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Abstract

This Chapter reviews the recent literature on dynamic panel data models with

a short time span and a large cross-section. Throughout the discussion we consider

linear models with additional endogenous covariates. First we give a broad overview

of available inference methods placing emphasis on GMM. We next discuss in more

detail the assumption of mean stationarity underlying the system GMM estimator.

We discuss causes of deviations from mean stationarity, their consequences and tests

for mean stationarity.

1. introduction

This Chapter reviews the recent literature on dynamic panel data models. Economic rela-

tionships usually involve dynamic adjustment processes. In time series regression models it

is common practice to deal with these by including in the speci�cation lagged values of the

covariates, the dependent variable, or both. The inclusion of lags of the dependent vari-

able seems to provide an adequate characterization of many economic dynamic adjustment
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processes. However, in panel data analysis with a small number of time periods there often

appear to be inference problems, such as small sample bias in coe¢ cient estimation and

hypothesis testing.

We consider a class of linear dynamic panel data models allowing for endogenous covari-

ates. Sometimes it can be argued that the covariates are exogenous, at least conditional on

individual- and time-speci�c e¤ects, e.g. when these covariates re�ect natural phenomena.

However, in many areas of economic inquiry this is often not the case. For instance, in

empirical analysis of policy interventions, policy variables are most likely not strictly ex-

ogenous but simultaneously determined with the outcome variable of interest (e.g. Besley

and Case, 2000). Even if one is willing to assume that the covariates are not simultaneously

determined, they may still be in�uenced by past values of the outcome variable.

Due to the various endogeneity problems mentioned above, least squares based inference

methods, i.e. �xed e¤ects or random e¤ects estimators, are biased and inconsistent. Hence,

it has become standard practice nowadays to use Instrumental Variables (IV) methods or

the Generalized Method of Moments (GMM), which produce consistent parameter esti-

mates for a �nite number of time periods, T, and a large cross-sectional dimension, N (see

e.g. Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998). Within

this class of methods, the system GMM estimator (Blundell and Bond, 1998) has become

increasingly popular. We do not intend to provide a detailed overview of speci�c applica-

tions, but in labor economics (minimum wage e¤ects, labor supply, returns to schooling,

job training), development economics (e¤ectiveness of foreign aid, transition economics),

health economics (health expenditures, organization of health care, aging, addiction, insur-

ance), industrial organization (mergers & acquisitions, evaluation of competition policy),

international economics (e¤ects of trade policy and economic integration), macroeconomics

(economic growth, optimal currency areas) and �nance (banking regulation) GMM infer-

ence methods have been applied extensively.

One main reason for their popularity in empirical research is that the GMM estimation

approach may provide asymptotically e¢ cient inference employing a relatively minimal set

of statistical assumptions. However, despite its optimal asymptotic properties, the �nite

sample behaviour of the GMM estimator and corresponding test statistics can be rather

poor due to weakness and/or abundance of moment conditions and dependence on crucial

nuisance parameters. As a result, several alternative inference methods have been proposed,

often requiring di¤erent and more stringent assumptions. Here we will survey some of the

most recent contributions.

In addition, an issue that has recently attracted further attention is the mean stationar-

ity assumption that underlies the system GMM estimator. Roodman (2009) points out that

this assumption is not trivial, which seems to be underappreciated in applied research. The

e¤ect of deviations from mean stationarity are analysed theoretically by Hayakawa (2009)
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and Hayakawa and Nagata (2012). Kiviet (2007), Everaert (2012) and Juodis (2013) also

explore this issue by Monte Carlo simulation. Consequently, in this Chapter we will focus

on mean stationarity in more detail and analyse the main arguments.

This is not the �rst review study on linear dynamic models for panel data; Blundell,

Bond and Windmeijer (2001) and Roodman (2009) provide excellent summaries of the

GMM methodology. Arellano and Honore (2003) also provide a very comprehensive analy-

sis, including results for nonlinear models. Speci�c chapters in books on panel data also pay

ample attention to dynamic panel data modeling (Arellano, 2003a; Hsiao, 2003; Baltagi,

2008; Mátyás and Sevestre, 2008).

There are of course many other interesting and related topics that we don�t cover in

this Chapter. We do not discuss: (1) slope parameter heterogeneity; (2) cross-sectional

dependence; (3) nonlinear models. Also we mainly focus on GMM inference methods but

we brie�y mention likelihood-based alternatives in Section 2. A discussion of some of these

topics, however, can be found in other chapters of this volume.

2. review of the literature

Suppose the relation between the dependent variable yit and a single covariate xit can be

modeled by the following dynamic speci�cation:

yit = �yi;t�1 + �xit + �i + "it; i = 1; :::N; t = 1; :::T , (2.1)

where �i denotes unobserved time-invariant heterogeneity and "it is the idiosyncratic error

component.1 We assume that yi0 and xi0 are observed. The dynamic panel data model

in (2.1) permits the distinction between the long run, or equilibrium, relationship and the

short-run dynamics. Note that xit could also be a vector, containing both contemporaneous

and lagged values of explanatory variables. It can be seen in this case that the above spec-

i�cation encompasses several important other speci�cations, i.e. static models, distributed

lag or �rst-di¤erenced speci�cations.

Often the individual-speci�c e¤ect, �i, is thought to be correlated with xit. Furthermore,

by construction the lagged dependent variable is correlated with the individual speci�c ef-

fect, i.e. E (�ijyi;t�1) 6= 0. Additionally, the covariate may also exhibit a nonzero correlation
with the contemporaneous or lagged idiosyncratic errors, such that E ("itjxis) 6= 0 for t � s.
All these endogeneity issues imply that least squares based estimators may be inconsistent.

To this end, several alternative estimators have been proposed. In this Chapter we focus

on GMM estimators, although at the end of the section we brie�y describe relative merits

of other procedures, especially likelihood-based inference methods.

1Time-speci�c e¤ects can also be included explicitly or controlled for by cross-sectional demeaning of

the data prior to estimation. We will discuss an example of a process with time-speci�c e¤ects later.
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We consider models where idiosyncratic errors obey the following conditional moment

restriction:

E
�
"itjyt�1i ;xsi ; �i

�
= 0; t = 1; :::; T , (2.2)

where yt�1i = (yi0; yi1; :::; yi;t�1)
0 and xsi = (xi0; xi1; :::; xis)

0. Assumption (2.2) rules out

serial correlation in "it, which is a base for constructing unconditional moments. However,

it does not restrict the relationship between �i and x
s
i . Regarding the regressor xit we

distinguish between (i) strict exogeneity, s = T ; (ii) predeterminedness, s = t; and (iii)

endogeneity, s < t. That is, depending on s, equation (2.2) permits instantaneous or lagged

feedback from y to x.

Based on assumption (2.2), the model can be expressed in �rst di¤erences as

�yit = ��yi;t�1 + ��xit +�"it, (2.3)

for which the following (DIF) unconditional moment conditions are available:

E
�
yt�2i �"it

�
= 0; E

�
xs�1i �"it

�
= 0; t = 2; :::; T , (2.4)

with s depending on the exogeneity status of xit. Lagged levels of the endogenous variables

can be used as instruments for current changes. Simple IV estimators of this type were

�rst proposed by Anderson and Hsiao (1981, 1982) for the �rst order autoregressive AR(1)

model and in a multivariate setting and GMM framework by Holtz-Eakin, Newey and

Rosen (1988) and Arellano and Bond (1991).

Assumption (2.2) also rules out any correlations between "it and �i.
2 This provides

an additional set of T � 3 nonlinear moment conditions available for the model in �rst
di¤erences, as suggested by Ahn and Schmidt (1995):

E [(�i + "it)�"i;t�1] = 0; t = 3; :::T: (2.5)

Thus, under assumption (2.2) e¢ ciency gains may occur by using (2.5) in addition to

(2.4). Ahn and Schmidt (1995) show that the GMM estimator (labeled AS hereafter)

that makes use of (2.4) and (2.5) is e¢ cient in the class of estimators that make use of

second moment information. They also report substantial e¢ ciency gains when comparing

asymptotic variances for the AR(1) model. Especially when the series is highly persistent,

the additional quadratic moment conditions become relatively informative compared with

the moment conditions in (2.4) as can be seen from the calculations in Ahn and Schmidt

(1995).

It is well known (see e.g. Blundell and Bond, 1998) that the GMM estimator of the

�rst-di¤erenced model can have poor �nite sample properties in terms of bias and precision

2This is not very restrictive, because in autoregressive models any nonzero correlation between individual

e¤ects and idiosyncratic errors tends to vanish over time (Arellano, 2003, p82).
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when the series are persistent. One reason for this is that in this case lagged levels are

weak predictors of the �rst di¤erences. Blundell and Bond (1998) advocated the use of

extra moment conditions that rely on certain stationarity restrictions on the time series

properties of the data, as suggested by Arellano and Bover (1995). For the multivariate

model in (2.1) these amount to assuming

E [�yitj�i] = 0; E [�xitj�i] = 0, (2.6)

which imply that the original series in levels have constant correlation over time with the

individual-speci�c e¤ects.3 Assumption (2.6) leads to the following additional moment

conditions for the model in levels (2.1) (hereafter, LEV):

E
�
�yt�1i (�i + "it)

�
= 0; E [�xsi (�i + "it)] = 0, (2.7)

for t = 2; :::; T , where �yt�1i = (�yi1;�yi2; :::;�yi;t�1)
0 and so on. In words, with regards

to endogenous variables, lagged changes can be used as instruments for current levels.

Notice that a subset of the moment conditions in (2.7) is redundant because it can

be expressed as a linear combination of the moments in (2.4) (see e.g. Kiviet, Pleus and

Poldermans, 2013, for a proof of this result). Therefore, the complete set of non redundant

linear moment conditions in levels can be speci�ed as

E [�yi;t�1(�i + "it)] = 0; t = 2; :::; T , (2.8)

together with

E [�xi;t�1(�i + "it)] = 0, t = 2; :::; T , (2.9)

in case of endogenous xit; or

E [�xit(�i + "it)] = 0, t = 1; :::; T , (2.10)

in case of predetermined or strictly exogenous xit. Combining (2.4) with (2.8) and ei-

ther (2.9) or (2.10) leads to the system GMM estimator (labeled SYS). It should also be

noted that (2.7) render the nonlinear moment conditions in (2.5) redundant. Hence under

assumption (2.6) SYS is asymptotically e¢ cient. Blundell and Bond (1998) argued that

SYS performs better than the DIF GMM estimator because the instruments in the LEV

model remain good predictors for the endogenous variables even when the series are highly

persistent.

3Assumption (2.6) is often labeled the �mean stationarity�assumption. Some authors (e.g. Kiviet, 2007)

prefer to label it as �e¤ect stationarity�, because it is an expectation conditional on the individual speci�c

e¤ect �i. In the next section we use the term �constant correlated e¤ects�to describe this assumption. We

believe this is more precise because the additional moment conditions do not require mean stationarity, as

it will become clear.
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Notwithstanding the popularity of the GMMmethodology in applied economic research,

producing accurate statistical inferences for panel data models using instrumental variables

has not been a straightforward exercise. In particular, the desirable asymptotic properties

of the estimators do not safeguard their performance in �nite samples. In what follows, we

summarise some of the issues that may arise in �nite samples.

2.1. asymptotic standard errors

As it has already been shown in the Monte Carlo study in Arellano and Bond (1991), esti-

mated asymptotic standard errors of two step GMM estimators can be severely downward

biased, suggesting more precision than is actually justi�ed. Windmeijer (2005) showed

that this is due to the fact that the weight matrix used in the second stage is based on

initial parameter estimates, which themselves are subject to sampling variability that is

not accounted for. Using asymptotic expansion techniques the author proposed a variance

correction, leading to improved inference using the Wald test. In a rather extensive Monte

Carlo study Bond and Windmeijer (2005) con�rm the poor performance of the standard

Wald test based on two step GMM. They �nd that using Wald statistics based on either

one step GMM or the variance-corrected two step GMM or exploiting the LM statistic

produces reliable inferences when identi�cation is not too weak.

2.2. many instruments

Since dynamic panels are often largely overidenti�ed, another important practical issue is

how many moment conditions to use. Again, traditional �rst order asymptotics are not

very helpful in answering this question as they imply �the more the merrier�. In practice,

however, it is well documented that numerous instruments can over�t endogenous variables

in �nite samples (see e.g. Bekker, 1994), resulting in a trade o¤between bias and e¢ ciency.

To gain some insight, consider a standard IV regression with one endogenous covariate;

the R2 coe¢ cient of the �rst stage regression takes the value of one when the number

of instruments is equal to the number of observations. Thus, the instrumental variable

is perfectly correlated with the endogenous variable and the IV estimator is numerically

identical to the (biased) OLS estimator.

There is substantial theoretical work on the over�tting bias of GMM estimators in

panel data models. For example, Koenker and Machado (1999) establish that a su¢ cient

condition for the usual limiting distribution of the GMM estimator to remain valid under

instrument proliferation is m = o
�
N1=3

�
, where m denotes the number of instruments.

Arellano (2003b) shows that in models with predetermined variables, such as a pure AR

model, the bias as a result of over�tting is of order O (m=N), while for models with en-

dogenous variables the bias is of order O (mT=N). Similarly, Alvarez and Arellano (2003)

analyse a panel autoregressive model of order one, and show that although GMM remains
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consistent for T=N ! c, so long as 0 � c � 2, for c > 0 the estimator exhibits a bias

in its asymptotic distribution that is of order 1=N . Bun and Kiviet (2006) show that in

comparison with GMM estimators that employ all available instruments, reducing the set

of instruments by order T also decreases the bias by an order smaller in magnitude by a

factor T. Ziliak (1997) examines the bias/e¢ ciency trade o¤ issue using bootstraping in an

empirical application to life cycle labor supply under uncertainty. He shows that the bias

of 2SLS and GMM estimators becomes larger as the number of instruments increases, and

furthermore that GMM is biased downwards relative to 2SLS, arguably due to the nonzero

correlation between the estimated weight matrix and the sample moments. Results from

Monte Carlo simulation experiments vary, depending on the simulation design, the degree

of overidenti�cation in conjunction with the techniques employed for reducing the num-

ber of instruments, and �nally the method employed in estimation. Windmeijer (2005)

reported that for the two step DIF GMM, using only two lags of the dependent variable as

instruments appeared to decrease the average bias by 40% relative to the estimator that

made use of the full set of instruments, although the standard deviation of the estimator

increased by about 7.5%. Roodman (2009) compared two popular approaches for limiting

the number of instruments: (i) the use of (up to) certain lags instead of all available lags

and (ii) combining instruments into smaller sets. His results show that the bias in SYS

GMM based on the �rst approach is similar to the bias when using the full set of instru-

ments. However, there is clear bias reduction under the second approach. On the other

hand, Hayakawa (2009) shows that in panels with large unobserved heterogeneity the bias

in DIF GMM can actually be larger when using a smaller set of instruments.

2.3. dependence on nuisance parameters

Various studies (e.g. Binder, Hsiao and Pesaran, 2005; Bun and Kiviet, 2006; Bun and

Windmeijer, 2010) show that the �nite sample properties of GMM estimators depend heav-

ily on crucial nuisance parameters, especially the ratio of the variances of the individual-

speci�c e¤ects and the idiosyncratic errors (�2�=�
2
"). Binder, Hsiao and Pesaran show that

the asymptotic variance of the DIF GMM estimator increases with the variance of the

individual-speci�c e¤ects. Using asymptotic expansion techniques Bun and Kiviet (2006)

approximate the bias of various one step GMM estimators. The asymptotic expansions

provide analytic evidence on how the bias of the various GMM estimators depends on,

among other things, the size of the variance of the individual e¤ects and the correlation

between regressors and individual e¤ects. Bun and Windmeijer (2010) analyze the bias

of DIF, LEV and SYS 2SLS estimators relative to bias in corresponding OLS estimators.

They conclude that, although absolute bias of the LEV and SYS 2SLS estimators tends to

be small for persistent panel data, this bias is an increasing function of �2�=�
2
". Furthermore,

relative biases of LEV and SYS 2SLS estimators are smaller and the associated Wald tests
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perform better than those of DIF when �2� < �
2
". The reverse is the case when �

2
� is larger

then �2". By Monte Carlo simulation these results are shown to extend to the panel data

setting when estimating the model by GMM.

2.4. weak instruments

When instruments are weak, i.e. only lowly correlated with the endogenous variables, IV

and GMM estimators can perform poorly in �nite samples, see e.g. Bound, Jaeger and

Baker (1995), Staiger and Stock (1997), Stock and Wright (2000) and Stock, Wright and

Yogo (2002). With weak instruments, IV or GMM estimators for panel data models are

biased in the direction of the least squares estimator, and their distributions are non-normal

(Wansbeek and Knaap, 1999; Hahn, Hausman and Kuersteiner, 2007; Kruiniger, 2009; Bun

and Kleibergen, 2013), a¤ecting inference using standard t or Wald testing procedures.

To illustrate the weak instrument problem in dynamic panel data models, consider the

the case of an AR(1) model, i.e. impose � = 0 in (2.1), and T = 2. The DIF and LEV

models, i.e. (2.3) and (2.1), are now the following cross-sectional models:

DIF : �yi2 = ��yi1 +�"i2; (2.11)

LEV : yi2 = �yi1 + �i + "i2: (2.12)

The moment conditions for both models are:

DIF : E[yi0(�yi2 � ��yi1)] = 0; (2.13)

LEV : E[�yi1(yi2 � �yi1)] = 0; (2.14)

hence for T = 2 simple IV estimators result:

�̂DIF =

PN
i=1 yi0�yi2PN
i=1 yi0�yi1

; �̂LEV =

PN
i=1 yi2�yi1PN
i=1 yi1�yi1

: (2.15)

Assuming mean stationarity, i.e. yi0 =
�i
1��+"i0, the resulting covariance between regressor

and instrument is:

DIF: E[yi0�yi1] = (�� 1)E["2i0]; (2.16)

LEV: E[yi1�yi1] = � (�� 1)E["2i0] + E["2i1]: (2.17)

Because E["2i1] 6= 0 the LEV moment condition always seems to identify � even for true

values close to one; see Arellano and Bover (1995) and Blundell and Bond (1998). There is

a caveat, however, because identi�cation using LEV moment conditions is a¤ected by the

model for the initial observations.

Bond, Nauges and Windmeijer (2005) show how identi�cation of � depends on the

variance of the initial observations. The LEV �rst stage regression is:

yi1 = �l�yi1 + li; (2.18)
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with li being the reduced form error. When � = 1 we have �l = 1 and li = yi0. Therefore,

weak identi�cation does not originate from �l ! 0, but from V ar(li) = V ar(yi0) being

large. When the number of time periods that the process has been in existence before

the sample is drawn is �xed, then V ar(yi0) < 1. In this case the LEV (and hence SYS)
moment conditions identify � even when its true value is one. For many DGPs, however,

V ar(yi0)!1 when � approaches one leading to identi�cation failure. An example of such

a DGP is that of covariance stationarity.

Kruiniger (2009) also shows that weakness of DIF and LEV moment conditions can

manifest itself in di¤erent ways depending on the model for the initial observations. Fol-

lowing Han and Phillips (2006) sample moment conditions can be decomposed in �signal�

and �noise�. Conventional asymptotics assume a strong signal, while noise is eliminated as-

ymptotically. For the dynamic panel data model Kruiniger (2009) shows that, depending on

the initial conditions, in some cases the signal becomes weak, while in other situations noise

is dominating. For example, assuming covariance stationarity we have that E["2i0] =
�2"
1��2

and E["2i1] = �
2
", hence (2.16) and (2.17) become:

DIF: E[yi0�yi1] = �
�2"
1 + �

; (2.19)

LEV: E[yi1�yi1] =
�2"
1 + �

: (2.20)

These expressions suggest a strong �signal� for both DIF and LEV moment conditions,

even when � is (close to) one. However, at the same time the variance of the DIF and LEV

moment conditions is proportional to 1
1�� implying explosive behavior when � goes to one.

In this case the noise in the moment equation dominates the signal and weak identi�cation

results for both DIF and LEV moment conditions.

Bun and Windmeijer (2010) show the weakness of DIF and LEV moment conditions in

yet another way by calculating concentration parameters for DIF and LEVmodels assuming

covariance stationarity. For a simple cross-sectional linear IV model, the concentration

parameter is a measure of the information content of the instruments. When T = 2 and

assuming covariance stationarity they are equal for both models:

�2"
(1� �)2

1� �2 + 2(1 + �)�
2
�

�2"

: (2.21)

This suggests a weak identi�cation problem in the LEV model too when � ! 1 (and/or
�2�
�2"
!1).
Bun and Kleibergen (2013) emphasize the arbitrariness of identi�cation by the LEV

moment condition by considering a joint limit process where both � converges to one and

N goes to in�nity. Specifying the function h(�) such that h(�)�2 _ V ar(yi0) they show

that when h(�)
p
N !

N!1; �"1
1 the derivative of the LEV moment condition converges to
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a nonzero constant. However, when h(�)
p
N !

N!1; �"1
0; it is the case that

h(�)
1p
N

NX
i=1

yi1�yi1
d�!

N!1; �0"1
N(0; V ar("i1)): (2.22)

This result shows identi�cation failure since the derivative of the LEV moment condition

converges to a random limit with mean zero.4 Since any assumption on convergence rates

of � and N is arbitrary, identi�cation by LEV moment conditions is arbitrary. Assum-

ing h(�)
p
N !

N!1; �"1
0 Bun and Kleibergen (2013) show that 2-step DIF, LEV and SYS

GMM estimators and associated Wald statistics have non-standard large sample distri-

butions, which results are qualitatively similar to those in Kruiniger (2009). They also

show, however, that for T > 2 it is possible to achieve identi�cation of � even when

h(�)
p
N !

N!1; �"1
0 by combining SYS or AS moment conditions with the Lagrange mul-

tiplier GMM statistic proposed by Newey and West (1987), or with identi�cation robust

GMM statistics proposed by Stock and Wright (2000) and Kleibergen (2005).

Summarizing, whether the various sets of moment conditions identify the parameters

of dynamic panel data models with persistent data depends on what seems reasonable to

assume for the initial observations. In many microeconometric panel data a �nite number

of start-up periods may be a realistic scenario. In those cases identi�cation issues are less

severe, but this is not known on beforehand. Note that all above studies exploit mean

stationarity and hence validity of LEV moment conditions. Strength of identi�cation by

the DIF (and also AS) moment conditions, however, may change substantially when we

deviate from mean stationarity as we will discuss in Section 3.3 below.

2.5. alternative procedures

The dependence of �nite sample distributions on the number and type of moment condi-

tions as well as important nuisance parameters can be detrimental to the use of conventional

GMM estimators in applied work. Hence, recent contributions propose to exploit alter-

native and possibly nonlinear moment conditions derived from inconsistent least squares

procedures or likelihood based methods.

A central theme in linear dynamic panel data analysis is the fact that the �xed e¤ects

maximum likelihood (ML) estimator is inconsistent for a �xed number of time periods, as

the number of cross-sectionalal units tends to in�nity. This inconsistency is referred to as

�Nickell bias�, due to Nickell (1981), and is an example of the incidental parameters problem

(the number of parameters increasing with the sample size), analyzed �rst by Neyman and

Scott (1948). This has led to an interest in likelihood-based methods that correct for

the incidental parameters problem. Some of these methods are based on modi�cations

4A similar result holds for the DIF moment condition.

10



of the pro�le likelihood, see Lancaster (2002) and Dhaene and Jochmans (2012). Other

methods start from the likelihood function of the �rst di¤erences, see Hsiao, Pesaran and

Tacmiscioglu (2002), Binder, Hsiao and Pesaran (2005) and Hayakawa and Pesaran (2012).

Well known transformations to remove individual-speci�c e¤ects in panel data models

are the within transformation and �rst di¤erences. Kiviet (1995) and Bun and Carree

(2005) exploit the possibility to correct the inconsistency of the �xed e¤ects estimator,

while Han and Phillips (2010) and Han, Phillips and Sul (2010) recently developed e¢ cient

GMM methods based on alternative moment conditions arising from the model in �rst

di¤erences. However, the models considered in these studies are mainly autoregressive of

nature (possibly with additional exogenous regressors) which currently limits their practical

use.

A common advantage of these alternative likelihood based inference procedures is that

they are largely invariant to the model parameters because unobserved heterogeneity is

a priori transformed away. In comparison with the GMM approach, a limitation is that

they impose exogeneity restrictions on the covariates and time series homoskedasticity,

which may be violated in practice. Especially endogeneity with respect to the idiosyncratic

errors is a common scenario in many applied studies. As mentioned by Hayakawa and

Pesaran (2012), in principle it is feasible to exploit likelihood-based estimators in case of

endogeneity too, however this requires supplementing the structural dynamic equation (2.1)

with a reduced form equation for the endogenous regressors. Estimates of the parameters of

interest could be retrieved from the resulting panel VAR coe¢ cients. This is still a matter

of future research.

3. revisiting the issue of initial conditions

The popular system GMM estimator depends on (2.6), which is certainly satis�ed if all vari-

ables are assumed to be mean stationary. A number of authors (see e.g. Roodman, 2009)

have critically assessed the credibility of mean stationarity in applied economic research.

In this section we discuss this issue in more detail. Furthermore, we describe consequences

of departures from this assumption and statistical procedures to test it. Throughout the

discussion the focus is on GMM inference methods.

3.1. constant-correlated e¤ects

The issue of initial conditions in models with �xed T has attracted considerable attention in

the dynamic panel data literature since its infancy. For instance, Anderson and Hsiao (1982)

and Bhargava and Sargan (1983) analyse the asymptotic properties of various maximum

likelihood and instrumental variable type procedures under a large variety of assumptions
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about the initial conditions of the processes being studied.5 One possibility is to assume

that the initial condition is such that the process is mean stationary. The growing concern

about the properties of dynamic panel estimators in �nite samples may have contributed

to placing large emphasis on this assumption, both in terms of theoretical developments,

as well as in empirical applications.

In particular, mean stationarity has been employed for deriving additional moment con-

ditions and developing new estimators (e.g. Arellano and Bover, 1995; Blundell and Bond,

1998). Given its mathematical convenience, it has also become a standard assumption in

the many/weak instruments literature (e.g. Alvarez and Arellano, 2003; Bun and Wind-

meijer, 2010). Moreover, it is fair to say that in a large part of the literature during the

last �fteen years or so, which reports results on the performance of GMM estimators based

on Monte Carlo experiments, mean stationarity is either assumed from the outset, or it

is e¤ectively imposed as a byproduct of the simulation design. In the former case this is

achieved by drawing the initial observations from a covariance stationary distribution (e.g.

Blundell, Bond and Windmeijer, 2001). In the latter case the design entails generating

T + S time series observations, with S equal to 50 or more, but using only T observations

for estimation purposes. The �rst S observations are not considered in estimation, in order

to �minimize the e¤ect of initial conditions�(e.g. Bun and Kiviet, 2006). Although this

practice is rather innocuous in panels with T large, it can have important consequences in

panels with small T .

Another point that is easily discernible on selective reading of a huge empirical litera-

ture utilising panel data, is that the GMM estimator proposed by Ahn and Schmidt (1995),

utilising (2.4) and (2.5), is rarely used in practice. This is despite the fact that this is the

e¢ cient estimator under a relatively minimal set of assumptions, excluding mean station-

arity, and that using these moment conditions identi�cation is achieved even for persistent

panel data (Bun and Kleibergen, 2013). Instead, in a substantial body of applied work

the estimation strategy appears to involve the use of either DIF (which is not e¢ cient

under mean nonstationarity) or SYS (for which a su¢ cient condition for consistency is

mean stationarity), or often both, without providing much theoretical justi�cation for the

implications of the underlying assumptions that validate the use of SYS speci�cally. The

tendency to bypass AS is not surprising perhaps, given that both DIF and SYS are easy to

compute and are readily available in several econometric packages of widespread use. On

the contrary, so far as we know, AS is not yet part of a standard routine.

From a statistical perspective, and since most dynamic panel data models are typically

overidenti�ed, violations from mean stationarity are in principle detectable based on Sar-

gan�s or Hansen�s test of overidentifying restrictions. However, it is now well known that

these tests can have very low power, especially when the number of instruments used is

5See also Hsiao (2003, Ch. 4) for an excellent discussion.
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relatively large (see e.g. Bowsher, 2002; Roodman, 2009). This could be partially mitigated

by computing an incremental test based on AS and SYS, which involves a smaller number

of degrees of freedom compared to an incremental test based on DIF and SYS. This is

rarely implemented in practice.

In what follows, we revisit the conditions under which the LEV moment conditions hold

true. We elaborate on what we call the �constant-correlated e¤ects�assumption, which, for

a limited lifespan of the time series, is a necessary and su¢ cient condition for the consistency

of LEV and SYS GMM estimators. Since it is a rather intuitive concept to grasp, it has

the bene�t that, once one is prepared to motivate what unobserved heterogeneity is likely

to capture in one�s model, it becomes relatively straightforward to form an idea about how

restrictive the condition appears to be on a speci�c application. If it does, the e¢ cient

estimator is AS and more e¤ort should be made to apply it. Furthermore, we summarise

some of the (limited) results existing and attempt to provide some guidance.

Recall that the LEV moment conditions (2.7) imply that the �rst di¤erence of yit and

xit are both uncorrelated with �i, i.e.

E (�yit�i) = 0; (3.1)

E (�xit�i) = 0, (3.2)

for t = 1; :::; T . Thus, the moment conditions above imply that the �rst-di¤erenced vari-

ables are free from the individual e¤ects, which requires that the correlation between yit
(xit) and �i is constant over time. We phrase this high level condition as the �constant-

correlated e¤ects�(cce) assumption, which can be expressed as

E (yit�i) = cy; (3.3)

E (xit�i) = cx, (3.4)

for all t. The issue of whether the variables of the model exhibit a constant correlation over

time with unobserved time-invariant heterogeneity depends on the application in mind.

Below we consider a few applications where GMM estimators have been popular. While

the discussion should not be interpreted as indicative of a general pattern, it does suggest

that the cce assumption is often taken too lightly by empirical researchers.

Suppose that (2.1) represents an earnings determination equation (see also Hause, 1980;

Arellano, 2003) with wage on the left hand side and experience on the right hand side (along

with lagged wage and other variables, such as education and tenure). It is commonly viewed

in this case that �i captures, among other things, the e¤ect of innate ability, or skills,

which are unobserved to the econometrician and in any case hard to quantify. Consider the

following scenario: the sample includes workers at di¤erent phases of their career; some of

them are close to retirement and some are new starters, having entered the labor market

only recently for the �rst time, or having made a career change soon prior to the beginning
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of the sampling period. An argument could be made that the subgroup of new starters

who are highly skilled, and therefore are employed in knowledge-intensive jobs, is likely to

accumulate proportionally more experience as time progresses, and indeed receive higher

salaries for this reason, relative to those individuals within the same group who have lower

skills. This systematic relationship over time between unobserved skills and experience, or

wage, is ruled out by the cce assumption.

Alternatively, one can draw from the literature of the estimation of production functions,

in which �i may capture the e¤ect of technical ine¢ ciency and unobserved managerial

practices. Additionally, short-run dynamics may originate from autoregressive productivity

shocks (Blundell and Bond, 2000). One might argue that within new �rms, or at least

new entrants in a particular market, those which are more e¢ cient are likely to be able to

produce proportionally more output towards the end of the sampling period compared with

ine¢ cient �rms, as the former group is able to learn better from past practices. Again, this

scenario is ruled out by the cce assumption.

To obtain some insight about what the cce condition entails in our model, consider

model (2.1) again, which is replicated below for ease of exposition

yit = �yi;t�1 + �xit + �i + "it. (3.5)

We can express yit recursively as follows:

yit = �
t

�
yi0 �

�i
1� �

�
+ �

t�1P
s=0

�sxi;t�s +
�i

1� � +
t�1P
s=0

�s"i;t�s. (3.6)

It is immediately clear from the above expression that it is very unlikely that the correlation

between yit and �i is constant over time, i.e. E (yit�i) = cy, when the correlation between

xit and �i is not. This is because yit depends not only on the current but also on all lagged

values of xit, albeit their impact is declining with distance. To make further progress, let

xit form an AR(1) process such that

xit = �xi;t�1 + ��i + �it = �
t

�
xi0 �

��i
1� �

�
+

��i
1� � +

t�1P
s=0

�s�i;t�s; (3.7)

where we assume that �1 < � < 1. As a result, (3:6) becomes

yit = �t
�
yi0 �

�i
1� �

�
+ �

t�1P
s=0

�s

"
�t�s

�
xi0 �

��i
1� �

�
+

��i
1� � +

t�1�sP
j=0

�j�i;t�s�j

#

+
�i

1� � +
t�1P
s=0

�s"i;t�s

= �t
�
yi0 �

1� �+ ��
(1� �) (1� �)�i

�
+ �

t�1P
s=0

�s�t�s
�
xi0 �

��i
1� �

�
+

1� �+ ��
(1� �) (1� �)�i

+�
t�1P
s=0

�s
t�1�sP
j=0

�j�i;t�s�j +
t�1P
s=0

�s"i;t�s. (3.8)
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The �rst (second) right hand side term within the brackets is the deviation of the initial

in-sample observation on y (x) from its steady state path, or its long run mean conditional

on �i. Eventually, assuming that the process for y and x is not altered, these deviations

will die out because j�j < 1 and j�j < 1. However, in series with a limited lifespan, which
is typically the case in microeconometrics, these quantities are non-negligible, especially

when the autoregressive coe¢ cients are close to the value of one. Thus, the cce assumption

suggests that any deviations from steady state behaviour need to be uncorrelated with �i.

We may also express this in an alternative form, as follows:

E

��
xi0 �

��i
1� �

�
��i
1� �

�
= 0, (3.9)

and

E

��
yi0 �

1� �+ ��
(1� �) (1� �)�i

�
1� �+ ��

(1� �) (1� �)�i
�
= 0. (3.10)

Both equations state e¤ectively that deviations of the initial conditions from the steady

state behaviour are not systematically related to the level of the steady state itself. Under

our hypothesised scenario in the earnings determination example, the expectation in (3:9)

is likely to be negative as workers with higher innate ability (i.e. whose �i value is relatively

large) accumulate proportionately more experience, and thereby deviate to a greater extent

from their steady state path of experience in the beginning of the sample, than workers

with a small �i value. Likewise, high skilled workers will systematically have lower wage

in the beginning of the sample relative to their steady state earnings, in comparison with

low skilled workers. It is clear that in order for the LEV moment conditions in (2.7) to

be valid, one typically requires that all distinct covariates in a particular model satisfy a

condition like (3:9) and the dependent variable satis�es (3:10).

The cce assumption is less strong than assuming that the series have a stationary mean.

In other words, one can think of initial condition processes where the latter is not true but

deviations from the steady state path remain uncorrelated with unobserved heterogeneity.

It is useful to illustrate an example of such process with an application. Consider the

empirics of growth models using country level data. The GMM methodology has been a

popular estimation approach in this �eld. The Solow model takes the following form:

yit � yi;t�1 = (�� 1) yi;t�1 + �0xit + �i + �t + "it, (3.11)

where yit � yi;t�1 is the log di¤erence in per capita GDP over a �ve year interval (t), yi;t�1
denotes the logarithm of per capita GDP at the start of that period, and x is a vector that

contains variables such as the logarithm of the investment rate and the population growth

rate, while in its augmented form various measures of human capital are included. Among

other things, �i re�ects di¤erences in the level of initial endowment of physical capital

and natural resources across countries, as well as geographical location and topography,
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while �t re�ects changes in productivity that are common to all countries. An equivalent

representation of (3:11) arises by adding yi;t�1 on both sides, which resembles the standard

dynamic panel data formulation as in (2.1). As we have already discussed, a su¢ cient

condition for the �rst di¤erence of per capita GDP, �yit, to be uncorrelated with �i is

mean stationarity of the level of per capita GDP, yit, which also requires mean stationarity

of the covariates used in the model. However, as Bond, Hoe er and Temple (2001) point

out, while the Solow model is consistent with stationary conditional means of investment

rates and population growth rates, this is clearly not the case for the per capita GDP series.

One possibility is to assume that the conditional mean of yit shifts intertemporally in some

arbitrary way due to common technological progress. This is in fact what is already implied

in equation (3.11) by the inclusion of common time e¤ects, �t. Because this procedure is

equivalent to transforming the series in terms of deviations from time-speci�c averages, we

may consider instead the transformed model

y
it
= �y

i;t�1 + �
0xit + �i + "it, (3.12)

where y
it
= yit � yt, yt = N�1PN

i=1 yit, and so on. The e¤ect of common technological

progress has been eliminated. Thus, any arbitrary pattern in the conditional mean of per

capita GDP over time that is due to technological progress would be consistent with the

cce assumption, provided that this is satis�ed for the transformed series.

Nevertheless, the discussion above hinges on the assumption that the two way error

components formulation is adequate in explaining deviations from steady state behaviour.

One might object that what drives changes in the conditional mean of per capita GDP over

time is the extent to which countries manage to absorb advances in technology available.

Since this is likely to be di¤erent across i, depending on existing constraints and the pro-

duction capacity that each country faces, among other considerations, a factor structure in

the error term may be more appropriate to deal with this problem. It is worth emphasising

that a factor structure implies that changes in productivity are not common to all coun-

tries, and thereby deviations from steady state behaviour are not identical across i, which

can be an empirically relevant scenario. GMM type methods for estimating dynamic panel

data models with a factor structure in the residuals and short T , have been developed by

Ahn, Lee and Schmidt (2010) and Robertson and Sara�dis (2013). Sara�dis and Wans-

beek (2012) provide a recent overview of these methods. Panel data models with a factor

structure are also discussed in Chapter 2 of this volume.
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3.2. deviations of initial conditions from steady state behaviour

Consider the following initial condition processes for x and y respectively:

xi0 = �x
��i
1� � + wi0; (3.13)

yi0 = �y
(1� �+ ��) �i
(1� �) (1� �) + ei0, (3.14)

which can be motivated by (3.7) and (3.8). The conditional mean of x at the in-sample start-

up period is E (xi0j�i) = �x
��i
1�� and the conditional mean of y is E (yi0j�i) = �y

(1��+��)�i
(1��)(1��) .

Both �x and �y are meaningful in economic terms.6 In particular 0 < �x < 1 implies that

the conditional mean of the initial in-sample observation is closer to zero than its steady

state path. Therefore, assuming � > 0, if �i > 0 the series approaches its steady state

from below and if �i < 0 then it approaches from above, with the rate of convergence

depending on �. Similarly, �x > 1 implies that the value of the initial observation lies

further away from zero than the series�long run conditional mean. Thus, if �i > 0 (�i < 0)

the series converges from above (below). When �x = 1 the series is mean stationary, i.e. its

conditional mean is constant over time throughout the sampling period. In this case one

can readily check that (3:9) is satis�ed. When �y = 1 as well, y is also mean stationary

and (3:10) is ful�lled.

Under our hypothetical earnings determination scenario, one would expect that 0 �
�x < 1 since experience increases gradually over time and �i > 0. On the other hand,

suppose that the initial model in (3:5) represents a cost function with yit denoting total

cost, x denoting output, together with input prices, and �i capturing the e¤ect of cost

ine¢ ciency (so one would anticipate �i � 0). In this case one might expect that �y � 1, i.e.
�rms�conditional expected cost in the beginning of the sample is at most equal to its long

run mean, but not less. Under the hypothesis that �rms adopt new work practices over

time as an e¤ort to cut expenditure, those �rms which are economically more e¢ cient are

likely to be able to reduce total cost by a larger proportion. Hence, �y would be strictly

larger than one in this case and the series would approach its steady-state level from above.

One can provide an alternative interpretation of �x and �y when the initial conditions

are perfectly correlated with the steady state levels. In particular, setting var (wi0) = 0

and var (ei0) = 0, we have

�x =

p
var (xi0)

���= (1� �)
, (3.15)

and

�y =

p
var (yi0)

(1� �+ ��)��= [(1� �) (1� �)]
. (3.16)

It can be seen that �x and �y equal the ratio of the standard deviation of the initial

observations on x and y, respectively, over the standard deviation of the corresponding
6A deviation from mean stationarity may occur also as the result of a �nite number of start-up periods.
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steady state levels. When there is more dispersion in the initial conditions than in the

distribution of the steady state levels, �x and �y will be larger than one. In the economic

growth literature, for example, this property is known as sigma convergence.

3.3. consequences of departures from steady state behaviour

The magnitude of �y and �x turns out to be very important for the �nite sample properties

of various GMM estimators. For instance, for �y = 1 the correlation between �yit�1 and

yis, s < t � 1 and t = 2; :::T , converges to zero when the variance of the �i component of
the error grows large. This is due to the fact that the total variation in yis is dominated in

this case by the variation in �i, which, however, �yit�1 is free from. This can have adverse

consequences for GMM estimators that use lagged values of y in levels as instruments

for �rst-di¤erenced regressors when there is large unobserved heterogeneity present in the

data. Hayakawa (2009), based on a pure AR(1) model, shows that the situation can be

starkly di¤erent when �y 6= 1. To see this, consider again for simplicity the case of an AR(1)
model, i.e. impose � = 0 in (2:1), and T = 2; and consider the DIF moment condition given

in (2.13). Assuming time series homoskedasticity for idiosyncratic errors, the covariance

between �yi1 and yi0 is then:

cov (�yi1; yi0) = E [(�yi0 + �i + "i1 � yi0) yi0]
= � (1� �)E

�
y2i0
�
+ E [�iyi0]

= � (1� �)
�
�2y

�2�

(1� �)2
+

�2"
1� �2

�
+ �y

�2�
1� �

= � �2"
1 + �

+
�2�
1� ��y (1� �y) . (3.17)

The �rst term is always negative while the sign of the second term depends on �y.7 For

�y > 1 or �y < 0 the second term is always negative and thereby the correlation between

�yi1 and yi0 that is due to �i adds up to the correlation that is due to the idiosyncratic

component. Thus, the instruments should become stronger. This is not necessarily true

when 0 < �y < 1, since in this case the second term is positive and the total e¤ect on

the correlation between �yi1 and yi0 depends on the relative magnitude of �2� and �
2
", for

a given value of �. Thus, for �2�=�
2
" ! 1 any deviation from mean stationarity is likely

to improve dramatically the performance of GMM estimators that do not require mean

stationarity at �rst place, such as DIF and AS.

7Notice that when �y = 1, the expression above depends only on �2", for given �, which con�rms that

in this case �yi1 is free from �i. In this case we have the earlier result (2.19).
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3.4. testing for constant-correlated e¤ects

Moment conditions can be tested using the Sargan (1958)/Hansen (1982) overidentifying

restrictions (OIR) statistic, which equals N times the value for the GMM objective function

evaluated at the e¢ cient two step GMM estimates. Asymptotically the OIR test statistic

is chi-squared distributed with degrees of freedom equal to the number of overidentifying

restrictions. It is clear that when there is no mean stationarity the linear moment conditions

in (2.7) cannot be exploited. And an OIR test based on optimal system GMM should detect

any deviations from assumption (2.6).

It has been shown, however, that the OIR test may be subject to low power due to

many instruments (Bowsher, 2002; Windmeijer, 2005). Therefore, it is often suggested

to use incremental or di¤erence OIR tests. For example, assumption (2.6) implies extra

moment conditions on top of those derived from (2.2). Hence, the di¤erence between OIR

SYS and DIF GMM statistics can be used, which is expected to have more discriminatory

power compared with the SYS OIR test. Alternatively, the di¤erence between the OIR

SYS and AS GMM can be used, which is expected to have even better power properties.

In the next section we will investigate by Monte Carlo simulation to what extent these and

other predictions hold in �nite samples.

4. simulation results

In this section we �rst set out our Monte Carlo design, which is inspired by those of Blundell,

Bond and Windmeijer (2001), Bun and Kiviet (2006) and Hayakawa and Nagata (2012).

We allow for deviations from mean stationarity and pay special attention to some of the

rules described by Kiviet (2007, 2012) for enhancing the scope of a simulation study and the

interpretation of simulation results. For example, many existing Monte Carlo designs in the

dynamic panel data literature do not obey any orthogonalization of the parameter space,

which may hamper the interpretation of simulation results across experiments. Next, we

discuss existing Monte Carlo studies simulating under deviations from mean stationarity.

Finally, we report new simulation results investigating the impact of deviations from mean

stationarity on various GMM coe¢ cient estimators, corresponding Wald tests and Sargan

statistics.

4.1. Monte Carlo design

The data generating process (dgp) is given by (3.5) and (3.7), which we replicate here for

convenience:

yit = �yi;t�1 + �xit + �i + "it, j�j < 1; (4.1)
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with

xit = �xi;t�1 + ��i + �it, j�j < 1, (4.2)

�it = �it + �0"it + �1"i;t�1,

such that

�2� � var (�it) = �2� +
�
�20 + �

2
1

�
�2". (4.3)

The long run coe¢ cient of x on y equals �
1�� . The initial condition for x in (3.13) is

speci�ed as

xi0 = �x��i + wi0, wi0 � i:i:d:
�
0; �2w

�
, E (wi0j�i) = 0, (4.4)

where � = �
1�� and �

2
w =

1
1��2�

2
�. ��i is the long run conditional mean, or steady state path,

of xit given �i. Let rx denote the correlation between the deviation of the initial condition

of x from its long run steady state path and the level of the steady state path itself:

rx = corr (xi0 � ��i; ��i) =
� (�x � 1)�2�q�

�2 (�x � 1)2 �2� + �2w
�
�2�

. (4.5)

Solving for �x yields

�x =
rx

(1� r2x)
1=2

�w
��

1

�
+ 1. (4.6)

Thus, instead of setting an arbitrary value of �x in order to investigate departures from

steady state behaviour, as it is common practice in the literature, we can set �x according

to rx, which is more meaningful. For a �xed value of rx; di¤erent values of �2� change

�x. Similarly, larger values of �2� , and hence of �
2
w, increase the signal-to-noise ratio of the

model and so �x changes accordingly. When rx = 0, �x = 1 under the current design.8

We further specify the initial condition for y as

yi0 = �y (�� + 1)�i + ei0, ei0 � i:i:d:
�
0; �2e

�
, E (ei0j�i) = 0, (4.7)

where �i = �i=(1� �); (�� + 1)�i is the long run conditional mean, or steady state path,
of yit given �i. Thus, the process for yit can be written as follows:

yit = & t�i +$it, (4.8)

where

& t =
1

1� �
�
�t (�y � 1) (�� + 1) + (�� + 1)

�
+ �� (�x � 1)

t�1X
s=0

�s�t�s, (4.9)

8Notice that setting rx equal to a �xed value, say rx = c, also captures the case where the x process is

mean-stationary (�x = 1) for a proportion of individuals only. For example, if the proportion of individuals

that satisfy �x = 1 is :5, rx = 0 for those individuals and rx = 2c for the remaining ones, provided that

jcj � 0:5.
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and

$it = �

t�1X
s=0

�swi;t�s + �
tei0 +

t�1X
s=0

�s"i;t�s. (4.10)

Let ry denote the correlation coe¢ cient between the deviation of the initial condition of

the y process from its long run mean and the level of its long run mean:

ry = corr (yi0 � (�� + 1)�i; (�� + 1)�i) =
(�y � 1) 1

1�� (�� + 1)�
2
�rh

(�y � 1)2 (�� + 1)2
�

1
1��
�2
�2� + �

2
$

i
�2�

,

(4.11)

where var ($it) = �
2
$ = �

2
�c
2
� + �

2
"c
2
".
9 Solving for �y yields

�y =
ry�

1� r2y
�1=2 �$�� 1� ��� + 1

+ 1. (4.12)

Thus, similarly to �x, �y is set according to ry. Clearly large values of �y imply a high value

for ry, ceteris paribus.

Finally, as described in Kiviet (1995) and Bun & Kiviet (2006), the variances �2v and

�2� are major determinants of the signal-to-noise ratio and the relative strength of the error

components, respectively. The variance of yit is equal to

var(yit) = &2t�
2
� + �

2
$

= &2t�
2
� + �

2
�c
2
� + �

2
"c
2
", (4.13)

A relationship between �2� and �
2
" can be de�ned such that the cumulative impact on

the average of var(yit) over time of the two error components �i and "it is equal to the

�variance ratio�(V R):

V R =
&2�2�
�2"c

2
"

, (4.14)

where &2 = T�1
PT

t=1 &
2
t . Solving for �

2
� yields

�2� =
�2"c

2
"V R

&2
. (4.15)

Both c2" and &2 depend on the design parameters. Therefore, changes in these parameters

will also a¤ect the value of �2� for a �xed variance ratio V R.

9We have

c2� =
(1 + ��)�2

(1� �2)(1� �2)(1� ��) ,

and

c2" =
(1 + ��)

(1� �2)(1� �2)(1� ��) (1 + ��0)
2
+ (��1 � �)

2
+ 2

(�+ �)

1 + ��
(��1 � �) (1 + ��0) .

Thus, similarly to the process for x, we have assumed that the idiosyncratic component in y, $it, is

covariance-stationary.
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Consider the variance of the signal of the model at time t, conditionally on �i, which

can be written as

�2signal;t = var (yitj�i)� var ("it) = �2$ � �2". (4.16)

The signal-to-noise ratio, de�ned conditionally on �i, is now simply

SNR =
�2$ � �2"
�2"

. (4.17)

SNR depends on the value of �2$, which in turn is a function of �
2
� . Hence, we may set �

2
�

such that SNR is controlled across experiments.

It should be noted that the proposed reparametrization of the parameter space to en-

hance the interpretability of Monte Carlo results is not unique. However, it follows closely

the rules described in Kiviet (2007, 2012), notably the advice to reparametrize into an

orthogonal autonomous design parameter space.

Setting �1 = 0 in (4.2), the dgp in (4.1) and (4.2) is equal to that of Blundell, Bond and

Windmeijer (2001). Setting �0 = 0 in (4.2), the dgp in (4.1) and (4.2) is equal to one of

the schemes analyzed in Bun and Kiviet (2006). One can choose the vector of parameters

(�x; �y; �2�; �
2
�) by choosing values for (rx; ry; V R; SNR) or vice versa. The advantage of

�xing (rx; ry; V R; SNR) is that we control some important model characteristics across

experiments. The remaining parameters in the design are (�; �; �; �0; �1; � ; �
2
") and the

dimensions are (T;N).

4.2. existing results

Blundell and Bond (1998) already showed the vulnerability of system GMM to a deviation

of the initial conditions from steady state behaviour for the AR(1) model. The speci�cation

of their initial condition is such that the implied ry � �0:65 in their Table 6, which seems a
quite strong deviation from cce. As a result the SYS GMM estimator of � has a large upward

bias, while DIF GMM is virtually unbiased and compared with the mean stationary case

gets a much smaller Monte Carlo standard deviation. SYS Wald statistics are heavily size

distorted, while rejection frequencies of DIFWald statistics are close to nominal signi�cance

levels. Finally, SYS Sargan has power to detect the violation of the cce assumption.

Hayakawa (2009) and Hayakawa and Nagata (2012) also provide simulation results for

the AR(1) model. In Hayakawa (2009) only coe¢ cient bias for the DIF GMM estimator

is investigated, while Hayakawa and Nagata (2012) analyze other estimators as well and

investigate �nite sample properties of Sargan tests too. They �nd favorable behaviour of

the DIF GMM estimator when �y 6= 1. It should be noted, however, that these results are
partly driven by the set-up of their Monte Carlo design. In particular, the variance of the

individual e¤ects, �2�, instead of the variance ratio, V R, is �xed across experiments. This

implies that when � is close to one the correlation between the endogenous regressor and
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the instrument suddenly becomes very large when �y 6= 1; see result (3.17). In other words,
minor deviations of initial conditions from steady state behaviour have a huge impact on

the relevance of the instruments.

Regarding the dynamic panel data model with additional regressors10 Everaert (2012)

provides simulation results (coe¢ cient bias and t test) for a model with an additional

strictly exogenous covariate. In other words, �0 = �1 = 0 in (4.2). The only deviation from

mean stationarity investigated is to set yi0 = 0: As a result SYS GMM becomes heavily

biased, as expected.

Hayakawa and Nagata (2012) provide simulation results on coe¢ cient bias for a model

with an additional endogenous covariate. Also Sargan and incremental Sargan tests are

investigated. They closely follow the design of Blundell, Bond and Windmeijer (2001), i.e.

�0 6= 0 and �1 = 0 in (4.2). DIF GMM shows favorable results when cce is violated, but

the Monte Carlo design is again such that the individual e¤ects dominate the idiosyncratic

disturbances when persistence is high. In other words, important model characteristics like

the variance ratio can achieve rather extreme values.

In Kiviet (1995) and Bun and Kiviet (2006) it has been shown that a proper compari-

son of simulation results over di¤erent parameter values requires control over basic model

characteristics like goodness of �t and relative strength of error components. In the above

design these are quanti�ed by SNR and V R respectively, which in turn determine the

values of the variances �2� and �
2
�. It is instructive to analyze what implied values for

V R and SNR other studies have chosen. Blundell, Bond and Windmeijer (2001) choose

� = 1; � = 0:25; �0 = �0:1; �1 = 0; �2� = 1; �2" = 1 and �2� = 0:16. Furthermore, they

consider four designs with � and � either 0:5 or 0:95. Choosing � = � = 0:5 implies

SNR = 0:48 and V R = 9. Increasing � to 0.95 results in SNR = 6:36 and V R = 119, a

large proportional increase in both signal-to-noise ratio and variance ratio: Setting � equal

to 0.95 (but keeping � = 0:5) results in SNR = 11:88 and V R = 134, again a large increase

in both signal and relative strength of individual e¤ects. Finally, increasing both � and �

to 0.95 results in SNR = 337:17 and V R = 1478, a huge increase in both variance ratio

and signal-to-noise ratio: It is clear from these calculations that changing the autoregressive

dynamics has substantial consequences for both explained variation and unobserved het-

erogeneity in the model. For proper comparison across experiments it is therefore necessary

to control at least V R and SNR; but preferably other model characteristics as well. Simi-

lar calculations can be made for the Monte Carlo design of Hayakawa and Nagata (2012),

which is basically that of Blundell, Bond and Windmeijer (2001), but choosing �2�; �y and

�x di¤erent from 1 too.

10Juodis (2013) provides simulation results under mean nonstationarity for panel VAR models.
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4.3. new simulation results

We report results for the within group or Least Squares Dummy Variable (LSDV) estimator,

DIF, AS and SYS estimators. We report coe¢ cient bias (bias), standard deviation (sd) and

root mean squared error (rmse) as well as rejection frequencies (rf) of nominal 5% Wald

signi�cance tests and overidentifying restrictions (OIR) tests. The GMMWald tests use the

variance correction of Windmeijer (2005), since it is well known (Arellano and Bond, 1991)

that two step GMM variance estimators are heavily downward biased. We also apply this

�nite sample variance correction to the nonlinear moment conditions of Ahn and Schmidt

(1995). It can be expected that this leads to an improvement in the estimation of variances,

although theoretically that is only the case for linear moment conditions (Windmeijer,

2005). The incremental OIR tests are based on either the di¤erence between SYS and AS,

or between SYS and DIF.11

One problem with existing simulation results is that a comparison across experiments

is hampered by the fact that typically more than one model characteristic is changed.

Furthermore, it seems that the chosen design parameters often imply rather extreme values

for V R, SNR; ry and rx. Therefore, we control for these four model characteristics across

experiments.

Regarding the error components we specify �i and "it i:i:d: N
�
0; �2�

�
and N (0; �2")

respectively, with �2" = 1 and �
2
� determined by (4.15). We consider V R = f3; 100g, and we

set SNR = 3. We have also experimented with SNR = 9 and generally the precision of all

GMM estimators improves substantially for su¢ ciently high values of SNR. For V R = 3,

we report simulation results for four parameter con�gurations: (1) � = 0:2; � = 0:5 ; (2)

� = 0:2; � = 0:95; (3) � = 0:8; � = 0:5; (4) � = 0:8; � = 0:95. For V R = 100, we report

results only for (4) � = 0:8; � = 0:95, in order to save space.12

We set � = 1 � � across all experiments, so that the long run e¤ect of x on y is
one. Following Blundell, Bond and Windmeijer (2001) we �x � = 0:25; �0 = �0:1 and
�1 = 0. We have also experimented with other types of endogeneity: (1) � = 0, i.e. no

correlation between �i and xit; (2) �0 = 0, �1 = �0:1, i.e. weak exogeneity. The results are
qualitatively similar for these cases. Finally, we only report results for T = 3 and N = 500.

For smaller N larger biases are seen for all GMM estimators. A larger value of T introduces

instrument proliferation issues, as discussed in Section 2.

The pattern of the 9 columns within each table is: (1) baseline of cce, i.e. ry = rx = 0;

(2) ry = 0:5; (3) ry = �0:5; (4) rx = 0:5; (5) rx = �0:5; (6) ry = 0:5; rx = 0:5; (7)

ry = 0:5; rx = �0:5; (8) ry = �0:5; rx = 0:5; (9) ry = �0:5; rx = �0:5. Hence, columns
(2)-(9) investigate all possible combinations of deviations from the cce assumption.

11For LSDV, DIF and SYS estimation we use the DPD for Ox package (Doornik et al., 2006). AS

estimation is based on our own Ox code.
12The results for the remaining con�gurations are available on the author�s website.
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The following observations can be made regarding bias and precision of coe¢ cient esti-

mators:

1. LSDV coe¢ cient bias is negative.

2. Unless it is negligible, DIF GMM coe¢ cient bias is almost always negative.

3. SYS GMM coe¢ cient bias can have either sign, but tends to be positive in most

cases.

4. Under cce, coe¢ cient biases for all GMM estimators are larger for V R = 100 showing

their lack of invariance to �2�.

5. SYS GMM coe¢ cient bias for � is always larger under deviations from the cce as-

sumption. In a few cases, however, it happens that coe¢ cient bias is smaller for �,

most notably in Table 5, where both y and x are highly persistent, unless ry, rx are

both negative.

6. DIF and AS GMM coe¢ cient biases are a¤ected under deviations from the cce as-

sumption, but there is no clear pattern in the simulation results. Hence, bene�ts for

the location of the DIF GMM estimator may or may not occur depending on the

particular parameter con�guration.

7. AS GMM often performs equally well or better compared with SYS GMM. This

somewhat remarkable result appears to hold even under cce. Actually the only case

in which AS GMM is noticeably outperformed by SYS GMM in terms of bias is Table

3, column 1.

8. When � = 0:8 (Tables 3-5) DIF GMM can have large coe¢ cient bias or large standard

deviation or both, indicating a weak instrument problem.

9. In Tables 1, 2 and 3 SYS GMM has often smaller standard deviation than AS GMM,

which in turn has smaller dispersion than DIF GMM; this is unless there is moder-

ate persistence, in which case DIF and AS GMM have similar or smaller standard

deviation than SYS GMM.

10. Under cce, a weak instrument problem seems present for SYS GMM too when there

is strong unobserved heterogeneity, i.e. V R = 100: Although coe¢ cient bias seems

limited, in relative terms (i.e. compared with the standard deviation of the estimator)

it becomes large. This is consistent with the results in Bun and Windmeijer (2010),

who show that also for moderate autoregressive dynamics LEV moment conditions

may become less informative when V R gets large.
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Regarding rejection frequencies of Wald statistics the following can be observed:

1. LSDV size distortions are large. For hypothesis testing on � the actual rejection

frequency is always 1.

2. DIF GMM rejection frequencies under the null hypothesis are close to the nominal

signi�cance level of 5%. In those cases where there appears to be a size distortion, it

is probably caused by the weak instrument problem, as documented above.

3. The same weak instruments problem appears to hold for SYS GMM. Note that even

under cce size distortions can be large.

4. The vulnerability of SYS GMM to deviations from cce is obvious. Rejection frequen-

cies under the null hypothesis can become 1.

5. AS GMM rejection frequencies under the null hypothesis are often close to the nominal

signi�cance level of 5%, but sometimes size distortions appear.

Finally, regarding OIR test statistics the following observations can be made:

1. The performance of DIF and AS OIR test statistics under the null hypothesis is

satisfactory. We didn�t examine power, but it can be expected that power is low

when persistence is high.

2. The performance of the SYS OIR test statistic under the null hypothesis is satisfac-

tory. Also its power is high in case of moderate persistence (Table 1). However, as

can be seen from Tables 4-5, power is low when there is a lot of persistence in both

y and x. In between, it depends on the particular deviation from cce.

3. Similar conclusions hold for incremental SYS-DIF and SYS-AS statistics, but they

outperform SYS OIR statistic in terms of power.

4. No clear ranking exists between SYS-AS and SYS-DIF statistics although the former

has often a slightly higher rejection frequency under the alternative hypothesis.

5. Perhaps surprisingly, sometimes OIR SYS, SYS-AS and SYS-DIF tests have complete

lack of power against deviations from cce. Sometimes this is even the case when

coe¢ cient bias in the SYS GMM estimator is relatively large, e.g. Table 5, column

9, or Table 2, column 3.
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5. concluding remarks

In this Chapter we have reviewed the literature on dynamic panel data models estimated

by GMM. We have focused on the analysis of GMM estimators in dynamic models with

additional endogenous regressors. We have discussed in detail the assumptions underlying

the validity of, especially, the system GMM estimator. Furthermore, we have embarked on

the consequences of violation of mean stationarity for several GMM estimators. In cases

where the constant correlated e¤ects assumption is violated, individual-speci�c unobserved

heterogeneity is only partially removed by taking �rst di¤erences. Obviously, lagged dif-

ferenced instruments for the model in levels are then not exogenous anymore, therefore

invalidating the system GMM estimator. Additionally, the relevance of the lagged level

instruments for the �rst-di¤erenced model changes in a nontrivial manner. Apart from

mean stationarity we have discussed brie�y a number of other practical issues when ap-

plying GMM inference methods, e.g. how to determine the optimal number of moment

conditions.

Our simulation results indicate that no universal ranking exists among �rst-di¤erenced

(DIF), non-linear (AS) and system (SYS) GMM estimators. Some general observations

can be made. First, DIF GMM has low precision and coe¢ cient bias, especially when

the series are persistent. Second, SYS GMM is vulnerable to nuisance parameters, and its

performance deteriorates rapidly under deviations from cce. Even when absolute coe¢ cient

bias seems small, large size distortion can still occur. Third, the AS GMM estimator

performs quite satisfactory in most experiments. It has higher precision than DIF GMM

and only moderate coe¢ cient bias and size distortion. Compared with SYS GMM, however,

its root mean squared error is relatively large when the series are persistent. Fourth, in

testing for cce all OIR tests appear to lack power in case of high persistence.

Summarizing, GMM estimators for dynamic panel data models can be vulnerable to

important nuisance parameters and weak identi�cation issues. Until recently, system GMM

has been considered to be the solution to the �rst-di¤erenced GMM estimator in case of

persistent panel data. However, its additional restriction on the initial conditions has been

criticized for being unrealistic precisely in case of persistent panel data. Additionally, tests

for cce lack power when having persistent panel data and/or an abundance of moment

conditions. This may lead to acceptance of the levels moment conditions when this is not

appropriate. But even in case of mean stationarity inference based on system GMMmay be

inaccurate. A straightforward advise for practitioners regarding which method to prefer in

small samples does not emerge, but the non-linear AS GMM estimator seems a relatively

safe choice. It is robust to deviations from cce, and more e¢ cient than �rst-di¤erenced

linear GMM.



Table 1: Simulation results for � = 0:2, � = 0:5 and V R = 3

1 2 3 4 5 6 7 8 9

�� 0.922 0.879 0.961 0.770 1.067 0.723 1.028 0.814 1.102

�v 1.698 1.698 1.698 1.698 1.698 1.698 1.698 1.698 1.698

ry 0.000 0.500 -0.500 0.000 0.000 0.500 0.500 -0.500 -0.500

rx 0.000 0.000 0.000 0.500 -0.500 0.500 -0.500 0.500 -0.500

bias � lsdv -0.153 -0.132 -0.132 -0.150 -0.150 -0.141 -0.122 -0.121 -0.141

dif -0.007 -0.003 -0.006 -0.004 -0.004 -0.004 -0.003 -0.001 -0.009

as -0.000 -0.001 0.001 -0.000 -0.002 -0.001 -0.002 -0.000 0.000

sys 0.003 0.112 0.311 0.226 0.135 0.043 0.204 0.152 0.086

bias � lsdv -0.046 -0.045 -0.045 -0.048 -0.048 -0.039 -0.052 -0.052 -0.039

dif 0.004 -0.001 0.000 -0.001 0.002 0.001 -0.001 -0.004 0.009

as -0.003 -0.002 -0.005 -0.004 0.000 -0.002 -0.001 -0.006 -0.001

sys -0.005 -0.012 -0.200 -0.139 -0.014 -0.126 -0.036 0.154 0.077

sd � lsdv 0.021 0.019 0.019 0.020 0.020 0.020 0.019 0.018 0.020

dif 0.065 0.037 0.058 0.050 0.044 0.052 0.028 0.028 0.072

as 0.050 0.035 0.038 0.041 0.041 0.046 0.027 0.027 0.051

sys 0.047 0.053 0.062 0.049 0.058 0.054 0.040 0.036 0.051

sd � lsdv 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021

dif 0.103 0.087 0.092 0.074 0.075 0.095 0.067 0.066 0.110

as 0.093 0.085 0.085 0.072 0.073 0.088 0.067 0.066 0.092

sys 0.085 0.121 0.138 0.110 0.116 0.097 0.111 0.099 0.092

rmse � lsdv 0.154 0.134 0.133 0.152 0.152 0.143 0.123 0.122 0.142

dif 0.065 0.037 0.059 0.050 0.044 0.053 0.028 0.028 0.073

as 0.050 0.035 0.038 0.041 0.041 0.046 0.027 0.027 0.051

sys 0.047 0.124 0.317 0.231 0.147 0.069 0.208 0.157 0.100

rmse � lsdv 0.051 0.049 0.049 0.052 0.052 0.044 0.056 0.056 0.044

dif 0.103 0.087 0.092 0.074 0.075 0.095 0.067 0.066 0.110

as 0.093 0.085 0.086 0.072 0.073 0.088 0.067 0.066 0.092

sys 0.085 0.121 0.243 0.177 0.117 0.160 0.116 0.183 0.120

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.044 0.047 0.045 0.045 0.054 0.044 0.057 0.047 0.043

as 0.042 0.044 0.039 0.044 0.051 0.043 0.060 0.039 0.040

sys 0.048 0.669 1.000 0.997 0.730 0.129 1.000 0.982 0.420

rf � lsdv 0.599 0.563 0.563 0.630 0.631 0.459 0.696 0.700 0.464

dif 0.044 0.050 0.040 0.040 0.047 0.041 0.051 0.051 0.044

as 0.048 0.061 0.045 0.045 0.053 0.045 0.062 0.055 0.050

sys 0.048 0.118 0.462 0.339 0.120 0.280 0.160 0.443 0.151

rf OIR dif 0.051 0.055 0.049 0.052 0.056 0.052 0.057 0.052 0.052

as 0.045 0.052 0.048 0.055 0.051 0.050 0.052 0.052 0.050

sys 0.047 1.000 1.000 1.000 1.000 0.955 1.000 1.000 0.982

sys-as 0.058 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.998

sys-dif 0.052 1.000 1.000 1.000 1.000 0.986 1.000 1.000 0.995

Note: � = 1� �, �2" = 1; T = 3, N = 500; �0 = �0:1, �1 = 0; � = 0:25 and SNR = 3.



Table 2: Simulation results for � = 0:2, � = 0:95 and V R = 3

1 2 3 4 5 6 7 8 9

�� 0.268 0.256 0.279 0.130 0.406 0.119 0.394 0.141 0.417

�v 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552

ry 0.000 0.500 -0.500 0.000 0.000 0.500 0.500 -0.500 -0.500

rx 0.000 0.000 0.000 0.500 -0.500 0.500 -0.500 0.500 -0.500

bias � lsdv -0.333 -0.246 -0.242 -0.269 -0.273 -0.329 -0.158 -0.154 -0.328

dif -0.006 -0.004 -0.002 -0.003 -0.008 -0.003 -0.004 -0.002 -0.013

as 0.004 0.001 0.002 0.000 0.002 0.002 -0.000 -0.000 0.007

sys -0.001 0.020 0.020 0.010 0.043 -0.002 0.038 0.005 0.014

bias � lsdv -0.221 -0.231 -0.226 -0.251 -0.254 -0.212 -0.273 -0.268 -0.209

dif -0.083 -0.064 -0.075 -0.053 -0.075 -0.044 -0.061 -0.057 -0.154

as -0.019 -0.008 -0.048 -0.046 0.001 -0.026 -0.012 -0.047 -0.004

sys 0.007 0.166 0.154 0.063 0.270 -0.008 0.305 0.079 0.112

sd � lsdv 0.028 0.026 0.025 0.026 0.027 0.028 0.021 0.020 0.028

dif 0.052 0.037 0.036 0.039 0.046 0.047 0.029 0.026 0.067

as 0.047 0.036 0.034 0.036 0.040 0.045 0.027 0.025 0.050

sys 0.041 0.035 0.035 0.035 0.039 0.042 0.025 0.024 0.043

sd � lsdv 0.068 0.068 0.068 0.068 0.068 0.067 0.068 0.068 0.067

dif 0.505 0.427 0.470 0.365 0.439 0.350 0.399 0.377 0.668

as 0.287 0.280 0.283 0.262 0.270 0.266 0.267 0.267 0.284

sys 0.105 0.061 0.052 0.048 0.076 0.146 0.071 0.026 0.083

rmse � lsdv 0.334 0.247 0.243 0.270 0.274 0.330 0.159 0.156 0.329

dif 0.052 0.037 0.036 0.039 0.047 0.048 0.030 0.026 0.069

as 0.047 0.036 0.034 0.036 0.040 0.045 0.027 0.025 0.050

sys 0.042 0.041 0.040 0.036 0.058 0.042 0.045 0.024 0.045

rmse � lsdv 0.231 0.241 0.236 0.260 0.263 0.223 0.282 0.277 0.219

dif 0.511 0.432 0.476 0.369 0.445 0.353 0.404 0.381 0.686

as 0.288 0.280 0.287 0.266 0.270 0.268 0.267 0.271 0.284

sys 0.105 0.176 0.163 0.079 0.280 0.147 0.314 0.083 0.139

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.046 0.049 0.041 0.046 0.054 0.049 0.052 0.041 0.047

as 0.047 0.039 0.039 0.043 0.037 0.049 0.046 0.047 0.049

sys 0.056 0.087 0.083 0.057 0.211 0.051 0.359 0.047 0.067

rf � lsdv 0.914 0.927 0.918 0.961 0.963 0.894 0.979 0.973 0.879

dif 0.041 0.047 0.040 0.051 0.043 0.043 0.046 0.041 0.034

as 0.156 0.146 0.154 0.132 0.140 0.131 0.138 0.136 0.162

sys 0.043 0.819 0.843 0.254 0.973 0.043 0.996 0.856 0.260

rf OIR dif 0.050 0.048 0.052 0.056 0.050 0.058 0.050 0.056 0.047

as 0.069 0.064 0.066 0.070 0.068 0.068 0.065 0.071 0.071

sys 0.048 0.223 0.199 0.075 0.606 0.049 0.579 0.085 0.066

sys-as 0.048 0.332 0.279 0.090 0.741 0.049 0.736 0.102 0.066

sys-dif 0.057 0.300 0.265 0.086 0.718 0.049 0.705 0.100 0.083

Note: see Table 1.



Table 3: Simulation results for � = 0:8, � = 0:5 and V R = 3

1 2 3 4 5 6 7 8 9

�� 0.507 0.383 0.630 0.478 0.536 0.354 0.411 0.601 0.660

�v 2.015 2.015 2.015 2.015 2.015 2.015 2.015 2.015 2.015

ry 0.000 0.500 -0.500 0.000 0.000 0.500 0.500 -0.500 -0.500

rx 0.000 0.000 0.000 0.500 -0.500 0.500 -0.500 0.500 -0.500

bias � lsdv -0.564 -0.536 -0.536 -0.561 -0.561 -0.551 -0.517 -0.517 -0.551

dif -0.049 -0.017 -0.286 -0.042 -0.038 -0.018 -0.017 -0.111 -0.102

as -0.011 -0.012 -0.016 -0.012 -0.014 -0.012 -0.012 -0.011 -0.010

sys -0.002 0.050 0.110 0.111 0.176 0.069 0.152 0.161 0.128

bias � lsdv -0.062 -0.060 -0.060 -0.065 -0.064 -0.055 -0.070 -0.070 -0.055

dif -0.010 -0.005 -0.059 -0.011 -0.008 -0.004 -0.007 -0.044 -0.006

as -0.004 -0.005 -0.006 -0.005 -0.004 -0.004 -0.006 -0.008 -0.002

sys -0.002 -0.027 0.014 -0.038 -0.042 -0.046 -0.028 -0.015 0.019

sd � lsdv 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.031

dif 0.153 0.087 0.383 0.149 0.129 0.097 0.082 0.240 0.227

as 0.110 0.080 0.102 0.109 0.101 0.088 0.077 0.102 0.116

sys 0.056 0.076 0.029 0.023 0.047 0.029 0.027 0.020 0.047

sd � lsdv 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016

dif 0.067 0.064 0.105 0.062 0.061 0.056 0.063 0.106 0.058

as 0.061 0.062 0.060 0.056 0.057 0.055 0.060 0.062 0.054

sys 0.045 0.045 0.046 0.046 0.052 0.047 0.043 0.046 0.055

rmse � lsdv 0.565 0.537 0.537 0.562 0.562 0.551 0.518 0.518 0.551

dif 0.160 0.089 0.478 0.155 0.134 0.098 0.084 0.265 0.248

as 0.110 0.081 0.104 0.110 0.102 0.089 0.078 0.102 0.116

sys 0.056 0.091 0.114 0.113 0.182 0.074 0.154 0.163 0.136

rmse � lsdv 0.064 0.062 0.062 0.067 0.066 0.057 0.072 0.072 0.057

dif 0.068 0.064 0.121 0.063 0.062 0.056 0.063 0.115 0.058

as 0.061 0.062 0.061 0.057 0.057 0.055 0.060 0.062 0.054

sys 0.045 0.052 0.048 0.059 0.067 0.066 0.051 0.048 0.058

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.068 0.058 0.150 0.067 0.064 0.058 0.060 0.081 0.094

as 0.101 0.077 0.128 0.117 0.099 0.082 0.076 0.139 0.119

sys 0.061 0.153 0.940 0.986 0.909 0.661 0.999 1.000 0.789

rf � lsdv 0.975 0.965 0.965 0.981 0.979 0.932 0.989 0.988 0.932

dif 0.052 0.055 0.088 0.050 0.055 0.049 0.055 0.082 0.046

as 0.065 0.067 0.057 0.061 0.065 0.057 0.067 0.067 0.050

sys 0.044 0.081 0.058 0.144 0.174 0.175 0.114 0.072 0.068

rf OIR dif 0.059 0.052 0.065 0.055 0.056 0.055 0.052 0.059 0.059

as 0.075 0.058 0.082 0.077 0.072 0.063 0.059 0.083 0.078

sys 0.049 0.312 0.060 0.237 0.820 0.211 0.503 0.332 0.803

sys-as 0.050 0.477 0.061 0.345 0.910 0.315 0.670 0.479 0.900

sys-dif 0.050 0.416 0.074 0.305 0.896 0.279 0.622 0.431 0.883

Note: see Table 1.



Table 4: Simulation results for � = 0:8, � = 0:95 and V R = 3

1 2 3 4 5 6 7 8 9

�� 0.268 0.200 0.336 0.237 0.299 0.169 0.229 0.304 0.367

�v 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438

ry 0.000 0.500 -0.500 0.000 0.000 0.500 0.500 -0.500 -0.500

rx 0.000 0.000 0.000 0.500 -0.500 0.500 -0.500 0.500 -0.500

bias � lsdv -0.657 -0.620 -0.615 -0.641 -0.645 -0.651 -0.573 -0.565 -0.648

dif -0.056 -0.021 -0.099 -0.033 -0.069 -0.019 -0.026 -0.039 -0.217

as -0.015 -0.010 -0.015 -0.015 -0.016 -0.011 -0.012 -0.016 -0.020

sys -0.005 0.037 0.040 0.031 -0.006 0.000 0.081 0.036 0.015

bias � lsdv -0.458 -0.457 -0.448 -0.476 -0.477 -0.442 -0.504 -0.494 -0.434

dif -0.302 -0.131 -0.696 -0.170 -0.310 -0.083 -0.154 -0.290 -0.925

as -0.063 -0.048 -0.086 -0.058 -0.062 -0.044 -0.063 -0.069 -0.085

sys 0.005 0.087 0.081 0.025 0.088 -0.013 0.087 0.076 0.120

sd � lsdv 0.032 0.032 0.031 0.032 0.032 0.032 0.031 0.031 0.032

dif 0.148 0.090 0.201 0.117 0.158 0.097 0.090 0.113 0.305

as 0.095 0.079 0.088 0.090 0.094 0.087 0.073 0.077 0.103

sys 0.054 0.063 0.039 0.041 0.074 0.056 0.042 0.043 0.047

sd � lsdv 0.076 0.077 0.076 0.076 0.076 0.076 0.078 0.077 0.075

dif 0.833 0.578 1.424 0.603 0.771 0.457 0.583 0.824 1.368

as 0.344 0.345 0.340 0.329 0.330 0.322 0.339 0.344 0.312

sys 0.131 0.124 0.080 0.110 0.109 0.222 0.116 0.066 0.088

rmse � lsdv 0.657 0.621 0.616 0.642 0.646 0.652 0.574 0.566 0.649

dif 0.158 0.092 0.224 0.122 0.173 0.098 0.094 0.119 0.375

as 0.096 0.079 0.090 0.091 0.095 0.087 0.074 0.079 0.105

sys 0.054 0.073 0.056 0.051 0.074 0.056 0.091 0.056 0.050

rmse � lsdv 0.464 0.464 0.454 0.482 0.483 0.449 0.509 0.500 0.440

dif 0.886 0.593 1.585 0.627 0.832 0.465 0.603 0.874 1.652

as 0.350 0.349 0.351 0.334 0.335 0.324 0.345 0.351 0.323

sys 0.132 0.152 0.114 0.113 0.140 0.223 0.145 0.101 0.149

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.065 0.055 0.062 0.061 0.088 0.057 0.068 0.055 0.138

as 0.067 0.047 0.074 0.079 0.066 0.051 0.069 0.100 0.095

sys 0.048 0.089 0.196 0.127 0.058 0.047 0.534 0.144 0.074

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.063 0.055 0.057 0.059 0.079 0.052 0.061 0.048 0.113

as 0.147 0.147 0.162 0.100 0.164 0.108 0.164 0.110 0.190

sys 0.043 0.088 0.162 0.057 0.115 0.059 0.075 0.227 0.241

rf OIR dif 0.052 0.057 0.042 0.053 0.059 0.053 0.053 0.049 0.045

as 0.102 0.083 0.107 0.103 0.108 0.083 0.082 0.098 0.113

sys 0.048 0.089 0.055 0.050 0.122 0.050 0.133 0.058 0.051

sys-as 0.041 0.105 0.050 0.053 0.143 0.042 0.191 0.058 0.037

sys-dif 0.062 0.108 0.090 0.063 0.159 0.051 0.174 0.075 0.099

Note: see Table 1.



Table 5: Simulation results for � = 0:8, � = 0:95 and V R = 100

1 2 3 4 5 6 7 8 9

�� 1.549 1.480 1.617 1.518 1.579 1.450 1.511 1.586 1.647

�v 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438

ry 0.000 0.500 -0.500 0.000 0.000 0.500 0.500 -0.500 -0.500

rx 0.000 0.000 0.000 0.500 -0.500 0.500 -0.500 0.500 -0.500

bias � lsdv -0.655 -0.633 -0.600 -0.631 -0.652 -0.655 -0.591 -0.545 -0.641

dif -0.120 -0.145 -0.018 -0.161 -0.126 -0.093 -0.179 -0.051 -0.020

as 0.006 -0.006 -0.002 -0.014 0.014 -0.001 -0.018 -0.013 0.009

sys 0.015 0.067 0.043 0.051 0.053 0.035 0.067 0.047 0.020

bias � lsdv -0.450 -0.474 -0.418 -0.464 -0.474 -0.455 -0.523 -0.462 -0.408

dif -0.591 -0.812 -0.142 -0.997 -0.447 -0.501 -0.890 -0.517 -0.055

as 0.057 -0.003 0.031 0.013 0.060 0.048 -0.077 -0.030 0.051

sys 0.132 0.093 0.116 0.079 0.121 0.139 0.092 0.103 0.167

sd � lsdv 0.032 0.032 0.031 0.032 0.032 0.032 0.031 0.031 0.032

dif 0.235 0.235 0.102 0.245 0.246 0.192 0.252 0.142 0.120

as 0.102 0.143 0.083 0.109 0.117 0.114 0.169 0.080 0.094

sys 0.049 0.047 0.036 0.039 0.061 0.051 0.040 0.037 0.044

sd � lsdv 0.076 0.076 0.076 0.076 0.075 0.076 0.077 0.078 0.075

dif 1.190 1.357 0.735 1.491 0.901 1.034 1.289 1.285 0.437

as 0.330 0.614 0.309 0.377 0.342 0.434 0.702 0.375 0.267

sys 0.081 0.085 0.072 0.082 0.106 0.145 0.085 0.069 0.082

rmse � lsdv 0.655 0.634 0.601 0.632 0.653 0.656 0.592 0.546 0.642

dif 0.264 0.276 0.103 0.294 0.277 0.214 0.309 0.151 0.122

as 0.102 0.143 0.083 0.109 0.117 0.114 0.170 0.081 0.094

sys 0.051 0.082 0.056 0.064 0.081 0.062 0.078 0.060 0.048

rmse � lsdv 0.457 0.480 0.425 0.471 0.480 0.461 0.528 0.469 0.414

dif 1.329 1.581 0.749 1.794 1.006 1.149 1.566 1.385 0.441

as 0.335 0.614 0.310 0.377 0.347 0.436 0.707 0.376 0.272

sys 0.155 0.126 0.136 0.114 0.160 0.201 0.126 0.124 0.185

rf � lsdv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

dif 0.083 0.084 0.044 0.081 0.105 0.076 0.111 0.039 0.050

as 0.047 0.054 0.053 0.069 0.044 0.034 0.093 0.116 0.060

sys 0.087 0.305 0.256 0.282 0.145 0.128 0.418 0.283 0.102

rf OIR dif 0.047 0.044 0.052 0.037 0.063 0.051 0.039 0.044 0.057

as 0.073 0.068 0.073 0.071 0.073 0.068 0.071 0.060 0.069

sys 0.053 0.076 0.056 0.053 0.109 0.060 0.085 0.062 0.052

sys-as 0.045 0.085 0.059 0.062 0.137 0.064 0.105 0.079 0.055

sys-dif 0.073 0.111 0.072 0.093 0.143 0.077 0.124 0.091 0.060

Note: see Table 1.
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