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Summary. A large number of exact inferential procedures in statistics and economet-

rics involve the sampling distribution of ratios of random variables. If the denominator

variable is positive, then tail probabilities of the ratio can be expressed as those of a

suitably defined difference of random variables. If in addition, the joint characteris-

tic function of numerator and denominator is known, then standard Fourier inversion

techniques can be used to reconstruct the distribution function from it. Most research

in this field has been based on this correspondence, but which breaks down when

both numerator and denominator are supported on the entire real line. The present

manuscript derives inversion formulae and saddlepoint approximations that remain

valid in this case, and reduce to known results when the denominator is almost surely

positive. Applications include the IV estimator of a structural parameter in a just iden-

tified equation.

Keywords: Characteristic Function, Inversion Formula, Saddlepoint Approxi-

mation, Simultaneous Equations, Instrumental Variables, Weak Instruments,

Bootstrap

1. Introduction

The distributions of many random variables of interest do not permit an analytic

representation. By contrast, their characteristic and moment generating functions

are often much more tractable. Results which express the distribution or density
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function in terms of these are commonly referred to as inversion formulae. They

typically involve unsolved integrals, which have to be evaluated numerically in cases

of interest.

In many cases, even the characteristic function is intractable, but the statistic

may have a stochastic representation in terms of random variables for which it is

readily available. The most common case, and the subject of this paper, is that of

a ratio. Many test statistics and estimators in econometrics are of this form. The

denominator of such ratios is typically related to some form of sample variance,

and hence positive. This situation is quite fortunate, because there exist inversion

formulae that express the density and distribution function of such a statistic in

terms of the joint characteristic function of numerator and denominator. There are,

however, important situations in which the quantity of interest is in the form of a

ratio of random variables that both take values on the entire real line. Gurland

(1948) has derived an inversion formula for this case, but its applicability is limited.

The present manuscript derives expressions that are more expedient, in that they

are amenable to numerical evaluation and lead to simple asymptotic expansions.

In fact, two results will be proven below. The first one shows that the standard

results for ratios with positive denominator apply more generally than previously

known. They are not, however, general enough to cover a number of situations

of interest, including our applications. Our second result, on the other hand, is.

The price that one has to pay is that it contains a double integral that must be

evaluated numerically. Even with modern computers, this severely diminishes its

usefulness for applications. We overcome this problem by providing a saddlepoint

approximation to both the density and distribution function of a ratio of random

variables. Saddlepoint approximations have been introduced to statistics by Daniels

(1954) and have found numerous applications since. We do not attempt to provide

a full bibliography here, but refer to the book-length treatment of Butler (2007)

instead. Daniels had already considered the case of ratios of random variables, but

his result is also limited to cases with positive denominator.
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One of our numerical examples concerns the two stage least squares estimator

of the structural parameter in a simultaneous equations model with one endoge-

nous regressor and one, possibly weak, external instrument. The distribution of

this estimator under normality has been studied intensively; see Richardson (1968),

Sawa (1969), Anderson and Sawa (1973), and Holly and Phillips (1979). The re-

alization that the asymptotic normality of the estimator is a poor approximation

to the true sampling distribution if the instruments are weak has spurred renewed

interest in the topic, as evidenced by the work of Nelson and Startz (1990a,b), Mad-

dala and Jeong (1992), Woglom (2001), and the papers by Hillier (2006), Forchini

(2006) and Phillips (2006), which comprise the entire ‘Miscellanea’ section of that

issue of Econometric Theory. Only few authors have considered the distribution

under non-Gaussianity. Knight (1986) discusses the case in which the error distri-

bution is expandable in an Edgeworth-type series, and Broda (2013) assumes that

the errors follow a multivariate generalized hyperbolic distribution. The results of

the present manuscript facilitate the computation of the density and distribution

functions under far more general assumptions. We give special attention to the

bootstrap distribution.

The remainder of the paper is organized as follows. Section 2 derives two novel

results concerning inversion formulae for ratios. Section 3 derives saddlepoint ap-

proximations for the density and distribution functions. Section 4 provides numer-

ical examples, including the bootstrap distribution of the two stage least squares

estimator. Section 5 concludes. Three appendices provide mathematical details.

2. Inversion Formulae for Ratios

We begin by recapitulating some known results from the literature. Consider a

random variable X and denote by FX(x) and ϕX(s), respectively, the associated

distribution and characteristic functions. Gurland (1948) and Gil-Pelaez (1951)

show that at every point of continuity of FX ,

FX(x) =
1

2
− 1

2π

∫ ∞
0

Im

[
e−isxϕX(s)

s
− eisxϕX(−s)

s

]
ds
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=
1

2
− 1

π

∫ ∞
0

Im
[
e−isxϕX(s)

]ds
s
. (1)

Care must be taken in interpreting the integral sign in (1). Wendel (1961) has

shown that depending on ϕX , the integral may fail to converge absolutely. The

weakest known condition for absolute convergence is

E[log(1 + |X|)] <∞,

as given in Rosén (1961). Consequently, Gil-Pelaez relied on Riemann integrals in

his derivation, and Gurland employed principal value integrals. Shephard (1991)

provides a multivariate generalization of (1). In the bivariate case, his result is

FX,Y (x, y) =
1

2

[
FX(x) + FY (y)

]
− 1

4

− 1

2π2

∫ ∞
0

∫ ∞
0

Re
[
e−isx−ityϕX,Y (s, t)− e−isx+ityϕX,Y (s,−t)

]
st

ds dt, (2)

provided the mean of (X,Y ) is finite and ϕX,Y (s, t) is absolutely integrable, which

implies that (X,Y ) is absolutely continuous. These conditions remove the need for

principal value integrals as in Gurland (1948).

We are interested in the probability density function (pdf) and and cumulative

distribution function (cdf) of R = X/Y , the ratio of two absolutely continuous

random variables. The standard approach is to express the pdf as

fR(r) =

∫ ∞
−∞
|y|fX,Y (ry, y)dy, (3)

where fX,Y (x, y) is the joint pdf of X and Y . The cdf of R can then be obtained

by integrating fR(r). Clearly this is only practical if fX,Y (x, y) is readily available.

If this is not the case, then the joint characteristic function of X and Y may nev-

ertheless be tractable. It is thus useful to express the pdf and cdf of R in terms of

ϕX,Y (s, t).

When Y is almost surely positive and r is not an atom of R, then it is straight-

forward to obtain the cdf of R = X/Y from the relation

FR(r) = P[R < r] = P[X < rY ] = P[X − rY < 0] = P[Wr < 0],
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where Wr = X−rY , and the subscript r in Wr will be suppressed below when there

is no source of confusion. Provided that E[log(1 + |X − rY |)] <∞, an application

of (1) shows that

FR(r) =
1

2
− 1

π

∫ ∞
0

Im [ϕW (s)]
ds

s

=
1

2
− 1

π

∫ ∞
0

Im [ϕX,Y (s,−rs)]ds
s
. (4)

Gurland (1948) derives a similar result using principal value integrals. If in addition,

the mean of (X,Y ) is finite, then ϕX,Y is differentiable. Let ϕ2(s, t) = ∂
∂tϕX,Y (s, t).

Provided that ϕ2(s,−rs) is absolutely integrable, then by dominated convergence,

the pdf of R is

fR(r) =
1

π

∫ ∞
0

Im[ϕ2(s,−rs)]ds. (5)

Geary (1944) was the first to demonstrate such a result. The case with Y negative

is treated analogously.

A more general expression is needed when both X and Y can take values on

the entire real line. One such result is given in Gurland (1948, Theorem 2; see also

Curtiss, 1941). Gurland shows that if 0 is not an atom of Y and FR is continuous

at r, then

FR(r) =
1

2
− 1

2π

∫ ∞
−∞

Im
[
ϕ+
X,Y (s,−rs) + ϕ−X,Y (−s, rs)

]
s

ds,

where

ϕ+
X,Y (s,−rs) =

∫ ∞
−∞

∫ ∞
0

eis(x−ry)f(x, y)dydx,

ϕ−X,Y (−s, rs) =

∫ ∞
−∞

∫ 0

−∞
e−is(x−ry)f(x, y)dydx,

and principal values are to be taken if an integral fails to converge absolutely. The

challenge in using this result is that explicit expressions for ϕ+
X,Y and ϕ−X,Y are

generally difficult to obtain. It is therefore preferable to express the pdf and cdf of

R in terms of ϕX,Y directly.
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We will derive two such results. The first one shows that (5) remains valid if

some linear combination of X and Y is almost surely positive or negative, that is,

if X and Y form a definite pair, defined as follows.

Definition 1 (Definite Pair). We call two real-valued random variables a

definite pair if ∃β ∈ {R ∪∞} : P[X − βY < 0] = δ, for δ ∈ {0, 1}.

Trivially, if X is positive with probability one, then X−βY is a positive random

variable for β = 0, but it is less apparent that two random variables can form a

definite pair even if both X and Y can take positive and negative values. The

following is a simple example. Let X = 2Z2
1 −Z2

2 and Y = Z2
1 − 2Z2

2 , where Z1 and

Z2 are independent standard Gaussian, so that W = X−rY = (2−r)Z2
1 +(2r−1)Z2

2 .

Then P[W < 0] = 0 for 1/2 ≤ r ≤ 2.

Our result is based on the following identity, which appears not to be well known

in the literature.

Lemma 1. If X and Y form a definite pair such that P[X − βY < 0] = δ for

δ ∈ {0, 1} and 0 is not an atom of Y , then

P[R < r] = 2δH(r − β) + (1− 2δ)
{
P[Y < 0] + sgn(r − β)P[W < 0]

}
,

where R = X/Y and H(·) is the Heaviside function.

Proof. Appendix C. 2

The following result follows at once.

Theorem 1. If X and Y form a definite pair such that P[X − βY < 0] = δ for

δ ∈ {0, 1}, 0 is an atom of neither Y nor W ≡ X − rY , E[log(1 + |Y |)] < ∞, and

E[log(1 + |W |)] <∞, then

FR(r) = H(r−β)− (1− 2δ)

π

∫ ∞
0

Im
[
ϕX,Y (0, s) + sgn(r−β)ϕX,Y (s,−rs)

]ds

s
. (6)

If in addition, Y has a finite mean and ϕ2(s,−rs) is absolutely integrable, then R

has a density and

fR(r) =
sgn(r − β)

π(2δ − 1)

∫ ∞
0

Im [ϕ2(s,−rs)] ds =

∣∣∣∣ 1π
∫ ∞

0
Im [ϕ2(s,−rs)] ds

∣∣∣∣ . (7)
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Proof. Observe that r is an atom of R if and only if 0 is an atom of W . For

the cdf, use (1) in Lemma 1, together with ϕW,Y (s, t) = ϕX,Y (s, t − rs). For the

pdf, finiteness of the mean guarantees the existence of ϕ2. The result follows by

dominated convergence, provided that ϕ2(s,−rs) is absolutely integrable. 2

Hence, provided that one takes the absolute value of the result, Geary’s formula

remains valid even if Y can take positive and negative values, as long as X and

Y form a definite pair. We remark that at a set of isolated points, (7) may differ

from F ′R(r). Consider the following example. Let X = Z2
1 and Y = Z1Z2, where Z1

and Z2 are independent standard Gaussian. It can readily be shown that (7) yields

fR(0) = 0 for R = X/Y = Z1/Z2, whereas F ′R(0) = 1/π.

Our second result provides general inversion formulae for ratios that remain valid

when (6) and (7) fail. We start from the following observation.

Lemma 2. If 0 is an atom of neither Y nor W ≡ X − rY , then

FR(r) = P[W < 0] + P[Y < 0]− 2P[W < 0, Y < 0]. (8)

Proof. Observe that r is an atom of R if and only if 0 is an atom of W . Hence

FR(r) = P
[
X

Y
< r

]
= P

[
X

Y
< r, Y < 0

]
+ P

[
X

Y
< r, Y > 0

]
= P [X > rY, Y < 0] + P [X < rY, Y > 0]

= P [W > 0, Y < 0] + P [W < 0, Y > 0]

= P[W < 0] + P[Y < 0]− 2P[W < 0, Y < 0] 2

We then have the following result.

Theorem 2. If (X,Y ) has a finite mean, ϕX,Y is absolutely integrable and 0 is

not an atom of W ≡ X − rY , then for |r| <∞,

FR(r) =
1

2
+

1

π2

∫ ∞
0

∫ ∞
0

Re [ϕX,Y (s, t− rs)− ϕX,Y (s,−t− rs)]
st

ds dt (9)

and

fR(r) =
1

π2

∫ ∞
0

∫ ∞
−∞

Re[ϕ2(s,−t− rs)]ds dt

t
(10)
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whenever this integral converges absolutely.

Proof. The assumptions imply that (W,Y ) has a finite mean, and that its

characteristic function ϕW,Y (s, t) = ϕX,Y (s, t − rs) is absolutely integrable. Hence

(2) applies. Combining it with (8) completes the proof for the cdf. Integrability of

ϕW,Y (s, t) ensures that R has a density. By dominated convergence,

fR(r) =
1

π2

∫ ∞
0

∫ ∞
0

Re [ϕ2(s,−t− rs)− ϕ2(s, t− rs)]
t

ds dt

whenever the integral is absolutely convergent. The result follows upon noting that

ϕX,Y (s, t) = ϕX,Y (−s,−t), so that −Re[ϕ2(s, t− rs)] = Re[ϕ2(−s,−t+ rs)]. 2

To see how (10) reduces to (7) when X and Y form a definite pair, assume that

r 6= β and rewrite (10) as

fR(r) = − 1

π2
Re

∫ ∞
0

∮ ∞
−∞

ϕ2(s, t− rs)dt

t
ds,

where the circled integral represents the Cauchy principal value. We consider the

case with δ = 1 and β < ∞; the other cases can be treated analogously. Make the

change of variables s 7→ s + t, t 7→ (r − β)t, so that the inner integrand becomes

fs(t) ≡ sgn(r − β)ϕ2(s + t,−sr − βt). Observe that ϕX,Y (s + t,−sr − βt) =

E[exp(isWr + itWβ)], where Wβ < 0 almost surely. This implies that for real

s and as a function of t, ϕX,Y (s + t,−sr − βt) (and hence fs(t)) is analytic for

Im t < 0. Consider a contour that consists of a line segment from −T to −1/T , a

small counterclockwise loop half way around the origin, another line segment from

1/T to T , and a large semicircle in the lower half of the complex plane back to

−T . The contour encloses no singularities, hence the integral along it is zero. As

T →∞, the integral along the large semicircle converges to zero. The integral along

the half loop around the origin is equal to minus one half the residue at the origin,

and hence ∮ ∞
−∞

fs(t)
dt

t
= iπfs(0).
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3. Saddlepoint Approximation

3.1. Pdf Approximation

In this section, we derive a saddlepoint approximation to the density of a ratio of

two random variables that do not necessarily form a definite pair. The first step is

to rewrite (10) in a form amenable to saddlepoint methods.

Suppose that X and Y have a joint density, and that their joint cumulant gen-

erating function (cgf) K(s, t) ≡ logE[exp(sX + tY )] converges on the open set

T 3 (0, 0). Let X̄ and Ȳ denote the mean of n independent copies of X and Y ,

respectively, and consider the ratio R ≡ X̄/Ȳ . From (8), the distribution function

of R is

FnR(r) = P[W̄ < 0] + P[Ȳ < 0]− 2P[W̄ < 0, Ȳ < 0], (11)

where W̄ = X̄ − rȲ . Our goal is to arrive at an expression for the density fnR(r)

by differentiation. We will therefore require an expression for the tail probabilities

appearing in (8), Fn
W̄

(w̄) and Fn
W̄ ,Ȳ

(w̄, ȳ), say. By a standard Laplace inversion

argument, the joint density of W̄ and Ȳ is

fnW̄ ,Ȳ (w̄, ȳ) =
( n

2πi

)2
∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
en(K(s,t−rs)−sw̄−tȳ)ds dt,

where c1 and c2 are such that (c1, c2 − rc1) ∈ T . Note that K(s, t− rs) is the joint

cgf of W̄ and Ȳ .

Choosing c1 < 0, c2 < 0 and integrating between −∞ and zero yields the orthant

probability

FnW̄ ,Ȳ (0, 0) =

(
1

2πi

)2 ∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
enK(s,t−rs) ds

s

dt

t
. (12)

Similarly, the marginal density of W̄ is

fnW̄ (w̄) =
n

2πi

∫ c3+i∞

c3−i∞
en(K(s,−rs)−sw̄)ds,

where c3 is such that (c3,−rc3) ∈ T . Choosing c3 < 0 and integrating between −∞

and zero yields

FnW̄ (0) = − 1

2πi

∫ c3+∞

c3−∞
enK(s,−rs) ds

s
. (13)
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Differentiating (11) therefore produces

fnR(r) = I1 + 2I2,

where

I1 =
n

2πi

∫ i∞

−i∞
enK(s,−rs)K2(s,−rs)ds, (14)

I2 =
1

2πi

∫ c2+i∞

c2−i∞

n

2πi

∫ i∞

−i∞
enK(s,t−rs)K2(s, t− rs)dsdt

t
, (15)

Ki(·, ·) denotes the derivative of the joint cgf with respect to its ith argument, and

we have set c1 = 0, which is permissible because differentiation has removed the

pole at s = 0. If c2 > 0, then the residue at the origin must be subtracted, which is

precisely I1. We can therefore write

fnR(r) = 2I2 − sgn(c2)I1, (0, c2) ∈ T \ (0, 0). (16)

We begin by deriving a saddlepoint approximation to I2. The plan is to apply a

standard Laplace approximation to the inner integral, and then approximate the in-

tegral in t by a saddlepoint approximation, modified as in Chester et al. (1957) and

Bleistein (1966) to accommodate the pole at the origin. This parallels Skovgaard’s

(1987) derivation of a saddlepoint approximation for conditional distribution func-

tions. The relevant integral in Skovgaard’s problem has a similar form; the essential

difference is the presence of the term involving K2(·, ·) in I2.

Choose a compact subsetR of the range of K1(s, t)/K2(s, t). Applying a standard

Laplace approximation to the integral in s yields

I2 =
( n

2π

)1/2 1

2πi

∫ c2+i∞

c2−i∞
enh(t)g0(t)

{
1 +O

(
n−1

)} dt

t
, (17)

where h(t) ≡ K(s̃, t− rs̃),

g0(t) =
K2(s̃, t− rs̃)√

c′rK′′(s̃, t− rs̃)cr
,

cr ≡ (1,−r)′, K′′(·, ·) = {Kij(·, ·)} denotes the Hessian of the cgf, and for each value

of t, the saddlepoint s̃ = s̃(t) solves

K1(s̃, t− rs̃)− rK2(s̃, t− rs̃) = 0. (18)
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We refer to s̃ as the inner saddlepoint.

In order to approximate the integral in (17), we will need the following result,

which is a special case of a theorem due to Bleistein (1966); for a simple derivation

see Broda (2012). We state the result as a lemma, with the notation adapted to

the current manuscript.

Lemma 3. If g0(t) and h(t) are real functions of t, analytic in a strip containing

c 6= 0 and the imaginary axis, and h(t) has a unique saddle point t̂r 6= 0 on the real

axis in the interior of this strip, then

1

2πi

∫ c+i∞

c−i∞
g0(t)enh(t) dt

t
= enh(0)g0(0)

(
1c>0 − Φ(ŵ

√
n)
)

+
enh(t̂r)

√
2πn

(
g0(t̂r)

û
− g0(0)

ŵ
+O

(
n−1

))
,

where Φ(·) is the standard normal cdf, ŵ ≡ sgn(t̂r)
√
−2
(
h(t̂r)− h(0)

)
, û ≡

t̂r

√
h′′(t̂r), and for each r, the saddlepoint t̂r solves h′(t̂r) = 0.

In order to apply this result to the problem at hand, we require h′(t) and h′′(t),

the first and second derivatives of h(t). By virtue of (18),

h′(t) = s̃′(t)[K1(s̃, t− rs̃)− rK2(s̃, t− rs̃)] + K2(s̃, t− rs̃) = K2(s̃, t− rs̃), (19)

where s̃′(t) denotes the derivative of s̃ with respect to t. This is easily found by

differentiating (18), which yields

s̃′(t) = −K12(s̃, t− rs̃)− rK22(s̃, t− rs̃)
c′rK′′(s̃, t− rs̃)cr

.

The second derivative evaluates to

h′′(t) = s̃′(t)[K12(s̃, t− rs̃)− rK22(s̃, t− rs̃)] + K22(s̃, t− rs̃)

= K22(s̃, t− rs̃)− [K12(s̃, t− rs̃)− rK22(s̃, t− rs̃)]2

c′rK′′(s̃, t− rs̃)cr

=
|K′′(s̃, t− rs̃)|

c′rK′′(s̃, t− rs̃)cr
.
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The saddlepoint t̂r = t̂r(s̃) is found by equating (19) to zero. Equivalently,

t̂r = t̂+ rŝ, where (ŝ, t̂) — the outer saddlepoint — solves the system

K′
(
ŝ, t̂
)
≡
[
K1(ŝ, t̂) K2(ŝ, t̂)

]′
= 0. (20)

In order to apply the lemma, we assume that t̂r 6= 0 (so that t̂ 6= −rŝ) for the

remainder of the proof; the other case will be dealt with separately. It is further

observed that (ŝ, t̂) is independent of r (so that this system needs only be solved

once for any given cgf), and that (20) implies that

g0(t̂r) =
K2(ŝ, t̂)√

c′rK′′(ŝ, t̂)cr
= 0.

Let s̃0 ≡ s̃(0), i.e., the inner saddlepoint corresponding to t = 0, and define

w̃0 ≡ sgn (s̃0)
√
−2K (s̃0,−rs̃0) and

g̃0 ≡ g0(0) =
K2(s̃0,−rs̃0)√

c′rK′′(s̃0,−rs̃0)cr
.

Then

I2 =
√
nφ(
√
nw̃0)g̃0

[
1c2>0 − Φ(

√
nŵ)− φ(

√
nŵ)√
nŵ

+O
(
n−1

)]
, (21)

where φ is the standard normal pdf.

It remains to approximate I1, but this is a straightforward exercise, as I1 is the

special case of the inner integral in I2 with t = 0. The arguments that led to (17)

therefore immediately yield

I1 =
√
nφ(
√
nw̃0)g̃0

(
1 +O

(
n−1

))
.

Combining the two approximations according to (16) produces the desired result.

Theorem 3. Suppose that X and Y have a joint density with respect to Lebesgue

measure on R2, and that their joint cgf K(s, t) ≡ logE[exp(sX + tY )] converges

on the open set T 3 (0, 0), with gradient K′(s, t) and Hessian K′′(s, t). Let X̄

and Ȳ denote the mean of n independent copies of X and Y , respectively. For
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r ∈ R, a compact subset of the range of K1(s, t)/K2(s, t), define the outer and

inner saddlepoints (ŝ, t̂) and s̃0 as the solutions to K′
(
ŝ, t̂
)

= 0 and

c′rK′ (s̃0,−rs̃0) = 0, (22)

respectively, where cr ≡ (1,−r)′. Then, provided that t̂ 6= −rŝ, the density of the

ratio R ≡ X̄/Ȳ is fnR(r) = f̂
(1)
n (r)

(
1 +O

(
n−1

))
, where

f̂ (1)
n (r) =

√
nφ(
√
nw̃0)g̃0

{
1− 2

[
Φ(
√
nŵ) +

φ(
√
nŵ)√
nŵ

]}
, (23)

g̃0 ≡
K2(s̃0,−rs̃0)√

c′rK′′(s̃0,−rs̃0)cr
,

w̃0 ≡ sgn (s̃0)
√
−2K (s̃0,−rs̃0), and

ŵ ≡ sgn
(
t̂+ rŝ

)√
−2
[
K
(
ŝ, t̂
)
−K (s̃0,−rs̃0)

]
.

Higher order approximations are provided in Appendix A. In particular, the second

order approximation is given in (37) and (42), and the third order approximation

is given in (47) and (48).

A few remarks are in order. First, the approximate density is always non-

negative. This is seen as follows. Consider the function f : R → R, x 7→ Φ(x) +

φ(x)/x. Then f(x) < 0, x < 0 and f(x) > 1, x > 0. This follows directly from

Gordon (1941, Eq. 7), who shows that for x > 0, Φ(−x)/φ(−x) < 1/x. Thus the

term in curly braces in (23) is greater than one if ŵ < 0 and smaller than minus

one if ŵ > 0. The result follows because g̃0 and ŵ have opposite signs, as shown in

Appendix C. Second, the term in front of the curly braces (and thus the approxima-

tion for I1) is the standard saddlepoint approximation derived in Daniels (1954) for

the case with P[Y < 0] = 0. One may therefore interpret the term in brackets as a

correction for cases in which this requirement fails. Indeed, if X and Y form a defi-

nite pair, then ŵ diverges to ±∞, and the two approximations coincide in absolute

value. Since the term in curly braces is always greater than unity, the correction

is, in general, upwards; hence using the absolute value of Daniels’s approximation

when it is not applicable will tend to underestimate the density. Third, it is seen
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that (23) is undefined when ŵ = 0, which happens whenever t̂ = −rŝ. This singu-

larity is, however, removable. Two cases can be distinguished: (i) µX ≡ E[X] 6= 0 or

µY ≡ E[Y ] 6= 0 (or both), so that ŝ, t̂ 6= 0. Then fn(r) has a removable singularity

at r∗ ≡ −t̂/ŝ, and the limiting value is derived in Appendix A as

f̂ (1)
n (r∗) =

√
2

π
φ(
√
nw̃0)

|K′′(ŝ, t̂)|1/2

c′r∗K′′(ŝ, t̂)cr∗
. (24)

The limiting values of the second and third order approximations are given in (43),

(46) and (49), (50), respectively. If, on the other hand, (ii) µX = µY = 0, then

ŝ = t̂ = 0. Consequently (23) is undefined for all r and should be replaced by the

limit

f̂ (1)
n (r) =

1

π

|Σ|1/2

c′rΣcr
,

where Σ ≡ K′′(0, 0) is the covariance matrix of (X,Y ). We note that in this case,

the accuracy of the approximation relative to the main term is only O
(
n−1/2

)
,

because in (21), the O(1) terms vanish between the curly braces. Furthermore,

comparison with the example below reveals that in this zero-means case, the density

is approximated by that of a ratio of two correlated normals with matching first and

second moments, which is correct to the order stated. The asymptotic distribution

in the non-zero mean case is quite different: suppose that µY 6= 0 and let λ ≡

µX/µY . It is a standard result (see, e.g. Fuller, 1990, Theorem 1.3.7) that
√
nµY (R−

λ)→ N(0, c′λΣcλ) in distribution. In approximation (23), the term in curly braces

tends to unity as n → ∞ for fixed r, so that the approximation will converge to

that derived in Daniels (1954), and hence ultimately to a Gaussian. The case with

µY = 0, µX 6= 0 can be treated by considering R−1. It can be verified longhand

that the saddlepoint approximation to the density of R−1, ĝ
(1)
n (r), say, obeys the

symmetry relation ĝ
(1)
n (r) = f̂

(1)
n (r−1)/r2.

Example 1 (Ratio of correlated normals). Suppose X and Y are jointly

Gaussian with respective means µX and µY , variances σ2
X and σ2

Y , and correlation

ρ. The density of R = X/Y has been found in Fieller (1932); see also Hinkley

(1969). The cgf of X and Y is K(s, t) = sµX + tµY + (s2σ2
X + 2stρσXσY + t2σ2

Y )/2.
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Applying Theorem 3 with n = 1, it is found that both saddlepoints are explicit in

terms of the parameters and given by

s̃0 =
rµY − µX
a2σ2

Xσ
2
Y

, ŝ =
µY ρσX − µXσY
σ2
XσY (1− ρ2)

, t̂ =
µXρσY − µY σX
σ2
Y σX(1− ρ2)

.

Defining

a ≡

√
r2

σ2
X

− 2rρ

σXσY
+

1

σ2
Y

and b ≡ rµX
σ2
X

− ρ(µX + rµY )

σXσY
+
µY
σ2
Y

,

the other relevant quantities are

g̃0 =
b

a3σXσY
, w̃0 =

rµY − µX
aσXσY

, and ŵ = − b√
(1− ρ2)a

.

Plugging in and rearranging, this is exactly the expression given in Fieller (1932)

and Hinkley (1969); in other words, the saddlepoint approximation is exact in this

case.

A final remark concerns the uniqueness of the approximation. By way of ex-

ample, consider a Cauchy random variable; that is, take n = 1, X = Z1, and

Y = Z2, where Z1 and Z2 are independent standard Gaussian. As shown above,

the saddlepoint approximation is exact in this case, so that f̂
(1)
n (r) = (π(1 + r2))−1.

Alternatively, one might take X = Z1Z2 and Y = Z2
2 with joint cgf K(s, t) =

−1/2 log(1 − 2s − t2), so that R = X/Y = Z1/Z2 as before. Now Y is almost

surely positive; thus X and Y form a definite pair and the approximation reduces

to f̂
(1)
n (r) = φ(w̃0)g̃0 = (

√
2π(1 + r2))−1, which is clearly different (albeit in agree-

ment after normalization). Apparently, different representations for the ratio can

result in different approximations. It would appear that in general, a choice had

to be made as to which representation to use. It is however quite rare that the

cumulant generating functions of both Z2 and Z2
2 are available, let alone tractable.

In fact, the latter only exists if the tails of Z2 are as least as thin as those of a

Gaussian, a requirement that fails even for the Exponential distribution.
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3.2. Cdf Approximation

While an approximation to the distribution function can always be obtained by

integrating (23), the ability to approximate the cdf of R directly is undoubtedly

of value. Equation (11) is a convenient starting point. Expressed in terms of

distribution functions, it states that

FnR(r) = FnW̄ (0) + FnȲ (0)− 2FnW̄ ,Ȳ (0, 0).

The inversion formulae for Fn
W̄ ,Ȳ

(w̄, ȳ) and Fn
W̄

(w̄) are repeated here for convenience:

FnW̄ ,Ȳ (0, 0) =

(
1

2πi

)2 ∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
enK(s,t−rs) ds

s

dt

t
, (12)

FnW̄ (0) =
i

2π

∫ c3+∞

c3−∞
enK(s,−rs) ds

s
, (13)

and, analogously,

FnȲ (0) =
i

2π

∫ c4+∞

c4−∞
enK(0,t) dt

t
, (0, c4) ∈ T . (25)

Each integral in (12), (13), and (25) will be treated separately. Ideally, one would

expand each integral in a uniform asymptotic expansion. For the latter two (one-

dimensional) integrals, this is a simple task. All that is required is an application of

Lemma 3. Doing so leads to the cdf approximation of Lugannani and Rice (1980).

For the two-dimensional integral in (12), matters are less straightforward. In order

to appreciate the difficulties involved, compare (12) and the bivariate integral (15)

whose uniform asymptotic expansion formed the basis for the pdf approximation

(23). The essential difference is the presence of the pole in the inner integrand.

Applying a standard Laplace approximation as in (17) would therefore result in an

expansion which is nonuniform in r as the saddlepoint crosses the pole. Instead,

the inner integral could be approximated by another application of Lemma 3; this

is the approach taken by Wang (1990a) in deriving a saddlepoint approximation for

bivariate distributions. Unfortunately, when applied to the present problem, the

approximation contains a term K(0, t̂ + rŝ) (wu0
in Wang’s notation). Depending

on the structure of the problem, (0, t̂+rŝ) may fall outside the convergence region T
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for some values of r, rendering the approximation invalid. Although not discussed

by Wang, this problem occurs not only in the present context, but more generally

in the approximation of a bivariate distribution function, the subject of his paper.

Kolassa and Li (2010) develop an alternative to Wang’s approximation which is also

applicable in higher dimensional problems, but it suffers from the same deficiency

(see also Li, 2009, in particular Eq. 3.2.3).

In order to avoid these problems, we approximate the integrals in (12), (13)

and (25) using an expression due to Kolassa (2003). After correcting for a typo,

Kolassa’s result, which is essentially a multivariate version of the cdf approximation

of Hauschildt (1969) and Robinson (1982), is as follows.

Theorem 4 (Kolassa, 2003). Suppose the d-dimensional random vector X

has a density and a joint cgf K(t) ≡ logE[exp{t′X}] with gradient K′(t), Hessian

K′′(t), and third order derivatives Kijk(t) ≡ ∂3/(∂ti∂tj∂tk)K(t), i, j, k ∈ {1, . . . , d}.

Choose a compact subset C of the range of K′(t). Let X denote the mean of n in-

dependent copies of X, and for fixed x̄ ∈ C, define the saddlepoint t̂ as the solution

to K′(t̂) = x̄. Then, provided that t̂ > 0,

P[X > x̄] = en(K̂−t̂′x̄)

{
e

nt̂′K̂′′ t̂
2

[
I(0, nK̂′′, t̂)

+
n

6

d∑
i=1

d∑
j=1

d∑
k=1

Kijk(t̂)I(ei + ej + ek, nK̂′′, t̂)

]
+O(n−1)

}
. (26)

Here, K̂ and K̂′′ denote the cgf and its Hessian evaluated at t̂, ej is a d-vector with

all components zero except for a 1 at position j, and, for Σ a positive definite matrix

and m = [m1, . . . ,md],

I(m,Σ, t̂) ≡ 1

(2πi)d

∫ t̂+i∞

t̂−i∞
e

t′Σt

2
−t′Σt̂

d∏
j=1

(tj − t̂j)mj

tj
dt. (27)

Applying Theorem 4 requires a means of evaluating the function I. Kolassa pro-

vides a recursive algorithm for this purpose, which expresses I in terms of the mul-

tivariate normal distribution and its derivatives. Recently, Broda and Kan (2013)
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have obtained a simpler recursion, which is also sufficiently general to allow eval-

uation of the terms required when (26) is expanded to higher order. Appendix B

presents the explicit expressions for the relevant cases when d = 1 and d = 2. Ko-

lassa defines the function I only for t̂ > 0; when some elements of t̂ are zero, it can

be defined as the appropriate limit. For our purposes, it will prove convenient to

also allow t̂j < 0 for some or all j. Let D = diag({dj}), where dj = 1 if t̂j ≥ 0 and

dj = −1 if t̂j < 0. Then the following relationship holds.

I(m,Σ, t̂) = I(m,DΣD,Dt̂)

d∏
j=1

d
mj+1
j . (28)

All elements of Dt̂ are nonnegative, so that the expressions in Appendix B apply.

If any component of t̂ is negative, say component j, then the approximation in

Theorem 4 is not applicable. In that case, Kolassa recommends defining Ȳ = DX̄

and ȳ = Dx̄ and exploiting the relationship P[X > x̄] = P[X−j > x̄−j ]− P[Y > ȳ].

Here a negative subscript on a vector denotes omission of the indicated component.

When applied to the present problem, the following result is obtained.

Theorem 5. Under the conditions of Theorem 3, FnR(r) = F̂
(1)
n (r) + O

(
n−1

)
,

where

F̂ (1)
n (r) ≡

(
H∗(s̃0)− P1

)(
1− 2H∗(t̂r)

)
+
(
H∗(ť0)− P2

)
×
(

1− 2H∗(ŝ)
)

+ 2
(
H∗(t̂r)H

∗(ŝ)− P3

)
,

P1 ≡ en[κ̃
(0)
0 +s̃20κ̃

(2)
0 /2]

[
I(0, nκ̃

(2)
0 , s̃0) + nκ̃

(3)
0 I(3, nκ̃

(2)
0 , s̃0)/6

]
P2 ≡ en[κ̌

(0)
0 +ť20κ̌

(2)
0 /2]

[
I(0, nκ̌

(2)
0 , ť0) + nκ̌

(3)
0 I(3, nκ̌

(2)
0 , ť0)/6

]
,

P3 ≡ en[κ̂(0,0)+t̂′K̂′′t̂/2]×[
I(0, nK̂, t̂r) +

n

6

3∑
j=0

(
3

j

)
κ̂(3−j,j)I([3− j, j], nK̂, t̂r)

]
,

H∗(s) ≡ 1s≥0, K̂ ≡ {κ̂(i,j)}, ť0 solves K2(0, ť0) = 0, s̃0 is as in (22), (ŝ, t̂) is as in

(20), t̂r ≡ t̂+ rŝ, t̂r ≡ (ŝ, t̂r), t̂ = (ŝ, t̂), K̂′′ ≡ K′′(ŝ, t̂), κ̌(j)
0 ≡ K2j (0, ť0),

κ̃
(j)
0 ≡

j∑
k=0

(
j

k

)
(−r)kK1j−k2k(s̃0,−rs̃0),
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κ̂(i,j) ≡
k∑
k=0

(
i+ j

k

)
(−r)kK1i+j−k2k(ŝ, t̂),

K1i2j (s, t) ≡ ∂i+jK(s, t)/∂si∂tj, and explicit expressions for evaluating the function

I are given in Appendix B.

Proof. Appendix C. 2

Similar to the pdf approximation, it can be verified that the cdf approximation in

Theorem 5 is exact if X and Y are jointly Gaussian. Higher order approximations

can be obtained by expanding the probabilities Pi in the theorem to higher order.

This is easy for the univariate quantities P1 and P2, for which Hauschildt (1969,

Eq. 1.4.25) provides the terms as far as n−2. Higher order expansions for P3 will be

considered in a companion paper by the same authors (Broda and Kan, 2013).

4. Examples

4.1. Ratio of Mixtures of Normals

Before we turn to our main application (which pertains to a discrete distribution),

we demonstrate the accuracy of the saddlepoint approximations to the pdf and

the cdf using a ratio of mixtures of Gaussian random variables. Besides being a

natural generalization of Example 1, this is a convenient choice, because the density

and distribution functions of this ratio can be evaluated analytically. This avoids

having to numerically evaluate the double integral in (7) for comparison with the

saddlepoint approximation.

Mixtures of normals form a very flexible family of distributions. We restrict

ourselves to two-component mixtures with unit variances. Specifically, let Xi and

Yi be independently distributed with respective densities

fX(x) = wXφ(x− µX,1) + (1− wX)φ(x− µX,2) and

fY (y) = wY φ(y − µY,1) + (1− wY )φ(y − µY,2).
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Let X̄ = n−1
∑n

i=1Xi and Ȳ = n−1
∑n

i=1 Yi. An n-fold convolution shows that the

density of
√
nX̄ is

f√nX̄(x) =

n∑
i=0

pX,iφ

(
x−

iµX,1 + (n− i)µX,2√
n

)
,

where pX,i =
(
n
i

)
wiX(1− wX)n−i. A similar expression holds for

√
nȲ . An applica-

tion of (3) yields the pdf of R = X̄/Ȳ as

fnR(r) =

n∑
i=0

n∑
j=0

pX,ipY,jg

(
r;
iµX,1 + (n− i)µX,2√

n
,
iµY,1 + (n− i)µY,2√

n

)
,

where pY,j =
(
n
j

)
wjY (1− wY )n−j ,

g(r;µ1, µ2) = φ

(
rµ2 − µ1√

1 + r2

)
rµ1 + µ2

(1 + r2)
3

2

{
1− 2

[
Φ(ŵ) +

φ(ŵ)

ŵ

]}
,

and ŵ = −(rµ1 + µ2)/
√

1 + r2. Note that g(r;µ1, µ2) is the pdf of Z1/Z2, a ratio

of two independent Gaussians with respective means µ1 and µ2 and unit variances.

In other words, R is distributed as a mixture of ratios of independent Gaussians.

Similarly, the cdf of R is

FnR(r) =
n∑
i=0

n∑
j=0

pX,ipY,jG

(
r;
iµX,1 + (n− i)µX,2√

n
,
iµY,1 + (n− i)µY,2√

n

)
,

where

G(r;µ1, µ2) = Φ

(
rµ2 − µ1√

1 + r2

)
+ Φ(−µ2)− 2Φ2

(
rµ2 − µ1√

1 + r2
,−µ2;− r√

1 + r2

)
is the cdf of Z1/Z2. Here Φ2(·, ·; ρ) denotes the cdf of a standard bivariate Gaussian

with correlation ρ.

For illustration, let µX,1 = −1, µX,2 = 4, µY,1 = −4, µY,2 = 14, wX = 0.2,

and wY = 0.8. Figure 1 shows the exact pdf and cdf of R for n = 1, 5, and 20,

together with their first and second order saddlepoint approximations. The second

order approximation for the cdf requires expanding P3 in Theorem 5 to second

order. This is done in Broda and Kan (2013). For the choice of parameters under

consideration, the pdf of R has several modes, making it a rather challenging target
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for approximation. This is particularly apparent for n = 1. As n increases, the

approximation improves as expected. It is seen that the second order approximation

offers little improvement in this example, for neither the pdf nor the cdf. There are,

however, situations in which it does. One example is the distribution of a ratio

of indefinite quadratic forms in normal random vectors. This is the subject of a

separate paper by the same authors.

4.2. The IV Estimator in a Just Identified Model

Consider the just identified simultaneous equations model with one endogenous

regressor,

y1 = y2β + Xγ + u, (29)

y2 = z1π + Xδ + v, (30)

where y1 ≡ (y1,1, . . . , y1,T )′, y2 ≡ (y2,1, . . . , y2,T )′, u ≡ (u1, . . . , uT )′, v ≡ (v1,

. . . , vT )′, X is a T ×k matrix of exogenous regressors, the T ×1 vector z1 represents

a non-stochastic instrument, [z1 X] has full column rank, andui
vi

 ∼
0,

 σ2
u σuv

σuv σ2
v

 .

Let MX ≡ I −X(X′X)−1X′ and define z ≡ MXz1. Then the IV estimator for β

can be written as

β̂ =
z′y1

z′y2
, (31)

and the associated estimation error B̂ ≡ β̂ − β is

B̂ =
z′u

πz′z + z′v
. (32)

The distribution of the estimator is invariant with respect to γ and δ, but depends

on the value of π, or more precisely, on the concentration parameter, defined as

µ2 ≡ π2

σ2
v

z′z.
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Fig. 1. Density and Distribution of a Ratio of Mixtures of Normals, with Parameters µX,1 =

−1, µX,2 = 4, µY,1 = −4, µY,2 = 14, wX = 0.2, and wY = 0.8.
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The concentration parameter determines the strength of the instruments. In the

strong instruments setting where π is O(1), the asymptotic distribution is Gaussian.

If π isO(n−1/2), then the instruments are termed weak, and the asymptotic distribu-

tion is that of a ratio of normals, see Staiger and Stock (1997). Several authors have

considered bootstrap inference in this setting; examples are Flores-Lagunes (2007),

Zhan (2010), and Davidson and MacKinnon (2008, 2010). In general, saddlepoint

approximations facilitate the (approximate) computation of bootstrap distributions

without the need for computationally expensive simulations. This has prompted a

number of authors to consider their application to such problems; early examples in-

clude Davison and Hinkley (1988), Daniels and Young (1991), DiCiccio et al. (1994),

and Jing et al. (1994). The results of the present paper extend the applicability of

the saddlepoint method to bootstrapping in the simultaneous equation model. The

fact that the cdf approximation is a continuous function of the parameter of interest

make it attractive for constructing confidence intervals by inverting a sequence of

tests.

Davidson and MacKinnon (2010) discuss several bootstrap schemes. We con-

sider what they refer to as the wild restricted efficient residual (WRE) bootstrap,

which they found to perform most favorably. In it, a bootstrap replication is ob-

tained from the resampled residuals (û� r, v̂� r), where r is a T × 1 vector of i.i.d.

Rademacher random variables and � denotes elementwise multiplication. Here, ût

are the residuals from the structural equation (29) under the null (that is, imposing

β = β0), and v̂t are the OLS residuals from the first stage regression (30). This sam-

pling scheme is designed to replicate any possible heteroscedasticity. Davidson and

MacKinnon scale ût by a factor
√
T/(T − k) and v̂t by

√
T/(T − k − 1) to match

the OLS variance estimates. In jointly sampling (ut, vt), any dependence between

the errors in the structural and reduced form equations, and hence the endogeneity,

is replicated. In the weak instrument setting, π, which enters the (bootstrap) distri-

bution of β̂, cannot be estimated consistently. Davidson and MacKinnon attempt

to mitigate this by using an estimator that is asymptotically equivalent to three
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stage least squares applied to the system (29) and (30). This estimator is more

efficient than the OLS estimator from the first stage regression (30).

Technically, the bootstrap distribution is discrete, and a continuity-corrected

version of the saddlepoint approximation would appear to be warranted, as discussed

in Daniels (1987) and Butler (2007, Sec. 1.2.3). We do not pursue this here because

the improvements afforded by such a modification are typically small in bootstrap

applications; see Davison and Hinkley (1988, Sec. 8), Wang (1990b, Sec. 2.2), and

DiCiccio et al. (1994, p. 285). Unlike Davidson and MacKinnon, we refrain from

studentization and resample the estimator directly. We require the joint cgf of z′u

and πz′z + z′v, given by

K(s, t) = tπz′z− T log(2) +

T∑
j=1

zj(sûj + tv̂j) + log
(

1 + e−2zj(sûj+tv̂j)
)
.

A numerical example will exemplify the virtues of the saddlepoint approximation.

We fix the sample size at T = 15 and set π = 1/2 and β = β0 = 0. The small

sample size allows us to evaluate the exact bootstrap cdf by enumerating all 2T

possible outcomes (recall that we have derived (9) under the assumption of absolute

continuity, whereas the bootstrap distribution is discrete). We use the notation T

rather than n because the summands in the numerator and denominator of our

statistic are not i.i.d. Instead, we apply the saddlepoint approximation formally

with n = 1. We nevertheless expect the approximation to improve as T grows

and the joint distribution of numerator and denominator converges to a Gaussian.

We draw the instrument from a uniform distribution and generate the structural

innovations ut from the Gaussian GARCH process σ2
t = ω + αu2

t−1 + βσ2
t−1 with

ω = 0.01, α = 0.059, and β = 0.94. The reduced form error is generated as

vt = ρut +
√

1− ρ2εt, where εt is generated by an independent GARCH process

with the same parameters. We include a constant, a time trend, and the indicator

1t>T/2 as exogenous regressors.

The bootstrap distribution is largely determined by π̂. In the data set we chose

for illustration, it is estimated at π̂ = 0.4. The concentration parameter is estimated
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as 0.49, which corresponds to rather weak instruments. Nevertheless, Figure 2

shows that the saddlepoint approximation tracks the exact bootstrap distribution

accurately, particularly in the tails. Also depicted is the weak instrument asymptotic

distribution, with nuisance parameters replaced by estimates. In this particular

example, it differs considerably from the bootstrap distribution. We remark that

for some data sets, the numerator and denominator of (32) can form a definite pair,

but they do not for the one under scrutiny here.
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Fig. 2. Wild bootstrap distribution of the IV estimator for the sample described in the text.

The right panel shows the relative error (F̂ − F )/min(F, 1− F ) in percent.

It is interesting to note that the IV estimator in the system (29) and (30) can

equivalently be written as

β̂ =
y′2Pzy1

y′2Pzy2
,

where Pz = z′(z′z)−1z. This renders the associated estimation error as

B̂ =
πz′u + v′Pzu

π2z′z + 2πz′v + v′Pzv
. (33)

The matrix Pz is positive semidefinite. Therefore the denominator in (33) is al-

most surely positive, and the bootstrap distribution could be approximated by the
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standard result of Daniels (1954) if the joint bootstrap cgf of πz′u + v′Pzu and

πz′z2 + 2πz′v + v′Pzv were tractable. Unfortunately this is not the case. To see

this, consider E[ev
′Pzv]. Unlike in the Gaussian case, one cannot use the spectral

theorem to reduce v′Pzv to a sum of independent random variables. Consequently,

computing E[ev
′Pzv] requires enumerating all 2T possible realizations for v, which

becomes infeasible quickly (and renders the use of the approximation moot).

5. Conclusion

Ratios of random variables play a vital role in statistics and econometrics. The

results of this paper facilitate the evaluation of their density and distribution func-

tions, even if both numerator and denominator are supported on the entire real

line. An important instance of such a random variable is the IV estimator in a

just identified system with one endogenous regressor. We have considered its wild

bootstrap distribution and demonstrated that the saddlepoint approximation is able

to reproduce it accurately. It will be interesting to investigate the size and power

properties of the procedure, as compared to resampling the studentized statistic by

simulation. Important extensions of the results of the present paper concern the

case of lattice variables, and the possibility of expanding P3 in Theorem 5 to higher

order. The latter is the subject of another paper by the same authors. Matlab code

for evaluating the expressions in the paper is available from the authors.
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A. Higher Order Terms for the Pdf Approximation

This appendix presents higher order approximations for the pdf. Let s̃ = s̃(t) be

the inner saddlepoint, that is, the solution to the equation

K1(s̃, t− rs̃) = rK2(s̃, t− rs̃).

Applying a standard Laplace approximation to the inner integral in (15) yields

n

2πi

∫ i∞

−i∞
enK(s,t−rs)K2(s, t− rs)ds =

√
n√
2π
enh(t)

m−1∑
j=0

gj(t)

nj
+O(n−m)

 , (34)

where h(t) ≡ K(s̃, t− rs̃). An explicit expression for gj(t) can be obtained by using

Eq. (103) of Rice (1968). It is given by

gj(t) =

2j∑
k=0

J̃k(t)

k!h̃2(t)
k+1

2

ãj,2j−k(t), (35)

where

h̃k(t) =
∂kK(s, t− rs)

∂sk

∣∣∣∣
s=s̃

=

k∑
j=0

(
k

j

)
(−r)jK1k−j2j (s̃, t− rs̃),

J̃k(t) =
∂kK2(s, t− rs)

∂sk

∣∣∣∣
s=s̃

=

k∑
j=0

(
k

j

)
(−r)jK1k−j2j+1(s̃, t− rs̃),

K1i2j (s, t) ≡ ∂i+jK(s, t)/∂si∂tj , and the coefficients ãi,j(t) satisfy

ãi,j(t) =

j∑
k=0

d̃k,j(t)(−2)i+k
(

1

2

)
i+k

,

with d̃i,j(t) obtained from the recurrence relation d̃0,0(t) = 1, d̃0,j(t) = 0, j ≥ 1, and

d̃i,j(t) =
1

i

j−i+1∑
k=1

h̃k+2(t)

(k + 2)!h̃2(t)
k+2

2

d̃i−1,j−k(t), j ≥ i ≥ 1.

Using (34), one has

I2 =

√
n√
2π

1

2πi

∫ c2+i∞

c2−i∞
enh(t)

m−1∑
j=0

gj(t)

nj
+O(n−m)

 dt

t
.
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Denote a typical term in the integral as

I2,j ≡
√
n√
2π

1

2πi

∫ c2+i∞

c2−i∞
enh(t)gj(t)

dt

t
.

Using the result from Bleistein (1966) and Rice (1968, Appendix F, by setting

λ = 0), I2,j can be approximated as

I2,j =

√
n√
2π
enh(0)

{[
1c2>0 − Φ(

√
nŵ)

]
gj(0) +

φ(
√
nŵ)√
n

[
m−1∑
k=0

pj,k
nk

+O(n−m)

]}
,

where t̂r ≡ t̂+ rŝ, ŵ ≡ sgn(t̂r)
√

2[h(0)− h(t̂r)], û ≡ t̂r
√
h′′(t̂r),

pj,k =

2k∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q

2 û2k+1−l
ak,l−q −

gj(0)(−2)k
(

1
2

)
k

ŵ2k+1
, (36)

and the coefficients ai,j are given by

ai,j =

j∑
k=0

dk,j(−2)i+k
(

1

2

)
i+k

,

with di,j obtained from the recurrence relation

d0,0 = 1, d0,j = 0, j ≥ 1, di,j =
1

i

j−i+1∑
k=1

θk+2di−1,j−k, j ≥ i ≥ 1.

Here θk = h(k)(t̂r)/[k!h′′(t̂r)
k

2 ]. Details of the derivation of this formula are available

upon request. Collecting the terms with like power of n, the mth order approxima-

tion for I2 is

I2 =
√
nφ(
√
nw̃0)

{[
1c2>0 − Φ(

√
nŵ)

]m−1∑
j=0

gj(0)

nj

+
φ(
√
nŵ)√
n

m−1∑
j=0

1

nj

j∑
k=0

pj−k,k +O(n−m)

}
.

Similarly, the mth order approximation for I1 is

I1 =
n

2πi

∫ i∞

−i∞
enK(s,−rs)K2(s,−rs)ds

=
√
nφ(
√
nw̃0)

m−1∑
j=0

gj(0)

nj
+O(n−m)

 .
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It follows that the mth order saddlepoint approximation for the pdf is

f̂ (m)
n (r) =

√
nφ(
√
nw̃0)

[1− 2Φ(
√
nŵ)]

m−1∑
j=0

gj(0)

nj
+

2φ(
√
nŵ)√
n

m−1∑
j=0

Aj
nj

 ,

where

Aj =

j∑
k=0

pj−k,k

=

j∑
k=0

2k∑
l=0

l∑
q=0

(−1)lg
(q)
j−k(t̂r)

q!h′′(t̂r)
q

2 û2k+1−l
ak,l−q −

j∑
k=0

gj−k(0)(−2)k
(

1
2

)
k

ŵ2k+1

=

j∑
k=0

2k∑
l=0

(−1)l

û2k+1−l bj,k,l −
j∑

k=0

gj−k(0)(−2)k
(

1
2

)
k

ŵ2k+1
,

and

bj,k,l =
l∑

q=0

g
(q)
j−k(t̂r)ak,l−q

q!h′′(t̂r)
q

2

.

The above expression for Aj is undefined when t̂r = 0 (i.e., when t̂ = −rŝ). In order

to obtain its limit as t̂r → 0, expand h in a Taylor series about t̂r. This yields

h(0)− h(t̂r) = −t̂rh′(t̂r) +
t̂2r
2
h′′(t̂r)−

t̂3r
3!
h′′′(t̂r) +

t̂4r
4!
h(4)(t̂r)− · · · .

Using the fact that h′(t̂r) = 0, one has

ŵ2 = 2[K(s̃0,−rs̃0)−K(ŝ, t̂)]

= 2[h(0)− h(t̂r)]

= 2

[
t̂2r
2!
h′′(t̂r)−

t̂3r
3!
h′′′(t̂r) +

t̂4r
4!
h(4)(t̂r)− · · ·

]
= 2

∞∑
j=2

(−1)jθj û
j .

Letting

Bj,k ≡
gj(0)(−2)k

(
1
2

)
k

ŵ2k+1
,

and using (36),

Bj,k =

2k∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q

2 û2k+1−l
ak,l−q − pj,k,
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Bj,k+1 =
2k+2∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q

2 û2k+3−l
ak+1,l−q − pj,k+1.

Using the fact that ŵ2Bj,k+1 = −(2k + 1)Bj,k, it follows that2
∞∑
j=2

(−1)jθj û
j

2k+2∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q

2 û2k+3−l
ak+1,l−q − pj,k+1


= −(2k + 1)

 2k∑
l=0

l∑
q=0

(−1)rg
(q)
j (t̂r)

q!h′′(t̂r)
q

2 û2k+1−l
ak,l−q − pj,k

 .
Comparing the constant term on both sides, pj,k can be expressed as

pj,k = − 2

2k + 1

2k+1∑
l=0

θ2k+3−l

l∑
q=0

g
(q)
j (t̂r)ak+1,l−q

q!h′′(t̂r)
q

2

.

Taking the limit,

lim
t̂r→0

pj,k = − 2

2k + 1

2k+1∑
l=0

θ̄2k+3−l

l∑
q=0

g
(q)
j (0)āk+1,l−q

q!h′′(0)
q

2

,

where θ̄j and āi,j are the values of θj and ai,j evaluated at t̂r = 0. It follows that

at r = r∗ ≡ −t̂/ŝ where t̂r = 0,

f̂ (m)
n (r∗) =

√
2

π
φ(
√
nw̃0)

m−1∑
j=0

Āj
nj
,

where

Āj ≡ lim
t̂r→0

Aj

= lim
t̂r→0

j∑
k=0

pj−k,k

= −
j∑

k=0

2

2k + 1

2k+1∑
l=0

θ̄2k+3−l

l∑
q=0

g
(q)
j−k(0)āk+1,l−q

q!h′′(0)
q

2

= −
j∑

k=0

2

2k + 1

2k+1∑
l=0

θ̄2k+3−lb̄j+1,k+1,l,

and b̄j+1,k+1,l is the value of bj+1,k+1,l evaluated at t̂r = 0. The following subsections

provide explicit expressions obtained by specializing these results to the first, second,

and third order cases.
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A.1. First Order Approximation

For m = 1 and t̂r 6= 0, using the fact that g0(t̂r) = 0 yields

A0 = p0,0 =
g0(t̂r)

û
− g0(0)

ŵ
= −g0(0)

ŵ
.

It follows that when r 6= r∗ (so that t̂r 6= 0),

f̂ (1)
n (r) =

√
nφ(
√
nw̃0)g0(0)

[
1− 2Φ(

√
nŵ)− 2φ(

√
nŵ)√
nŵ

]
,

which yields the expression in Theorem 3. Regarding the limit at t̂r = 0,

Ā0 = −θ̄3g0(0) +
g′0(0)

h′′(0)
1

2

=
g′0(0)

h′′(0)
1

2

=
h′′(0)

1

2

h̃2(0)
1

2

=
|K′′(ŝ, t̂)|

1

2

c′r∗K′′(ŝ, t̂)cr∗
.

It follows that at r = r∗,

f̂ (1)
n (r∗) =

√
2

π
φ(
√
nw̃0)

|K′′(ŝ, t̂)|
1

2

c′r∗K′′(ŝ, t̂)cr∗
,

which proves (24).

A.2. Second Order Approximation

For m = 2 and t̂r 6= 0, we have

f̂ (2)
n (r) = f̂ (1)

n (r) +
φ(
√
nw̃0)g1(0)√

n

[
1− 2Φ(

√
nŵ)

]
+

2φ(
√
nw̃0)φ(

√
nŵ)

n
A1,

(37)

where

A1 = p0,1 + p1,0

=
g1(t̂r)

û
− g′′0(t̂r)

2h′′(t̂r)û
+

3θ3g
′
0(t̂r)

h′′(t̂r)
1

2 û
+

g′0(t̂r)

h′′(t̂r)
1

2 û2
+
g0(0)

ŵ3
− g1(0)

ŵ
.

Writing g0(t) ≡ h′(t)/h̃2(t)
1

2 , it is easy to see that

g′0(t̂r) =
h′′(t̂r)

h̃2(t̂r)
1

2

and

g′′0(t̂r) =
h′′′(t̂r)

h̃2(t̂r)
1

2

− h′′(t̂r)h̃
′
2(t̂r)

h̃2(t̂r)
3

2

=
6θ3h

′′(t̂r)
3

2

h̃2(t̂r)
1

2

− h′′(t̂r)h̃
′
2(t̂r)

h̃2(t̂r)
3

2

.
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Using these expressions, one has that

g′′0(t̂r)

2h′′(t̂r)
− 3θ3g

′
0(t̂r)

h′′(t̂r)
1

2

= − h̃′2(t̂r)

2h̃2(t̂r)
3

2

. (38)

Using (35) and the fact that J̃0(t) = h′(t), g1(t) can be written as

g1(t) =

[
h̃4(t)

8h̃2(t)2
− 5h̃3(t)2

24h̃2(t)3

]
h′(t)

h̃2(t)
1

2

+
1

2h̃2(t)
3

2

[
h̃3(t)J̃1(t)

h̃2(t)
− J̃2(t)

]

=

[
h̃4(t)

8h̃2(t)2
− 5h̃3(t)2

24h̃2(t)3

]
h′(t)

h̃2(t)
1

2

− h̃′2(t)

2h̃2(t)
3

2

, (39)

where the last equality follows from the identity

h̃′k(t) = h̃k+1(t)s̃′(t) + J̃k(t) = − h̃k+1(t)J̃1(t)

h̃2(t)
+ J̃k(t), k ≥ 1. (40)

As h′(t̂r) = 0, g1(t̂r) reduces to

g1(t̂r) = − h̃′2(t̂r)

2h̃2(t̂r)
3

2

. (41)

Using (38) and (41), A1 can be simplified to

A1 =
g′0(t̂r)

h′′(t̂r)
1

2 û2
+
g0(0)

ŵ3
− g1(0)

ŵ
=

1

t̂2r |K′′(ŝ, t̂)|
1

2

+
g0(0)

ŵ3
− g1(0)

ŵ
. (42)

Regarding the limit at t̂r = 0,

f̂ (2)
n (r∗) =

√
2

π
φ(
√
nw̃0)

[
|K(ŝ, t̂)|

1

2

c′r∗K′′(ŝ, t̂)cr∗
+
Ā1

n

]
, (43)

where

Ā1 =

(
3θ̄4 −

15θ̄2
3

2

)
g′0(0)

h′′(0)
1

2

+
3θ̄3g

′′
0(0)

2h′′(0)
− g′′′0 (0)

6h′′(0)
3

2

− θ̄3g1(0) +
g′1(0)

h′′(0)
1

2

. (44)

Evaluating Ā1 requires explicit expressions for g′′′(t̂r), g
′
1(t̂r), h

′′′(t̂r) and h(4)(t̂r).

It is straightforward to show that

g′′′0 (t) =
h(4)(t)

h̃2(t)
1

2

− 3h′′′(t)h̃′2(t)

2h̃2(t)
3

2

+
9h′′(t)h̃′2(t)2

4h̃2(t)
5

2

− 3h′′(t)h̃′′2(t)

2h̃2(t)
3

2

+ h′(t)

[
−15h̃′2(t)3

8h̃2(t)
7

2

+
9h̃′2(t)h̃′′2(t)

4h̃2(t)
5

2

− h̃′′′2 (t)

2h̃2(t)
3

2

]
.
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Thus, again using the fact that h′(t̂r) = 0,

g′′′0 (t̂r) =
h(4)(t̂r)

h̃2(t̂r)
1

2

− 3h′′′(t̂r)h̃
′
2(t̂r)

2h̃2(t̂r)
3

2

+
9h′′(t̂r)h̃

′
2(t̂r)

2

4h̃2(t̂r)
5

2

− 3h′′(t̂r)h̃
′′
2(t̂r)

2h̃2(t̂r)
3

2

=
24θ4h

′′(t̂r)
2

h̃2(t̂r)
1

2

− 9θ3h
′′(t̂r)

3

2 h̃′2(t̂r)

h̃2(t̂r)
3

2

+
9h′′(t̂r)h̃

′
2(t̂r)

2

4h̃2(t̂r)
5

2

− 3h′′(t̂r)h̃
′′
2(t̂r)

2h̃2(t̂r)
3

2

,

where h̃′2(t̂r) and h̃′′2(t̂r) are obtained from (40), and are given by

h̃′2(t̂r) = J̃2(t̂r)−
h̃3(t̂r)J̃1(t̂r)

h̃2(t̂r)
,

h̃′′2(t̂r) = J̃ ′2(t̂r)−
h̃′3(t̂r)J̃1(t̂r)

h̃2(t̂r)
− h̃3(t̂r)J̃

′
1(t̂r)

h̃2(t̂r)
+
h̃3(t̂r)J̃1(t̂r)h̃

′
2(t̂r)

h̃2(t̂r)2
.

h̃′3(t̂r) can be obtained from (40), and the general expression for J̃ ′k(t) is

J̃ ′k(t) = − J̃k+1(t)J̃1(t)

h̃2(t)
+

k∑
j=0

(
k

j

)
(−r)jK1k−j2j+2(s̃, t− rs̃).

Differentiating (39) and using the fact that h′(t̂r) = 0 once more, it is found that

g′1(t̂r) =

[
h̃4(t)

8h̃2(t̂r)2
− 5h̃3(t̂r)

2

24h̃2(t̂r)3

]
h′′(t̂r)

h̃2(t̂r)
1

2

− h̃′′2(t̂r)

2h̃2(t̂r)
3

2

+
3h̃′2(t̂r)

2

4h̃2(t̂r)
5

2

. (45)

Regarding h′′′(t) and h(4)(t), using that h′′(t) = K22(s̃, t− rs̃)− [J̃1(t)2/h̃2(t)] yields

h′′′(t) = K222(s̃, t− rs̃) + [K122(s̃, t− rs̃)− rK222(s̃, t− rs̃)]s̃′(t)

− 2J̃1(t)J̃ ′1(t)

h̃2(t)
+
J̃1(t)2h̃′2(t)

h̃2(t)2

= K222(s̃, t− rs̃)− 3[K122(s̃, t− rs̃)− rK222(s̃, t− rs̃)] J̃1(t)

h̃2(t)

+
3J̃1(t)2J̃2(t)

h̃2(t)2
− J̃1(t)3h̃3(t)

h̃2(t)3

and

h(4)(t) = K24(s̃, t− rs̃)− 4[K123(s̃, t− rs̃)− rK24(s̃, t− rs̃)] J̃1(t)

h̃2(t)

+ 6[K1222(s̃, t− rs̃)− 2rK123(s̃, t− rs̃) + r2K24(s̃, t− rs̃)] J̃1(t)2

h̃2(t)2
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− 3[J̃ ′1(t)h̃2(t)− J̃1(t)h̃′2(t)]2

h̃2(t)3
− 4J̃1(t)3J̃3(t)

h̃2(t)3
+
J̃1(t)4h̃4(t)

h̃2(t)4
.

Setting t̂r = 0 yields

Ā1 =

[
3θ̄2

3 − 2θ̄4

2
+

h̃4(0)

8h̃2(0)2
− 5h̃3(0)2

24h̃2(0)3

]
|K(ŝ, t̂)|

1

2

c′r∗K′′(ŝ, t̂)cr∗
+
θ̄3h̃
′
2(0)

2h̃2(0)
3

2

− h̃′′2(0)

4h̃2(0)
3

2h′′(0)
1

2

+
3h̃′2(0)2

8h̃2(0)
5

2h′′(0)
1

2

.

(46)

A.3. Third Order Approximation

For m = 3 and t̂r 6= 0, we have

f̂ (3)
n (r) = f̂ (2)

n (r) +
φ(
√
nw̃0)g2(0)

n
3

2

[
1− 2Φ(

√
nŵ)

]
+

2φ(
√
nw̃0)φ(

√
nŵ)

n2
A2,

(47)

where

A2 = p2,0 + p1,1 + p0,2

=
g2(t̂r)

û
− g2(0)

ŵ
+
(a1,0

û3
− a1,1

û2
+
a1,2

û

)
g1(t̂r)

−
(a1,0

û2
− a1,1

û

) g′1(t̂r)

h′′(t̂r)
1

2

+
a1,0

û

g′′1(t̂r)

2h′′(t̂r)
+
g1(0)

ŵ3

−
(a2,0

û4
− a2,1

û3
+
a2,2

û2
− a2,3

û

) g′0(t̂r)

h′′(t̂r)
1

2

+
(a2,0

û3
− a2,1

û2
+
a2,2

û

) g′′0(t̂r)

2h′′(t̂r)
−
(a2,0

û2
− a2,1

û

) g′′′0 (t̂r)

6h′′(t̂r)
3

2

+
a2,0

û

g
(4)
0 (t̂r)

24h′′(t̂r)2
− 3g0(0)

ŵ5
.

Using (40) and the identity

2j∑
k=1

h̃k+1(t)

k!h̃2(t)
k+1

2

ãj,2j−k(t) = 0,

gj(t̂r) can be written as

gj(t̂r) =

2j∑
k=2

h̃′k(t̂r)

k!h̃2(t̂r)
k+1

2

ãj,2j−k(t̂r).
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Specifically,

g2(t̂r) =
ã2,2(t̂r)h̃

′
2(t̂r)

2h̃2(t̂r)
3

2

+
ã2,1(t̂r)h̃

′
3(t̂r)

6h̃2(t̂r)2
+
ã2,0(t̂r)h̃

′
4(t̂r)

24h̃2(t̂r)
5

2

=
35h̃3(t̂r)

2h̃′2(t̂r)− 20h̃2(t̂r)h3(t̂r)h̃
′
3(t̂r)

48h̃2(t̂r)
9

2

− 15h̃2(t̂r)h̃4(t̂r)h̃
′
2(t̂r) + 6h̃2(t̂r)

2h̃′4(t̂r)

48h̃2(t̂r)
9

2

.

After some simplification, it can be verified that the coefficient associated with 1/û

in A2 is zero. Therefore, A2 can be written as

A2 =
1

û2

([
3θ4 −

15θ2
3

2
+

h̃4(t̂r)

8h̃2(t̂r)2
− 5h̃3(t̂r)

2

24h̃2(t̂r)2

]
h′′(t̂r)

1

2

h̃2(t̂r)
1

2

− 3θ3h̃
′
2(t̂r)

2h̃2(t̂r)
3

2

+
h̃′′2(t̂r)

4h̃2(t̂r)
3

2h′′(t̂r)
1

2

− 3h̃′2(t̂r)
2

8h̃2(t̂r)
5

2h′′(t̂r)
1

2

)

− 1

û3

[
h̃′2(t̂r)

h̃2(t̂r)
3

2

+
6θ3h

′′(t̂r)
1

2

h̃2(t̂r)
1

2

]
− 3h̃′′2(t̂r)

1

2

û4h̃2(t̂r)
1

2

− g2(0)

ŵ
+
g1(0)

ŵ3
− 3g0(0)

ŵ5
.

(48)

Regarding the limit at t̂r = 0,

f̂ (3)
n (r∗) =

√
2

π
φ(
√
nw̃0)

[
|K(ŝ, t̂)|

1

2

c′r∗K′′(ŝ, t̂)cr∗
+
Ā1

n
+
Ā2

n2

]
, (49)

where

Ā2 =
g

(5)
0 (0)

40h′′(0)
5

2

− 5θ̄3g
(4)
0 (0)

8h′′(0)2
+

5(7θ̄2
3 − 2θ̄4)g′′′0 (0)

4h′′(0)
3

2

− 15(21θ̄3
3 − 14θ̄3θ̄4 + 2θ̄5)g′′0(0)

4h′′(0)

+
15(231θ̄4

3 − 252θ̄2
3 θ̄4 + 28θ̄2

4 + 56θ̄3θ̄5 − 8θ̄6)g′0(0)

8h′′(0)
1

2

+

(
3θ̄4 −

15θ̄2
3

2

)
g′1(0)

h′′(0)
1

2

+
3θ̄3g

′′
1(0)

2h′′(0)
− g′′′1 (0)

6h′′(0)
3

2

− θ̄3g2(0) +
g′2(0)

h′′(0)
1

2

.

(50)

Evaluating Ā2 requires explicit expressions for h(5)(t) and h(6)(t). These expressions

can be obtained by differentiating h(4)(t), but they are lengthy and hence omitted

here.
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B. Explicit Expressions for I in (27) for d = 1 and d = 2

The expressions below are valid if all elements of t̂ are nonnegative, which can

always be achieved by an application of (28). For d = 1, I(0, nK̂′′, t̂) = Φ(−ûn) and

I(3, nK̂′′, t̂) = (û2
n − 1)φ(ûn)− û3

nΦ(−ûn)(nK̂′′)−3/2,

where ûn ≡ t̂
√
nK̂′′. For d = 2, let ρ ≡ K̂12/

√
K̂11K̂22, t̃1 ≡

√
n
(√

K̂11t̂1 +

ρ
√
K̂22t̂2

)
, t̃2 ≡

√
n
(√

K̂22t̂1 + ρ
√
K̂11t̂1

)
, and define

J0 ≡ Φ2(−t̃1,−t̃2; ρ),

J1 ≡
φ(t̃2)√
nK̂22

Φ

(
− t̃1 − ρt̃2√

1− ρ2

)
,

J2 ≡
φ(t̃1)√
nK̂11

Φ

(
− t̃2 − ρt̃1√

1− ρ2

)
,

J3 ≡
φ2(t̃1, t̃2; ρ)

n
√
K̂11K̂22

,

where φ2(·, ·; ρ) and Φ2(·, ·; ρ) denote, respectively, the pdf and cdf of a standard

bivariate Gaussian with correlation ρ. The relevant functions can now be expressed

as

I([0, 0], nK̂′′, t̂) = J0,

I([3, 0], nK̂′′, t̂) = t̂21(J2 − t̂1J0)− (J2 + nK̂12k1)(nK̂11)−1,

I([2, 1], nK̂′′, t̂) = k1 + t̂1(J1 − t̂2J0),

I([1, 2], nK̂′′, t̂) = k2 + t̂1(J2 − t̂1J0),

I([0, 3], nK̂′′, t̂) = t̂22(J1 − t̂2J0)− (J1 + nK̂12k2)(nK̂22)−1,

where

k1 ≡

(
t̂1 −

K̂12

K̂11

t̂2

)
(t̂2J2 − J4) and k2 ≡

(
t̂2 −

K̂12

K̂22

t̂1

)
(t̂1J1 − J4).

C. Proofs

Proof (Lemma 1). Consider the case with P[X − βY < 0] = 0 first. The

result is trivial if β =∞ (i.e., Y is a positive or negative random variable). For the



On Distributions of Ratios 37

remainder of the proof, assume that β is finite. Writing

R =
X

Y
= R1 + β,

where R1 = (X − βY )/Y , it is seen that R < β (or R1 < 0) if and only if Y < 0, as

X−βY > 0. If r < β, then R < r (or R1 < r−β) if and only if (X−βY )/(r−β) <

Y < 0. Thus

P[R < r] = P[Y < 0]− P[Y < (X − βY )/(r − β)] = P[Y < 0]− P[X − rY < 0].

Similarly, if r > β, then R < r (or R1 < r − β) if and only if Y < 0 or Y >

(X − βY )/(r − β). Hence

P[R < r] = P[Y < 0] + P[Y > (X − βY )/(r − β)] = P[Y < 0] + P[X − rY < 0].

If P[X − βY < 0] = 1, define R = (−X)/(−Y ) and proceed as above. Combining

the two cases gives the result. 2

Proof (g̃0 and ŵ in (23) have opposite signs). First, note that as a func-

tion of r, both ŵ and K2(s̃0,−rs̃0) switch sign only at r = r∗. It is immediate that

ŵ crosses the abscissa from below if ŝ > 0 and from above otherwise. Regarding

K2(s̃0,−rs̃0), differentiate (22) with respect to r to obtain

s̃′0 ≡
d

dr
s̃0 =

s̃0[K12(s̃0,−rs̃0)− rK22(s̃0,−rs̃0)] + K2(s̃0,−rs̃0)

c′rK′′(s̃0,−rs̃0)cr
.

Using that limr→r∗ s̃
′
0 = ŝ[K̂12(ŝ, t̂)− r∗K̂22(ŝ, t̂)]/c′r∗K̂′′(ŝ, t̂)cr∗ and simplifying,

d

dr
K2(s̃0,−rs̃0)

∣∣∣∣
r=r∗

= −ŝ |K′′(ŝ, t̂)|
c′r∗K̂′′(ŝ, t̂)cr∗

,

so that K2(s̃0,−rs̃0) crosses the axis in the opposite direction as ŵ and consequently

has the opposite sign. 2

Proof (Proof of Theorem 5). We begin by approximating Fn
W̄

(0). The cgf

of W is K(s,−rs). Define s̃0 as in (22) and let

κ̃
(j)
0 ≡

∂j

∂sj
K(s,−rs)

∣∣∣∣
s=s̃0

=

j∑
k=0

(
j

k

)
(−r)kK1j−k2k(s̃0,−rs̃0).
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By Theorem 4, if s̃0 > 0, then P[W̄ > 0] = P1 +O
(
n−1

)
. If s̃0 < 0, the approxima-

tion is applied to −W̄ . The cgf of −W̄ is K(−s, rs), so that the signs on s̃0 and κ̃
(3)
0

are reversed, whereas κ̃
(0)
0 and κ̃

(2)
0 remain unaltered. Thus P[−W̄ > 0] = P[W̄ <

0] = −P1 +O
(
n−1

)
. Combining the two approximations yields

P[W̄ < 0] = H∗(s̃0)− P1 +O
(
n−1

)
, (51)

which can be verified to remain valid if s̃0 = 0. A similar derivation shows that

P[Ȳ < 0] = H∗(ť0)− P2 +O
(
n−1

)
, (52)

where ť0 solves K2(0, ť0) = 0. Finally, define (ŝ, t̂) as in (20) and let t̂r ≡ t̂ + rŝ as

before. Assume for the moment that ŝ > 0 and t̂r > 0. The joint cgf of (W,Y ) is

K(s, t− rs). The saddlepoint is t̂r ≡ (ŝ, t̂r). Let t̂ ≡ (ŝ, t̂), K̂′′ ≡ K′′(ŝ, t̂),

κ̂(i,j) ≡ ∂i+j

∂si∂tj
K(s, t− rs)

∣∣∣∣
s=ŝ, t=t̂r

=
k∑
k=0

(
i+ j

k

)
(−r)kK1i+j−k2k(ŝ, t̂),

and K̂ ≡ K′′W,Y (ŝ, t̂r) =
[
κ̂(1,1) κ̂(1,2)

κ̂(1,2) κ̂(2,2)

]
. Simplification shows that t̂′rK̂t̂r = t̂′K̂′′t̂. By

Theorem 4, P[W̄ > 0, Ȳ > 0] = P3 +O
(
n−1

)
, so that

P[W̄ < 0, Ȳ < 0] = P[W̄ < 0] + P[Ȳ < 0] + P3 − 1 +O
(
n−1

)
, ŝ, t̂r > 0. (53)

Next, assume that ŝ > 0 and t̂r < 0. Applying Theorem 4 to (W,−Y ) switches

the sign on t̂r, the off-diagonal elements of K, κ̂(3−j,j) for odd j, and, by equation

(28), on Îi,j for even j, but leaves κ̂(0,0) and t̂′K̂′′t̂ unaltered. Consequently, P[W̄ >

0,−Ȳ > 0] = P[W̄ > 0, Ȳ < 0] = −P3 +O
(
n−1

)
, so that

P[W̄ < 0, Ȳ < 0] = P[Ȳ < 0] + P3, ŝ > 0, t̂r < 0. (54)

Now assume that ŝ < 0 and t̂r > 0. Applying Theorem 4 to (−W,Y ) switches the

sign on ŝ, the off-diagonal elements of K, κ̂(3−j,j) for even j, and Îi,j for even i,

but leaves κ̂(0,0) and t̂′K̂′′t̂ unaltered. Consequently, P[−W̄ > 0, Ȳ > 0] = P[W̄ <

0, Ȳ > 0] = −P3 +O
(
n−1

)
, so that

P[W̄ < 0, Ȳ < 0] = P[W̄ < 0] + P3, ŝ < 0, t̂r > 0. (55)
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Finally, if both ŝ < 0 and t̂r < 0, applying Theorem 4 to (−W,−Y ) switches the

sign on both ŝ and t̂r, κ̂
(3−j,j) for all j, and Îi,j if i+ j is odd, but leaves κ̂(0,0), K,

and t̂′K̂′′t̂ unaltered. Thus

P[−W̄ > 0,−Ȳ > 0] = P[W̄ < 0, Ȳ < 0] = P3 +O
(
n−1

)
, ŝ, t̂r < 0. (56)

Combining (53) to (56) yields

P[W̄ < 0, Ȳ < 0] = H∗(t̂r)P[W̄ < 0] +H∗(ŝ)P[Ȳ < 0]

+ P3 −H∗(t̂r)H∗(ŝ) +O
(
n−1

)
,

which, together with (11) and upon replacing P(W̄ < 0) and P(Ȳ < 0) with their

respective approximations in (51) and (52), gives the result. We remark that it is

tempting to replace 1−2H∗(·) with − sgn(·), but a careful analysis shows that only

as stated is the result valid if any of ŝ or t̂r is zero. 2
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