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Abstract

The maximum likelihood estimator of the adjustment coefficient in a cointegrated vector

autoregressive model (CVAR) is generally biased. For the case where the cointegrating vector

is known in a first-order CVAR with no intercept, we derive a condition for the unbiasedness

of the maximum likelihood estimator of the adjustment coefficients, and provide a simple

characterization of the bias in case this condition is violated. A feasible bias correction

method is shown to virtually eliminate the bias over a large part of the parameter space.

1 Introduction

Consider an m-dimensional first-order vector autoregressive (VAR) model in error correction

representation

∆Yt = ΠYt−1 + εt, t = 1, . . . , T, (1)

where εt are (m× 1) mean zero independently normally distributed disturbances with contem-

poraneous covariance matrix Ω, independent of the observed starting value Y0. The process is

stable when the eigenvalues of the m×m matrix (Im + Π) are inside the unit circle. If exactly

m− r eigenvalues are unity, the matrix Π is of reduced rank r and we write Π = αβ′, where α

and β are (m× r)-dimensional matrices. If all eigenvalues of Ir + β′α are inside the unit circle

(so that β′α is non-singular), then Yt is an I(1) process and the model becomes a cointegrated

VAR (CVAR). The column vectors of β are cointegrating vectors with the property that for

each j = 1, . . . , r, β′jYt is a stable process which defines an equilibrium relationship between

the variables in Yt. The equilibrium space is an (m − r)-dimensional space orthogonal to β

called the attractor set. The components αij of the adjustment matrix α describe the reaction

of variable i to last period’s disequilibrium β′jYt−1.
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We are interested in the bias when α is estimated by maximum likelihood. Even though

the asymptotic distribution of α̂ is centered around α (e.g. Johansen (1996), Theorem 13.3),

there can be considerable bias in α̂ in small samples, especially when β′α is small. We consider

the case where β is known, which occurs, e.g., under the Purchasing Power Parity or Forward

Rate Unbiasedness hypotheses. In this case there is a simple connection between the bias of

α̂ and the bias for the autoregressive parameter in the AR(1) model. This is obvious since

pre-multiplication of (1) by β′ gives:

β′Yt = ρβ′Yt−1 + β′εt. (2)

where ρ = Ir + β′α is a matrix which describes the memory of the disequilibrium process. If

there is only one cointegrating vector then ρ is the scalar autoregressive parameter in an AR(1)

of the univariate process β′Yt. We could estimate ρ as ρ̂ = Ir + β′α̂ and the bias in both

estimators is obviously related. The dimension of α is m × r, however, and larger than the

dimension of ρ which is r × r, since m > r.

When ρ = 0 in the univariate AR(1) model without regressors, the OLS estimator for

ρ is unbiased, which can be proved using an invariance argument. We can invoke the same

argument here to prove the analogous result for the unbiasedness of α̂. In the present context,

ρ = 0 means that any deviation from equilibrium has no persistence and the expected value of

the process in the next period, given the current value, always lies in the equilibrium set for

every period t. The process is therefore symmetrically distributed around the equilibrium set

and as a consequence the estimator for the adjustment coefficient is unbiased as we shall prove

in Section 2. When this condition for unbiasedness is violated, i.e., when ρ 6= 0, we show that

the bias in α̂ can be expressed in terms of the bias in ρ̂, which leads to a simple bias correction

method, illustrated in Section 3.

2 Bias Expressions

For known β, the maximum likelihood estimator of the adjustment parameter matrix α, based

on the conditional likelihood (treating the starting value Y0 as fixed) is given by the least-squares

estimator

α̂ =

T∑
t=1

∆YtY
′
t−1β

(
T∑
t=1

β′Yt−1Y
′
t−1β

)−1
. (3)

Proposition 1 The maximum likelihood estimator α̂ is unbiased when β′α = −Ir.

Proof. We use a simple invariance argument as highlighted by Kakwani (1967), and used in a

slightly different context by Abadir et al. (1999). First, substitution of ∆Yt = αβ′Yt−1 + εt in

(3) gives

α̂ = α+

T∑
t=1

εtY
′
t−1β

(
T∑
t=1

β′Yt−1Y
′
t−1β

)−1
.
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When β′α = −Ir so that ρ = 0, then β′Yt = β′εt for t = 1, . . . , T . Therefore, defining ε0 = Y0,

α̂(ε)− α =
T∑
t=1

εtε
′
t−1β

(
β′

T∑
t=1

εt−1ε
′
t−1β

)−1
= ε′Aεβ

(
β′ε′Bεβ

)−1
,

where ε = (Y0, ε1, . . . , εT )′, a (T + 1)×m matrix, and A and B are (T + 1)× (T + 1) matrices:

A =



0 0 · · · · · · 0

1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0


, B =



1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

0 · · · · · · 0 0


.

Next, define a (T+1)×(T+1) orthogonal matrix H = diag(1,−1, 1,−1, . . .) and let ε̃ = Hε, such

that ε̃ and ε will have the same distribution whenever the distribution of {εt}Tt=1 is symmetric.

(The first row of both ε and ε̃ is Y ′0 .) It is easily checked that H ′AH = −A and H ′BH = B, so

α̂(ε̃)− α = ε′H ′AHεβ
(
β′ε′H ′BHεβ

)−1
= −ε′Aεβ

(
β′ε′Bεβ

)−1
= − (α̂(ε)− α) .

Since ε and ε̃ have the same distribution, α̂(ε) − α and − (α̂(ε)− α) will also have identical

distributions, symmetric around 0. This distribution has finite mean, as follows from the criteria

derived by Magnus (1986) for the existence of moments of ratios of quadratic forms in normal

vectors. Therefore, E[α̂(ε)− α] = −E[α̂(ε)− α], which implies E[α̂− α] = 0. �

When β′α 6= −Ir, and hence ρ 6= 0r, then α̂ is not unbiased. The bias in α̂ is naturally

related to the bias in

ρ̂ = Ir + β′α̂

=

T∑
t=1

ZtZ
′
t−1

(
T∑
t=1

Zt−1Z
′
t−1

)−1
,

where Zt = β′Yt. The question now becomes how to exploit knowledge concerning the bias in

ρ̂ for obtaining bias expressions for α̂.

In the past many expressions have been derived for the bias in ρ̂ in the autoregressive model.

Early contributions include Marriott and Pope (1954), Kendall (1954) and White (1961) but

there are many others. In order to use these results we need the inverse of the bias relation

β′E[α̂−α] = E[ρ̂−ρ]. The dimension of ρ is smaller than α and hence the equation β′E[α̂−α] =

E[ρ̂− ρ] has general solution (see e.g. Magnus and Neudecker (1988), p. 37):

E[α̂− α] = β
(
β′β
)−1

E[ρ̂− ρ] + β⊥
(
β′⊥β⊥

)−1
β′⊥q, q ∈ Rm×r,
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where q in general will depend on the unknown parameters (α,Ω) and the fixed β.

In order to resolve the indeterminacy in q, we write the model with known β as

Zt = ρZt−1 + u1t,

Wt = γZt−1 + u2t,

with γ = β′⊥α, Wt = β′⊥∆Yt, u1t = β′εt and u2t = β′⊥εt. Conditional on the initial values we

can calculate the maximum likelihood estimates of ρ and γ by OLS since Zt−1 is common in

both equations. Using the explicit expression for α̂ we have the following relations

β′α̂ = ρ̂− Ir,

β′⊥α̂ = γ̂,

where γ̂ =
∑T

t=1WtZ
′
t−1

(∑T
t=1 Zt−1Z

′
t−1

)−1
. This relation can be inverted to obtain

α̂ = β
(
β′β
)−1

(ρ̂− Ir) + β⊥
(
β′⊥β⊥

)−1
γ̂.

This leads to the following proposition:

Proposition 2 E[α̂−α] =
(
β
(
β′β
)−1

+ β⊥
(
β′⊥β⊥

)−1
δ
)
E[ρ̂−ρ] where δ = β′⊥Ωβ

(
β′Ωβ

)−1
.

When the covariance matrix is scalar the second term vanishes since β′⊥Ωβ = 0 and we have:

Corollary 1 E[α̂− α] = β
(
β′β
)−1

E[ρ̂− ρ] when Ω = σ2Im.

Proof. Using γ̂−γ =
∑T

t=1 u2tZ
′
t−1

(∑T
t=1 Zt−1Z

′
t−1

)−1
and writing Zt = ρtZ0+

∑t−1
j=0 ρ

ju1,t−j

it follows that {u2t}Tt=1 is independent of {Zt−1}Tt=1, so that E[γ̂ − γ] = 0, if u1t is independent

of u2t. When εt is Gaussian with covariance matrix Ω, this happens if and only if Cov[u1t, u2t] =

β′Ωβ⊥ = 0. This proves the corollary when Ω = σ2Im.

In other cases we have

u2t = δu1t + u2·1,t,

where u2·1,t is independent of u1t. Using (ρ̂− ρ) =
∑T

t=1 u1tZ
′
t−1

(∑T
t=1 Zt−1Z

′
t−1

)−1
we have

γ̂ − γ = δ (ρ̂− ρ) +
∑T

t=1 u2·1,tZ
′
t−1

(∑T
t=1 Zt−1Z

′
t−1

)−1
, where the last term has expectation 0

because {u2·1,t}Tt=1 is independent of {Zt−1}Tt=1. This leads to the result of Proposition 2. �

We see that the bias in α̂ is proportional to the bias in ρ̂ in the direction of the cointegrating

vector, orthogonal to the equilibrium set if the contemporaneous covariance matrix is scalar,

and a second term that is governed by the non-orthogonality of β and β⊥ in de metric defined

by the contemporaneous covariance matrix Ω .
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3 Bias Correction

In order to illustrate the result and to show that we can successfully use bias expressions for

autoregressive parameters to bias adjust the estimator α̂, we consider a bivariate CVAR with one

cointegrating vector β = (1,−1)′ , inspired by e.g. the Forward Rate Unbiasedness hypothesis

and present value models. We choose as adjustment vector α = 1
2(ρ − 1)(1,−1)′, for various

values of ρ. The disturbance covariance matrix is taken as Ω = 1
2 diag(1+δ, 1−δ) with δ ∈ (0, 1),

such that β′Ωβ = 1 and β′⊥Ωβ = δ (where we have taken β⊥ = (1, 1)′). The initial condition

satisfies β′Y0 = 0.

There are various bias expressions for ρ̂, but we use one based on the geometry of the AR(1)

model, see van Garderen (1997, 1999) and calculated using general second order bias expression

given in, e.g., Amari (1985). For the case where Z0 = 0, this results in the explicit bias formula

E[ρ̂− ρ] =

(
1− ρ2

) (
4ρ2 − 2Tρ2 + 2Tρ4 − 2Tρ2T − 4ρ2+2T + 2Tρ2+2T

)
ρ(T − 1− Tρ2 + ρ2T )2

+ o(T−1). (4)

Figures 1–3 display the bias in α̂1 and α̂2 against ρ ∈ [0, 1], with T ∈ {10, 20, 50, 100} and

δ ∈ {0, 0.8}. When δ = 0, then the distribution of α̂2 is the same as that of −α̂1, so this case

is not displayed. For similar reasons of symmetry, we do not consider ρ < 0 or δ < 0. In

addition to the bias, we have calculated the remaining bias after correction using Proposition 2

in combination with (4), either using the true parameter values of ρ and δ, or their estimates,

where we have imposed ρ̂ ≤ 1 by taking ρ̂ = min
{

1, 1 + β′α̂
}

.

Figure 1: Bias and corrected bias in α̂1 against ρ, with δ = 0
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Note: All graphs have ρ on the horizontal axis, and bias on the vertical axis.
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Figure 2: Bias and corrected bias in α̂1 against ρ, with δ = 0.8
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Figure 3: Bias and corrected bias in α̂2 against ρ, with δ = 0.8
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The results are based on 1, 000, 000 replications. The same random numbers have been used

for different values of ρ, and the result of Proposition 1 (zero bias at ρ = 0) has been enforced

by taking “antithetic” variates in the spirit of the proof of Proposition 1.

In all three figures, we observe very similar features. The bias increases almost linearly in

ρ for small values of ρ, but the function is curved and non-monotonous as ρ approaches 1. The

(infeasible) bias correction based on the true parameters leads to an over-correction of the bias

for smaller values of ρ and T , and an under-correction in the neighbourhood of ρ = 1. For

a large part of the interval ρ ∈ [0, 1], the correction based on estimated parameters leads to

an almost unbiased estimator. This may be explained by the fact that the negative bias in ρ̂

reduces the over-correction caused by the approximation (4). As ρ approaches 1, the feasible

correction method based on estimated parameters does not fully eliminate the bias, but still

leads to a substantial bias reduction.

4 Concluding Remarks

We have shown that in the CVAR model with known β, the bias in α̂ can be related to the

bias in ρ̂ in pure (vector) autoregressive models. The bias can be very large relative to the true

value of α, in particular for small values of α when return to the equilibrium set is slow and

shocks are relatively persistent. Our feasible bias correction significantly reduces the bias of the

adjustment estimator.

When the model is extended to include deterministics and lagged differences then the esti-

mator ρ̂ is not unbiased, even when ρ = 0, which is well known. This means that Proposition

1 no longer applies; however, we conjecture that Proposition 2 can be extended to the case of

deterministic components in the first-order model.
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