. To highlight this, we specify an (infeasible) linear regression

model for the unobserved factors Ft that uses the observed proxy factors Gt as explanatory

variables:
Ft = µF + δGt + Vt

δ = VFGV
−1
GG

(14)

with VFG the covariance between the unobserved and observed factors, VFG = cov(Ft, Gt), and

VGG the covariance matrix of the observed factors, VGG = var(Gt), and Gt and Vt are assumed

to be uncorrelated with εt since Ft is uncorrelated with εt.8 We substitute (14) into (2) to obtain

Rt = µR + βµF + βδGt + βVt + εt = µ+ βδGt + Ut, (15)

with µ = µR + βµF , Ut = βVt + εt. When the observed proxy factors do not explain the

unobserved factors well, δ is small or zero and Vt is large and proportional to the unobserved

factor Ft. The large value of Vt then implies an unexplained factor structure in the residuals

Ut of the observed factor model (15) since Ut = βVt + εt. Alongside the unexplained factor

structure, the small value of δ also implies that the estimand of B̂ in (12), i.e. βδ, is small.

The traditional results for the FM two pass procedure are derived under the assumption that

the estimand of B̂ is a full rank matrix so

B̂ →
p
βδ, (16)

is a full rank matrix, see e.g. Fama and MacBeth (1973) and Shanken (1992).

Tables 2-4 in Section 2 show that for many of the observed (macro-) economic factors used

in the literature, the estimand of B̂, βδ, is such that we cannot reject that at least some or

even all of its columns are close to zero. Table 1, however, shows that a strong factor structure

is present in portfolio returns which can be explained by the FF factors. It implies that all

columns of β are non-zero so the proximity to zero of βδ results from a small value of δ. This is

also reflected by the F -statistics in Tables 2-4. They test the hypothesis that δ, or some of its

rows, is equal to zero. Since Ft is unknown, we approximate it by the FF factors. Tables 2-4

show that, when the elements of δ being tested do not concern the value weigthed return, the

F -statistics are either insignificant or just barely significant. The assumption that βδ has a full

rank value implies that δ has a full rank value as well. But when δ has a full rank value, the

F -statistics in Table 2-4 should all be proportional to the sample size just as they are when we

use them to test the significance of elements of δ that are associated with the value weighted

8We could allow for correlation between (Gt, Vt) and εt. This would not alter our main results but complicate
the exposition. We therefore refrained from doing so.
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return. The assumption of a full rank value of δ is therefore not supported by the data when

it is associated with factors other then the FF factors. A more appropriate assumption is to

assume a value of δ that leads to the smallish values of the F -statistics reported in Tables 2-4.

Assumption 1. When the sample size T increases, the parameter δ in the (infeasible) linear

regression model for the unobserved factors that uses the observed proxy factors as explanatory

variables (14) is drifting to zero:

δ = d√
T
, (17)

with d a fixed k×m dimensional full rank matrix, while the number of portfolios N stays fixed.

Traditional large sample inference requires that both β and δ are full rank matrices which

is not realistic in many applications. In so-called finite sample inference, no assumptions are

made with respect to β and δ and instead the disturbances of (15) are assumed to be i.i.d.

normal, see e.g.MacKinlay (1987) and Gibbons et. al. (1989). Traditional large sample inference

generalizes finite sample inference in the sense that it does not require the disturbances to be

normally distributed. The price paid for this is that β and δ have to have fixed full rank values.

Assumption 1 provides a generalization to both finite sample and traditional large sample

inference since it neither assumes fixed full rank values for β and δ nor normally distributed

disturbances. Identical to finite sample inference, the results obtained from it therefore apply

to small values of β and δ but do not require normality of the disturbances. Assumption 1 is

similar to the weak-instrument assumption made in econometrics, see e.g. Staiger and Stock

(1997). Assumption 1 seems unrealistic but must solely be seen from the perspective that it

leads to the smallish values of the F -statistics that test the significance of δ in (14) as reported

in Tables 2-4.

Theorem 1. Under Assumption 1, the (infeasible) F-statistic testing the significance of δ in

(14) converges, when the sample size T goes to infinity, to a non-central χ2 distributed random

variable with km degrees of freedom and non-centrality parameter trace( d∗′d∗), d∗ = V
1
2
V V dV

− 1
2

GG ,

VV V = var(Vt).

Proof. Results straightforwardly fromAssumption 1, see also the Supplementary Appendix.

Theorem 2. Under Assumption 1 and portfolio returns that are generated by (15), the LR-

statistic testing the significance of B in (7) converges, when the sample size T goes to infinity,

to a non-central χ2 distributed random variable with Nm degrees of freedom and non-centrality

parameter trace( d+′d+), d+ = V
− 1
2

RR βdV
1
2
GG.
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Proof. Results straightforwardly fromAssumption 1, see also the Supplementary Appendix.

The large sample properties of the F and LR statistics stated in Theorems 1 and 2 are in

line with the realized values of the F and LR statistics stated in Tables 2-4 for all factors except

the FF ones. The assumption of weak correlation between observed and unobserved factors

made in Assumption 1 is therefore more appropriate for deriving the large sample properties

of statistics in the FM two pass approach. This is especially relevant since these properties are

considerably different from those derived under the traditional assumption. We focus on one

kind of statistics which are commonly used in the FM two pass approach: R2’s.

It is common practice to measure the explanatory power of a regression using a goodness of

fit measure like the R2. Both the OLS and GLS R2’s of the second pass regression of the FM

two pass procedure are used for this purpose. We discuss them both and start with the most

commonly used one which is the OLS R2.

OLS R2. The OLS R2 equals the explained sum of squares over the total sum of squares when

we only use a constant term so its expression reads

R2
OLS =

R̄′PMιN B̂R̄

R̄′MιN
R̄

=
R̄′MιN

B̂(B̂′MιN
B̂)−1B̂′MιN

R̄

R̄′MιN
R̄

, (18)

with PA = A(A′A)−1A′, MA = IN −PA for a full rank matrix A and IN the N ×N dimensional

identity matrix. We analyze the behavior of R2
OLS under the assumption that the observed and

unobserved factors are only minorly correlated as stated in Assumption 1.

Theorem 3. Under Assumption 1, portfolio returns that are generated by (15) and mean

returns that are characterized by (11), the behavior of R2
OLS in (18) is in large samples char-

acterized by:
[βλF+ 1√

T
(βψιF+ψιε)]

′PMιN (β(d+ψVG)+ψεG)
[βλF+ 1√

T
(βψιF+ψιε)]

[βλF+ 1√
T

(βψιF+ψιε)]
′MιN

[βλF+ 1√
T

(βψιF+ψιε)]
, (19)

where ψιF = V
1
2
FFψ

∗
ιF , ψιε = V

1
2
εεψ

∗
ιε, ψV G = V

1
2
V V ψ

∗
V GV

− 1
2

GG and ψεG = V
1
2
εεψ

∗
εGV

− 1
2

GG and ψ∗ιF , ψ
∗
ιε,

ψ∗V G and ψ
∗
εG are k×1, N ×1, k×m and N ×m dimensional random matrices whose elements

are independently standard normally distributed .

Proof. see Appendix.

When the correlation between the observed and unobserved factors is large and their number

is the same, so d in (17) and (19) is a square invertible matrix and large compared to ψV G and

ψεG, R
2
OLS is equal to one when the sample size goes to infinity, see also Lewellen et. al. (2010).
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Corollary 1. When the number of observed and unobserved factors is the same and they are

highly correlated, so d in (19) is a large invertible matrix which is of a larger order of magnitude

that ψV G and ψεG, R
2
OLS converges to one when the sample size T increases.

Corollary 1 shows the behavior of R2
OLS under the conventional assumption of a full rank

value of the estimand of B̂. The R2
OLS is then a consistent estimator of its population value.

Corollary 2. When the number of observed factors is less than the number of unobserved

factors but the observed factors explain the unobserved factors well, so d in (17) is a large full

rank rectangular k ×m dimensional matrix with m < k, R2
OLS is asymptotically equivalent to

[βλF+ 1√
T

(βψιF+ψιε)]
′PMιN βd[βλF+ 1√

T
(βψιF+ψιε)]

[βλF+ 1√
T

(βψιF+ψιε)]
′MιN

[βλF+ 1√
T

(βψιF+ψιε)]
, (20)

which converges, when the sample size T goes to infinity, to

λ′F β
′PMιN βdβλF

λ′F β
′MιN

βλF
. (21)

The scenarios stated in Corollaries 1 and 2 are also discussed in Lewellen et. al. (2010). The

cases for which Lewellen et. al. (2010) do not provide any analytical results are those where:

1. the observed factors are only minorly correlated with the unobserved factors and

2. when only a few of the observed factors are strongly correlated with the unobserved factors

and the number of correlated observed factors is less than the number of unobserved

factors.

These are highly relevant cases since they apply to the (macro-) economic factors discussed

previously. It is therefore important to have an analytical expression for the large sample

behavior of R2
OLS so we understand where its properties result from.

The first important property Theorem 3 shows is that, under Assumption 1, R2
OLS converges

to a random variable. When d is of a larger order of magnitude than the random variables ψV G
and ψεG, the latter two do not affect the large sample behavior of R

2
OLS so R

2
OLS is a consistent

estimator of its population value. This results in the behavior stated in Corollaries 1 and 2,

see also Lewellen et. al. (2010). When d is of a similar order of magnitude than ψV G and ψεG,

R2
OLS is, however, no longer a consistent estimator of its population value since it converges

to a random variable. Under case 2, the part of R2
OLS associated with the strongly correlated

observed factors converges to its population value while the remaining part converges to a

random variable. In total, R2
OLS is therefore also not consistent and converges to a random

variable.
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Corollary 3. Under Assumption 1 and when only the first m1 observed factors are strongly

correlated with the unobserved factors and m1 is less than k, so d = (d1
... d2), d1 : k × m1,

d2 : k ×m2, m1 + m2 = m, with d1 large and d2 small, the large sample behavior of R2
OLS is

characterized by

[βλF+ 1√
T

(βψιF+ψιε)]
′PMιN βd1

[βλF+ 1√
T

(βψιF+ψιε)]

[βλF+ 1√
T

(βψιF+ψιε)]
′MιN

[βλF+ 1√
T

(βψιF+ψιε)]
+

[βλF+ 1√
T

(βψιF+ψιε)]
′P
M(ιN : βd1)(β(d2+ψVG,2)+ψεG,2)

[βλF+ 1√
T

(βψιF+ψιε)]

[βλF+ 1√
T

(βψιF+ψιε)]
′MιN

[βλF+ 1√
T

(βψιF+ψιε)]
,

(22)

where we use that P(A : B) = PA + PMAB and ψV G = (ψV G,1
... ψV G,2), ψεV = (ψεV,1

... ψεV,2) and

ψV G,1 : k ×m1, ψV G,2 : k ×m2, ψεV,1 : N ×m1, ψεV,2 : N ×m2.

Without loss of generality, we have assumed in Corollary 3 that only the first m1 observed

factors are correlated with the unobserved ones. A similar result is obtained when more than

m1 of the observed factors are correlated with the unobserved ones but they are correlated in

an identical manner. In that case d1 would be a matrix which is of reduced rank for which we

can adapt the expression in Corollary 3 accordingly.

Corollary 3 shows that the large sample behavior of R2
OLS consists of two components, one

which converges to the population value of R2
OLS when we use only those observed factors that

are strongly correlated with the unobserved ones and the other random component results from

those observed factors that are minorly correlated with the unobserved factors. Hence overall

R2
OLS converges to a random variable as well so it is not a consistent estimator of its population

value.

Having now established that R2
OLS converges to a random variable in cases which are rem-

iniscent of using (macro-) economic proxy factors other than the FF factors, it is important

to establish the behavior of this random variable. The expression of the limiting behavior of

R2
OLS is such that only the numerator is random since the denominator of R2

OLS converges to

its population value. Theorem 3 shows that the numerator consists of the projection of

MιN [βλF + 1√
T

(βψιF + ψιε)] on MιN (β (d+ ψV G) + ψεG).

The first element of the part where you project on, i.e. MιNβ(d+ψV G), is tangent toMιNβ(λF +
1√
T
ψιF ) since both are linear combinations of MιNβ. This implies that the numerator of R

2
OLS

is big whenever MιNβ(d + ψV G) is relatively large compared to MιNψεG regardless of whether

this results from a large value of d or not.

When the observed proxy factors Gt explain the unobserved factors well, d is large and Vt
is small. When Vt is small, there is no unexplained factor structure in the residuals of (15),
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Ut, that results from regressing the portfolio returns on the observed proxy factors. When we

use factors other than the FF factors, the F -statistics and pseudo-R2’s, indicated by pseudo-R2

FF, in Tables 2-4 show that d is small and Vt often explains more than ten times as much

of the variation in Ft, measured by pseudo-R2 FF, than the observed proxy factors Gt. The

same reasoning applies when the observed proxy factors include the value weighted return and

we consider the increment in the pseudo-R2 that results from adding observed proxy factors

other than the FF factors. Hence for all these observed proxy factors, d is small and Vt is

large and causes, since it is multiplied by β, an unexplained factor structure in the residuals of

(15). This unexplained factor structure also indicates that βVt is large compared to εt in (15).

The weighted averages of these components converge to ψV G and ψεG. The small values of the

pseudo-R2’s thus imply that d is small relative to ψV G while the unexplained factor structure

indicates that βψV G is large relative to ψεG. Taken all together this implies that large values

of R2
OLS result from the projection of MιNβ(λ+ 1√

T
ψιF ) on MιNβψV G since MιNβψV G is large

compared to both MιNβd and MιNψεG. Hence, since βψV G is part of the estimation error of B̂,

it is the estimation error of B̂ that leads to the large values of R2
OLS when d is small. These

large values of R2
OLS are therefore not indicative of the strength of the relationship between

expected portfolio returns and observed proxy factors.

The same reasoning that applies to R2
OLS in case 1, as described above, holds for case 2 as

well. Corollary 3 shows that R2
OLS then converges to the sum of two components. The first of

these two components converges to the population value of R2
OLS that results from only using

the strongly correlated observed factors. The second component has a similar expression as

R2
OLS in case 1. Identical to R

2
OLS in case 1, its large values when the observed factors do not

explain the unobserved factors therefore result from the estimation error in B̂.

The above shows that the unexplained factor structure in the residuals of (15) can lead to

large values of the R2
OLS when the observed proxy and unobserved true factors are minorly

correlated. We have discussed several statistics, like, for example, F and LR statistics, pseudo-

R2’s and our FACCHECK measure, to shed light on the small correlation between observed

and unobserved factors. Of all these statistics, FACCHECK (6) directly measures the unex-

plained factor structure in the residuals or put differently the relative size of βψV G compared to

ψεG. Consequently, applying the FACCHECK statistic to the residuals of the observed factor

model helps gauge the reliability of R2
OLS. When analyzing twenty five portfolios, a value of

FACCHECK of around 0.95, implies that this relative size is around 20, it is around 4 when

FACCHECK is 0.8 and around 1.5 when FACCHECK is 0.6. Hence for values of FACCHECK

around 0.5-0.6, the influence of the factor structure on R2
OLS is comparable to that of the idio-

syncratic components. This would make a sensible rule of thumb for applying FACCHECK

to assess the extent to which a large value of R2
OLS is indicative of the strength of the second
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pass cross sectional regression. When FACCHECK is small, R2
OLS can be straightforwardly

interpreted but not so if FACCHECK is large in which case we should interpret it cautiously.

Simulation experiment
We conduct a simulation experiment to further illustrate the properties of R2

OLS and the

accuracy of the large sample distribution stated in Theorem 3. Our simulation experiment is

calibrated to data from Lettau and Ludvigson (2001). We use the FM two pass procedure to

estimate the risk premia on the three FF factors using their returns on twenty-five size and

book to market sorted portfolios from 1963 to 1998. We then generate portfolio returns from

the factor model in (2), with µ = ιNλ0 + βλF , and E(Ft) = 0 using the estimated values of

β, λ0 and λF as the true values and factors Ft and disturbances εt that are generated as i.i.d.

normal with mean zero and covariance matrices V̂FF and V̂εε with V̂FF the covariance matrix

of the three FF factors and V̂εε the residual covariance matrix that results from regressing the

portfolio returns on the three FF factors. The number of time series observations is the same

as in Lettau and Ludvigson (2001).

We use the simulated portfolio returns to compute the density functions of R2
OLS in (18)

using an observed factor Gt that initially only consists of the first (observed) factor, then of

the first two factors and then of all three factors. Alongside the density function of R2
OLS

that results from simulating from the model, we also use the approximation that results from

Theorem 3. Figure 1.1 in Panel 1 shows that the density functions of R2
OLS that result from

simulating from the model and from the approximation in Theorem 3 are almost identical. The

figures in Panel 1 further show that, as expected, the distribution of R2
OLS moves to the right

when we add an additional true factor. Figure 1.1 also shows that R2
OLS is close to one when

we use all three factors as stated in Corollary 1.

To show the extent to which the observed factor model explains the factor structure of the

portfolio returns, Panel 1 also reports the density function of FACCHECK. Figure 1.2 shows

that when we use only one factor, the three largest principal components explain around 81%

of the variation which is roughly equal to the 82% that we stated in Tables 3 and 4 when we

use the value weighted return as the only factor.9 The variation explained by the three largest

principal components decreases to 58% when we use two factors and 38% when we use all three

factors. The last percentage is similar to the percentage in Table 3 when we use all three FF

factors.
9We note that the Jagannathan-Wang data contains one hundred portfolio returns so the explained percent-

age of the variation is not comparable with that which results when we use the value weighted return as the
only factor for the Jagannathan-Wang data.
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Figure 1.1. Density functions of R2
OLS Figure 1.2. Density functions of FACCHECK

Panel 1. Density functions of R2
OLS and FACCHECK (the ratio of the sum of the three largest

characteristic roots of the residual covariance matrix over the sum of all characteristic roots)

when we use one of the three factors (solid), two (dashed-dotted) and all three (dashed). Figure 1.1

also shows the large sample distributions from Theorem 3 (dotted lines).
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Figure 2.1. Density functions of R2
OLS Figure 2.2. Density functions of FACCHECK

Panel 2. Density functions of R2
OLS and FACCHECK (the ratio of the sum of the three largest

characteristic roots of the residual covariance matrix over the sum of all characteristic roots)

when we use one useless factor (solid), two (dashed-dotted) and three (dashed). Figure 2.1 also

shows the large sample distributions from Theorem 3 (dotted lines).
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Figure 3.1. Density functions of R2
OLS Figure 3.2. Density functions of FACCHECK

Panel 3. Density functions of R2
OLS and FACCHECK (the ratio of the sum of the three largest

characteristic roots of the residual covariance matrix over the sum of all characteristic roots)

when we use one valid factor (solid), one valid factor and one irrelevant factor (dash-dotted) and

one valid factor and two irrelevant factors (dashed). Figure 3.1 also shows the large sample

distributions from Theorem 3 (dotted lines).
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Figure 4.1. Density functions of the R2 Figure 4.2. Density functions of FACCHECK

Panel 4. Density functions of R2
OLS and FACCHECK (the ratio of the sum of the three largest

characteristic roots of the residual covariance matrix over the sum of all characteristic roots)

when we use three useless factors and there is a factor structure (solid line), strong factor structure

(dashed line) and weak factor structure (dashed-dotted line).
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Panel 2 shows the density functions that result from another simulation experiment where

we simulate from the same model as used previously but now we estimate an observed factor

model with only useless factors. We start out with an observed factor model with one useless

factor and then add one or two additional useless factors. Again we obtain virtually the same

distributions from simulating from the model and using the approximation from Theorem 3.

The density functions of R2
OLS in Figure 2.1 are surprising. They dominate the distribution

of R2
OLS in case we only use one of the true factors. Hence, based on R

2
OLS, observed factor

models with useless factors outperform an observed factor model which just has one of the

three true factors. It is even such that the R2
OLS that results from using three useless factors

often exceeds the R2
OLS when we use two valid factors. This becomes even more pronounced

when we add more useless factors which we do not show. To reveal that the observed factor

models with the useless factors do not explain anything, we also computed the density function

of FACCHECK. As expected, its density functions that result from the three specifications with

the useless factors all lie on top of one another at 95% which is identical to the value of the

ratio in Tables 2 and 4 when the observed factors matter very little.

Similar results are shown in Panel 3 where we use a setting with one valid factor and then

add one or two irrelevant factors. The figures in Panel 3 show that the distribution of R2
OLS in

case of one valid factor and one or two irrelevant factors is similar to the one that results from

two or three irrelevant factors. The main difference between the distributions for these settings

occurs for the density of FACCHECK which shows that the unexplained factor structure in

Panel 3 is less pronounced than in Panel 2.

The expression of the large sample distribution of R2
OLS in Theorem 3 states the importance

of the unexplained factor structure for R2
OLS. This is further shown by the simulation results in

Panels 1-3. It all shows that R2
OLS cannot be interpreted appropriately without some diagnostic

statistic that reports on the unexplained factor structure. Hence, R2
OLS is only indicative for a

relationship between portfolio returns and the observed factors when there is no unexplained

factor structure in the residuals. To further emphasize this, we conduct another simulation

experiment where we specifically analyze the influence of the unexplained factor structure.

We therefore estimate an observed factor model that has three useless factors. To show the

sensitivity of R2
OLS to the unexplained factor structure, we simulate from the same model as

used previously but we now use three different settings of the covariance matrix Vεε of the

disturbances in the original factor model: Vεε = 25V̂εε (weak factor structure), Vεε = V̂εε (factor

structure) and Vεε = 0.04V̂εε (strong factor structure) with V̂εε the residual covariance matrix

that results from regressing the portfolio returns on the three FF factors. No changes are made

to the specification of the risk premia or the β’s so the factor pricing in the model where we

simulate from remains unaltered except for the covariance matrix of the disturbances. The
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results are reported in Panel 4.

The figures in Panel 4 reiterate the sensitivity of the distribution of R2
OLS to the unexplained

factor structure in the residuals. Figure 4.1 shows that for the same irrelevant explanatory power

of the observed factor model, R2
OLS varies greatly. Figure 4.2 shows that for the observed factor

models where R2
OLS is high in Figure 4.1 also the unexplained factor structure in the residuals

is very strong. For the observed factor model where the factor structure in the residuals is

rather mild, the density of R2
OLS is as expected and close to zero. Hence, for the models where

there is still a strong unexplained factor structure in the residuals, R2
OLS is not indicative of a

relationship between expected portfolio returns and the observed factors.

LL01
Rvw ∆c FF factors cay,Rvw, cay,∆c, cay,Rvw,∆y,

cayRvw cay∆c cayRvw, cay∆y

R2
OLS 0.01 0.16 0.80 0.31 0.70 0.77

FACCHECK 82.1% 95.5% 38.2% 82.5% 95.2% 82.1%
pseudo-R2 0.78 0.016 0.95 0.78 0.10 0.79

Table 5: R-squared of the second pass regression of the FM two pass procedure, FACCHECK (the
percentage of the variation explained by the three largest principal components) and the pseudo-R-
squared for different specifications from Lettau and Ludvigson (2001).

F52-01
Rvw ∆c FINAN LVX06 LN05 SV06 Y06

R2
OLS 0.07 0.04 0.51 0.58 0.74 0.65 0.54

FACCHECK 81.4% 93.9% 94.3% 94.3% 93.8% 80.5% 81.5%
pseudo-R2 0.723 0.065 0.007 0.015 0.083 0.739 0.724

Table 6: R-squared of the second pass regression of the FM two pass procedure, FACCHECK (the
percentage of the variation explained by the three largest principal components) and pseudo-R-squared
using the factors from Li et. al. (2006) (LVX06), Lustig and Van Nieuwerburgh (2005) (LN05), Santos
and Veronesi (2006) (SV06) and Yogo (2006) (Y06). All use the quarterly portfolio returns from
French’s website.

Tables 5 and 6 report R2
OLS, FACCHECK and pseudo-R

2 for the specifications in Tables 3

and 4. Many of the specifications stated in Tables 5 and 6 have high values of R2
OLS. Except

for the specification using the FF factors, all of these specifications also have large values of

the factor structure check, which indicates that there is an unexplained factor structure in the

first pass residuals, and small values of the pseudo-R2’s in Tables 2-4 which indicate a small

value of d.We just showed that R2
OLS is then not indicative of a relationship between expected

portfolio returns and observed factors since these large values result from the estimation error

in the estimated β’s of the observed proxy factors. Tables 5 and 6 correspond with Lettau and

Ludvigson (2001), Li et. al. (2006), Lustig and Van Nieuwerburgh (2006), Santos and Veronesi
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(2006) and Yogo (2006), so the reported R2
OLS’s are not indicative of a relationship between

expected portfolio returns and observed proxy factors.

GLS R2. The GLS R2 equals the explained sum of squares over the total sum of squares in

a GLS regression where we weight by the inverse of the covariance matrix of R̄ :

R2
GLS = R̄′M̄B̂(B̂′M̄B̂)−1B̂′M̄R̄

R̄′M̄R̄

=

(V
− 12
RR R̄)′P

M

V
− 12
RR

ιN

V
− 12
RR

B̂

(V
− 12
RR R̄)

(V
− 12
RR R̄)′M

V
− 12
RR

ιN

(V
− 12
RR R̄)

,
(23)

with M̄ = V −1
RR − V −1

RRιN(ι′NV
−1
RRιN)−1ι′NV

−1
RR .

Under the conventional assumption of a full rank value of the estimand of B̂, R2
OLS is a

consistent estimator of its population value. For many observed proxy factors, this assumption

is not realistic. To accommodate such instances, we made Assumption 1 using which Theorem

3 shows that the R2
OLS then converges to a random variable. Alongside the explanatory power

of the observed proxy factors for the unobserved factors, the large sample behavior of R2
GLS

crucially depends on the scaled risk premia on the unobserved factors,
(
VFF
T

)− 1
2λF . We assume

that these relative risk premia do not change with the sample size which is in line with their

relatively small values reported in Table 7. When we do not make this assumption and just

assume that the risk premia are constant, the R2
GLS always converges to one when the sample

size increases which we deem unrealistic.

Assumption 2. The scaled risk premia
(
VFF
T

)− 1
2 λF remain constant when the sample size

increases so (
VFF
T

)− 1
2 λF = l, (24)

with l a k dimensional fixed vector, for different values of the sample size T.

LL01 JW96 F52-01

λ′F
(
VFF
T

)−1
λF 24.1 10.1 15.2

λF V
− 1
2

FF λF
(
VFF
T

)− 1
2λF λF V

− 1
2

FF λF
(
VFF
T

)− 1
2λF λF V

− 1
2

FF λF
(
VFF
T

)− 1
2λF

RVW 1.32 0.22 2.62 -0.51 -0.12 −2.21 -1.12 -0.13 -1.84
SMB 0.47 0.024 0.28 0.21 0.10 1.86 0.47 0.12 1.78
HML 1.46 0.35 4.14 0.24 0.072 1.30 1.32 0.21 2.94

Table 7: Estimates of the risk premia and scaled risk premia that result from the FM two pass
procedure for data from Lettau-Lutvigson (2001) (LL01), Jaganathan and Wang (1996) (JW96) and
from French’s website (F52-01).
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Theorem 4. Under Assumptions 1, 2, portfolio returns that are generated by (15) and mean

returns on the portfolios that are characterized by (11), the behavior of R2
GLS in (23) is in large

samples characterized by:


 W ′l

0

+ψ∗


′

P

M

V
− 12
RR

ιN


W ′V−

1
2

FF
dV

1
2
GG

0

+ϕ∗



 W ′l

0

+ψ∗



 W ′l

0

+ψ∗


′

M
V
− 12
RR

ιN


 W ′l

0

+ψ∗


, (25)

where ψ∗ and ϕ∗ are independent N × 1 and N ×m dimensional random matrices whose ele-

ments have independent standard normal distributions, W is an orthonormal k×k dimensional
matrix which contains the eigenvectors of[

(β′β)
1
2
′VFF (β′β)

1
2 + (β′β)−

1
2
′β′Vεεβ(β′β)−

1
2

]
(26)

and M
V
− 12
RR ιN

is characterized by

IN −
(
W ′V

− 1
2

FF (β′β)−1β′ιN

(β′⊥Vεεβ⊥)−
1
2β′⊥ιN

)

{ι′N [β(β′β)−1V −1
FF (β′β)−1β′ + β⊥(β′⊥Vεεβ⊥)−1β′⊥]ιN}−1

(
W ′V

− 1
2

FF (β′β)−1β′ιN

(β′⊥Vεεβ⊥)−
1
2β′⊥ιN

)′
,

(27)

with β⊥ the N × (N −k) dimensional orthogonal complement of β, so β′⊥β ≡ 0, β′⊥β⊥ ≡ IN−k.

Proof. see Appendix.

We use Theorem 4 to classify the different kinds of behavior of R2
GLS.We start with a strong

observed proxy factor setting.

Corollary 4. When the number of observed factors equals the number of unobserved factors

and they explain them well, so d =
√
TVFGV

−1
GG, the large sample behavior of R

2
GLS is charac-

terized by
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
 W ′l

0

+ψ∗


′

PM

V
− 12
RR

ιN


W ′V−

1
2

FF
VFGV

− 12
GG

0

+ 1√
T
V
− 12
RR

V
1
2
εεϕ
∗




 W ′l

0

+ψ∗



 W ′l

0

+ψ∗


′

M
V
− 12
RR

ιN


 W ′l

0

+ψ∗


. (28)

Furthermore, when the observed factors are an invertible linear combination of the true factors,

V
− 1
2

FF VFGV
− 1
2

GG = Ik.

The large sample behavior of R2
GLS in Corollary 4 differs considerably from that of R2

OLS.

Corollary 1 states that R2
OLS converges to one when the observed factors explain the unobserved

factors well and their numbers are the same. Because W ′l is of the same order of magnitude

as the standard normal random variables in ψ∗, this is not the case for R2
GLS. Only when the

scaled risk premia are very large, R2
GLS is approximately equal to one.

Corollary 5. When the relative size of the risk premia is very large and the number of ob-

served factors equals the number of unobserved factors and they explain them well, R2
GLS is

approximately equal to one.

Another interesting aspect of the large sample distribution of R2
GLS is that it depends on

the number of portfolios N. For the same values of the other parameters, a larger number of

portfolios implies a smaller value of R2
GLS.

Corollary 6. When the observed factors consist of the first m of the true factors, the large

sample behavior of R2
GLS is characterized by


 W ′l

0

+ψ∗


′

PM

V
− 12
RR

ιN


W ′( Im

φ∗
V G

/
√
T)

0

+ 1√
T
V
− 12
RR

V
1
2
εεϕ
∗




 W ′l

0

+ψ∗



 W ′l

0

+ψ∗


′

M
V
− 12
RR

ιN


 W ′l

0

+ψ∗


, (29)

with φ∗V G a (k − m) × m dimensional random matrix whose elements are standard normally

distributed and independent of ϕ∗ and ψ∗.

Corollary 6 shows that when the observed factors explain fewer of the true factors, the R2
GLS

goes down on average. This argument extends to the case where the relative risk premia are

large.
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Corollary 7. When the observed factors consist of the first m of the true factors and the

relative size of the risk premia is large, R2
GLS converges to

 W ′l

0


′

PM

V
− 12
RR

ιN


W ′(Im0 )

0



 W ′l

0



 W ′l

0



′

M
V
− 12
RR

ιN


 W ′l

0




. (30)

Simulation experiment
We use our previous simulation experiment, calibrated to data from Lettau and Ludvigson

(2001), to further illustrate the properties of R2
GLS and the accuracy of the large sample distri-

bution stated in Theorem 4. Panel 5 contains the density function of R2
GLS for different settings

of the explanatory power of the observed proxy factors and the size of the relative risk premia.

Figures 5.1 and 5.3 use the data generating process that corresponds with the estimated

factor model which uses the three FF factors and their risk premia. The observed proxy factors

in Figure 5.1 correspond with the true ones while they are irrelevant in Figure 5.3. Figures

5.2 and 5.4 use the settings as used for Figures 5.1 and 5.3 except that the risk premia are ten

times as large. The observed proxy factors used for Figure 5.2 correspond with the true ones

while the observed proxy factors used for Figure 5.4 are irrelevant.

Figure 5.1 shows the density function of R2
GLS when we use one, two or three of the true

factors. We compute these three density functions by simulating from the model and using the

large sample approximation stated in Theorem 4. When we use one or all three of the true

factors as proxy factors, the resulting density functions are almost indistinguishable. When

we just use two of the true factors as proxy factors, there is some discrepancy between the

density function which results from simulation and the one which results from the large sample

approximation. It shows that the approximation by the large sample distribution is less accurate

compared to the one for R2
OLS. This was to be expected because of the inversion of the N ×N

dimensional covariance matrix of the portfolio returns which is also, given the factor structure,

badly scaled. The large sample approximation remains quite accurate though and is also

important since it reveals the dependence of R2
GLS on the scaled risk premia (24).

The density functions show that R2
GLS is well below one even if we use all three factors.

When we use only one or two of the three factors, R2
GLS is close to zero. This all results from

the small size of the relative risk premia. When we multiply these risk premia by ten as in

Figure 5.2, the density of R2
GLS when we use all three factors is close to one.

Figures 5.3 and 5.4 show the density of R2
GLS when we use one, two or three useless factors.

Figure 5.3 uses the setting where the risk premia correspond with those from Lettau and
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Ludvigson (2001) and Figure 5.4 uses risk premia which are ten fold the estimated ones. Unlike

when we use the true factors, the larger risk premia have no effect on the density of R2
GLS.
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Figure 5.1. True factors, standard premia Figure 5.2. True factors, large premia
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Figure 5.3. Irrelevant factors, standard premia Figure 5.4. Irrelevant factors, large premia

Panel 5. Density of R2
GLS for simulation experiment calibrated to Lettau and Ludvigson (2001). One

factor (solid), two factors (dash-dot), three factors (dashed). The dotted lines result from the large

sample approximation from Theorem 4.

The density of R2
GLS when we use one, two or three useless factors all lie quite close to zero.

However, the density of R2
GLS when we use all three true factors does not lie far from zero either.

The density of R2
GLS when we use three useless factors therefore has a lot of probability mass in

the area where the density of R2
GLS when we use the three true factors has a sizeable probability
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mass. This implies that we just based on R2
GLS cannot make a trustworthy statement about the

quality of the second pass regression. Identical to R2
OLS, we can use a measure which indicates

the unexplained factor structure in the first pass residuals to assess R2
GLS more decisively.

The large sample distributions of R2
OLS and R

2
GLS stated in Theorems 3 and 4 depend on

the parameters d and l. When these parameters are small, as is the case for all observed proxy

factors different from the FF factors, the large sample distributions of R2
OLS and R

2
GLS are

not normal. Since we cannot estimate d and l consistently, it is then not possible to conduct

reliable inference on R2
OLS and R

2
GLS, for example, using t-tests as in Kan et. al. (2013). Also

the bootstrap is only valid when d and l can be estimated consistently so it cannot be applied

either.

4 Conclusions

The results from the R2
OLS and the FM t-statistic can line up nicely in favor of a hypothesized

factor pricing relationship despite that such a relationship is absent. These statistics can

generate such results when the observed proxy factors do not capture the factor structure in

portfolio returns. The remaining factor structure in the first pass residuals can then lead to a

large value of the R2
OLS while the standard limiting distribution of the FM t-statistic does not

apply because of the small correlation between the observed proxy factor and the unobserved

factors, see Kleibergen (2009).

To gauge the adequacy of the R2
OLS, we propose to measure the unexplained factor structure

in the first pass residuals. When such a factor structure is absent, we can straightforwardly

interpret the R2
OLS but we have to do so carefully if this is not the case.

Many observed proxy factors proposed in the literature, like, for example, consumption and

labor income growth, housing collateral, consumption-wealth ratio, labor income-consumption

ratio, interactions of either one of the latter three with other factors, etc., leave a considerable

unexplained factor structure in the first pass residuals. The high R2’s and significant t-statistics

that are reported for these factors therefore have to be interpreted judiciously.

Previously suggested solutions to the inferential issues with second pass R2’s and t-statistics

do not work well for different reasons. One suggestion is to use the bootstrap. The bootstrap,

however, relies on consistent estimation of the risk premia of the observed proxy factors. It fails

therefore for the same reason as why the large sample distribution of the second pass t-statistic

no longer applies. Another suggestion is to add other portfolios to the typically used pool.

Although this reduces the factor structure, a sizeable factor structure typically remains.
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Appendix

Proof of Theorem 3. The expression of R2
OLS :

R2
OLS =

R̄′MιN
B̂(B̂′MιN

B̂)−1B̂′MιN
R̄

R̄′MιN
R̄

,

shows that it is a function of R̄ and B̂. To construct the large sample behavior of B̂ :

B̂ =
∑T

t=1 R̄tḠ
′
t

(∑T
t=1 ḠtḠ

′
t

)−1

.

we use that under the models in (2), (14) and Assumption 1, we can specify it as

B̂ =
∑T

t=1

(
β( d√

T
Ḡt + V̄t) + ε̄t

)
Ḡ′t

(∑T
t=1 ḠtḠ

′
t

)−1

= 1√
T

[
β
(
d( 1

T
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t=1 ḠtḠ

′
t) + 1√

T
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t=1 V̄tḠ

′
t

)
+ 1√

T

∑T
t=1 ε̄tḠ

′
t

] (
1
T

∑T
t=1 ḠtḠ

′
t

)−1

.

We now use that 1
T

∑T
t=1 ḠtḠ

′
t →
p
VGG,

1√
T

∑T
t=1 V̄tḠ

′
t

(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
ψV G = V

1
2
V V ψ

∗
V GV

− 1
2

GG ,

1√
T

∑T
t=1 εtḠ

′
t

(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
ψεG = V

1
2
εεψ

∗
εGV

− 1
2

GG , and ψ
∗
V G and ψ

∗
εG are independent k×m

and N×m dimensional random variables whose elements are independently standard normally

distributed. ψV G and ψεG are independent since Ft and εt are uncorrelated so the same applies

for Vt then as well since it is an element of Ft. Combining all elements, we obtain the limiting

behavior of B̂ : √
TB̂ →

d
β (d+ ψV G) + ψεG.

The independent large sample behavior of R̄ is characterized by (the asymptotic independence

of R̄ and B̂ is shown in Shanken (1992) and Kleibergen (2009))

R̄ = 1
T

∑T
t=1 µR + βFt + εt

= 1
T

∑T
t=1(µR + βµF ) + β(Ft − µF ) + εt

with E(R̄) = µR + βµF = ιNλ0 + βλF as stated in (11) so

MιN R̄ = 1
T

∑T
t=1 MιN (βλF + β(Ft − µF )) + 1

T

∑T
t=1MιNεt

and √
T (MιN R̄−MιNβλF )→

d
MιNβψιF +MιNψιε,

where 1√
T

∑T
t=1(Ft−µF )→

d
ψιF and

1√
T

∑T
t=1 εt →

d
ψιε with ψιF and ψιε independently normally

distributed k and N dimensional random vectors with mean 0 and covariance matrices VFF and
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Vεε which are independent of ψV G and ψεG as well, or

MιN R̄ = MιNβλF + 1√
T

(MιNβψιF +MιNψιε) +Op(T
−1).

We insert the expressions of the large sample behaviors of MιN R̄ and B̂ into the expression of

R2
OLS to obtain its large sample behavior:

[βλF+ 1√
T

(βψιF+ψιε)]
′PMιN (β(d+ψVG)+ψεG)

[βλF+ 1√
T

(βψιF+ψιε)]

[βλF+ 1√
T

(βψιF+ψιε)]
′MιN

[βλF+ 1√
T

(βψιF+ψιε)]
.

Proof of Theorem 4. The spectral decomposition of the covariance matrix of the portfolio
returns in (5) can be specified as

VRR = P1Λ1P
′
1 + P2Λ2P

′
2,

with Λ1 and Λ2 the k × k and (N − k)× (N − k) diagonal matrices that hold respectively the

largest k and smallest N − k characteristic roots. The orthonormal N × k and N × (N − k)

dimensional matrices P1 and P2 contain the principal components/eigenvectors. Because of the

factor structure,
P1 = βQ

P2 = β⊥,

with β⊥ the N × (N − k) dimensional orthogonal complement of β, so β′⊥β ≡ 0, β′⊥β⊥ ≡ IN−k,

and Q is a k × k dimensional matrix which makes P1 orthonormal, so

Q = (β′β)−
1
2W

W ′
[
(β′β)

1
2
′VFF (β′β)

1
2 + (β′β)−

1
2
′β′Vεεβ(β′β)−

1
2

]
W = Λ1,

with W an orthonormal k × k dimensional matrix. We use the spectral decomposition of VRR
to construct the inverse of its square root, so V

− 1
2

RR VRRV
− 1
2
′

RR = IN :

V
− 1
2

RR =

(
Λ
− 1
2

1 P ′1

Λ
− 1
2

2 P ′2

)

=

 W ′
[
(β′β)

1
2
′VFF (β′β)

1
2 + (β′β)−

1
2
′β′Vεεβ(β′β)−

1
2

]− 1
2

(β′β)−
1
2β′

Λ
− 1
2

2 β′⊥


=

(
W ′ [VFF + (β′β)−1′β′Vεεβ(β′β)−1]

− 1
2 (β′β)−1β′

Λ
− 1
2

2 β′⊥

)
.
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We can further approximate [VFF + (β′β)−1′β′Vεεβ(β′β)−1]
− 1
2 by

V
− 1
2

FF − 1
2
V −1
FF (β′β)−1′β′Vεεβ(β′β)−1V

− 1
2

FF

which results from a first order Taylor approximation. Because of the factor structure, the

second component of the approximation of [VFF + (β′β)−1′β′Vεεβ(β′β)−1]
− 1
2 is much smaller

than the first component and we can approximate [VFF + (β′β)−1′β′Vεεβ(β′β)−1]
− 1
2 by V

− 1
2

FF .

To construct the large sample behavior of M
V
− 12
RR ιN

V
− 1
2

RR R̄ and M
V
− 12
RR ιN

V
− 1
2

RR B̂, we first con-

struct the large sample expressions for V
− 1
2

RR βV
1
2
FF and M

V
− 12
RR ιN

:

V
− 1
2

RR βV
1
2
FF =

(
W ′ [VFF + (β′β)−1′β′Vεεβ(β′β)−1]

− 1
2 (β′β)−1β′

Λ
− 1
2

2 β′⊥

)
βV

1
2
FF

=

(
W ′ [VFF + (β′β)−1′β′Vεεβ(β′β)−1]

− 1
2 V

1
2
FF

0

)

≈
(
W ′[V

− 1
2

FF ]V
1
2
FF

0

)

=

(
W ′

0

)
.

To obtain M
V
− 12
RR ιN

, we note that V
− 1
2

RR ιN , with ιN an M -dimensional vector of ones, reads:

V
− 1
2

RR ιN ≈
(
W ′V

− 1
2

FF (β′β)−1β′ιN

(β′⊥Vεεβ⊥)−
1
2β′⊥ιN

)

so M
V
− 12
RR ιN

is characterized by

IN −
(
W ′V

− 1
2

FF (β′β)−1β′ιN

(β′⊥Vεεβ⊥)−
1
2β′⊥ιN

)

{ι′N [β(β′β)−1V −1
FF (β′β)−1β′ + β⊥(β′⊥Vεεβ⊥)−1β′⊥]ιN}−1

(
W ′V

− 1
2

FF (β′β)−1β′ιN

(β′⊥Vεεβ⊥)−
1
2β′⊥ιN

)′
.

The specification of GLS R2 reads

R2
GLS =

(M
V
− 12
RR

ιN

V
− 12
RR R̄)′P

M

V
− 12
RR

ιN

V
− 12
RR

B̂

(M
V
− 12
RR

ιN

V
− 12
RR R̄)

(V
− 12
RR R̄)′M

V
− 12
RR

ιN

(V
− 12
RR R̄)

.
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We proceed with constructing expressions for the large sample behavior of the components of

the GLS R2 : V
− 1
2

RR R̄ and V
− 1
2

RR B̂ where we use both strong and weak factor settings for the

latter.

V
− 1
2

RRR̄. The large sample behavior of R̄ is constructed in the proof of Theorem 3:

R̄ = ιNλ0 + β(λF + 1√
T
ψιF ) + 1√

T
ψιε +Op(T

−1)

= ιNλ0 + βVFF (V
− 1
2

FF λF ) + 1√
T

(βψιF + ψιε) +Op(T
−1)

Under Assumption 2, l = V
− 1
2

FF λF
√
T is constant and we can specify the large sample behavior

of
√
TM

V
− 12
RR ιN

V
− 1
2

RR R̄ as:

√
TM

V
− 12
RR ιN

V
− 1
2

RR R̄ = M
V
− 12
RR ιN

V
− 1
2

RR

{
βV

1
2
FF l + (βψιF + ψιε)

}
+Op(T

−1)

= M
V
− 12
RR ιN

{(
W ′l

0

)
+ V

− 1
2

RR (βψιF + ψιε)

}
+Op(T

−1)

= M
V
− 12
RR ιN

{(
W ′l

0

)
+ ψ∗

}
+Op(T

−1)

with ψ∗ = V
− 1
2

RR (βψιF + ψιε) ∼ N(0, IN).

V
− 1
2

RRB̂. For the large sample behavior of V
− 1
2

RR B̂, we distinguish between strong and weak

factors.

Strong factors. When the observed factors are strong and their number equals the true

number of unobserved factors, the large sample behavior of B̂ is characterized by (16):

B̂ = βVFGV
−1
GG + 1√

T
ψεG.

It results in a large sample behavior of M
V
− 12
RR ιN

V
− 1
2

RR B̂ which is characterized by:

M
V
− 12
RR ιN

V
− 1
2

RR B̂ = M
V
− 12
RR ιN

V
− 1
2

RR

{
βV

1
2
FFV

− 1
2

FF VFGV
−1
GG + 1√

T
ψεG

}
+Op(T

−1)

= M
V
− 12
RR ιN

{(
W ′V

− 1
2

FF VFGV
− 1
2

GG

0

)
+ 1√

T
V
− 1
2

RR V
1
2
εεϕ∗

}
V
− 1
2

GG +Op(T
−1),

with ϕ∗ a N × m dimensional random matrix whose elements are independently standard

normally distributed.
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Weak factors. When the observed proxy factors are minorly correlated with the observed

true factors as outlined in Assumption 1, the large sample behavior of
√
TB̂ is:

√
TB̂ →

d
β (d+ ψV G) + ψεG

and results in large sample behavior of
√
TM

V
− 12
RR ιN

V
− 1
2

RR B̂ which is characterized by:

√
TM

V
− 12
RR ιN

V
− 1
2

RR B̂ →
d

M
V
− 12
RR ιN

{
V
− 1
2

RR βV
1
2
FF

(
V
− 1
2

FF d
)

+ V
− 1
2

RR (βψV G + ψεG)
}

→
d

M
V
− 12
RR ιN

{(
W ′V

− 1
2

FF dV
1
2
GG

0

)
+ ϕ∗

}
V
− 1
2

GG

with ϕ∗ = V
− 1
2

RR (βψV G + ψεG)V
1
2
GG a N × m dimensional random matrix whose elements are

independently standard normally distributed. The identity covariance matrix of ϕ∗ results since

B̂ →
p

0 under Assumption 1.

GLS R2. Combining the large sample behaviors of R̄ and B̂, we obtain the large sample

behavior of the GLS R2 under weak and strong factors.

Strong factors:


 W ′l

0

+ψ∗


′

PM

V
− 12
RR

ιN


W ′V−

1
2

FF
VFGV

− 12
GG

0

+ 1√
T
V
− 12
RR

V
1
2
εεϕ
∗




 W ′l

0

+ψ∗



 W ′l

0

+ψ∗


′

M
V
− 12
RR

ιN


 W ′l

0

+ψ∗


,

which results since W ′V
− 1
2

FF VFGV
− 1
2

GG is an invertible k × k matrix.

Weak factors:

 W ′l

0

+ψ∗


′

PM

V
− 12
RR

ιN


W ′V−

1
2

FF
dV

1
2
GG

0

+ϕ∗



 W ′l

0

+ψ∗



 W ′l

0

+ψ∗


′

M
V
− 12
RR

ιN


 W ′l

0

+ψ∗


.
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Supplementary Appendix.

Proof of Theorem 1. The least squares estimator of δ reads

δ̂ =
∑T

t=1 F̄tḠ
′
t

(∑T
t=1 ḠtḠ

′
t

)−1

and the F -statistic (times number of parameters tested) testing if the factors Gt have an effect

on Ft reads

F -stat = trace
[
V̂ −1
V V δ̂

(∑T
t=1 ḠtḠ

′
t

)
δ̂
′]
,

with V̂V V an estimator of the covariance of the residuals, V̂V V = 1
T−m−1

∑T
t=1(F̄t − δ̂Ḡt)(F̄t −

δ̂Ḡt)
′. Under Assumption 1 and since V̂V V →

p
VV V ,

1
T

∑T
t=1 ḠtḠ

′
t →
p
VGG, we have that

√
T δ̂ =

√
T
∑T

t=1

(
d√
T
Ḡt + V̄t

)
Ḡ′t

(∑T
t=1 ḠtḠ

′
t

)−1

=
(
d 1
T

∑T
t=1 ḠtḠ

′
t + 1√

T

∑T
t=1 V̄tḠ

′
t

)(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
d+ ψV G,

with 1√
T

∑T
t=1 V̄tḠ

′
t

(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
ψV G = V

1
2
V V ψ

∗
V GV

− 1
2

GG and ψ∗V G is a k ×m dimensional

random matrix whose elements are independently standard normally distributed,

F -stat = trace
[
V̂ −1
V V (
√
T δ̂)

(
1
T

∑T
t=1 ḠtḠ

′
t

)
(
√
T δ̂)′

]
→
d
trace [(d∗ + ψ∗V G)′(d∗ + ψ∗V G)] ∼ χ2(trace(d∗′d∗), km),

where d∗ = V
1
2
V V dV

− 1
2

GG and χ2(a, h) is a non-central χ2 distributed random variable with h

degrees of freedom and non-centrality parameter a.

Proof of Theorem 2. The least squares estimator B̂ reads

B̂ =
∑T

t=1 R̄tḠ
′
t

(∑T
t=1 ḠtḠ

′
t

)−1

.

Under the models in (2), (14) and Assumption 1, we can specify it as

B̂ =
∑T

t=1

(
β( d√

T
Ḡt + V̄t) + ε̄t

)
Ḡ′t

(∑T
t=1 ḠtḠ

′
t

)−1

= 1√
T

[
β
(
d( 1

T

∑T
t=1 ḠtḠ

′
t) + 1√

T

∑T
t=1 V̄tḠ

′
t

)
+ 1√

T

∑T
t=1 ε̄tḠ

′
t

] (
1
T

∑T
t=1 ḠtḠ

′
t

)−1

.

We now use that 1
T

∑T
t=1 ḠtḠ

′
t →
p
VGG,

1√
T

∑T
t=1 V̄tḠ

′
t

(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
ψV G = V

1
2
V V ψ

∗
V GV

− 1
2

GG ,

1√
T

∑T
t=1 εtḠ

′
t

(
1
T

∑T
t=1 ḠtḠ

′
t

)−1

→
d
ψεG = V

1
2
εεψ

∗
εGV

− 1
2

GG , and ψ
∗
V G and ψ

∗
εG are independent k×m

and N×m dimensional random variables whose elements are independently standard normally
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distributed. ψV G and ψεG are independent since Ft and εt are uncorrelated so the same applies

for Vt then as well since it is an element of Ft. Combining all elements, we obtain the limiting

behavior of B̂ : √
TB̂ →

d
β (d+ ψV G) + ψεG.

The Likelihood ratio statistic equals

LR = T
[
log(

∣∣∣Σ̃∣∣∣)− log(
∣∣∣Σ̂∣∣∣)]

= T
[
log(

∣∣∣Σ̃Σ̂−1
∣∣∣)]

= T
[
log(

∣∣∣IN + B̂
(

1
T−1

∑T
t=1 ḠtḠ

′
t

)
B̂′Σ̂−1

∣∣∣)]
where we used that the restricted covariance matrix estimator,

Σ̃ = 1
T−1

∑T
t=1 R̄tR̄

′
t

= 1
T−1

∑T
t=1(R̄t − B̂Ḡt)(R̄t − B̂Ḡt)

′ + B̂
(

1
T−1

∑T
t=1 ḠtḠ

′
t

)
B̂′

= Σ̂ + B̂
(

1
T−1

∑T
t=1 ḠtḠ

′
t

)
B̂′,

with Σ̂ = 1
T−1

∑T
t=1(R̄t − B̂Ḡt)(R̄t − B̂Ḡt)

′. Upon conducting a second order mean value ex-

pansion around log |IN |, the Likelihood ratio statistic can be approximated by

LR = T log(|IN |) + vec
[
B̂
(

1
T−1

∑T
t=1 ḠtḠ

′
t

)
B̂′Σ̂−1

]′
vec(IN) +Op(T

−2)

= trace
[
B̂
(

1
T−1

∑T
t=1 ḠtḠ

′
t

)
B̂′Σ̂−1

]
+Op(T

−2)

→
d

trace
[
(β (d+ ψV G) + ψεG)VGG(β (d+ ψV G) + ψεG)′V −1

RR

]
= trace [(d+ + ψ∗RG)′(d+ + ψ∗RG)]

∼ χ2(trace(d+′d+), Nm)

since 1
T

∑T
t=1 ḠtḠ

′
t →

p
VGG, Σ̂ →

p
VRR = βVFFβ

′ + Vεε, and we used that d+ = V
− 1
2

RR βdV
1
2
GG,

V
− 1
2

RR (βψV G + ψεG)V
1
2
GG = ψ∗RG with ψ

∗
RG a N ×m random matrix whose elements are indepen-

dently normally distributed, vec(A) is the column vectorization of the matrix A.
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