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Abstract

This paper considers estimation of Panel Vectors Autoregressive Models of order 1 (PVAR(1)) with
possible cross-sectional heteroscedasticity in the error terms. We focus on fixed T consistent esti-
mation methods in First Differences (FD) with additional strictly exogenous regressors. Additional
results for the Panel FD OLS estimator and the FDLS type estimator of Han and Phillips (2010) are
provided. In the covariance stationary case it is shown that the univariate moment conditions of the
latter estimator are violated for general parameter matrices in the multivariate case. Furthermore, we
simplify the analysis of Binder, Hsiao, and Pesaran (2005) by providing additional analytical results
and extend the original model by taking into account possible cross-sectional heteroscedasticity and
presence of strictly exogenous regressors. We show that in the three wave panel the log-likelihood
function of the unrestricted TML estimator might violate the global identification assumption. The
finite-sample performance of the analyzed methods is investigated in a Monte Carlo study.

Keywords: Dynamic Panel Data, Maximum Likelihood, Bias Correction, Fixed T Consistency,
Monte Carlo Simulation.

JEL: C13, C33.

1. Introduction

When the feedback and interdependency between dependent variables and covariates is of par-
ticular interest, multivariate dynamic panel data models might arise as a natural modeling strategy.
For example, particular policy measures can be seen as a response to the past evolution of the target
quantity, meaning that the reduced form of two variables can be modeled by means of a Panel VAR
(PVAR) model. In this paper we aim at providing a thorough analysis of the performance of fixed T
consistent estimation techniques for PVARX(1) model based on observations in first differences. We
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will mainly focus on situations when the number of time periods is assumed to be relatively small,
while the number of cross-section units is large.

The estimation of univariate dynamic panel data models and the incidental parameter problem of
the ML estimators have received a lot of attention in the last three decades, see Nickell (1981), and
Kiviet (1995) among others. However, a similar analysis for multivariate panel data models was not
covered and investigated in detail. Main exceptions are papers by Holtz-Eakin et al. (1988), Hahn
and Kuersteiner (2002), Binder, Hsiao, and Pesaran (2005, hereafter BHP) and Hayakawa (2013)
presenting theoretical results for linear PVAR models.

Up to date most of the empirical papers in the field tend to use panel VAR methods for long
cross-country panels, rather than short micro panels. For empirical examples of PVAR models for mi-
croeconomic panels, see Arellano (2003b, pp.116-120), Ericsson and Irandoust (2004), Koutsomanoli-
Filippaki and Mamatzakis (2009) among others'.

Because of the inconsistency of the Fixed effects (FE, ML) estimator, the estimation of dynamic
panel data (DPD) models has been mainly concentrated within the GMM framework, with the version
of the Arellano and Bond (1991) estimator and estimators of Arellano and Bover (1995), Blundell and
Bond (1998), Ahn and Schmidt (1995) and Ahn and Schmidt (1997). However, Monte Carlo studies
have revealed that the method of moments (MM) based estimators might be subject to substantial
finite-sample biases, see Kiviet (1995), Alonso-Borrego and Arellano (1999) and BHP. Moreover,
the finite sample properties are highly dependent on the particular choice of moment conditions
imposed and/or weighting matrix used. These potentially unattractive finite sample properties of
the GMM estimators have led to the recent interest in likelihood-based methods, that are corrected
for incidental parameter bias. In this paper the ML estimator based on the likelihood function of
the first differences of Hsiao et al. (2002), BHP and Kruiniger (2008) is analyzed

Monte Carlo results presented in BHP suggest that the Transformed likelihood based estimation
developed in that paper outperforms the GMM based methods in terms of both finite sample bias
and RMSE. However, the analysis performed there is limited in terms of both the methods analyzed
and Monte Carlo designs considered. In particular, they did not consider cases where the models
are stable, but the initial condition is not mean and/or covariance stationary. Furthermore, the
Monte Carlo analysis was limited to situations where error terms are homoscedastic both in time
and in the cross-section dimension, leaving the empirically relevant cases of heteroscedastic error
terms unaddressed. We address both issues in the Monte Carlo designs presented in Section 5.

We aim to contribute to the literature in multiple ways. First of all, we show that the multivariate
analogue of the FDOLS estimator of Han and Phillips (2010) is consistent only over a restricted
parameter set. Secondly, we prove asymptotic normality of the TML estimator for models with
cross-sectional heteroscedasticity and mean non-stationarity. Furthermore, we show that in the
three wave panel the log-likelihood function of the unrestricted TML estimator can violate the global
identification condition. Finally, the extensive Monte Carlo study expands the finite sample results
available in the literature to cases with possible non-stationary initial conditions and cross-sectional
heteroscedasticity.

The paper is structured as follows. In Section 2 we briefly present the model analyzed. Theoretical
results for the FD and Transformed Maximum Likelihood estimators under different assumptions of
the model are presented in Section 3. We continue in Section 4 with discussion about properties of

! Juessen and Linnemann (2010) provide a summary of empirical applications of PVAR with long panels.



the TML estimator when cross-sectional and/or time-series heteroscedasticity is present. In Section
5 we analyze finite sample performance of estimators considered in the paper by means of a Monte
Carlo analysis. Finally, we conclude in Section 6.

Here we briefly discuss notation. Bold upper-case Greek letters are used to denote the original
parameters, i.e. {@, X, ¥}, while the lower-case Greek letters {¢, 0,1} will denote vec () (vech ()
for symmetric matrices) of corresponding parameters, in the univariate setup corresponding parame-
ters will be denoted by {¢, o2, 1%}. We use p(A) to denote the spectral radius? of a matrix A € R™*".
The commutation matrix K, ; is defined such that for any [a x b] matrix A, vec(A’) = K, vec(A).
The duplication matrix D,, is defined such that for symmetric [a x a] matrix vec A = D,, vech A.
We define 9, = (1/T) Y.}, 9is 1 and similarly g; := (1/T) >, yi,. We will use # to indicate
variables after Within Group transformation (for example y;; = y;+ — ¥;), while & will be used for
variables after a “quasi-averaging” transformation®. For further details regarding the notation used
in this paper, see Abadir and Magnus (2002).

2. The Model

In this paper we consider the following PVAR(1) specification:
yi,t:ni_’_@yi,t—l—'—ei,h izl,...,N7 tzl,...,T, (21)

where y,; is an [m x 1] vector, @ is an [m x m| matrix of parameters to be estimated, n; is an [m x 1]
vector of fixed effects and €;; is an [m x 1] vector of innovations independent across 7, with zero mean
and constant covariance matrix 3.4 If we set m = 1 the model reduces to the linear DPD model
with AR(1) dynamics.

For the prototypical example of (2.1) consider the following bivariate model (see e.g. Arellano
(2003a), Bun and Kiviet (2006) and Hayakawa and Pesaran (2012)):

Yig = Nyi +VYii—1 + BTig + Uiy,
Tit = Ngi + OYir—1 + pTig—1 + Viy,

where E[u; v;4] = 0y, This system has the following reduced form:

( Yit ) _ < Nyi + BNxi ) 4 ( v+ B¢ Bp ) ( Yit—1 ) " ( Uit + Buiy ) (2.2)
Tit Nai ¢ P Tit—1 Vit ' '

Depending on the parameter values, the process {z;;}{_, can be either exogenous, weakly exogenous
or endogenous. The process {z;;}, is strictly exogenous if ¢ = ¢,, = 0, weakly exogenous if
0w = 0, and endogenous if o,, # 0.

For many empirically relevant applications the PVAR(1) model specification might be too re-
strictive and incomplete. In that case analysis is then extended to PVARX(1) model by including
strictly exogenous variables in the model:

yiﬂg :ni‘i‘fpyi,t—l“f'Bwi,t_"ei,t; 1= ]_,...,N, t = 1,...,T, (23)

?p(A) := max;(|\;]), where \;’s are (possibly complex) eigenvalues of a matrix A.
39, =9 —yio and Y- = Yi — Yio-
4Later in the paper we present the detailed analysis when X is not constant over cross-sectional units.



where ;; is a [k X 1] vector of strictly exogenous regressors and B is an [m X k| parameter matrix.
Note that the model considered in Han and Phillips (2010) substantially differs from (2.3). They
consider a model specification with lags of x;; and restricted parameters. Their specification can be
accommodated within (2.3) only if the so-called common factor restrictions on B are imposed.

3. Theoretical results

At first we define several notions that will be primarily used for the model without exogenous
regressors.

Definition 1 (Effect stationary initial condition). The initial condition vy, is said to be effect
stationary if:

Elyiolmi] = (In — ®o) ', (3.1)

implying that the process {y;:}I_, generated by (2.1) is effect stationary, Ely;|n;] = E[y;o|m;], for
p(Po) < 1.

Note that effect non-stationarity does not imply that the process {y;}l_, is mean non-stationary,
i.e. E[yi:] # E[yio]. The latter property of the process crucially depends on E[n,].

Definition 2 (Common dynamics). The individual heterogeneity n; is said to satisfy the common
dynamics assumption if:

M = (I, — Po) ;. (3.2)

Under the common dynamics assumption, individual heterogeneity drops from the model in the
pure unit root case @y = I,,,. Without this assumption the process {y;}._, has a discontinuity at
I,,, as at this point the unrestricted process is a Multivariate Random Walk with drift. Combination
of two notions results in E[y, o|p;] = p;, note that this term is well defined for p(®,) = 1.

Definition 3 (Extensibility). The DGP satisfies extensibility condition if:
DXy = (P X))

We call this condition “Extensibility” as in many situations it is a sufficient one to extend uni-
variate conclusions to general m > 1 situations. One of the important implications of this condition
is that:

o0
> B E0(B) = (I, — D) To = Zo(I, — 7).
t=0
Clearly, this condition is highly restrictive and uncommon in the literature, but as we will see from

theoretical point of view this condition can be of a particular interest.
At first we will summarize the assumptions regarding the DGP used in this paper.

(A.1) The disturbances €;;,t < T, are i.i.d. for all ¢ with finite fourth moment, with Ele;;] = 0,,
and Ele; i€} ] = 1(s=1) X0, X being a p.d. matrix.

(A.2) The initial deviation u; o := y;0 — p; is i.i.d. across cross-sectional units, with E[u; o] = o
with variance ¥, o, where n; = (I,,, — ®o)p; and a finite fourth moment.



(A.3) The following moment restrictions are satisfied: E[u; €}, = Oy, for all i and t = {1,...,T}.
(A.4) N — oo, but T is fixed.

(A.5) Regressors (when present in the model) x;, are strictly exogenous Ele; @} .| = Opxr, Vt, 5 =
{1,...,T} with a finite fourth moment.

(A.6) Matrix @, € R™*™ satisfies p(Po) < 1.

(A.6)™ Denote by k a [dim(k) x 1] vector of unknown coefficients. k € I, where I" is a compact
subset of R%™(*) and K € interior(I").

We will denote the set of Assumptions (A.1)-(A.6) by SA and by SA* set when in addition the
(A.6)* assumption is satisfied. SA assumptions are used to establish results for the Panel FD
estimators, while SA* are used to study asymptotic properties of the TML estimator. Assumption
(A.6) is needed to ensure that the Hessian of the TML estimator has a full rank® in the model
without regressors. On the other hand, in Assumption (A.6)* we implicitly extend the parameter
space for @ to satisfy the usual compactness assumption so that both consistency and asymptotic
normality can be proved directly, assuming the model is globally identified over the parameter space.
However, as we will show in Section 3.3.3, the extended parameter space (beyond stationary region)
might violate the global identification condition. The dimension of & is left unspecified and will
depend on a particular parametetrization used for estimation (with/without exogenous regressors,
with/without mean term, etc. Note that in Assumption (A.2) no restrictions are imposed on p;
directly, but rather on the initial deviation w; o, that in principle can be linear or non-linear function
of p;.

In Section 4.1 we will consider the situation where we allow for individual specific ¥, o and X
matrices.

3.1. OLS in first differences

Original model in levels contains individuals effects that we remove from the model using the
first-difference transformation. In that case the model specification is given by:

Ayi,t = SpAyi’t,l -+ BA:EM + AEi’t, t= 2, . ,T,i = 1, ceey N.

Before analyzing the FDOLS estimator for models with strictly exogenous regressors we define
the following variables:

Ay 1 -
P Z775—1 P /
e ol IS <N ZZAwAw) ,

Yw =plim Sy, Y := (P, B).

N—oo

°See e.g. Bond et al. (2005) for the univariate proof that the Hessian matrix of the TML estimator is singular at
the unit root.



Then if we pool observations for all £ and i, we can define the pooled panel first difference estimator
(FDOLS) as:

T =S5 (% 3 Awi,tAy;t> (3.3)

Similarly to the conventional Fixed Effects (FE) transformation, the FD transformation introduces
correlation between the explanatory variable Ay, ;_; and the modified error terms Aeg; ;. As a result
this estimator is not fixed T consistent®, with the asymptotic bias derived in Proposition 3.1.

Proposition 3.1. Let {y;;}, be generated by (2.3) and Assumptions SA be satisfied. Then:

plim (¥ = 1) = —(T — 1) ;7! ( offm ) . (3.4)

N—oo

It is easy to see that the FDOLS is numerically equal to the FE estimator with 7" = 2, thus the
asymptotic bias is identical as well. Furthermore, as long as T" > 2 the bias correction approaches
as in Kiviet (1995) and Bun and Carree (2005) are readily available for this estimator.

Algorithm 1 Iterative Bias-correction procedure FDOLS

1. For k =1 to k™
2. Given Y%=V compute Y®) =7 + (T — 1) X(Y*—Y)8,";
3. If |Y™®) — r*=1|| < ¢, stop. For some pre-specified matrix norm || - ||.

To initialize iterations we set ¥(© = 7", and 3(X* 1) is defined as:

5T) = W_l) 3 (Z (Ayss — TAwi,) (Agis — tmw,,t)’> | (3.5)

=1 t=2

Asymptotic normality of the estimator can be proved by treating it as the solution of the following
estimating equations:

N T
1
Z Z <<Ayz,t — TAwi,t)A'wgit + §(Ayz,t — TAwi,t)(Ayi,t - TA’lUi,tyS) = Omx(k+m)7 (36)

i=1 t=2
where S = [I,, O,k

Proposition 3.2. Let Assumptions SA be satisfied and the iterative procedure in Algorithm 1 has
the unique fized point. Then:

VN (Dipc — Vo) == Npp (0,2, F), (3.7)

6 Actually not even large T consistent.



where:

1
FoVIRVL V= (a0 L) = ke + Kogem) (8'508) @ L),

N
1
X = plim — vec D); (vec ;)
Nooo N Zl e
T 1
0, = ((Ayi,t - TOwi,t)w;,t + §(Ayi,t - TOwi,t>(Ayi,t - To'wi’t)’S)
t=2

Consistency and asymptotic normality of this estimator crucially depend on existence of the
unique fixed point”. As a result, similarly to the estimator of Bun and Carree (2005) for some pop-
ulation parameter values, this estimator might fail to converge. These finite sample issues stimulate
us to look for other analytical bias-correction procedures that have desirable finite sample proper-
ties irrespective of the DGP parameter values and initialization y;. Some special cases for model
without exogenous regressors are discussed in the next section.

3.1.1. No exogenous regressors
One special case can be obtained if the initial condition y; is covariance stationary, as in this
case My is given by:

(T - 1) (20 + (Im - diO) (io: @82@(@6)’) (Im - ¢0),) :

t=0

In the univariate case it is well known that covariance stationarity of y;( is a sufficient condition
to obtain an analytical bias-corrected estimator. However, it is no longer sufficient for m > 1 and
general matrices @, and Xy. One special case for analytical bias-corrected estimator is obtained for
(®o, X)) that satisfy the “extensibility” condition, so that:

Sw=2(T—-1)3y (I, +®,)"".
The resulting fixed T consistent estimator for @ is then given by:
Prprs = 2Pa + L.

It can be similarly shown that this estimator is fixed T consistent if &, = I,,, and the common
dynamics assumption is satisfied. For m = 1, this estimator was analyzed by Han and Phillips (2010),
who named it the First Difference Least-Squares (FDLS) estimator, and proved its consistency and
asymptotic normality under various assumptions. It should be noted that the same estimator (or
the moment conditions it is based on) has been studied earlier in the DPD literature, see Bond et al.
(2005), Ramalho (2005), Hayakawa (2007), Kruiniger (2007).

"Note that asymptotic distribution of the estimator depends upon the choice of 2‘(@) Different asymptotic
distribution is obtained if instead of using the X' estimator in (3.5) we can opt for the standard infeasible ML

estimator: 2(T) = ﬁ Zf\;l (ZZ:l (gi,t - @Qu_l - B:ii,t) (gi,t — dsgi,t—l — B:ii,t)/)-



Proposition 3.3 (Asymptotic Normality FDLS). Let DGP for covariance stationary y;; satisfy
extensibility condition together with conditions of Proposition 3.1. Then:

VN (éFDLS - ¢0) i> Nm(0m273)7 (38)
where:
N
1 -1 o1 ’
§ =2y ©oI,)X(X, ®1I,), X:=plim— ZvecDi (vec ;)"
N—o0 N i1

T
0, = (Z(QAyi,t + (I — SPO)Ayi,tl)Ay;,t—l) :

t=2

Proof of Proposition 3.3 follows directly as an application of the standard Lindeberg-Lévy CLT
(see e.g. White (2000) for a general reference on asymptotic results).

Note that if the extensibility condition is violated the multivariate analogue of the FDLS estimator
is not fixed T consistent. In that case the moment conditions similar to Han and Phillips (2010)
can be considered. However, for general &, and Xy matrices these moment conditions are non-linear
in @ and require numerical optimization making this approach undesirable, because the closed-form
estimator is the main advantage of FDLS estimator as compared to the TML estimator that we
describe in the next section.

3.2. Transformed MLE

3.2.1. General results

Independently Hsiao et al. (2002) and Kruiniger (2002)® suggested to build the likelihood for
a transformation of the original data, such that after the transformation the likelihood function is
free from incidental parameters. In particular, the likelihood function for the first differences was
analyzed. BHP extended the univariate analysis of Hsiao et al. (2002)/Kruiniger (2002) to the
multivariate case, allowing for possible cointegration between endogenous regressors.

In order to estimate (2.3) using the TML estimator of BHP we need to fully describe the density
function f(Ay;|AX;). The only thing that needs to be specified and not imposed directly by (2.3)
is E[Ay;1|AX;], where AX; is a [Tk x 1] vector of stacked exogenous variables. Conditional mean
assumption is actually stronger than necessary for consistency and asymptotic normality of the TML
estimator so we follow the approach of Hsiao et al. (2002) and consider the following linear projection
for the first observation:

(TX.D) Proj|Ay;1|AX,] = BAx;, + GAX].

Here we define vector AX! = (1, AX!)’, while the projection residual is denoted by w;;. Before
proceeding define by AE

AE; = (I, — Ly @ ®)AY; — (Ir @ B)AX; — vec (GAX] €},

8Later appeared in Kruiniger (2008).



where AY; = vec (Ay; 1, ..., Ay;r). Then assuming (conditional) joint normality of the error terms
and the initial observation, the log-likelihood function (up to a constant) is of the following form:

N N 1 o«
f(f{,) = —3 log ’2A7-| - 3 tr <(2A3—) N Z AEzAEz/> ) (39)
i=1

where k = (¢',0',%¢')" and ¥ = E[v;1v; ,]. The XA, matrix has a block tridiagonal structure, with
— X on first lower and upper off-diagonal blocks, and 23 on all but first (1,1) diagonal blocks. The
first (1,1) block is set to ¥, which takes into account the fact that the variance of v, ; is treated as
a free parameter.

The log-likelihood function in (3.9) depends on a fixed number of parameters, and satisfies the
usual regularity conditions. Therefore under SA* the maximizer of this log-likelihood function is
consistent with limiting normal distribution as N tends to infinity. In its general form, the asymptotic
variance-covariance matrix of this estimator has a “sandwich” form. As it was discussed in BHP the
“sandwich” form allows for root-N consistent inference, when the normality assumption is violated.

We will show below that conditioning on exogenous variables in first differences leads to concen-
trated log-likelihood functions in ¢ only.

Theorem 3.1. Let Assumptions SA* and (TX.D) be satisfied. Then the log-likelihood function of
BHP for model (2.3) can be rewritten as:

N T
N 1 _ - - - - .
l(k) = Y ((T — 1) log [X] + tr (2_1N Z Z(yi,t — DY — BZiy)(Yiy — PYir—1 — Bmi,t>,>>
i=1 t=1
N T &
iy (108; O] + tr (Q_IN > (i — GAX] — & — Ba;) (i — GAX] — Bij;_ — Bfii),)> ,
=1

where k = (¢', 0,0, vec B',vecG")', @ :== X + T(W — X) and &; = T; — x; .
Proof. In Appendix A.1.2. n

The main conclusion of Theorem 3.1 is that in the case where ¥ is unrestricted, both the score
and the Hessian matrix of the log-likelihood function have closed form expressions. This fact is
advantageous in terms of both analytical tractability and numerical optimization. That implies
that there is mo need to use involved algorithms of BHP in order to compute the inverse and the
determinant of the block tridiagonal matrix ¥a,. In order to simplify the notation and save some
space, we introduce a new variable:

(k) =9 — GAX! — &3, — Bi;.

Remark 3.1. The log-likelihood function in Theorem 3.1 can be expressed in terms of the log-
likelihood function for observations in levels £§(k) (Within group part), as:

) = 5(R) - (mg O] +tr (@% Zsim)&(n)')) ,

where the additional (Between group) term corrects for the fixed T inconsistency of the standard
ML (FE) estimator. It is just a generalization of Kruiniger (2008) and Han and Phillips (2013)
conclusions to PVARX(1) with respect to the functional form of ¢(k).

9



Using the definition of &;(k) variable’, we can formulate the following result.

Proposition 3.4. Let Assumptions SA* be satisfied. Then the score vector associated with the
log-likelihood function of Theorem 3.1 is given by'®

vec (2’1 S S (G — PG — Bz;,)y;,  +TO™ >y 52’(’@)?/';‘—)
D/ vec (%(2_1(ZN(K,) —(T-1)X)xh)

V(k) = D;, vec (3(@7 (My(r) — ©)071)) . (3.10)
vec (2_1 sz\il Zthl@z‘,t — @Y1 — Bz, + re-! Zfil fz(“>w;>
vee (TO1 Y, &i(k)AX] )

Furthermore, the score vector satisfies the usual reqularity condition:
E[V(#o)] = 0.
Proof. In Appendix A.1.3. O

The dimension of the kK vector is substantial especially for moderate values of m and k, hence
from numerical point of view, maximization with respect to all parameters might not be appealing.
In what follows we shall show that it is possible to construct the concentrated log-likelihood function
with respect to the ¢ parameter only'!. To simplify further notation we define the following variables
(assuming N > T'k):

N N -1
Y = i — <Z g,-AXj’) (Z AXJAXJ’) AX],
i=1

i=1

N N -1
Vi =i — (Z yi_AXj’> (Z AX] AXJ) AX]
=1 =1

N T N T -1
. ~  ~/ ~ ~1 ~
Yit - E E Yit; g E €Lt L 4 Tt
=1 t=1 i=1 t=1
T N T -1
. o~ ~ ~/ ~ ~ ~
Yit—1 = Yit—1 — E E Yit—1%; 4 E E Lt 4 X
=1 t=1 i=1 t=1

Using the newly defined variables the concentrated log-likelihood function for k¢ = {¢',6’,0'} is
given by:

N 1 N T
gc(nC)ZC_E((T_1)10g|2’+tr <2 N;Z yzt_gpyzt 1)(%1& dsyzt 1)))

— g <108§ O] + tr (91% Z(?Jz — Dy ) (Y — @?)i)l>> :

9Some other variables used in this section are defined in Appendix A.1, so we will not repeat it here.

10See also derivations in Mutl (2009).

HThe key observation for this result is that, although B parameter enters both tr (-) components, #; belongs to the
column space spanned by AX;r . Hence after concentrating out G, B is no longer present in the second term.

10



Continuing we can concentrate out both X and @ to obtain the concentrated log-likelihood function
for the ¢ parameter vector only.

N(T —1) )
C o . . o . 12
4 (¢) C— 5 log NT—l ;:1 ;1 (yz,t fﬁyz,t_ﬁ(yz,t 452%,15—1)
T N
. /
- —log N E_ - Py, ) (v — Pyi-)'|

However, as there is no closed-form solution for §i5, numerical routines should be used to maximize this
concentrated likelihood function'?. The corresponding FOC can be easily derived from Proposition
3.4 for the unrestricted model.

Remark 3.2. In the Online Appendix Juodis (2014) we derive the exact expression for the empirical
Hessian matrix HY (K,T MLE) and show that this matrix as well as its inverse are not block-diagonal,
hence the TMLE of & and X (as well as @) are not asymptotically independent!3. Non block-
diagonality of the covariance matrix is very important and needs to be taken into account while
performing Impulse Response analysis, see Cao and Sun (2011) for further details.

3.3. PVAR(1)/AR(1) specific results

3.3.1. Likelihood function with imposed covariance-stationarity
If we assume that w;( come from the stationary distribution then the log-likelihood function is a
function of two parameters K’ = {¢, o} only with @ being of the following form:

©=X+T(I <Z@t ) (I, — ®)'.

Kruiniger (2008) presents asymptotic results for the univariate version of this estimator under a
range of assumptions regarding types of convergence. Results for PVAR(1) can be proved similarly.

Proposition 3.5. Let Assumptions SA* be satisfied. Then the score vector associated with the
log-likelihood function of Theorem 3.1 under covariance stationarity is given by'*

< vec (W (k")) + 8] vec <N<@— (My (=) ~ ©)07)
D, (vec(%(z—%ZN(nm)—(T—l)z)z ) + Sy vee (B (@ My(k cov>—@>g—111))>)

V(HCOU) —

12For PVAR(1) model with spatial dependence of autoregressive type as in Mutl (2009), both @ and X' parameters
can be concentrated out but not the spatial dependence parameter .

13This result is in sharp contrast to the pure time series VAR’s where it can be easily shown that estimates are
indeed asymptotically independent.

Note that there is a mistake in the derivations of the S; term in Mutl (2009).
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Here we define 3 := vec I, and:

=3 Zzyzt Py, l)yzt , +TO™ Z — PyY; yz—

Sy :=-T [( ’D;n[Imz — QP @ I,
X (L @ Ky @1y) [Ip2 @ (5 — @) + (5 — @) @ L2
+T[(0'D L2 — P 0P ") @ [(In — )@ (I, — D)) [I2 — P2 D] '] ]
X (I, @ K, @I,) [I2 @ ¢+ ¢ @ L2,

Sy =T +T[IL,—®) (I, —P)] I - PR

Proof. In Appendix A.1.3. O

It can be easily seen that E[V(k{*)] # 0.m24(1/2)(m+1)m, unless the initial condition is indeed
covariance stationary (that is in contrast with the conclusion of Proposition 3.4 for the unrestricted
estimator). Thus violation of the covariance stationarity implies that the K estimator is inconsis-
tent. If covariance stationarity of w;( is imposed, it is no longer possible to construct the concen-
trated log-likelihood for ¢ parameter only and a joint optimization over whole kK“? parameter vector
is required!®.

Remark 3.3. In their article, Han and Phillips (2013) illustrate possible problems of the TML
estimator with imposed covariance stationarity near unity. They observe that the log-likelihood
function can be ill-behaved and bimodal close to ¢g = 1. In this paper, we do not investigate this
possibility of possible bimodality for PVAR model as the behaviour of the log-likelihood function
close to unity is not of prime interest for us. Furthermore, the bimodality in Han and Phillips (2013)

is not related with bimodality of the unrestricted TML estimator as it will be discussed in Section
3.3.3.

3.3.2. Misspecification of the mean parameter

Let us assume that a researcher does not acknowledge the fact that data in differences is mean
non-stationary and just considers the log-likelihood function as in Subsection 3.2 without « parameter
in it. In this section we denote by & = (¢',&”,0')’

é=c¢o, =09 0=0q+Tvech[(I, — Po)E[u,ou,o)(I, — Po)].
Using this notation we have the following result.

Proposition 3.6. Let Assumptions SA** be satisfied, except that E[u;o] = vo # Oy. Then the

. N . .. . . . ~ D .
estimator Kk obtained as a mazimizer of (3.9) is consistent in a sense that K — k. Furthermore,
under these assumptions:

VN (k — &) -5 N(0,By1),

15Unless the parameter space for @ and X is such that the “extensibility condition” is satisfied, see univariate results
in Han and Phillips (2013).
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where:
By = ’H[lfﬂt[l,

. I :
H@—]\}I_I)IIOOE |:—NH (K))} ,and Ig— lim E

Proof. Observe that we would obtain the same plimy_, ., +¢(k) (without constant term) if ;o were
i.i.d multivariate normal with Elu;o] = 0,, and finite E[u,;ou;,]. Hence the identification and
consequently “consistency” follows similarly as in Proposition 4.1. The standard Taylor expansion
based proof for asymptotic normality applies as the expected value of score at & is zero. See Kruiniger
(2002) for more detailed proof as well as Appendix A.2. O

Remark 3.4. Note that we can think of « as a (restricted) time effect for Ay; ;. However, there
is a major difference as compared to the model with general time effects (not caused by E[u,]).
Unlike the v parameter the non-inclusion of unrestricted time effects results in inconsistency of the
TML estimator, as in the latter case non-inclusion of time effects results in the misspecification of
(2.3). On the other hand, the assumption on E[u;o] is not a part of the model (2.3). As it was
already discussed in BHP, inclusion of time effects is equivalent to cross-sectional demeaning of all
Ay, ; beforehand.

3.3.8. Identification and bimodality issues for three-wave panels

In this section we study the behavior of the log-likelihood function for the TML estimator with an
unrestricted initial condition. Consistency and asymptotic normality of any ML estimator, among
others, requires the assumption that the expected log-likelihood function has the unique maximum
at the true value. As we shall prove in this section, this condition is possibly violated for the TML
estimator with unrestricted initial condition for 7" = 2. For the ease of exposition we consider
univariate setup as in Hsiao et al. (2002).
Recall that based on the definition of @ in Theorem 3.1, the true value of 6% is given by:

8(2) = ‘78 +T(1 - ¢O)Q¢Z,07 @Di,o = E[U?o]
We define two new variables that we will use in further discussions extensively:

1

B 2
bp ::2(33m 1) + oo, x::1+(1_¢0)2¢3,0/‘73:§(i_%""l)’

where p stands for “pseudo”. This notation will become obvious from the following theorem:

Theorem 3.2. Let assumptions SA* be satisfied. Then for all pg € (—1;1) and T = 2 the following
holds:
plim £°(¢g) = plim £°(¢,) (3.12)

N—oo N—oo

for any value of wi,o > 0. Consequently the expected log-likelihood function has two local mazxima at:

Ko = (¢07‘7(2)a(93)/7

Kp = (¢p, 02,02) .
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Several remarks regarding the results in Theorem 3.2 are worth mentioning!®. First of all, instead
of proving the result using the concentrated log-likelihood function, it can be proved similarly by
considering the expected log-likelihood function directly. Secondly, if the parameter space is expressed
in terms of kK = (¢, 02,1)’, then the value of 1 in both sets is equal to (o2 + 62)/2.

Remark 3.5. While deriving the result we assumed that E[u; o] = 0 and + is not included in the
parameter set. If E[u; o] # 0 then two cases are possible: a) misspecified log-likelihood function as in
Section 3.3.2 is considered and the result remains unchanged b) 7 parameter is included in the set of
parameters and as a result Theorem 3.2 does not hold true. For intuition observe that in the latter
case the trivial estimator ¢ = (321, Ay,2)/ (3o~ Ayi,) is consistent. However, the key observation
for this special case is that the model does not contain time effects. If model does contain time
effects, qAb is no longer consistent and consequentially the main result of this section is still valid after
cross-sectional demeaning of the data.

Remark 3.6. In the covariance stationary case it can be shown that the conclusion of Theorem 3.2
extends to PVAR(1) if the extensibility condition is satisfied and in addition @, is symmetric. In
particular, this condition is satisfied by all three stationary designs in BHP with the pseudo value
equal to the identity matrix.

To get more intuition about the problem at hand we slightly rewrite the expression for ¢y,
assuming without loss of generality that for some o > 0 we can rewrite @Z)io as:

7%
1-d5

Consecutively we can rewrite ¢, in the following way:

2
¢u,0 =«

(@2 + ¢o)(1 — ) + 2

%= A a+oll—a)

(3.13)

From here it can be easily seen that then the pseudo-true value ¢, is equal to unity for covariance
stationary initialization (o = 1). Furthermore, we can consider other special cases:

|¢0|§1,04:O—>¢p:¢0,
|¢0|§1;a€<0,1)—>¢0<¢p<1.

In Monte Carlo simulations researchers usually impose restrictions on the parameter space. In most
cases ¢ is restricted to the stable region (—1; 1), e.g. Hsiao et al. (2002). However, as it is clearly seen
from Figure 2 (and derivations above) a stable region restriction on ¢ does not solve the bimodality
issue and ¢, can lie in this interval.

By construction the concentrated log-likelihood function is a sum of two quasi-concave functions
with maxima at different points (Within Group and Between Group parts), bimodality does not
disappear for 7' > 2. Thus by adding these two terms we end-up having function with possibly two
modes, with the first one being of order O,(NT') while the second one of order O,(N). This different
order of magnitude explains why for larger values of T the WG mode determines the shape of the
whole function. To illustrate the problem described we present several figures of plimy_, . £°(¢) for
stationary initial conditions. The behavior of the concentrated log-likelihood function in Figures

14
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Figure 1: Concentrated asymptotic log-likelihood function. In all figures the first mode is at the corresponding true
value ¢g, while the second mode is located at ¢ = 1. The initial observation is from covariance stationary distribution.
The dashed line represents the WG part of the log-likelihood function, while the dotted line the BG part. The solid
line, which stands for the log-likelihood function is a sum of dashed and dotted lines.

Density

30l ——TMLE —

Figure 2: Histogram for the TMLE estimator with T = 3, ¢ = 0.5, N = 250 and 10,000 MC replications. The
initial observation is from covariance stationary distribution. Starting values for all iterations are set to ¢(©) =
{0.0,0.1,...,1.5}. No non-negativity restrictions imposed.

15



la, 1b and 1c is in line with the theoretical results provided earlier. Note that once ¢ is approaching
unity the log-likelihood function becomes flatter and flatter between the two points.

We can see from Figure 1c that once T is substantially bigger than 2, the “true value” mode
starts to dominate the “pseudo value” mode. Based on all figures presented we can suspect that
at least for covariance stationary initial conditions (or close to) the TML estimator will be biased
positively, with the magnitude diminishing in T.

The main intuition behind the result in Theorem 3.2 is quite simple. When the log-likelihood
function for @ (or ) is considered, no restrictions on the relative magnitude of those terms compared
to o2 are imposed. In particular, it is possible that 2 < 62 but that is a rather strange result given
that:

68 = o2+ T(1 - o) Elu|.

But that is exactly what happens in the K, set as:
912) =02, o

Hence the implicit estimate of (1 — ¢o)® E[u?y] is negative as we do not fully exploit the implied
structure of var Ay; ;, which is a negative variance problem documented in panel data starting from
the seminal paper of Maddala (1971)!7. This problem was already encountered in some Monte
Carlo studies performed in the literature (even for larger values of T'), while some other authors
only mention this possibility, e.g. Alvarez and Arellano (2003) and Arellano (2003a). For instance,
Kruiniger (2008) mentions that for values of ¢, close to unity the non-negative constraint on (1 —
bp)? E[uf’o], if imposed, is binding in 50 % of the cases. @ or ¥ parameter, on the other hand, is
by construction p.d. (or non-negativity for univariate case). That explains why in some studies (for
instance Ahn and Thomas (2006)) no numerical issues with the TML estimator were encountered. In
this paper we analyze the limiting case of T' = 2 and quantify the exact location of the second mode.
Observations made in this section will provide intuition for some Monte Carlo results presented in
Section 5.

4. Extensions

4.1. Cross-sectional Heterogeneily

In this subsection we consider model with possible cross-sectional heterogeneity in { X', ¥, }. For
notational simplicity in this section we consider a model without exogenous regressors. All results
presented can be extended to a model with exogenous regressors at the expense of more complicated
notation.

(A.1)** The disturbances €;,t < T, are i.h.d. for all i with E[e, ;] = 0,,, and E[e; 1€, 5] = 15243 (1),
Yo(i) being p.d. matrix and max; E [||&;[|**°] < oo for some § > 0.

(A.2)** The initial deviations u; are i.h.d. across cross-sectional units, with E[u,] = 0,, and
finite p.d. variance matrix ¥, (i) and max; E [||u;o[|**°] < oo, for some § > 0.

16We should emphasize that Theorem 3.2 has any theoretical meaning only if pp€T.
"However, Maddala (1971) considers the Random Effects estimator for Dynamic Panel Data models, similarly to
Alvarez and Arellano (2003).

16



We denote by X and similarly by @u,o the limiting values of corresponding sample averages, i.e. 3, =
limy 00 (1/N) Zf\;l Xo(7)'8. Existence of the higher-order moments as presented in Assumptions
(A.1)**-(A.2)** is a standard sufficient condition for the Lindeberg-Feller CLT to apply. We
denote by SA** the set of assumptions SA* with (A.1)-(A.2) replaced by (A.1)**-(A.2)**.

The univariate analogues of results presented in this section for the TMLE estimator, were derived
by Kruiniger (2013) and recently extended by Hayakawa and Pesaran (2012).

The unrestricted log-likelihood function for k = (¢',o(1),...,0(N),0(1),...,0(N)") suffers
from the incidental parameter problem, as the number of parameters grows with the sample size, V.
That implies that no N-consistent inference can be made on the o (i) and (i) parameters, but that
does not imply that ¢ parameter cannot be consistently estimated. Notably, we consider the pseudo
log-likelihood function £,(k)':

N 1
l(Kk) = -5 ((T —1)log | X| + tr <21N

N T
(gi,t - Sp'gi,tfl)@;i,t - @rgi,tl),>>

=1t

- g <1Og O] + tr (91% > (@i — B ) (i — ¢yi)/>) ;

1

i=1

obtained if the researcher would mistakenly assume that observations are i.i.d. We shall prove

that the conclusions from Section 3.2.1 continue to hold, with ko replaced by pseudo-true values
k= (¢, 6,0, where:

& =vechX, 6=vech®, ¢ =,

We assume that & satisfy a compactness property similar to (A.5)*. Tt is not difficult to see that
the point-wise probability limit of (1/N){,(k) is given by:

1 1
plim —/,(k) =c— = ((T — 1) log | X| + tr (2_1 plim ZN(I{)))
N—o00 N 2 N—o00
1
- = <log |©| + tr (@_1 plim MN<I{))) ,
2 N—o00
where:
. 1 . -
N—oo N—oo T
- 1 - -
N—o00 N—o0 T

Note that we would obtain the same probability limit of the pseudo log-likelihood function if w;
and {ei,t}ﬁ\i{tzl were i.i.d. Gaussian with parameters K, hence identification follows from the result

18 As it was mentioned in Kruiniger (2013), Assumptions (A.1)**-(A.2)** are actually stronger than necessary, as
it is sufficient to assume that (1/N) vazl Ele; se; ] = (1/N) Zf\il Ele; e} ,] for all s,t = 2,...,T to prove consistency
and asymptotic normality. / /

19Here “p” stands for pseudo and is used to distinguish from the standard TMLE log-likelihood function where

inference on X and @ is possible.
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for i.i.d. data. Similarly denote ky = (&, @, @')’, where:

N

N
ox = S ouli), By =D 0(0), b=
=1

=1

Using this result, consistency and asymptotic normality of & follows using standard arguments,
see e.g. Amemiya (1986).

Proposition 4.1 (Consistency and Asymptotic normality). Under Assumptions SA** the maxi-
mizer of {,(k) is consistent i —— k. Furthermore, under these assumptions:

VN (k — Ry) -2 N(0, B parr),
where:

Bpyr =H, ToH,

: 1 § i
H, = A}l_I)nOOE {—N’H;}V(ﬁ:)] and I, = lim —E [ZV Koi)V (K,oﬂ)] :

N—>oo

Here by V(i)(nol) we denote the contribution of one cross-sectional unit ¢ to the score of the
pseudo log-likelihood function V, (k) evaluated at the true values {¢o, (i), 6o(7)}. Note that unless
cross-sectional heterogeneity disappears as N — oo, the standard “sandwich” formula of the variance-
covariance matrix evaluated at & is not a consistent estimate of the asymptotic variance-covariance
matrix in Theorem 4.1, as in general:

/
NIIE;ONZ“O 7ol (J&EHOONZUO )(&@MNZUO ) 4

while H, and Bpy/;, are not block-diagonal for fixed T. However, under some highly restrictive
assumptions on higher order moments of initial observations and variance of strictly-exogenous re-
gressors (when they are present) Hayakawa and Pesaran (2012) argue that it is possible to construct
a modified consistent estimator of Z, for the ARX(1) model. In the Monte Carlo section of this
paper we will use the standard “sandwich” estimator for variance-covariance matrix without any
modifications. We leave derivation of modified consistent estimator of Z, for general PVARX(1) case
for future research.

Remark 4.1. Note that by combining analysis in Propositions 3.6 and 4.1 we can see that for cases
where E [Ay; 1] = 7, are individual specific, one can still obtain consistent estimate of @ erroneously
assuming that the mean «; = 0,,. On the other hand, the consistency of @ is not preserved if ~ is
included in the parameter set.

4.2. Time Series Heteroscedasticity

Unlike the case with cross-sectional heteroscedasticity, time-series heteroscedasticity results in
inconsistent estimates of structural parameter matrix @. However, in this section we will show that
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for T sufficiently large one can still consistently estimate é%°. At first we concentrate out the @
parameter and consider normalized version of the log-likelihood function:

A
C(KY)=c— — log N Z — &y, )(y; — PY;_)

N T
1 _ _ _ _
108; | X —tr ( ONT Z Z(yi,t — DYii-1)(Yis — dsyi7t—l)/)

i=1 t=1

As the term inside the first log-determinant term is of order O,(T'), the first component of the
log-likelihood function is of order o0,(1). Thus as T'— oo (for arbitrary N):

() = e+ op(1) +

T-1 1
o7 log | X] + tr (2‘1m D> (@i~ Pia1) (i — @gi,t_1>’>

i=1 t=1

Clearly the remaining component is just the FE effect log-likelihood function and consistency of
3 and & follows directly. For the case with tlme series heteroscedasticity in X; the log-likelihood
function consistently estimates X := limp_,o = T thl Y, assuming that this limit exists.

The gradient of the log-likelihood function is given by:

1N T [~ - ~ 14\ PN y
1 1 vee [ X300 > i (Yi — ‘-pyz',t—l)yi,t—1 + (T('Q) Yoic1 (Ui — PYi_ )Y
T W = A N
%D;n vec <Z‘_1 (Zi:l Zthl ((gzt — DY 1) (i — PYis—1) — _2)> 2 )

As it was shown in the previous sections, the second component of the derivative w.r.t @ is of order
O,(V'N). As a result, under the assumption that N/T — p evaluated at the true value of Py:

\/% (%@)_ ;(yz — Py ) Ui = /P ( > N Z = Pogi-)¥i- +0p(1)
= /o (I — qso)wu,o(fm —®0)) " (T — ®0) W] + 0p(1),
= /p (L, — B)) "+ 0,(1).

where the corresponding result is valid irrespective of whether time-series heteroscedasticity is present
or not. Now consider the bias for the score of the fixed effects estimator evaluated at &, and

20Tn order to show similar results for more models with exogenous regressors one has to prove that as T — oo the
incidental parameter matrix G' does not result in an incidental parameter problem.
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3= %Zthl X (as in e.g. Juodis (2013)):

—/PT X Elgg] +o(1) = —%2*1 <2 (Z @é) ETH) + o(1)

= V(L — D)~ + o(1).

Here the last line follows if one assumes that X, process is bounded, so that the sum term is of order
O(1). As a result the large N,T distribution of the TML estimator is identical to the one of the
bias-corrected FE estimator of Hahn and Kuersteiner (2002).

In the previous section we have shown that in the correctly specified model with time-series
homoscedasticity the score of the TML estimator fully removes the induced bias of the FE estimator.
This conclusion was established based on the assumption that N — oo for any fized value of T. In
this section we have extended this result by showing that under presence of possible time-series
heteroscedasticity the estimating equations of the TML estimator remove the leading bias of the FE
estimator.

5. Simulation Study

5.1. Monte Carlo Setup

At first we present the general DGP that can be used to generate initial conditions y; . We will
distinguish between stability and stationarity conditions. We call the process {y;,}!, dynamically
stable if p(®) < 1 and (covariance) stationary if in addition the first two moments are constant over
time (¢t = {0,...,T}).

Yio = a; + Eijp; + Cigjo, €50 ~ 11D (07717 245%20(456),) ’ (5.1)
=0
for some parameter matrices a; [m x 1], E; [m x m] and C; [m x m|. The special case of this setup
is the (covariance) stationary model if a; = 0, and C; = E; = I,,,.
In what follows we will set a; to 0, for all Designs considered?'. As we only consider &, such
that p(®g) < 1, we (without loss of generality) generate the individual heterogeneity p; (rather than
;) using similar procedure as in BHP:

g —1Y\ . iid . iid
i = 7T< )771‘7 g ~ x*(1), 1 ~ N(0q, Xy). (5.2)

2In the Online Appendix some additional results for Design 2 are presented with a; = 2.
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Unlike in the paper of BHP we do not fix X, = X, instead we extend the approach of Kiviet (2007)
by specifying??2:

T —1
1
vec Xy = (f Y (BHE - I,) + I,) © (PH(E — I,) + Im)> (L2 — By @ Py)  vec Xy, (5.3)
t=1

The way we generate p; ensures that the individual heterogeneity is not normally distributed,
but still IID across individuals. In the effect stationary case the particular way the p; are generated
does not influence the behavior of TML log-likelihood function. However, the non-normality of w; in
the effect non-stationary case implies non-normality of u;( and, hence, a quasi maximum likelihood
interpretation of the likelihood function. With respect to the error terms we restrict our attention
to €;; being normally distributed Vi, t*4.

5.2. Designs

The parameter set which is common for all designs irrespective of their properties regarding sta-
bility and stationarity, consists of the triple { N;T; 7}. We restrict the parameter space of {N;T;x}
to the following set:

N ={100;250}, T ={3;6}, =w={1;3}.

In the DPD literature it is well known that in the effect stationary case a higher value 7 leads to
diminishing finite sample properties of the GMM estimators, see e.g. Bun and Windmeijer (2010)
and Bun and Kiviet (2006). That might have indirect influence on the TML estimator even in the
effect stationary case, as we will use GMM estimators as starting values for numerical optimization
of the log-likelihood function.

In this paper six different Monte Carlo designs are considered. One of them (1) is adapted from the
original analysis of BHP, while the other five are supposed to reveal whether the proposed methods
are robust with respect to different assumptions regarding the parameter matrix @, the initial
conditions y; o and cross-sectional heteroscedasticity. In the case where observations are covariance
stationary or cointegrated, BHP calibrated the design matrices @ and X such that the population
R%,% remained approximately constant (= 0.237) between designs.

Design 1 (Covariance Stationary PVAR with p(®() = 0.8 from BHP).
0.6 0.2 0.07  —0.02 0.123 0.015
®o= ( 0.2 0.6 ) 2= ( —0.02  0.07 ) » = ( 0.015 0.123 ) '

22Gee Online Appendix.

231f variance of g, differs between individuals then we evaluate this expression at X, rather than at X.

24The analysis can be easily extended to the cases where the error terms are skewed and/or have fatter tails as
compared to the Gaussian distribution. As a partial robustness of their results BHP considered t- and chi square
distributed disturbances, but the results were close to the Gaussian setup. The estimation output for these setups was
not presented in their paper.

PN
Iy’

stationary case is given by: vec (I') = (((Im — @) @ (I, — D)) (L2 — By @ Bo) ' + Im2> D,, 0.

%5Computation of the population R? for stationary series: R%; =1 — [ = 1; where vec (I') in the covariance
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The second eigenvalue is equal to 0.4 and the population R3 values are given by R%, = 0.2396,
l=1,2.

Although the Monte Carlo designs in BHP are well chosen, they are quite limited in scopeas
the analysis was mainly focused on the influence of p(®). Furthermore, all design matrices in
the stationary designs were assumed to be symmetric and Toeplitz, which substantially shrinks the
parameter space of @y and X

Design 2 (Covariance Stationary PVAR with p(®() = 0.50498).
0.4 0.15 0.07 0.05 0.079 0.052
Po = ( 0.1 06 ) o= ( 0.05 0.07 ) - = ( 0.052 0.100 ) '

Eigenvalues of @, in this design are given by 0.5+ 0.0707114 and the population R% values are given
by R%, = 0.23434 and R%, = 0.23182.

The parameter matrix @, was chosen such that the population R% are comparable between
Designs 1 and 2, but the extensibility condition is violated.

In Designs 3-4 we study finite sample properties of the estimators when the initial condition is
not effect-stationary®®.

Design 3 (Stable PVAR with p(®y) = 0.50498). We take @, and X from Design 2, but with:

Ei:O.5XIQ, CZ':IQ, VZzl,,N

5 . _ (009 0.059 5 _ (0083 0.055
7T=37\ 0.059 0.144 )~ 7T=6 7\ 0.055 0.122 /-

Design 4 (Stable PVAR with p(®y) = 0.50498). We take @, and X from Design 2, but with:

Ei:1.5XI2, CZ':IQ, V/Lzl,,N

5 . _ (0069 0.045 s _ (0074 0.049
nT=3 7\ 0.045 0.074 )’ 7T=6 7\ 0.049 0.083 /-

In Section 4.1 we presented theoretical results for the TML estimator when unrestricted cross
sectional heteroscedasticity is present. This design is used to investigate the impact of multiplicative
cross-sectional heteroscedasticity on the estimators.

Design 5 (Stable PVAR with p(®y) = 0.50498 with non-i.i.d. €;¢). As a basis for this design we
take @y and Xy from Design 1, but with:

E =1, Ci=¢@, 3(i)=¢%, ¢ %x21),Vi=1,...,N.

Z6Note that effect non-stationarity in these designs has no impact on the first unconditional moment of the {y; ;}7_
process. It can be explained by the fact that E[u;] = 0 is a sufficient condition for the {y; ;}7_, process to have a zero
mean. Thus there is no reason to allow for mean non-stationarity by including « parameter into the log-likelihood
function, but it is crucial to allow for a covariance non-stationary initial condition.
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The last design is dedicated to reveal the robustness properties of the TML estimator when time
series heteroscedasticity is present. From Section 3.2 this estimator is not fixed T consistent in this
case.

Design 6 (Stable PVAR with smooth time-series heteroscedasticity). As a basis for this design we
take @y and X' from Design 1 E; = C; = I, but with X(t) are generated as:

So(t) = (0.95—0.05T + 0.1t) x Xy, Vt=1,...,T.

Particular form of the time series heteroscedasticity was chosen such that the X = X,. Analysis
in Designs 5 and 6 can be extended by allowing non-multiplicative heteroscedasticity, however such
analysis is beyond the scope of this paper.

For convenience we have multiplied both the mean and the median bias by 700. Similarly to BHP
we only present results for ¢q; and ¢i9, as results for the other two parameters are similar both
quantitatively and qualitatively. The number of Monte Carlo simulations is set to B = 10000.

5.8. Technical Remarks

As starting values for TMLE estimation algorithm we used estimators available in a closed form.
Namely, we used “AB-GMM”, “Sys-GMM” and FDLS, the additive bias-corrected FE estimator
as in Kiviet (1995) and the bias-corrected estimator of Hahn and Kuersteiner (2002). Here ‘AB-
GMM?” stands for the Arellano and Bond (1991) estimator; “Sys-GMM?” is the System estimator of
Blundell and Bond (1998) which incorporates moment conditions based on the initial condition. All
aforementioned GMM estimators are implemented in two steps, with the usual clustered weighting
matrix used in the second step?’.

We denote by “IT'MLEr”, the estimator which is obtained similarly as “TMLE”, but instead of
selecting the global maximum the local maximum that satisfies |@ - | > 0 restriction is selected
when possible?® and global maximum otherwise. The TML estimator with imposed covariance sta-
tionarity is denoted by “TMLEc”. Finally, we denote by “TMLEs” the estimator that is obtained
by choosing the local maximum of TMLE objective function with the lowest spectral norm?®. This
choice is motivated by the fact that for univariate three-wave panel the second mode is always larger
than the true mode; in PVAR one can think of spectral norm as measure of distance.

Regarding inference, for all the TML estimators we present results based on robust “sandwich”
type standard errors labeled (7). In case of GMM estimators, we provide rejection frequencies based
on commonly used Windmeijer (2005) corrected S.E.

5.4. Results
5.4.1. Estimation

In this section we will briefly summarize the main findings of the MC study as presented in Tables
B.1 to B.6. Inference related issues are discussed in the next section.

2"That takes the form “Z’'uu’'Z”.

28In principle this restriction is necessary but not sufficient for O — 3 to be p-s.d. However, for the purpose
of exposition in this paper we will stick to this condition rather than checking non-negativity of the corresponding
eigenvalues.

2 However, unlike the univariate studies of Hsiao et al. (2002) and Hayakawa and Pesaran (2012), where the ¢
parameter was restricted to lie in the stationary region, in the numerical routine for the TMLE no restrictions on the
parameter space are imposed.
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Design 1. For the GMM based estimators we found very similar results as in the original study
of BHP. Irrespective of N, the properties of all GMM estimators deteriorate as T and/or 7 increase
and these effects are substantial both for diagonal and off-diagonal elements of @. Similarly, we
can see that for small values of T, the performance of the TML estimator is directly related to the
corresponding bias and the RMSE properties of the GMM estimators®®. Hence using the estima-
tors that are biased towards pseudo-true value , helps to find the second mode that happens to be
the global maximum in that replication. On the other hand, if the resulting estimators (TMLEs,
TMLEr, TMLEc) are restricted in some way, the strong dependence on starting values is no longer
present (especially for TMLESs). In terms of both the bias and the RMSE we can see that the TM-
LEc estimator performs remarkably well irrespective of design parameter values for both diagonal
and off-diagonal elements. The FDLS estimator does perform marginally worse as compared to the
TMLEc estimator but still outperforms all the GMM estimators. All the TML estimators (except
for TMLEc) tend to have an asymmetric finite sample distribution that results in corresponding
discrepancies between estimates of mean and median.

In Section 3.3.3 we have mentioned that the second mode of the unrestricted TML estimator is
located at @ = I,,,. Based on the results in Table B.1 we can see that the diagonal elements for the
TML estimator are positively biased towards 1, while the off-diagonal elements are negatively biased
in direction of 0 (at least for small N and T). Thus the bimodality problem remains a substantial
issue even for 7' > 2 and choosing global optimum is not always the best strategy as TMLEs clearly
dominates TMLE for small values of 7. For T" = 6 the TMLEr and TMLEs provide equivalent
results and some improvements over “global” standard TMLE.

Design 2. One of the implications of this setup is that the FDLS estimator is not consistent.
More importantly, for this setup we do not know whether the bimodality issue for T' = 2 is still
present, thus the need for the TMLEr and TMLEs estimators is less obvious. However, the moti-
vation becomes clear once we look at the corresponding results in Table B.2. TMLEs and TMLEr
dominate TMLE in all cases, with TMLESs being the preferred choice. We can observe that the bias
of the TML estimator in terms of both the magnitude and the sign does not change dramatically
as compared to Design 1. Observe that the bias of the TMLEc in the diagonal elements does not
decrease with T fast enough to match the performance of the TMLEr/TMLEs estimators. While for
the off-diagonal elements quite a substantial bias remains even for N = 250, 7T = 63!,

Designs 3 and 4. As it was expected, the properties of Sys-GMM (that rely on the effect-stationarity
implied moment conditions) deteriorate significantly as compared to Design 2. We observe that for
m = 1 the AB-GMM estimator is more biased in comparison to Design 2 (for Design 3), but is less
biased than m = 3. The intuition of these patterns is similar to the one presented by Hayakawa
(2009) within the univariate setting. Unlike the previous designs, the TML estimator exhibits lower
bias for m = 3 despite the fact that the quality of the starting values diminished in the same way
as in the effect-stationary case. Magnitudes of the effect non-stationary initial conditions considered
in these designs are sufficient to ensure that the restrictions imposed from TMLEr estimator are

30This contrasts sharply with the finite sample results presented in BHP.
31 As it will turn out later, these properties will play a major role to explain the finite sample properties of the LR
test of covariance stationarity, that is presented in Online Appendix.

24



satisfied even for small values of N and 7. As a result, the discrepancy between the nominal and the
actual number of MC replications is very small.

Design 5. Unlike in Designs 3-4, the setup of Design 5 has no impact on consistency of most
estimators analyzed (except FDLS). As can be clearly seen from Table B.6, the same can not be said
about the finite sample properties. The introduction of cross-sectional variation in Xy () affected all
estimation techniques by means of higher RMSE/MAE values. Unsurprisingly, these effects diminish
as N increases, but are still present even for N = 250. On the other hand, the effect of cross-sectional
variation is less clear for bias measures, with improvements for some estimators and higher bias for
others.

Design 6. In this setup TML estimator is inconsistent due to time-series heteroscedasticity, the
TMLECc estimator seems to be affected the most in terms of both the bias and precision. By com-
paring the results in Tables B.2 and B.6 we can conclude that fixed T inconsistency translates into
more pronounced finite sample bias of the TML estimator. However, that is only true for diagonal
elements (¢1; in this case) as the estimation quality of the off-diagonal elements remains unaffected.
For T' = 6 the bias of TMLE/TMLEs/TMLEr estimators diminishes, as can be expected given con-
sistency in the large N, T framework. Furthermore, the Sys-GMM estimator, albeit still consistent,
also shows some signs of deteriorating finite sample properties.

5.4.2. Size and Power properties

For brevity in this section we present the empirical rejection frequencies for ¢1; only. Results for
the other entries are available from the author upon request.
Below we will briefly summarize the main findings regarding the size and the power of the two-sided
t test for different designs.

e Except for TMLEc, for N = 100 all estimators result in substantially oversized test statistics
with relatively low power. In many cases rejection frequencies for alternatives close to the unit
circle are of similar magnitude to size.

e When the estimator is consistent, the inference based on TMLEc serves as a benchmark both
for size and power.

e In designs with the effect stationary initial condition (except N = 250,7 = 6 to be discussed
next), the empirical rejection frequencies based on all the TML (except for TMLEc) as well
as the AB-GMM estimators do not result in symmetric power curves, due to the substantial
finite sample bias of the estimators.

e Results for T'= 6 and N = 250 suggest that the TML estimators without imposed stationarity
restrictions are well sized and have good power properties in all designs with almost perfectly
symmetric power curves.

e Although all the TML estimators (without imposed stationarity restriction) are inconsistent
with time-series heteroscedastic error terms, the actual rejection frequencies for N = 250 are
only marginally worse in comparison to the benchmark case. The same, however, can not be
said about the TMLEc estimator.
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e In design with cross-sectional heteroscedasticity, the TML based test statistics become more
oversized, compared to the benchmark case. The only exception is the case with N = 250 and
T = 6 where the actual size increases by at most 1%.

The results presented here suggest that under the assumption of time homoscedasticity, likelihood
based techniques might serve as a viable alternative to the GMM based methods in the simple
PVAR(1) model. Particularly, the TML estimator of BHP tends to be robust with respect to non-
stationarity of the initial condition and cross-sectional heterogeneity of parameters. Furthermore,
in finite sample likelihood based methods are robust even if smooth time-series heteroscedasticity is
present. However, the TML estimator does suffer from serious bimodality problems when the number
of cross-sectional units is small and the length of time series is short. In these cases the resulting
estimator heavily depends on the way the estimator is chosen. As we have mentioned, in some
designs in 30% — 40% of all MC replications no local maxima satisfying |@ - ¥ | > 0 was available
even for N = 250. However, this problem becomes marginal once T' = 6 where such fractions drop
to 1% — 10%. Based on these results we suggest that the resulting TMLE estimator is chosen such
that (when possible) local maxima should satisfies p.s.d. |@ — 3| > 0 restriction (TMLEr), and
otherwise the solution with smaller spectral norm should be chosen (TMLESs).

6. Concluding remarks

In this paper we aim at providing a thorough analysis of the performance of fixed T consistent
estimation techniques for PVARX(1) model based on observations in first differences. We have
mostly emphasized the results and properties of the likelihood based method. Our main goal was
to investigate the robustness of aforementioned methods with respect to possible non-stationarity of
the initial condition and/or cross-sectional heteroscedasticity.

We have extended the approach of BHP with inclusion of strictly exogenous regressors and shown
how to construct a concentrated likelihood function for the autoregressive parameter only. Further-
more, we have shown that the TML is a “quasi” maximum likelihood estimator in several aspects.
First of all, we have argued that it remains consistent with limiting normal distribution even when
cross-sectional heterogeneity of the variance parameters or initial condition is not mean stationarity.

The key finding of this paper is that in the three-wave panel the expected log-likelihood function
of BHP in the univariate setting does not have the unique maximum at the true value. This result
has been shown to be robust irrespective of initialization. Furthermore, we have provided a sufficient
condition for this result to hold for PVAR(1) in the three-wave panel.

Finally, we have conducted an extensive MC study with the emphasis on designs where the set of
standard assumptions about the stationarity and the cross-sectional homoscedasticity were violated.
Results suggest that likelihood based inference techniques might serve as a feasible alternative to
GMM based methods in a simple PVARX(1) model. However, for small values of N and/or T the
TML estimator is vulnerable to the choice of the starting values for the numerical optimization
algorithm. These finite sample findings have been related to the bimodality results derived earlier in
this paper. We proposed several ways of choosing the estimator among local maxima. Particularly,
we suggest that the resulting TMLE estimator is chosen such that local maxima should satisfies

p.s.d. restriction (TMLEr), and otherwise the solution with smaller spectral norm should be chosen
(TMLES).

26



References

ABADIR, K. M. AND J. R. MaGNuUS (2002): “Notation in Econometrics: A Proposal for a Stan-
dard,” Econometrics Journal, 5, 76-90.

AHN, S. C. AND P. ScHMIDT (1995): “Efficient Estimation of Models for Dynamic Panel Data,”
Journal of Econometrics, 68, 5—27.

(1997): “Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and
Simplified Estimation,” Journal of Econometrics, 76, 309-321.

AHN, S. C. AND G. M. THOMAS (2006): “Likelihood Based Inference for Dynamic Panel Data
Models,” Unpublished Manuscript.

ALONSO-BORREGO, C. AND M. ARELLANO (1999): “Symmetrically Normalized Instrumental-
Variable Estimation using Panel Data,” Journal of Business €& Economic Statistics, 17, 36-49.

ALVAREZ, J. AND M. ARELLANO (2003): “The Time Series and Cross-Section Asymptotics of
Dynamic Panel Data Estimators,” Econometrica, 71(4), 1121-1159.

AMEMIYA, T. (1986): Advanced Econometrics, Wiley-Blackwell.

ARELLANO, M. (2003a): “Modeling Optimal Instrumental Variables for Dynamic Panel Data Mod-
els,” Unpublished manuscript.

(2003b):  Panel Data Econometrics, Advanced Texts in Econometrics, Oxford University
Press.

ARELLANO, M. AND S. BOND (1991): “Some Tests of Specification for Panel Data: Monte Carlo

Evidence and an Application to Employment Equations,” Review of Economic Studies, 58, 277—
297.

ARELLANO, M. AND O. BOVER (1995): “Another Look at the Instrumental Variable Estimation of
Error-components Models,” Journal of Econometrics, 68, 29-51.

BINDER, M., C. Hsta0, AND M. H. PESARAN (2005): “Estimation and Inference in Short Panel
Vector Autoregressions with Unit Root and Cointegration,” Econometric Theory, 21, 795-837.

BLUNDELL, R. W. AND S. BOND (1998): “Initial Conditions and Moment Restrictions in Dynamic
Panel Data Models,” Journal of Econometrics, 87, 115-143.

Bonbp, S., C. NAUGES, AND F. WINDMEIJER (2005): “Unit Roots: Identification and Testing in
Micro Panels,” Working paper.

Bun, M. J. G. AND M. A. CARREE (2005): “Bias-Corrected Estimation in Dynamic Panel Data
Models,” Journal of Business €& Economic Statistics, 23(2), 200-210.

Bun, M. J. G. anD J. F. KIviET (2006): “The Effects of Dynamic Feedbacks on LS and MM
Estimator Accuracy in Panel Data Models,” Journal of Econometrics, 132, 409-444.

27



Bun, M. J. G. AND F. WINDMELJER (2010): “The Weak Instrument Problem of the System GMM
Estimator in Dynamic Panel Data Models,” The Econometrics Journal, 13, 95-126.

Ca0, B. AND Y. SuN (2011): “Asymptotic Distributions of Impulse Response Functions in Short
Panel Vector Autoregressions,” Journal of Econometrics, 163, 127-143.

ERICSSON, J. AND M. IRANDOUST (2004): “The Productivity-bias Hypothesis and the PPP The-
orem: New Evidence from Panel Vector Autoregressive Models,” Japan and the World Economy,
16, 121-138.

HAHN, J. AND G. KUERSTEINER (2002): “Asymptotically Unbiased Inference for a Dynamic Panel
Model with Fixed Effects When Both N and T are Large,” Econometrica, 70(4), 1639-1657.

HAN, C. AND P. C. B. PHiLLIPS (2010): “GMM Estimation for Dynamic Panels with Fixed Effects
and Strong Instruments at Unity,” Fconometric Theory, 26, 119-151.

(2013): “First difference maximum likelihood and dynamic panel estimation,” Journal of
Econometrics, 175, 35-45.

Havakawa, K. (2007): “Consistent OLS Estimation of AR(1) Dynamic Panel Data Models with
Short Time Series,” Applied Economics Letters, 14:15, 1141-1145.

(2009): “On the Effect of Mean-Nonstationarity in Dynamic Panel Data Models,” Journal
of Econometrics, 153, 133-135.

(2013): “An Improved GMM Estimation of Panel VAR Models,” Working paper.

Havakawa, K. AND M. H. PESARAN (2012): “Robust Standard Errors in Transformed Likelihood
Estimation of Dynamic Panel Data Models,” Working Paper.

Horrz-EAkiN, D.;, W. K. NEWEY, AND H. S. ROSEN (1988): “Estimating Vector Autoregressions
with Panel Data,” Econometrica, 56, 1371-1395.

Hsiao, C., M. H. PESARAN, AND A. K. TAHMISCIOGLU (2002): “Maximum Likelihood Esti-
mation of Fixed Effects Dynamic Panel Data Models Covering Short Time Periods,” Journal of
Econometrics, 109, 107-150.

JUESSEN, F. AND L. LINNEMANN (2010): “Estimating Panel VARs from Macroeconomic Data:
Some Monte Carlo Evidence and an Application to OECD Public Spending Shocks,” SFB Discus-
sion Paper 823.

Juobis, A. (2013): “A note on bias-corrected estimation in dynamic panel data models,” Economics
Letters, 118, 435-438.

(2014): “Supplement to ”First Difference Transformation in Panel VAR models: Robustness,
Estimation and Inference”.” http://arturas.economists.1lt/FD_online.pdf.

Kivier, J. F. (1995): “On Bias, Inconsistency, and Efficiency of Various Estimators in Dynamic
Panel Data Models,” Journal of Econometrics, 68, 53—78.

28



(2007): “Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel
Data Models,” in The Refinement of Econometric Estimation and Test Procedures, ed. by
G. Phillips and E. Tzavalis, Cambridge University Press, chap. 11, 282-318.

KouTsOMANOLI-FILIPPAKI, A. AND E. MAMATZAKIS (2009): “Performance and Merton-type De-
fault Risk of Listed Banks in the EU: A Panel VAR Approach,” Journal of Banking and Finance,
33, 2050-2061.

KRUINIGER, H. (2002): “On the Estimation of Panel Regression Models with Fixed Effects,” Work-
ing paper 450, Queen Mary, University of London.

(2007): “An Efficient Linear GMM Estimator for the Covariance Stationary Ar(1)/Unit Root
Model for Panel Data,” Econometric Theory, 23, 519-535.

(2008): “Maximum Likelihood Estimation and Inference Methods for the Covariance Sta-
tionary Panel AR(1)/Unit Root Model,” Journal of Econometrics, 144, 447-464.

(2013): “Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions,”
Journal of Econometrics, 173, 175-188.

MADDALA, G. (1971): “The Use of Variance Components Models in Pooling Cross Section and
Time Series Data,” Econometrica, 39, 341-35.

Macnus, J. R. AND H. NEUDECKER (2007): Matriz Differential Calculus with Applications in
Statistics and Econometrics, John Wiley & Sons.

MoLINARI, L. G. (2008): “Determinants of Block Tridiagonal Matrices,” Linear Algebra and its
Applications, 429, 2221-2226.

MutrL, J. (2009): “Panel VAR Models with Spatial Dependence,” Working Paper.
NICKELL, S. (1981): “Biases in Dynamic Models with Fixed Effects,” Econometrica, 49, 1417-1426.

RAMALHO, J. J. S. (2005): “Feasible bias-corrected OLS, within-groups, and first-differences esti-
mators for typical micro and macro AR(1) panel data models,” Empirical Economics, 30, 735-748.

WHITE, H. (2000): Asymptotic Theory for Econometricians, Economic Theory, Econometrics, and
Mathematical Economics, Academic Press, 2 ed.

WINDMELJER, F. (2005): “A Finite Sample Correction for the Variance of Linear Efficient Two-Step
GMM Estimators,” Journal of Econometrics, 126, 25-51.

29



Appendices

Appendix A. Proofs

Appendiz A.1. TMLE estimator

Firstly, we define a set of new auxiliary variables, which will be handy during the derivations of
differentials:

N T N T
1 . . . _ 1 .
Zn(k) = N Z Z(yi,t ~DYis1) (Ui — PUi1), Qn(k) = N Z Z Yit1(Gir — PYir-1),
=1 t=1 i=1 t=1
T T &
_ .o .. . .o / . .o .o .. ,
My (k) =+ ;(yi = PYi-) (% — Pyi-), Ni(k):=+ ;yi—(yi - DY),
1 N T T T-2
Ry =5 > GGy Pyvi=5) 44l E=) (T-1-1)&,

s
Il
—
-
Il
—

l

Il
=)

In the derivations below we will use several results concerning differentials (for more details refer to
Magnus and Neudecker (2007)):
dlog | X| = tr (X 1(dX)), d(trX) =tr(dX),
d(vec X) =vec(dX), dX '=-X"1dX)X !
dXY = (dX)Y + X(dY), dX®X)=d4d(X)® X+ X od(X),
vece (dX ® X) = (I, ® K,,, ®I,,,) (L2 @ vec X ) vec d(X)

Appendiz A.1.1. Auziliary results
Lemma Appendix A.1.

T-1 T-2 =2
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Lemma Appendix A.2. Under Assumptions SA* the following relation holds:

E [NN(FL())] = —E@O

for 60 = 2() + T(Im — @O)E[umu;’o](Im — @0)/.
Proof.

E [Ny (ko)'] (N Z — Doy, yz—)

!

=0

T-2 T—1 t-1
=E (—(Im—@o)ui,o—i—ez <Ty20_ (Z —1—l€ﬁl> —@0 U10+<ZZ¢0€Zt s )]

=0 t=1 s=0

In Lemma Appendix A.1 we showed that ¥ = O,,, hence it follows that:

N T—1 t—1 !
T _ —_ s
E| > (i — Bodi- yZ] —E [(—(Im — Pp)uio + &) (—: (I, — o)uig + (Z > 4506,-“>> ]
i=1 t=1 s=0
1 1
= (Im — @O)E['LLZ Ou; 0](Im — @O)IE’/ + —ZQEI = _@OEI-
o T T
0
Appendiz A.1.2. Log-likelihood function
Theorem 3.1. Let:
0
Ay; 1 0 0 .
" 1
Ag; 1 1
ATy = . , Cr= , Ly = 0
: o0
A : 0
Aeir ) ., 1 11/, . ; 01

TXT

and let D be a [T x T + 1] matrix which transforms a [T+ 1 x 1] vector x into a [T" x 1] vector

of corresponding first differences. Also define @ := T'(¥ — X) + X and §2 := X7 '@. If we denote
I' := X' it then follows that:

r -1, 0, - O,
-1, 21, . . :
Sae=LroX) | o, . . . o,
S .
0, - O, —-I, 2I,

=Ir®X)[(DD'®1I,,) + (e;e; @ (I' — 21,,))]
=Ir®X) [(CyCr) ' @ I,) + (e1€) @ (I' — I,,))] .
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Subsequently the determinant is given by (using the fact that |Cy| = 1):

| Zarl = Z[(CrCr) ™ @ In) + (e1€) @ (I' = Iy))| = | Z|" I + (€, C7Cren(I" — I,))|[(C7Cr) |
= |2 L + (€1C1Crey(I — I,))| = | X" | L, + T(I — I,)| = | Z["]02] = | Z]"|@)],

where the second line follows by means of the Matrix Determinant Lemma®?. Using the Woodbury
formula we can evaluate 2;:

Sl =[(CrCr) @ 1) + (erey @ (I~ 1)) (Ir @ 271
= [((C7Cr) ® I,) — ((C;.Crey) @ I,) (I — L,)"' + T1,) (e\C;Cr) ® I,)] (Ir @ X71)
= (Cr @ L)U(Cra I,)(Ir® X7') = (Cr @ I,)U (Ir ® X7)(Cr @ L),
where U is:
U =Ir, — ((Cre1) @ I,) (I' - I,)27") ((e\C}) ® I,,))
=Ir, — (17 ®1I,) ((I’ — Im)Qfl) (v @ I,) = Ipp — 27t @ ((F — Im)Qfl)
1 - 1 1 -
= Irm — oty © (In — 027Y) = Iy, — Fertr ® I + oty @ 2 !
=WrxI, + %sz’T ® 271
so that:

1
Yl=(CLaI,) |Wro X + szz’T @O (Crol,).
Now using the fact that R = (I, — Ly ® @) and defining z; = (Y0, .., ¥Yir1):

Z:=(Cr®I,)Irm — Lt @ ®)vec (z,D’)
= vec (z;D'C}. — ®z,D'L.C}) = vec ((CrDz.) — ®(CrLrDz})")
= vec ((Y; — ’LTyi,o)/ - DY — zTyi,o)’).

Hence the log likelihood function of BHP can be rewritten in the following way (where k = (¢',0”,0’)"):
l(K)=c— g (T —1)log | X| 4+ log |@| + tr (X' Zy(k)) + tr (O~ ' My(k))). (Appendix A.1)
In order to include exogenous regressors in the model we denote the following quantities:
= GAXJ, X, = (Tig, .-, xiT).
The Z term in this case is given by:

Z:=(Cr @ 1L,) (Ity — Ly @ ®) vec (z:D') — (Ir @ B) vec (AX;) — vec (ye)))
= vee (Y — 2r(yio + 7)) — B(Yie —1ryi0) — B(Xi — 1))

Result follows directly based on derivations for PVAR(1) model by redefining Zy and My. O

32 Alternatively | Xa-| can be evaluated using the general formula for tridiagonal matrices in Molinari (2008).
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Appendiz A.1.3. Score vector
Lemma 3.4. Here for simplicity we derive first differential of (k) without exogenous regressors:

2 dl(R) = (T~ 1)t ((AD)) + 1 (©7(4))

—tr (X' dX) X ZN(K)) — tr (@71(d@)O My (k))
+tr (X NdZn(K))) +tr (@ (dMy(k)))
=tr (XN (T-1)X - Zy(k)XHdX)) +tr (OO — My(k))O 1(dO))
—2tr (E*I((ddi)QN(K,))) — 2tr (6*1((dd5)NN(K,))).

Based on these derivations we conclude that the corresponding [2m? + m x 1] score vector is given by:

vec (X71Qn(K) + O Ny(k))
V(k)=N| D vec(—i(X1(T-1)X¥X - Zx(k)X) |. (Appendix A.2)

T2

D), vec(—3(@ O — My(k))O™))

Zero mean result follows trivially from Lemma Appendix A.2 and the fact that E[ X, 'Qx(ko)] = (1/T)=
(the “Nickell bias”). O

Proposition 3.5. We need to derive the exact expression for vec d® under assumption that vec E[u; ou; o] =
(I, — P @ ®) 'vec X. At first, we rewrite the expression for vec @ (we prefer to work with vec (+)
rather than vech () to avoid excessive use of duplication matrix D,,):

vec® = vec X + T (I, — ®) ® (I, — P)) vec E[u; gu; ]
=vec X +T (I, —®) @ (I, —®)) (I, —PR3P) 'vec ¥ = Syvec X

Using rules for differentials we get that:
d(vec @) = Syd(vec X) + d(Sz) vec X.
Using the product rule for differentials:
1
7d4(82) = = (d(®) @ (I — @) + (I = ) © () (L2 — P © )"
+ (I —B) @ Iy —B)) (Ir —PRB)  (A(P)RP+ D A(P)) (L2 — P RP)

Recall definition of E[u;ou;o] = ¥ and define 1y := vec®y. As d(S;)vec X' is already a vector by
taking vec (+) of this term nothing changes:

%VGC (d(S2) vec X) = — (¢, ® I,,2) vee (A(P) @ (I, — P) + (I, — ) @ d(DP))
+ (6 ® (In = ) @ (Inn = ®)) (> = @ P)")) vec (d(®) @ (@) + (P) ® d(®))
Using the formula for vec (dX ® X):
2 d(8) vee 3 = — (% © L) (T © K 0L, (L2 © (5~ 6) + (5 — 9) @ L) dg
+ (16 ® (In = ) @ (Inn = P)) (L2 = P @ P) ")) (I @ Ky @Lp) (L2 ® ¢ + ¢ @ Ip2) dp
Recall the definition of S;to conclude that:
d(Ss) vec X = S, d¢. (Appendix A.3)

Desired results follows by combining differential results for dvec ® with proof of Lemma 3.4. [
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Appendiz A.1.4. Bimodality
Proof Theorem 3.2. Lets denote the true value for 6% as 62 that for general T is equal to:

0 = 05 +T(1 = ¢o)” E[ug].
Thus at T' = 2 it is equal to:
O = o5 + 2(1 — ¢0)* E[ug]

For some ¢ we denote the following variables:

9 N 1 N 2
0§=E[N2@—¢yi_>2], 0} =E [NZZ,% G5ia1)”

i=1 i=1 t=1
and a = ¢y — ¢.

As we assume that the observations are i.i.d. it is sufficient to analyze previous expressions for some
arbitrary individual . At first we proceed with expression for o7 (recall definition of  variable):

0, =E [ ZZ it = OFis1) ]=0~5E[<Ayz~,z—¢Ayi,l>2]=0.5E[<Aei,2+<¢o—¢>>Ayi,1>2]

i=1 t=1

= 0.5E[(Acis + (90 — 0)((1 = do)uio +£i1))’] = 0.5E (32 + (b0 — 9)(1 = do)uio + (b0 — & — 1)ein)’]
— 0.5(03(1+ (o — 6 — 1)) + (60 — )*(1 — 60)? Elug]) = 0502 (1 — 2(do — 6) + 1 + (o — 6)’x)
= 0.507 (a*z 4+ 2(1 — a))
Similarly we can derive expression for 3 and 63 in terms of the x and a.
02 = 02+ 21— o) Bludy] = o2 (2 — 1)
While for 67 it follows that:

935 =E [N Z — Ui ) ] =2E [(ﬂz — w0 — A(U;— — Ui,o))ﬂ

=2E [(& + dolls— — o — O(Ui— — uip))?] =0.5E [(gi2 + i1 + do(win + wip) — 2ui0 — Ausn — wip))?]
=0.5E [(gi2 + €1 (1 + do — @) + wio(do(l + ¢o) — 2 — ¢(dg — 1)))?]
=0.505 [1+ (1+a)* + (1 — ¢o)* E[ulo)(a + 2)*] = 0.505 [1+ (1+a)® + (1 — ¢0)* E[uig](a + 2)*/og)
=0.50 [14+ (1 +a)® + (z — 1)(a +2)*] =0.507 [’z + (a + 1)(4z — 2)]
Continuing;:
02935 = 0.250, (¢’ — 2(a — 1)) (a®z + (a + 1)(4z — 2))
= 0.250, (a” (a’2® + 2za(2z — 2) + (22 — 2)%) + 4(2z — 1))
= 0.2505 (a’ (az + 2(v — 1))* + 4(2z — 1))
= 0.2505 (a? (ax + 2(v — 1)) + 0262
The first term in the brackets is obviously equal for true value ¢y (a = 0) and for:

- 1—=z r—1
¢¢0—¢:27$¢_

1
a=2

Appendix B. Monte Carlo results
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