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Abstract

Tests for classification as endogenous or predetermined of arbitrary sub-
sets of regressors are formulated as significance tests in auxiliary IV regressions
and their relationships with various more classic test procedures are examined
and critically compared with statements in the literature. Then simulation ex-
periments are designed by solving the data generating process parameters from
salient econometric features, namely: degree of simultaneity and multicollinear-
ity of regressors, and individual and joint strength of external instrumental
variables. Next, for various test implementations, a wide class of relevant cases
is scanned for flaws in performance regarding type I and II errors. Substantial
size distortions occur, but these can be cured remarkably well through boot-
strapping, except when instruments are weak. The power of the subset tests is
such that they establish an essential addition to the well-known classic full-set
DWH tests in a data based classification of individual explanatory variables.
This is also illustrated in an empirical example supplemented with hints for
practitioners.
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1 Introduction

In this study we examine a range of test procedures for the classification of arbi-
trary subsets of explanatory variables as either endogenous or predetermined in an
adequately specified single structural linear model. Correct classification is highly
important because misclassification leads to either inefficient or inconsistent estima-
tion. Hausman’s principle, which examines the discrepancy between two alternative
estimators, is employed directly and also indirectly. The latter leads to various tests
formulated as joint significance tests of additional regressors in auxiliary IV regres-
sions. Their relationships are demonstrated with particular forms of classic tests such
as Durbin-Wu-Hausman orthogonality tests, Revankar-Hartley covariance tests and
Sargan-Hansen overidentification restriction tests. At various points we indicate mis-
conceptions in the relevant literature. We run simulations over a wide class of relevant
cases, to find out which versions have best control over type I error probabilities and
to get an idea of the power of these tests. This should help to use these tests effectively
in practice when trying to avoid both evils of inconsistency and inefficiency. To that
end a simulation approach is developed by which relevant data generating processes
(DGPs) are designed by deriving the values for their parameters from chosen salient
features of the system, namely: degree of simultaneity of individual explanatory vari-
ables, degree of multicollinearity between explanatory variables, and individual and
joint strength of employed external instrumental variables. This allows scanning the
relevant parameter space for flaws in performance regarding type I and II errors of all
implementations of the tests and their bootstrapped versions. We find that testing
orthogonality by standard methods is impeded for weakly identified regressors. Like
bootstrapped tests require resampling under the null, we find here that testing for
orthogonality by auxiliary regressions benefits from estimating variances under the
null, as in Lagrange multiplier tests, rather than under the alternative, as in Wald-
type tests. However, after proper size correction we find that the Wald-type tests
exhibit the best power properties. The best performing procedures are also employed
in an illustrative empirical example.

Procedures for testing the orthogonality of all possibly endogenous regressors re-
garding the error term have been developed by Durbin (1954), Wu (1973), Revankar
and Hartley (1973), Revankar (1978) and Hausman (1978). Mutual relationships
between these are discussed in Nakamura and Nakamura (1981) and Hausman and
Taylor (1981). This test problem has been put into a likelihood framework under
normality by Holly (1982) and Smith (1983). Most of the papers just mentioned,
and in particular Davidson and MacKinnon (1989, 1990), provide a range of im-
plementations for these tests that can easily be obtained from auxiliary regressions.
Although this type of inference problem does address one of the basic fundaments
of the econometric analysis of observational data, relatively little evidence on the
performance of the available tests in finite samples is available. Monte Carlo studies
on the performance of some of the implementations in static linear models can be
found in Wu (1974), Meepagala (1992), Chmelarova and Carter Hill (2010), Jeong
and Yoon (2010), Hahn et al.(2011) and Doko Tchatoka (2014), whereas such results
for linear dynamic models are presented in Kiviet (1985).
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The more subtle problem of deriving a test for the orthogonality of subsets of the
regressors not involving all of the possibly endogenous regressors has also received
substantial attention over the last three decades. Nevertheless, generally accepted
rules for best practice on how to approach this problem do not seem available yet,
or are confusing as we shall see, and not yet supported by any simulation evidence.
Self-evidently, though, the situation where one is convinced of the endogeneity of a
few of the regressors, but wants to test some other regressors for orthogonality, is
of high practical relevance. If orthogonality is established, this permits to use these
regressors as instrumental variables, which (if correct) improves the efficiency and the
identification situation, because it makes the analysis less dependent on the availabil-
ity of external instruments. This is important in particular when available external
instruments are weak or of doubtful exogeneity status. Testing the orthogonality of
subsets of the possibly endogenous regressors was addressed first by Hwang (1980)
and next by Spencer and Berk (1981, 1982), Wu (1983), Smith (1984, 1985), Hwang
(1985) and Newey (1985), who all suggest various test procedures, some of them
asymptotically or even algebraically equivalent. So do Pesaran and Smith (1990),
who also provide theoretical arguments regarding an ordering of the power of the var-
ious tests, although they are asymptotically equivalent under the null and under local
alternatives. Various of the possible sub-set test implementations are paraphrased in
Ruud (1984, 2000), Davidson and MacKinnon (1993) and in Baum et al. (2003),
and occasionally their relationships with particular forms of Sargan-Hansen (partial-
)overidentification test statistics are examined. As we shall show, a few particular
situations still call for further analysis and formal proofs, and sometimes results from
the studies mentioned above have to be corrected. As far as we know, there are no
published simulation results yet on the actual qualities of tests for the exogeneity for
arbitrary subsets of the regressors in finite samples.

In this paper we shall try to elucidate the various forms of available test statistics
for the endogeneity of subsets of the regressors, demonstrate their origins and their
relationships, and also produce solid Monte Carlo results on their performance in sin-
gle static linear simultaneous models with IID disturbances. That yet no simulation
results are available on sub-set tests may be due to the fact that it is not straight-
forward how one should design a range of appealing and representative experiments.
We believe that in this respect the present study, which closely follows the rules set
out in Kiviet (2012), may claim originality. Besides exploiting some invariance prop-
erties, we choose the remaining parameter values for the DGP indirectly from the
inverse relationships between the DGP parameter values and fundamental orthog-
onal econometric notions. The latter constitute an insightful base for the relevant
nuisance parameter space. The present design can easily be extended to cover cases
with a more realistic degree of overidentification and number of jointly dependent
regressors. Other obvious extensions would be: to include recently developed tests
which are specially built to cope with weak instruments, to consider non Gaussian
and non IID disturbances, to examine dynamic models, to include tests for the va-
lidity (orthogonality) of instruments which are not included in the regression, etc.
Regarding all these aspects the present study just offers an initial reference point.

The structure of the paper is as follows. In Section 2, we first define the model’s
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maintained properties and the hypothesis to be tested. Next, in a series of subsec-
tions, various routes to develop test procedures are followed and their resulting test
statistics are discussed and compared analytically. Section 3 reviews earlier Monte
Carlo designs and results regarding orthogonality tests. In Section 4 we set out our
approach to obtain DGP parameter values from chosen basic econometric character-
istics. A simulation design is obtained to parametrize a synthetic single linear static
regression model including two possibly endogenous regressors with an intercept and
involving two external instruments. For this design Section 5 presents simulation
results for a selection of practically relevant parametrizations. Section 6 produces
similar results for bootstrapped versions of the tests, Section 7 provides an empirical
case study and Section 8 concludes.

2 Testing the orthogonality of subsets of explana-

tory variables

2.1 The model and setting

We consider the single linear simultaneous equation model

y = Xβ + u, (2.1)

with IID unobserved disturbances u ∼ (0, σ2In), K-element unknown coefficient vec-
tor β, an n×K regressor matrix X and n× 1 regressand y. We also have an n× L
matrix Z containing sample observations on identifying instrumental variables, so

E(Z ′u) = 0, rank(Z) = L, rank(X) = K and rank(Z ′X) = K. (2.2)

In addition, we make asymptotic regularity assumptions to guarantee asymptotic
identification of all elements of β and consistency of its IV (or 2SLS) estimator

β̂ = (X ′PZX)−1X ′PZy, (2.3)

where PZ = Z(Z ′Z)−1Z ′. Hence, we assume that

plimn−1Z ′Z = ΣZ′Z and plimn−1Z ′X = ΣZ′X (2.4)

are finite and have full column rank, whereas β̂ has limiting normal distribution

n1/2(β̂ − β)
d→ N

(
0, σ2[Σ′Z′XΣ−1

Z′ZΣZ′X ]−1
)
. (2.5)

The matrices X and Z may have some (but not all) columns in common and can
therefore be partitioned as

X = (Y, Z1) and Z = (Z1, Z2), (2.6)

where Zj has Lj columns for j = 1, 2. Because the number of columns in Y is
K−L1 > 0 we find from L = L1+L2 ≥ K that L2 > 0, but we allow L1 ≥ 0, so Z1 may
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be void. Throughout this paper the model just defined establishes the maintained
(unrestrained) hypothesis, which allows Y to contain endogenous variables. Below we
will examine particular restrained versions of the maintained hypothesis and develop
tests to verify these further limitations. These are not parametric restraints regarding
β but involve orthogonality conditions in addition to the L maintained orthogonality
conditions embedded in E(Z ′u) = 0. All these extra orthogonality conditions con-
cern regressors rather than external instrumental variables. Therefore, we consider a
partitioning of Y in Ke and Ko columns

Y = (Ye, Yo), (2.7)

where the variables Ye are maintained as possibly e
¯
ndogenous, whereas for the Ko

variables Yo their possible o
¯

rthogonality will be examined, i.e. whether E(Y ′ou) = 0
seems to hold. We define the n× (L+Ko) matrix

Zr = (Z, Yo), (2.8)

which relates to all the orthogonality conditions in the r
¯
estrained model. Note that

(2.2) implies that Zr has full column rank, provided n ≥ L + Ko. Now the null and
alternative hypotheses that we will examine can be expressed as

H0 : y = Xβ + u, u ∼ (0, σ2I), E(Z ′ru) = 0, and (2.9)

H1 : y = Xβ + u, u ∼ (0, σ2I), E(Z ′u) = 0, E(Y ′ou) 6= 0.

Hence, H0 assumes E(Y ′ou) = 0.
Under the extended set of orthogonality conditions E(Z ′ru) = 0, i.e. under H0,

the restrained IV estimator is

β̂r = (X ′PZrX)−1X ′PZry. (2.10)

If H0 is valid this estimator is consistent and, provided plimn−1Z ′rZr = ΣZ′rZr exists
and is invertible, its limiting normal distribution has variance σ2[Σ′Z′rXΣ−1

Z′rZr
ΣZ′rX ]−1,

which involves an asymptotic efficiency gain over (2.5). However, under the alterna-
tive hypothesis H1 estimator β̂r is inconsistent.

A test for (2.9) should (as always) have good control over its type I error prob-
ability1 and preferably also have high power, in order to prevent the acceptance of
an inconsistent estimator. In practice inference on (2.9) usually establishes just one
link in a chain of tests to decide on the adequacy of model specification (2.1) and the
maintained instruments Z, see for instance Godfrey and Hutton (1994) and Guggen-
berger (2010). Many of the firm results obtained below require to make the very
strong assumptions embedded in (2.1) and (2.2) and leave it to the practitioner to
make a balanced use of them within an actual modelling context.

In the derivations to follow we make use of the following three properties of
projection matrices, which for any full column rank matrix A is denoted as PA =

1An actual type I error probability much larger than the chosen nominal value would more often
than intended lead to using an inefficient estimator. A much lower actual type I error than the nom-
inal level would deprive the test from its power hampering the detection of estimator inconsistency.

5



A(A′A)−1A′: For a full column rank matrix C = (A,B) one has (i) PA = PCPA =
PAPC ; (ii) PC = PA + PMAB = P(A,MAB), where MA = I − PA; (iii) for C∗ = (A∗, B),
where A∗ = A − BD and D an arbitrary matrix of appropriate dimensions, PC∗ =
PB + PMBA∗ = PB + PMBA = PC .

2.2 The source of any estimator discrepancy

A test based on the Hausman principle focusses on the discrepancy vector

β̂ − β̂r = (X ′PZX)−1X ′PZy − (X ′PZrX)−1X ′PZry

= (X ′PZX)−1X ′PZ [I −X(X ′PZrX)−1X ′PZr ]y

= (X ′PZX)−1(PZX)′ûr

= (X ′PZX)−1(PZYe, PZYo, Z1)′ûr, (2.11)

where ûr = y − Xβ̂r denotes the IV residuals obtained under H0. Although testing
whether the discrepancy between these two coefficient estimators is significantly dif-
ferent from zero is not equivalent to testing H0, we will show that in fact all existing
test procedures employ the outcome of this discrepancy to infer on the (in)validity of
H0. Because (X ′PZX)−1 is non-singular β̂− β̂r is close to zero if and only if the K×1
vector (PZYe, PZYo, Z1)′ûr is. So, we will examine now when its three sub-vectors

Y ′ePZ ûr, Y
′
oPZ ûr and Z ′1ûr (2.12)

will jointly be close to zero. Note that due to the identification assumptions both
PZYe and PZYo will have full column rank so cannot be O.

For the IV residuals ûr we have X ′PZr ûr = 0, and since PZrX = (PZrYe, Yo, Z1),
this yields

Y ′ePZr ûr = 0, Y ′o ûr = 0 and Z ′1ûr = 0. (2.13)

Note that the third vector of (2.12) is always zero according to the third equality
from (2.13). Using projection matrix property (ii) and the first equality of (2.13), we
find for the first vector of (2.12) that

Y ′ePZ ûr = Y ′e (PZr − PMZYo)ûr = −Y ′ePMZYoûr,

so
Y ′ePZ ûr = −Y ′eMZYo(Y

′
oMZYo)

−1Y ′oMZ ûr. (2.14)

This Ke element vector will be close to zero when the Ko element vector Y ′oMZ ûr
is. Due to the occurrence of the Ke × Ko matrix Y ′eMZYo as a first factor in the
right-hand side of (2.14), it seems possible that Y ′ePZ ûr may be close to zero too in
cases where Y ′oMZ ûr 6= 0; we will return to that possibility below. For the second
vector of (2.12) we find, upon using the second equality of (2.13), that

Y ′oPZ ûr = −Y ′oMZ ûr. (2.15)

Hence, the second vector of (2.12) will be close to zero if and only if the vector Y ′oMZ ûr
is close to zero.
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From the above it follows that Y ′oMZ ûr being close to zero is both necessary and
sufficient for the full discrepancy vector (2.11) to be small. Checking whether Y ′oMZ ûr
is close to zero corresponds to examining to what degree the variables MZYo do obey
the orthogonality conditions, while using ûr as a proxy for u, which is asymptotically
valid under the extended set of orthogonality conditions. Note that by focussing on
MZYo the tested variables Yo have been purged from their components spanned by
the columns of Z. Since these are maintained to be orthogonal with respect to u, they
should better be excluded from the test indeed.

Since the inverse matrix in the right-hand side of (2.11) is positive definite, the
probability limits of β̂ and β̂r will be similar if and only if plimn−1Y ′oMZ ûr = 0.
Regarding the power of any discrepancy based test of (2.9) it is now of great interest
to examine whether it could happen under H1 to have plimn−1Y ′oMZ ûr = 0. For that
purpose we specify the reduced form equations

Yj = ZΠj + (uγ′j + Vj), for j ∈ {e, o}, (2.16)

where Πj is an L×Kj matrix of reduced form parameters, γj is a Kj × 1 vector that
parametrizes the simultaneity and Vj establishes the components of the zero mean
reduced form disturbances which are uncorrelated with u and of course with Z. After
this further parametrization the hypotheses (2.9) can now be expressed as H0 : γo = 0
and H1 : γo 6= 0. Let (L + Ko) × (L + Ko) matrix Ψ be such that ΨΨ′ = (Z ′rZr)

−1.
From

Y ′oMZ ûr = −Y ′oPZ [In −X(X ′PZrX)−1X ′PZr ]u

= −Y ′oPZ [PZr − PZrX(X ′PZrX)−1X ′PZr ]u

= −Y ′oPZZrΨ[IL+Ko − PΨ′Z′rX ]Ψ′Z ′ru (2.17)

it follows that plimn−1Y ′oMZ ûr = 0 if (L + Ko) × 1 vector plimn−1Z ′ru = σ2(0′ γ′o)
′

is in the column space spanned by plimn−1Z ′rX = ΣZ′rX . This is obviously the case
when γo = 0. However, it cannot occur for γo 6= 0, because (L+Ko)×1 vector ΣZ′rXc,
with c a K×1 vector, has its first L ≥ K elements equal to zero only for c = 0, due to
the identification assumptions. This excludes the existence of a vector c 6= 0 yielding
ΣZ′rXc = σ2(0′ γ′o)

′ when γo 6= 0, so under asymptotic identification the discrepancy
will be nonzero asymptotically when Yo contains an endogenous variable.

Cases in which the asymptotic identification assumptions are violated are Πe =
Ce/
√
n and/or Πo = Co/

√
n, where Ce and Co are matrices of appropriate dimensions

with full column rank and all elements fixed and finite.2 Examining ΣZ′rXc closer
yields

ΣZ′rXc =

(
ΣZ′ZΠe

Π′oΣZ′ZΠe + ΣV ′oVe + σ2γoγ
′
e

)
c1 +

(
ΣZ′ZΠo

ΣY ′oYo

)
c2 +

(
ΣZ′Z1

Π′oΣZ′Z1

)
c3, (2.18)

where c = (c′1 c
′
2 c
′
3)′ and ΣV ′oVe = plimn−1V ′oVe. If only Πo = Co/

√
n, so when all the

instruments Z are weak and asymptotically irrelevant for the set of regressors Yo whose

2Doko Tchatoka (2014) considers a similar situation for the special case Ke = 0 and Ko = 1.
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orthogonality is tested, we can set c1 = 0 and c3 = 0 and then for c2 = σ2Σ−1
Y ′oYo

γo =

σ2(σ2γoγ
′
o + ΣV ′oVo)

−1γo 6= 0 we have ΣZ′rXc = σ2(0′ γ′o)
′ 6= 0, demonstrating that the

test will have no asymptotic power. If only Πe = Ce/
√
n, thus all the instruments Z

are weak for Ye, a solution c 6= 0 can be found upon taking c2 = 0, c3 = 0 and c1 6= 0,
provided ΣV ′oVe + σ2γoγ

′
e 6= O or Ye and Yo are asymptotically not uncorrelated. Only

c3 has to be set at zero to find a solution when Z is weak for both Yo and Ye. From
(2.18) it can also be established that when from Z2 at least Ke + Ko instruments
are not weak for Y the discrepancy will always be different from zero asymptotically
when γo 6= 0.

Using (2.16) we also find plimn−1Y ′eMZYo = Σ′V ′oVe + σ2γeγ
′
o, which demonstrates

that the first vector of (2.12) would for γo 6= 0 tend to zero also when γe = 0 while the
reduced form disturbances of Ye and Yo are uncorrelated. This indicates the plausible
result that a discrepancy based test may loose power when Ye is unnecessarily treated
as endogenous and Yo is establishing a weak instrument for Ye after partialing out Z.

2.3 Testing based on the source of any discrepancy

Next we examine the implementation of testing closeness to zero of Y ′oMZ ûr in an
auxiliary regression. Consider

y = Xβ + PZYoζ + u∗, (2.19)

where u∗ = u − PZYoζ. Its estimation by IV employing the instruments Zr yields
coefficients that can be obtained by applying OLS to the second-stage regression of
y on PZrX and PZrPZYo = PZYo. For ζ partitioned regression yields

ζ̂ = (Y ′oPZMPZrX
PZYo)

−1Y ′oPZMPZrX
y, (2.20)

where, using rule (i), Y ′oPZMPZrX
y = Y ′oPZ [I − X(X ′PZrX)−1X ′PZr ]y = Y ′oPZ ûr.

Thus, by testing ζ = 0 in (2.19) we in fact examine whether Y ′oPZ ûr = −Y ′oMZ ûr
differs significantly from a zero vector, which is indeed what we aim for.3

Alternatively, consider the auxiliary regression

y = Xβ +MZYoξ + v∗, (2.21)

where v∗ = u−MZYoξ. Using the instruments Zr involves here applying OLS to the
second-stage regression of y on PZrX and PZrMZYo = PZrYo−PZrPZYo = Yo−PZYo =
MZYo. This yields

ξ̂ = (Y ′oMZMPZrX
MZYo)

−1Y ′oMZMPZrX
y, (2.22)

where

Y ′oMZMPZrX
y = Y ′oMZ [I − PZrX(X ′PZrX)−1X ′PZr ]y

= Y ′o [I −X(X ′PZrX)−1X ′PZr ]y − Y ′oPZ [I −X(X ′PZrX)−1X ′PZr ]y

= Y ′oMZ ûr. (2.23)

3This procedure provides the explicit solution to the exercise posed in Davidson and MacKinnon
(1993, p.242).
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Thus, like testing ζ = 0 in (2.19), testing ξ = 0 in auxiliary regression (2.21) examines
the magnitude of Y ′oMZ ûr. The estimator for β resulting from (2.21) is

β̂∗r = (X ′PZrMMZYoPZrX)−1X ′PZrMMZYoy.

Because PZrMMZYo = PZr −PZrPMZYo = PZr − (PZ +PMZYo)PMZYo = PZr −PMZYo =

PZ , we find β̂∗r = β̂. Hence, the IV estimator of β exploiting the extended set of
instruments in the auxiliary model (2.21) equals the unrestrained IV estimator β̂.
Many text books mention this result for the special case Ke = 0.

From the above we find that testing whether included possibly endogenous vari-
ables Yo can actually be used effectively as valid extra instruments, can be done as
follows: Add them to Z, so use Zr as instruments, and add at the same time the
regressors MZYo (the reduced form residuals of the alleged endogenous variables Yo
in the maintained model) to the model, and then test their joint significance. When
testing ξ = 0 in (2.21) by a Wald-type statistic, and assuming for the moment that
σ2 is known, the test statistic is

σ−2y′PMPZr
XMZYoy = σ−2y′(MA −MC)y, (2.24)

where A = PZrX, B = MZYo and C = (A,B). Hence, y′PMPZr
XMZYoy is equal to the

difference between the OLS residual sums of squares of the restricted (by ξ = 0) and
the unrestricted second stage regressions (2.21). One easily finds that testing ζ = 0
in (2.19) by a Wald-type test yields in the numerator

y′PMPZr
XPZYoy = y′(MA −MC∗)y,

with again A = PZrX = (PZrYe, Yo, Z1), but C∗ = (A,B∗) with B∗ = PZYo. Although
C∗ 6= C, both span the same sub-space, so MC = MC∗ and thus the two auxiliary
regressions lead to numerically equivalent Wald-type test statistics.

Of course, σ2 is in fact unknown and should be replaced by an estimator that is
consistent under the null. There are various options for this. Two rather obvious
choices would be σ̂2 = û′û/n or σ̂2

r = û′rûr/n, giving rise to two under the null
(and also under local alternatives) asymptotically equivalent test statistics, both with
χ2(Ko) asymptotic null distribution. Further asymptotically equivalent variants can
be obtained by employing a degrees of freedom correction in the estimation of σ2

and/or by dividing the test statistic by Ko and then confronting it with critical
values from an F distribution with Ko and n− l degrees of freedom with l some finite
number, possibly K +Ko.

Testing the orthogonality of Yo and u, while maintaining the endogeneity of Ye, by
a simple χ2-form statistic and using as in a Wald-type test the estimate σ̂2 (without
any degrees of freedom correction) from the unrestrained model, will be indicated by
Wo. When using the uncorrected restrained estimator σ̂2

r , the statistic will be denoted
here as Do. So we have the two archetype test statistics

Wo = y′PMPZr
XMZYoy/σ̂

2 and Do = y′PMPZr
XMZYoy/σ̂

2
r . (2.25)
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Using the restrained σ2 estimator, as in a Lagrange-multiplier-type test under nor-
mality, was already suggested in Durbin (1954, p.27), where Ke = L1 = 0 and
Ko = L2 = 1.

Before we discuss further options for estimating σ2 in general sub-set tests, we shall
first focus on the special case Ke = 0, where the full set of endogenous regressors is
tested. Then σ̂2

r = y′MXy/n = n−K
n
s2 stems from OLS. Wu (1973) suggested for this

case four test statistics, indicated as T1, ..., T4, where

T4 =
n− 2Ko − L1

n

1

Ko

Do and T3 =
n− 2Ko − L1

n

1

Ko

Wo. (2.26)

On the basis of his simulation results Wu recommended to use the monotonic trans-
formation of T4 (or Do)

T2 =
T4

1− Ko

n−2Ko−L1
T4

=
n− 2Ko − L1

n

1

Ko

Do

1−Do/n
. (2.27)

He showed that under normality of both structural and reduced form disturbances
the null distribution of T2 is F (Ko, n− 2Ko−L1) in finite samples.4 Because Ke = 0
implies MPZrX

= MX we find from (2.24) that in this case

Do

1−Do/n
= n

y′PMXMZYoy

y′(MX − PMXMZYo)y
= n

y′PMXMZYoy

y′M(X MZYo)y
=
y′PMXMZYoy

σ̈2
.

Hence, from the final expression we see that T2 estimates σ2 by σ̈2 = y′M(X MZYo)y/n,
which is the OLS residual variance of auxiliary regression (2.21). Like σ̂2 and σ̂2

r , σ̈
2

is consistent under the null, because plimn−1Y ′oMZ ûr = 0 implies, after substituting
(2.23) in (2.22), that plim ξ̂ = 0.

Pesaran and Smith (1990) show that under the alternative

plim σ̂2 ≥ plim σ̂2
r ≥ plim σ̈2

and then invoke arguments due to Bahadur to expect that T2 (which uses σ̈2) has
better power than T4 (which uses σ̂2

r), whereas both T2 and T4 are expected to outper-
form T3 (which uses σ̂2). However, they did not verify this experimentally. Moreover,
because T2 is a simple monotonic transformation of T4 when Ke = 0, we also know
that after a fully successful size correction both should have equivalent power.

Following the same lines of thought for cases whereKe > 0, we expect (after proper
size correction) Do to do better than Wo, but Pesaran and Smith (1990) suggest that
an even better result may be expected from formally testing ξ = 0 in the auxiliary
regression (2.21) while exploiting instruments Zr. This amounts to the χ2(Ko) test
statistic To, which (omitting its degrees of freedom correction) generalizes Wu’s T2

for cases where Ke ≥ 0, and is given by

To = y′PMPZr
XMZYoy/σ̈

2 = y′(MA −MC)y/σ̈2, (2.28)

4Wu’s T1 test for case Ke = 0, which under normality has a F (Ko, L2 −Ko) distribution, has a
poor reputation in terms of power and therefore we leave it aside.
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with
σ̈2 = (y −Xβ̂ −MZYoξ̂)

′(y −Xβ̂ −MZYoξ̂)/n. (2.29)

Actually, it seems that Pesaran and Smith (1990, p.49) employ a slightly different
estimator for σ2, namely

(y −Xβ̂ −MZYoξ̂
∗)′(y −Xβ̂ −MZYoξ̂

∗)/n (2.30)

with
ξ̂∗ = (Y ′oMZYo)

−1Y ′oMZ(y −Xβ̂). (2.31)

However, because OLS residuals are orthogonal to the regressors we have Y ′oMZ(y −
Xβ̂ −MZYoξ̂) = 0, from which it follows that ξ̂ = ξ̂∗, so their test is equivalent with
To.

When Ke > 0 the three tests Wo, Do and To are not simple monotonic transfor-
mations of each other, so they may have genuinely different size and power properties
in finite samples. In particular, we find that for

Do

1−Do/n
=

y′PCy − y′PAy
(û′rûr − y′PCy + y′PAy)/n

,

the denominator in the right-hand expression differs from σ̈2 (unless Ke = 0).5 Using
that ξ̂ is given by (2.31) we find from (2.29) that σ̈2 = û′MMZYoû/n ≤ σ̂2, so

0 ≤ Wo ≤ To, (2.32)

whereas D0, with Do ≥ 0, can be at either side of Wo and To.

2.4 Testing based on the discrepancy as such

Direct application of the Hausman (1978) principle yields the test statistic

Ho = (β̂ − β̂r)′[σ̂2(X ′PZX)−1 − σ̂2
r(X

′PZrX)−1]−(β̂ − β̂r), (2.33)

which uses a generalized inverse for the matrix in square brackets. When σ2 were
known the matrix in square brackets would certainly be singular though semi-positive
definite. Using two different σ2 estimates might lead to nonsingularity but could yield
negative test statistics. As is obvious from the above, (2.33) will not converge to a
χ2
K distribution under H0, but in our framework to one with Ko degrees of freedom,

cf. Hausman and Taylor (1981). Some further analysis leads to the following.
Let β have separate components as follows from the decompositions

Xβ = Yeβe + Yoβo + Z1β1 = Y βeo + Z1β1, (2.34)

5Therefore, the test statistic (54) suggested in Baum et al. (2003, p.26), although asymptotically
equivalent to the tests suggested here, is built on an inappropriate analogy with the Ke = 0 case.
Moreover, in their formulas (53) and (54) Q∗ should be the difference between the residual sums
of squares of second-stage regressions, precisely as in (2.25). The line below (54) suggests that Q∗

is a difference between squared IV residuals (which would mean that Q∗ could be negative) of the
(un)restricted auxiliary regressions, although their footnote 25 seems to suggest otherwise.
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whereas (X ′PZX)−1 has blocks Ajk, j, k = 1, 2, where A11 is a Keo×Keo matrix with
Keo = Ke +Ko. Then we find from (2.11) and (2.13) that

β̂ − β̂r = (X ′PZX)−1

(
Y ′PZ ûr

0

)
=

[
A11

A21

]
Y ′PZ ûr,

β̂eo − β̂eo,r = A11Y
′PZ ûr.

(2.35)

Hence, the discrepancy vector of the two coefficient estimates of just the regressors
in Y, but also those of the full regressor matrix X, are both linear transformations of
rank Keo of the vector Y ′PZ ûr. Therefore it is obvious that the Hausman-type test
statistic (2.33) can also be obtained from

Ho = (β̂eo − β̂eo,r)′[σ̂2(Y ′PMZ1
Z2Y )−1 − σ̂2

r(Y
′PMZ1

(Z2 Yo)Y )−1]−(β̂eo − β̂eo,r). (2.36)

Both test statistics are algebraically equivalent, because of the unique linear relation-
ship

β̂ − β̂r =

[
IKeo

A21A
−1
11

]
(β̂eo − β̂eo,r). (2.37)

Calculating (2.36) instead of (2.33) just mitigates the numerical problems.
One now wonders whether an equivalent Hausman-type test can be calculated on

the basis of the discrepancy between the estimated coefficients for just the regressors
Yo. This is not the case, because a relationship of the form (β̂eo− β̂eo,r) = G(β̂o− β̂o,r),
where G is a Keo×Ko matrix, cannot be found6. However, a matrix G can be found
such that (β̂eo − β̂eo,r) = Gξ̂, indicating that test Ho can be made equivalent to the
three distinct tests of the foregoing subsection, provided similar σ2 estimates are being
used. Using (2.14) and (2.15) in (2.35) we obtain

β̂eo − β̂eo,r = A11Y
′PZ ûr

= −A11

[
Y ′eMZYo(Y

′
oMZYo)

−1

IKo

]
(Y ′oMZMPZrX

MZYo)ξ̂, (2.38)

because (2.22) and (2.23) yield Y ′oMZ ûr = (Y ′oMZMPZrX
MZYo)ξ̂. So, under the null

hypothesis particular implementations of Wo, Do, To and Ho are equivalent.7

6Note that Wu (1983) and Hwang (1985) start off by analyzing a test based on the descripancy

β̂o − β̂o,r. Both Wu (1983) and Ruud (1984, p.236) wrongly suggest equivalence of such a test with
(2.33) and (2.36).

7This generalizes the equivalence result mentioned below (22.27) in Ruud (2000, p.581), which
just treats the case Ke = 0. Note, however, that because Ruud starts off from the full discrepancy
vector, the transformation he presents is in fact singular and therefore the inverse function mentioned
in his footnote 24 is non-unique (the zero matrix may be replaced with any other matrix of the same
dimensions). To obtain a unique inverse transformation, one should start off from the coefficient
discrepancy for just the regressors Y, and this is found to be nonsingular for Ke = 0 only.
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2.5 Testing based on covariance of structural and reduced
form disturbances

Auxiliary regression (2.21) is used to detect correlation of u and Vo (the reduced form
disturbances of Yo) by examing the covariance of the residuals ûr and MZYo. This
might perhaps be done in a more direct way by augmenting regression (2.1) by the
actual reduced form disturbances, giving

y = Xβ + (Yo − ZΠo)φ+ w∗, (2.39)

where w∗ = u− (Yo−ZΠo)φ with φ a Ko× 1 vector. Let ZΠo = Z1Πo1 +Z2Πo2, then
(2.39) can be written as

y = Yeβe + Yo(βo + φ) + Z1(β1 − Πo1φ)− Z2Πo2φ+ w∗

= Xβ∗ + Z2φ
∗ + w∗ (2.40)

in which we may assume that E(Z ′w∗) = 0, though E(Y ′ew
∗) 6= 0. However, testing

φ∗ = 0, which corresponds to φ = 0 in (2.39), through estimating (2.40) consistently
is not an option, unless Ke = 0. For Ke > 0, which is the case of our primary interest
here, (2.40) contains all available instruments as regressors, so we cannot instrument
Ye.

For the case Ke = 0 the test of φ∗ = 0 yields the test of Revankar and Hartley
(1973), which is an exact test under normality. When Ko = L2 (just identification) it
specializes to Wu’s T2.8 When L2 > Ko (overidentification) Revankar (1978) argues
that testing theKo restrictions φ = 0 by testing the L2 restrictions φ∗ = 0 is inefficient.
He then suggests to test φ = 0 by a quadratic form in the difference of the least-squares
estimator of βo + φ in (2.40) and the IV estimator of βo.

9

From the above we see that the tests on the covariance of disturbances do not have
a straight-forward generalization for the case Ke > 0. However, a test that comes close
to it replaces the L − L1 columns of Z2 in (2.40) by a set of L − K regressors Z∗2
which span a subspace of Z2, such that (PZYe, Z1, Z

∗
2) spans the same space as Z.

Testing these L−K exclusion restrictions yields the familiar Sargan-Hansen test for
testing all the so-called overidentification restrictions of model (2.1). It is obvious
that this test will have power for alternatives in which Z2 and u are correlated,
possibly because some of the variables in Z2 are actually omitted regressors. In
practical situations this type of test, and also Hausman type tests for the orthogonality
of particular instruments not included as regressors in the specification10, are very
useful. However, we do not consider such implementations here, because right from
the beginning we have chosen a context in which all instruments Z are assumed to

8This is proved as follows: Both tests have regressors X under the null, and under the alternative
the full column rank matrices (X,PZYo) and (X,Z2) respectively. These matrices span the same
space when X = (Yo, Z1) and Z = (Z1, Z2) have the same number of columns.

9Meepagala (1992) produces numerical results indicating that the descripancy based tests have
lower power than the Revankar and Hartley (1973) test when instruments are weak and than the
Revankar (1978) test when the instruments are strong.

10See Hahn et al. (2011) for a study on its behaviour under weak instruments.
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be uncorrelated with u. This allows focus on tests serving only the second part of
the two-part testing procedure as exposed by Godfrey and Hutton (1994), who also
highlight the asymptotic independence of these two parts.

2.6 Testing by an incremental Sargan test

The original test of overidentifying restrictions initiated by Sargan (1958) does not
enable to infer directly on the orthogonality of individual instrumental variables, but
a so-called incremental Sargan test does. It builds on the maintained hypothesis
E(Z ′u) = 0 and can test the orthogonality of additional potential instrumental vari-
ables. Choosing for these the included regressors Yo yields a test statistic for the
hypotheses (2.9) given by

So =
û′rPZr ûr
σ̂2
r

− û′PZ û

σ̂2
, (2.41)

which could be negative. When using for both separate Sargan statistics the same σ2

estimate, and employing PZ û = (PZ − PPZX)y, the numerator would be

û′rPZr ûr − û′PZ û = y′(PZr − PPZrX
− PZ + PPZX)y

= y′(PMZYo + PPZX − PPZrX
)y

= y′(P(PZX,MZYo) − PPZrX
)y,

whereas that of Wo and Do in (2.24) is given by y′(PC − PA)y, where C = (A,B)
with A = PZrX and B = MZYo. Equivalence11 is proved by using general result (iii)
on projection matrices, upon taking A∗ = PZX. Using PZr = PZ + PMZYo , we have
A∗ = A− PBX = A−B(B′B)−1B′X, so D = (B′B)−1B′X. Thus P(A,B) = P(A∗,B) =
P(PZX,MZYo) giving

û′rPZr ûr − û′PZ û = y′(P(PZrX,MZYo) − PPZrX
)y. (2.42)

Hence, in addition to Ho, So establishes yet another hybrid form combining elements
of both Wo and Do. However, when L = K then So = Do, due to PZ û = 0.

2.7 Concerns for practitioners

The foregoing subsections demonstrate that all five available archetypal statistics
Wo, Do, To, Ho and So for testing the orthogonality of a subset of the potentially
endogenous regressors basically just differ regarding the way in which the expresssions
they are based on are scaled with respect to estimates of σ2. The two tests Ho and
So show a hybrid nature in this respect, because their most natural implementation
requires two different σ2 estimates, which may lead to negative test outcomes. In

11Ruud (2000, p.582) proves this just for the special case Ke = 0. Newey (1985, p.238), Baum et
al. (2003, p.23 and formula 55) and Hayashi (2002) mention equivalence for Ke ≥ 0, but do not
provide a proof.
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addition to that, Ho has the drawback that it involves a generalized inverse, whereas
calculation of all the others is rather straight-forward.12

Similar differences and correspondences will carry over to more general models,
which would require either robust variance estimation or GMM, see Newey (1985)
and Ahn (1997). Although of no concern asymptotically, these differences may have
major consequences in finite samples, thus practitioners are in need of clues which
implementations should be preferred.13 Therefore, in the remainder of this study, we
will examine the performance in finite samples of all these six archetypal tests. First,
we will examine whether they procure acceptable size control, possibly after a simple
degrees of freedom correction or after bootstrapping. Next, only for those variants
that pass this requirement we will perform some power calculations.

3 Earlier Monte Carlo designs and results

In the literature the actual rejection frequencies of tests on the independence between
regressors and disturbances have been examined by simulation only for situations
where all possibly endogenous regressors are tested jointly, hence Ke = 0. To our
knowledge, sub-set orthogonalty tests have not been examined yet.

Wu (1974) was the first to design a simulation study in which he examined the
four tests suggested in Wu (1973). He made substantial efforts, both analytically and
experimentally, to assess the parameters and model characteristics which actually
determine the distribution of the test statistics and their power curves. His focus is
on the case where there is one possibly endogenous regressor (Ko = 1), an intercept
and one other included exogenous regressor (L1 = 2) and two external instruments
(L2 = 2), giving a degree of overidentification of 1. All disturbances are assumed
normal, all exogenous regressors are mutually orthogonal and all consist of elements
equal to either 1, 0, or -1, whereas all instruments have coefficient 1 in the reduced
form. Wu demonstrates that all considered test statistics are functions of statistics
that follow Wishart distributions which are invariant with respect to the values of the
structural coefficients of the equation of interest. The effects of changing the degree
of simultaneity and of changing the joint strength of the external instruments are
examined. Because the design is rather inflexible regarding varying the explanatory

12It is not obvious why Pesaran and Smith (1990, p.49,55) mention that they find To a computa-
tionally more attractive statistic than Wo. Apart from Ho all discrepancy based test statistics are
very easy to compute. However, To is the only one that strictly applies a standard procedure (Wald)
to testing zero restrictions in an auxiliary regression, which eases its use by standard software pack-
ages. On the other hand Baum et al. (2003, p.26) characterize tests like To as ”computationally
expensive and practically cumbersome”, which we find far fetched too.

13Under the heading of ”Regressor Endogeneity test” EViews 8.1 presents statistic So where for
both σ2 estimates an n−K degrees of freedom correction is used, like it does for the J statistic. In
Stata 13 the ”hausman” command calculates Ho by default and offers the possibility to calculate Wo

and Do. The degrees of freedom reported is the rank of the estimated variance of the discrepancy
vector. In case of Ho this is not correct. It is possible to overwrite the degrees of freedom by an
additional command. The popular package ”ivreg2” only reports Do with the correct degrees of
freedom.
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part of the reduced form, no separate attention is paid to the effects of multicollinear-
ity of the regressors on the rejection probabilities, nor to the effects of weakness of
individual instruments. Although none of the tests examined is found to be superior
under all circumstances, test T2, which is exact under normality and generalized as
To in (2.28), is found to be the preferred one. Its power increases with the absolute
value of the degree of simultaneity, with the joint strength of the instruments and
with the sample size.

Nakamura and Nakamura (1985) examine a design where Ke = 0, Ko = 1, L1 = 2,
L2 = 3 and all instruments are mutually independent standard normal. The structural
equation disturbances u and the reduced form disturbances v are IID normal with
variances σ2

u and σ2
v respectively and correlation ρ. They focus on the case where

all coefficients in the structural equation and in the reduced form equation for the
possibly endogenous regressor are unity. Given the fixed parameters the distribution
of the test statistic T2 now depends only on the values of ρ2, σ2

u and σ2
v . Attention

is drawn to the fact that the power of an endogeneity test and its interpretation
differs depending on whether the test is used to signal: (a) the degree of simultaneity
expressed as ρ, (b) the simultaneity expressed as the covariance δ = ρσuσv, or (c) the
extent of the asymptotic bias of OLS (which in their design is also determined just by
ρ, σ2

u and σ2
v). When testing (a) a natural choice of the nuisance parameters (which

are kept fixed when ρ is varied to obtain a power curve) are σu and σv. However,
when testing (b) or (c) ρ, σu and σv cannot all be chosen independently. The study
shows that, although the power of test T2 does increase for increasing values of ρ2

while keeping σu and σv constant, it may decrease for increasing asymptotic OLS
bias. Therefore, test T2 is not very suitable for signaling the magnitude of OLS
bias. In this design σ2

v = 5(1 − R2)/R2, where R2 is the population coefficient of
determination of the reduced form equation for the possibly endogenous regressor.
The joint strength of the instruments is a simple function of R2 and hence of σv.
Again, due to the fixed values of the reduced form coefficients the effects of weakness
of individual instruments or of multicollinearity cannot be examined from this design.

The study by Kiviet (1985) demonstrates that in models with a lagged dependent
explanatory variable the actual type I error probability of test T2 may deviate sub-
stantially from the chosen nominal level. Then high rejection frequencies under the
alternative have little or no meaning.14 In the present study we will stick to static
cross-section type models.

Thurman (1986) performs a small scale Monte Carlo simulation of just 100 repli-
cations on a specific two equation simultaneous model using empirical data for the
exogenous variables from which he concludes that Wu-Hausman tests may have sub-
stantial power under particular parametrizations and none under others.

Chmelarova and Hill (2010) focus on pre-test estimation based on test T2 (for
Ko = 1, L1 = 2, L2 = 1) and two other forms of contrast based tests which use an
improper number of degrees of freedom15. Their Monte Carlo design is very restricted,

14Because we could not replicate some of the presented figures for the case of strong instruments,
we plan to re-address the analysis of DWH type tests in dynamic models in future work.

15This may occur when standard software is employed based on a naive implementation of the
Hausman test. Practitioners should be adviced never to use these standard options. Confusion about
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because the possibly endogenous regressor and the exogenous regressor (next to the
constant) are uncorrelated, so multicollinearity does not occur, which makes the DGP
unrealistic. Moreover, all coefficients in the equation of interest are kept fixed and
are such that the signal to noise ratio is always 1. Therefore, the inconsistency of
OLS is relatively large (and in fact equal to the simultaneity correlation coefficient
ρ). Because the sample size is not varied and neither is the instrument strength
parameter16 the results do not allow to form an opinion on how effective the T2 test
is to diagnose simultaneity.

Jeong and Yoon (2010) present a study in which they examine by simulation what
the rejection probability of the Hausman test is when an instrument is employed which
is actually correlated with the disturbances. Also for the sub-set tests to be examined
here the situation seems of great practical relevance that they might be implemented
while using some variable(s) as instruments which are in fact endogenous. In our
Monte Carlo experiments we will cover such situations, but we do not find the design
as used by Jeong and Yoon, in which the endogeneity/exogeneity status of variables
depends on the sample size very useful.

4 A more comprehensive Monte Carlo design

To examine the differences between the various sub-set tests regarding their type I and
II error probabilities in finite samples we want to lay out a Monte Carlo design which
is less restrictive than those just reviewed. It should allow to represent the major
characteristics of data series and their relationships as faced in empirical work, while
avoiding the imposition of awkward restrictions on the nuisance parameter space.
Instead of picking particular values for the coefficients and further parameters in a
simple DGP, and check whether or not this leads to covering empirically relevant
cases, we choose to approach this design problem from the opposite direction.

4.1 The simulated data generating process

Model (2.1) is specialized in our simulations to cases where K = 3 with

y = β1ι+ β2y
(2) + β3y

(3) + u, (4.1)

y(2) = π21ι+ π22z
(2) + π23z

(3) + v(2), (4.2)

y(3) = π31ι+ π32z
(2) + π33z

(3) + v(3), (4.3)

where ι is an n×1 vector consisting of ones. Depending on the disturbance correlations
the variables y(2) and y(3) can be either endogenous or exogenous. We will examine
situations where L1 is either 1 or 2. When L1 = 1, Z1 = ι and Z2 = (z(2), z(3)) so

the correct number of restrictions is avoided by using a test based on estimator contrast, which can
be obtained by running either the relevant auxiliary regression or the two alternative regressions
and obtain the Sargan incremental test.

16If the effects of a weaker instrument had been checked the simulation estimates of the moments
of IV (which do not exist, because the model is just identified) would have gone astray.
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L2 = 2 and L = 3, whereas Y = (y(2), y(3)), so Ko + Ke = 2 = K − L1. Now Ko is
either 1 (for sub-set tests, with Ke = 1) or 2 (for full-set tests, since Ke = 0). In
case Ko = 1 then Yo is either y(3) or y(2), and when Ko = 2 then Yo = (y(2), y(3)).
In all these cases L = K, so the single simultaneous equation (4.1) is just identified
according to the order condition under the unrestrained alternative hypothesis. When
L1 = 2 then Z1 is either (ι, y(2)) or (ι, y(3)), with Yo either y(3) or y(2), so Ko = 1 and
Ke = 0. Thus here we just have full-set tests, and because Z2 = (z(2), z(3)) again,
L2 = 2 giving L = 4. Hence, when L1 = 2 there is mild overidentification because
L−K = 1.

As the statistics to be analyzed are all invariant regarding the values of the inter-
cepts, these are all set equal to zero, thus β1 = π21 = π31 = 0. For the vectors z(2)

and z(3) two arbitrary mutually independent IID(0, 1) series were drawn and kept
fixed over all replications. In fact, we rescaled them such that their sample mean and
variance, and also their sample covariance correspond to the population values 0, 1
and 0 respectively. To allow for simultaneity of both y(2) and y(3), as well as for any
value of the correlation between the reduced form disturbances v(2) and v(3), these
disturbances were generated as

v(2) = η(2) + γ2u and v(3) = η(3) + κη(2) + γ3u, (4.4)

where the series ui, η
(2)
i and η

(3)
i are mutually independent zero mean IID series (for

i = 1, ..., n). Without loss of generality, we chose σ2
u = 1. Scaling the variances of the

potentially endogenous regressors simplifies the model even further, again without
loss of generality. This scaling is innocuous, because it can be compensated by the
chosen values for β2 and β3. We realized σ2

y(2)
= σ2

y(3)
= 1 by choosing appropriate

values for σ2
η(2)

> 0 and σ2
η(3)

> 0 as follows. For the variance of the IID series for the
reduced form disturbances and for the possibly endogenous explanatory variables we
find

σ2
v(2)

= σ2
η(2)

+ γ2
2 , σ2

y(2)
= π2

22 + π2
23 + σ2

v(2)
= 1,

σ2
v(3)

= σ2
η(3)

+ κ2σ2
η(2)

+ γ2
3 , σ2

y(3)
= π2

32 + π2
33 + σ2

v(3)
= 1.

(4.5)

This requires

σ2
η(2) = 1− π2

22 − π2
23 − γ2

2 > 0 and σ2
η(3) = 1− π2

32 − π2
33 − κ2σ2

η(2) − γ
2
3 > 0. (4.6)

Also, when both y(2) and y(3) are endogenous, fulfillment of the rank condition for
identification requires

π22π33 6= π23π32. (4.7)

However, as we will see, more restrictions than those given by (4.7) and (4.6) should
be respected when we consider further consequences of a choice of particular values
for the nine remaining DGP parameters

{γ2, γ3, κ, π22, π23, π32, π33, β2, β3}. (4.8)
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4.2 Simulation design parameter space

Assigning a range of reasonable values to the nine DGP parameters is cumbersome as
it is not immediately obvious what model characteristics they imply. Therefore, we
now first define econometrically meaningful design parameters. These are functions
of the DGP parameters, and we will invert these functions in order to find solutions
for the parameters of the DGP in terms of the chosen design parameter values. Since
the DGP is characterized by nine parameters, we should define nine variation free
design parameters as well. However, their relationships will be such, that this will
not automatically imply the existence nor the uniqueness of solutions.

Two obvious design parameters are the degree of simultaneity in y(2) and y(3),
given by

ρj = Cov(y
(j)
i , ui)/(σy(j)σu) = γj, j = 2, 3. (4.9)

Hence, by choosing σ2
y(2)

= σ2
y(3)

= 1, the degree of simultaneity in y(j) is directly
controlled by γj for j = 2, 3, and it implies two more inequality restrictions, namely

|γj| < 1, j = 2, 3. (4.10)

Another design parameter is a measure of multicollinearity between y(2) and y(3)

given by the correlation

ρ23 = π22π32 + π23π33 + κ(1− π2
22 − π2

23 − γ2
2) + γ2γ3, (4.11)

implying yet another restriction∣∣π22π32 + π23π33 + κ(1− π2
22 − π2

23 − γ2
2) + γ2γ3

∣∣ < 1. (4.12)

Further characterizations relevant from an econometric perspective are the marginal
strength of instrument z(2) for y(j) and the joint strength of z(2) and z(3) for y(j), which
are established by the (partial) population coefficients of determination

R2
j;z2 = π2

j2 and R2
j;z23 = π2

j2 + π2
j3, j = 2, 3. (4.13)

In the same vain, and completing the set of nine design parameters, are two similar
characterizations of the fit of the equation of interest. Because the usual R2 gives
complications under simultaneity, we focus on its reduced form equation

y = (β2π22 + β3π32) z(2) + (β2π23 + β3π33) z(3)

+ (β2 + β3κ) η(2) + β3η
(3) + (1 + β2γ2 + β3γ3)u. (4.14)

This yields

σ2
y = (β2π22 + β3π32)2 + (β2π23 + β3π33)2

+ (β2 + β3κ)2 σ2
η(2) + β2

3σ
2
η(3) + (1 + β2γ2 + β3γ3)2 , (4.15)

and in line with (4.13) we then have

R2
1;z2 = (β2π22 + β3π32)2 /σ2

y and

R2
1;z23 = [(β2π22 + β3π32)2 + (β2π23 + β3π33)2]/σ2

y.
(4.16)
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The 9-dimensional design parameter space is given now by

{ρ2, ρ3, ρ23, R
2
2;z2, R

2
2;z23, R

2
3;z2, R

2
3;z23, R

2
1;z2, R

2
1;z23}. (4.17)

The first three of these parameters have domain (−1,+1) and the six R2 values have
to obey the restrictions

0 ≤ R2
j;z2 ≤ R2

j;z23 < 1, j = 1, 2, 3. (4.18)

However, without loss of generality we can further restrict the domain of the nine
design parameters, due to symmetry of the DGP with respect to: (a) the two re-
gressors y(2) and y(3) in (4.1), (b) the two instrumental variables z(2) and z(3), and
(c) implications which follow when all random variables are drawn from distributions
with a symmetric density function.

Due to (a) we may just consider cases where

ρ2
2 ≥ ρ2

3. (4.19)

So, if one of the two regressors will have a more severe simultaneity coefficient, it will
always be y(2). Due to (b) we will limit ourselves to cases where π2

22 ≥ π2
23. Hence, if

one of the instruments for y(2) is stronger than the other, it will always be z(2). On
top of (4.18) this implies

R2
2;z2 ≥ 0.5R2

2;z23. (4.20)

If (c) applies, we may restrict ourselves to cases where next to particular values for
(γ2, γ3), we do not also have to examine (−γ2,−γ3). This is achieved by imposing
ρ2 + ρ3 ≥ 0. In combination with (4.19) this leads to

1 > ρ2 ≥ |ρ3| ≥ 0. (4.21)

Solving the DGP parameters in terms of the design parameters can now be
achieved as follows. In a first stage we can easily solve 7 of the 9 parameters, namely

γj = ρj

πj2 = dj2
∣∣(R2

j;z2)1/2
∣∣ , dj2 = −1,+1

πj3 = dj3
∣∣(R2

j;z23 −R2
j;z2)1/2

∣∣ , dj3 = −1,+1

 j = 2, 3. (4.22)

With (4.11) these give

κ = (ρ23 − π22π32 − π23π33 − γ2γ3)/(1− π2
22 − π2

23 − γ2
2). (4.23)

Thus, for a particular case of chosen design parameter values, obeying the inequal-
ities (4.18) through (4.21), we may obtain 24 solutions from (4.22) and (4.23) for the
DGP parameters. However, some of these may be inadmissible, if they do not fulfill
the requirements (4.7) and (4.6). Moreover, we will show that not all of these 24

solutions necessarily lead to unique results on the distribution of the test statistics.

20



Finally, the remaining two parameters β2 and β3 can be solved from the pair of
nonlinear equations

(1−R2
1;z2) (β2π22 + β3π32)2 = R2

1;z2[(β2π23 + β3π33)2

+ (1 + β2γ2 + β3γ3)2 + β2
3σ

2
η(3)

+ (β2 + β3κ)2 σ2
η(2)

],

(1−R2
1;z23)[(β2π22 + β3π32)2 + (β2π23 + β3π33)2] = R2

1;z23[(1 + β2γ2 + β3γ3)2

+β2
3σ

2
η(3)

+ (β2 + β3κ)2 σ2
η(2)

].


(4.24)

Both these equations represent particular conic sections, specializing into either el-
lipses, parabolas or hyperbolas, implying that there may be zero up to eight solu-
tions. However, it is easy to see that five of the archetypal sub-set test statistics
are invariant with respect to β. Note that û = [I − X(X ′PZX)−1X ′PZ ](Xβ + u) =
[I − X(X ′PZX)−1X ′PZ ]u and ûr = [I − X(X ′PZrX)−1X ′PZr ]u are invariant with
respect to β, thus so are σ̂2 and σ̂2

r and the expressions in (2.35), and therefore
the statistic So and Ho are. And σ̈2 is invariant with respect to β too, because
y − Xβ̂ − MZYoξ̂ = û − MZYoξ̂ is, as follows from (2.22) and (2.23). Moreover,
because ξ̂ is invariant with respect to β their numerator (like their respective denom-
inators) and thus the three test statistics Wo, Do and To are.17 Therefore, R2

1;z2 and
R2

1;z23 do not really establish nuisance parameters (except perhaps for WDo), reduc-
ing the dimensionality of the nuisance parameter space to 7. Without loss of much
generality we may therefore set β2 = β3 = 0 in the simulated DGP’s.

When (c) applies, not all 16 permutations of the signs of the four reduced form
coefficients lead to unique results for the test statistics, because of the following. If
the sign of all elements of y(2) and (or) y(3) is changed, this means that in the general
formulas the matrix X is replaced by XJ, where J is a K ×K diagonal matrix with
diagonal elements +1 or −1, for which J = J ′ = J−1. It is easily verified that such a
transformation has no effect on the quadratic forms in y which constitute the six test
statistics, nor that of the projection matrices used in the three different estimators of
σ2. So, when changing the sign of all reduced form coefficients, and at the same time
the sign of all the elements of the vectors u, η(2) and η(3), the same test statistics are
found, whereas the simultaneity and multicollinearity are still the same. This reduces
the 16 possible permutations to 8, which we achieve by choosing d22 = 1. From the
remaining 8 permutations four different couples yield similar ρ23 and κ values. We
keep the four permutations which genuinely differ by choosing d23 = 1, and will give
explicit attention to the four distinct cases

(d22, d23, d32, d33) =


(1, 1, 1, 1)
(1, 1,−1, 1)
(1, 1, 1,−1)
(1, 1,−1,−1),

(4.25)

when we generate the disturbances from a symmetric distribution, which at this stage
we will.

17Wu (1974) finds this invariance result too, but his proof suggests that it is a consequence of
normality of all the disturbances, whereas it holds more generally.
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For the design parameters we shall choose various interesting combinations from

ρ2 ∈ {0, .2, .5}
ρ3 ∈ {−.5,−.2, 0, .2, .5}
ρ23 ∈ {−.5,−.2, 0, .2, .5}

R2
j;z2 ∈ {.01, .1, .2, .3}

R2
j;z23 ∈ {.02, .1, .2, .4, .5, .6}


(4.26)

in as far as they satisfy the restrictions (4.18) through (4.21), provided they obey also
the admissibility restrictions given by (4.7), (4.6) and (4.12).

5 Simulation findings on rejection probabilities

In each of the R replications in the simulation study, new independent realizations
are drawn on u, η(2) and η(3). All the five archetypal test statistics Wo, Do, To, Ho

and So will in principle be examined for five different implementations. Two of these
allow genuine sub-set tests. They test the endogeneity of either y(2) (then denoted
as W 2, D2, etc.) or of y(3) (denoted W 3, etc.) assuming the other regressor to be
endogenous. Three implementations constitute full set tests (which does not mean the
full set of regressors, but refers to the full set of regressors deemed to be endogenous).
They are denoted W 2

3 , etc. (when the endogeneity of y(2) is tested and y(3) is treated
as exogenous) or W 3

2 , etc. (when y(2) is treated as exogenous) or W 23, etc. (when
the endogeneity of both y(2) and y(3) is tested). The behavior under both the null
and the alternative hypothesis will be investigated. The full-set tests are included to
better appreciate the special nature of the more subtle sub-set tests. Since D2 = S2,
D3 = S3 and D23 = S23 because L = K the tables will just mention the D variant.

Every replication it is checked whether or not the null hypothesis is rejected by
test statistic Υ, where Υ is any of the tests indicated above. From this we obtain the
Monte Carlo estimate

−→p Υ =
1

R

∑R
r=1I

(
Υ(r) > Υc (α)

)
. (5.1)

Here I (.) is the indicator function that takes value one when its argument is true and
zero when it is not. We take the standard form of the test statistics in which Υc(α) is
the α-level critical value of the χ2 distribution (with either 1 or 2 degrees of freedom)
and in which σ2 estimates have no degrees of freedom correction.

The Monte Carlo estimator −→p Υ estimates the actual rejection probability of
asymptotic test procedure Υ. When H0 is true it estimates the actual type I error
probability (at nominal level α) and whenH0 is false 1−−→p Υ estimates the type II error
probability, whereas −→p Υ is then a (naive, when there are size distortions) estimator of
the power function of the test in one particular argument (defined by the specific case
of values of the design and matching DGP parameters). Estimator −→p Υ follows the bi-
nomial distribution and has standard errors given by SE(−→p Υ) = [−→p Υ(1−−→p Υ)/R]1/2.
For R large, a 99.75% confidence interval for the true rejection probability is

CI99.75% = [−→p Υ − 3 ∗ SE(−→p Υ), −→p Υ + 3 ∗ SE(−→p Υ)]. (5.2)
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We choose R = 10000, examine all endogeneity tests at the nominal significance
level of 5%, and report results for sample size equal to n = 40 (but also checked the
major results at n = 100). Note that the boundary values for determining whether
the actual type I error probability of these asymptotic tests differs at this particular
small sample size significantly (at the very small level of .25%) from the nominal value
5% are .043 and .057 respectively. Versions of tests that are found to have poor size
control in the initial tables will be skipped from further examination.

5.1 At least one exogenous regressor

In this subsection we examine cases where either both regressors y(2) and y(3) are
actually exogenous or just y(3) is exogenous. Hence, for particular implementations of
the sub-set and full-set tests on endogeneity the null hypothesis is true, but for some
it is false. In fact, it is always true for the sub-set tests on y(3) in the cases of this
subsection. We present a series of tables containing estimated rejection probabilities
and each separate table focusses on a particular setting regarding the strength of
the instruments. Every case consists of potentially four subcases; ”a” stands for
(d32, d33) = (1, 1) , ”b” for (d32, d33) = (−1, 1), ”c” for (d32, d33) = (1,−1) and ”d”
for (d32, d33) = (−1,−1). When both instruments have similar strength for y(2) and
also (but probably stronger or weaker) for y(3) the identification condition requires
d32 6= d33. Then only two of the four combinations (4.25) are feasible so that every
case just consists of the two subcases ”b” and ”c”.

In Table 1 we consider cases with mildly strong instruments. In the first five cases
both y(2) and y(3) are exogenous whereas the degree of multicollinearity changes. So
in the first ten rows of the table, for all five distinct implementations of the five dif-
ferent test statistics examined, the null hypothesis is true. Because y(2) and y(3) are
parametrized similarly here, the two sub-set test implementations are actually equiv-
alent. The minor differences in rejection probabilities stem from random variation,
both in the disturbances and in the single realizations of the instruments. The same
holds for the two full-set implementations with one degree of freedom. For all imple-
mentations over the first five cases (both ”b” and ”c”) Do and So show acceptable
size control, whereas Wo tends to underreject, whilst To overrejects and Ho does both.
The sub-set version of Wo gets worse under multicollinearity (irrespective of the sign
of ρ23), whereas multicollinearity increases the type I error probability of the full-set
Wo tests. Both Do and To seem unaffected by multicollinearity for these cases.

When y(2) is made mildly endogenous, as in cases 6-10, the null hypothesis is
still true for the sub-set tests W 3, etc. Their type I error probability seems virtually
unaffected by the actual values of ρ2 and ρ23. For the sub-set tests W 2, etc. the null
hypothesis is false. Due to their differences in type I error probability we cannot
conclude much about power yet, but that they have some and that it is virtually
unaffected by ρ23 is clear. The next three columns demonstrate that it is essential
that a full-set test comprises all endogenous regressors, because if it does not the
test may falsely diagnose endogeneity of an exogenous regressor (but by a reasonably
low probability when the regressors are hardly correlated). The next implementation
reported, in which the exogeneity of y(3) is exploited, demonstrate that in this case

23



T
ab

le
1:

O
n

e
en

d
o
g
en

o
u

s
re

g
re

ss
o
r

a
n

d
m

il
d

ly
st

ro
n

g
in

st
ru

m
en

ts
:

R
2 2
;z

2
=

0.
20

,
R

2 2
;z

2
3

=
0.

40
,
R

2 3
;z

2
=

0.
20

,
R

2 3
;z

2
3

=
0.

40

C
as

e
ρ

2
ρ

3
ρ

2
3

W
3

D
3

T
3

H
3

W
2

D
2

T
2

H
2

W
3 2

D
3 2

T
3 2

H
3 2

S
3 2

W
2 3

D
2 3

T
2 3

H
2 3

S
2 3

W
2
3

D
2
3

T
2
3

H
2
3
c

1b
0.

0
0.

0
0.

0
0.

03
2

0.
05

4
0.

06
5

0.
02

2
0.

03
3

0.
05

5
0.

06
4

0.
02

3
0.

03
7

0.
04

6
0.

07
0

0.
03

3
0.

04
9

0.
03

8
0.

04
7

0.
06

9
0.

03
4

0.
04

9
0.

02
1

0.
04

2
0.

08
4

0.
01

1
1c

0.
0

0.
0

0.
0

0.
03

2
0.

05
3

0.
06

2
0.

02
3

0.
03

2
0.

05
1

0.
06

2
0.

02
3

0.
04

0
0.

04
7

0.
06

8
0.

03
5

0.
04

8
0.

03
8

0.
04

8
0.

06
9

0.
03

4
0.

04
9

0.
02

1
0.

04
1

0.
08

5
0.

01
1

2b
0.

0
0.

0
-0

.2
0.

02
9

0.
05

4
0.

06
4

0.
01

9
0.

03
0

0.
05

3
0.

06
3

0.
02

2
0.

04
3

0.
04

8
0.

07
4

0.
03

9
0.

05
0

0.
04

3
0.

04
8

0.
07

0
0.

04
0

0.
04

9
0.

02
2

0.
04

2
0.

08
3

0.
01

3
2c

0.
0

0.
0

-0
.2

0.
03

0
0.

05
2

0.
06

1
0.

02
0

0.
03

0
0.

05
2

0.
06

1
0.

02
1

0.
04

2
0.

04
8

0.
07

0
0.

03
8

0.
04

9
0.

04
3

0.
04

7
0.

06
9

0.
04

0
0.

04
9

0.
02

2
0.

04
2

0.
08

6
0.

01
2

3b
0.

0
0.

0
0.

2
0.

03
1

0.
05

3
0.

06
4

0.
02

0
0.

03
2

0.
05

4
0.

06
3

0.
02

2
0.

04
1

0.
04

7
0.

06
9

0.
03

7
0.

04
8

0.
04

2
0.

04
8

0.
07

0
0.

03
9

0.
04

9
0.

02
2

0.
04

2
0.

08
5

0.
01

2
3c

0.
0

0.
0

0.
2

0.
03

0
0.

05
2

0.
06

3
0.

02
2

0.
02

9
0.

05
0

0.
06

2
0.

02
1

0.
04

0
0.

04
5

0.
06

7
0.

03
7

0.
04

6
0.

04
2

0.
04

8
0.

06
9

0.
04

0
0.

04
9

0.
02

2
0.

04
3

0.
08

4
0.

01
2

4b
0.

0
0.

0
-0

.5
0.

02
1

0.
05

1
0.

06
0

0.
01

3
0.

02
4

0.
05

1
0.

06
2

0.
01

6
0.

05
5

0.
04

8
0.

07
2

0.
09

3
0.

04
8

0.
05

3
0.

04
8

0.
07

0
0.

09
2

0.
04

7
0.

02
6

0.
04

3
0.

08
2

0.
03

0
4c

0.
0

0.
0

-0
.5

0.
02

5
0.

05
6

0.
06

7
0.

01
5

0.
02

5
0.

05
7

0.
06

3
0.

01
5

0.
05

4
0.

04
8

0.
07

0
0.

09
1

0.
04

7
0.

05
3

0.
04

6
0.

07
1

0.
09

2
0.

04
6

0.
02

5
0.

04
2

0.
08

4
0.

02
9

5b
0.

0
0.

0
0.

5
0.

02
5

0.
05

7
0.

06
9

0.
01

7
0.

02
4

0.
05

5
0.

06
7

0.
01

6
0.

05
4

0.
04

8
0.

07
1

0.
09

4
0.

04
7

0.
05

3
0.

04
8

0.
07

0
0.

09
0

0.
04

7
0.

02
6

0.
04

5
0.

08
7

0.
02

7
5c

0.
0

0.
0

0.
5

0.
02

3
0.

05
3

0.
06

2
0.

01
7

0.
02

2
0.

05
2

0.
06

2
0.

01
5

0.
05

2
0.

04
7

0.
06

8
0.

09
2

0.
04

6
0.

05
3

0.
04

7
0.

07
1

0.
09

3
0.

04
6

0.
02

5
0.

04
2

0.
08

4
0.

02
8

6b
0.

2
0.

0
0.

0
0.

03
1

0.
05

6
0.

06
5

0.
02

0
0.

12
4

0.
17

9
0.

20
1

0.
09

6
0.

03
8

0.
04

8
0.

07
1

0.
03

2
0.

05
1

0.
13

6
0.

15
9

0.
20

6
0.

12
4

0.
16

3
0.

06
3

0.
11

8
0.

19
5

0.
03

7
6c

0.
2

0.
0

0.
0

0.
03

1
0.

05
4

0.
06

1
0.

02
1

0.
12

5
0.

17
5

0.
19

7
0.

09
7

0.
03

7
0.

04
7

0.
06

9
0.

03
3

0.
05

0
0.

13
9

0.
16

2
0.

20
7

0.
12

6
0.

16
5

0.
06

4
0.

11
9

0.
19

3
0.

03
8

7b
0.

2
0.

0
-0

.2
0.

02
8

0.
05

5
0.

06
2

0.
01

9
0.

11
2

0.
16

5
0.

19
6

0.
09

0
0.

07
3

0.
08

3
0.

11
3

0.
06

9
0.

08
5

0.
17

2
0.

18
9

0.
24

3
0.

16
4

0.
19

3
0.

08
5

0.
14

1
0.

22
5

0.
05

3
7c

0.
2

0.
0

-0
.2

0.
03

0
0.

05
3

0.
06

1
0.

02
0

0.
11

9
0.

17
3

0.
19

7
0.

09
3

0.
07

0
0.

07
8

0.
10

9
0.

06
4

0.
08

0
0.

17
3

0.
19

0
0.

24
2

0.
16

2
0.

19
4

0.
08

3
0.

14
1

0.
22

4
0.

05
1

8b
0.

2
0.

0
0.

2
0.

03
1

0.
05

4
0.

06
3

0.
02

1
0.

11
8

0.
17

2
0.

20
0

0.
09

3
0.

07
2

0.
08

0
0.

11
3

0.
06

6
0.

08
3

0.
17

4
0.

19
3

0.
24

4
0.

16
4

0.
19

7
0.

08
5

0.
14

5
0.

22
8

0.
05

2
8c

0.
2

0.
0

0.
2

0.
03

0
0.

05
3

0.
06

2
0.

02
0

0.
11

8
0.

16
9

0.
19

6
0.

09
5

0.
07

2
0.

08
1

0.
11

0
0.

06
7

0.
08

3
0.

17
4

0.
19

2
0.

24
2

0.
16

6
0.

19
4

0.
08

9
0.

14
2

0.
22

5
0.

05
6

9b
0.

2
0.

0
-0

.5
0.

02
2

0.
05

2
0.

06
2

0.
01

6
0.

09
2

0.
14

4
0.

18
4

0.
07

6
0.

70
0

0.
68

2
0.

74
1

0.
77

8
0.

67
2

0.
75

7
0.

73
9

0.
79

1
0.

83
1

0.
73

4
0.

60
0

0.
63

7
0.

74
2

0.
55

8
9c

0.
2

0.
0

-0
.5

0.
02

6
0.

05
7

0.
06

6
0.

01
9

0.
09

6
0.

15
1

0.
19

0
0.

07
7

0.
70

2
0.

68
5

0.
74

1
0.

78
3

0.
67

8
0.

75
9

0.
74

5
0.

79
5

0.
83

3
0.

74
0

0.
60

9
0.

64
3

0.
75

0
0.

56
1

10
b

0.
2

0.
0

0.
5

0.
02

6
0.

05
8

0.
06

6
0.

01
9

0.
09

6
0.

15
0

0.
18

9
0.

07
8

0.
70

4
0.

68
8

0.
74

3
0.

78
2

0.
67

9
0.

76
2

0.
74

4
0.

79
8

0.
83

2
0.

73
8

0.
61

3
0.

65
0

0.
74

9
0.

56
8

10
c

0.
2

0.
0

0.
5

0.
02

4
0.

05
3

0.
06

2
0.

01
7

0.
09

5
0.

14
6

0.
18

5
0.

07
7

0.
70

5
0.

68
6

0.
74

5
0.

78
5

0.
67

8
0.

76
5

0.
74

7
0.

80
1

0.
83

3
0.

74
3

0.
61

4
0.

64
7

0.
74

7
0.

56
8

11
b

0.
5

0.
0

0.
0

0.
02

7
0.

06
2

0.
06

1
0.

01
5

0.
81

6
0.

86
7

0.
88

6
0.

76
8

0.
04

1
0.

05
1

0.
07

5
0.

03
6

0.
06

9
0.

82
2

0.
84

4
0.

88
2

0.
80

6
0.

84
9

0.
64

2
0.

78
8

0.
86

3
0.

50
0

11
c

0.
5

0.
0

0.
0

0.
02

8
0.

05
9

0.
05

8
0.

01
4

0.
81

6
0.

86
8

0.
88

7
0.

77
0

0.
04

1
0.

05
0

0.
07

2
0.

03
6

0.
06

6
0.

82
9

0.
85

0
0.

88
7

0.
81

3
0.

85
4

0.
64

2
0.

78
5

0.
86

1
0.

49
9

12
b

0.
5

0.
0

-0
.2

0.
02

6
0.

06
0

0.
05

7
0.

01
7

0.
76

8
0.

81
4

0.
85

3
0.

73
7

0.
32

2
0.

34
5

0.
41

1
0.

30
4

0.
37

3
0.

92
6

0.
93

1
0.

95
0

0.
92

1
0.

93
2

0.
81

2
0.

89
5

0.
93

9
0.

70
6

12
c

0.
5

0.
0

-0
.2

0.
02

8
0.

06
0

0.
05

6
0.

01
7

0.
76

6
0.

81
4

0.
85

7
0.

73
5

0.
32

0
0.

34
1

0.
40

6
0.

30
7

0.
36

7
0.

92
7

0.
93

1
0.

95
0

0.
92

3
0.

93
2

0.
81

9
0.

89
3

0.
94

0
0.

70
4

13
b

0.
5

0.
0

0.
2

0.
02

9
0.

06
3

0.
06

0
0.

02
0

0.
76

7
0.

81
8

0.
86

0
0.

73
6

0.
32

7
0.

34
9

0.
41

2
0.

31
2

0.
37

3
0.

92
8

0.
93

2
0.

95
0

0.
92

5
0.

93
3

0.
82

1
0.

89
6

0.
93

9
0.

70
8

13
c

0.
5

0.
0

0.
2

0.
02

6
0.

05
8

0.
05

9
0.

01
7

0.
77

3
0.

81
6

0.
85

8
0.

74
2

0.
32

9
0.

35
0

0.
41

8
0.

31
3

0.
37

9
0.

92
8

0.
93

2
0.

95
1

0.
92

4
0.

93
3

0.
81

7
0.

89
5

0.
94

1
0.

70
6

24



full-set tests do a much better job in detecting the endogenous nature of y(2) than
the sub-set tests, provided there is (serious) multicollinearity. Here the full-set tests
have the advantage of using an extra valid instrument. The effects of multicollinear-
ity can be explained as follows. Using the notation of the more general setup and
auxiliary regression (2.19), the sub-set (full-set) tests test here the significance of the
regressors PZYo (PZ∗Yo) in a regression already containing PZrX (PZ∗rX = X), where
Z∗ = (Z, Ye) and Z∗r = (Zr, Ye). Regarding the sub-set test it is obvious that, because
the space spanned by PZrX = (PZrYe, Yo, Z1) does not change when Ye and Yo are
more or less correlated, the significance test of PZYo is not affected by ρ23. However,
PZ∗Yo is affected (positively in a matrix sense) when Yo and Ye are more (positively
or negatively) correlated, which explains the increasing probability of detecting endo-
geneity by the present full-set tests. Finally the two degrees of freedom full-set tests
demonstrate power, also when the null hypothesis tested is only partly false. This
occurs especially under multicollinearity, which implies when not employing sub-set
tests one may unnecessarily declare an exogenous regressor endogenous. Although
one would expect lower rejection probability here than for the full-set test which cor-
rectly exploits orthogonality of y(3), their comparison is hampered again due to the
differences between type I error probabilities. Note though that the first five cases
show larger type I error probabilities for T 23 than for T 2

3 , whereas cases 6-10 show
fewer correct rejections, which fully conforms to our expectations.

For a higher degree of simultaneity in y(2) (cases 11-13) we find for the sub-set tests
that W 3 still underrejects substantially but an effect of multicollinearity is no longer
established, which is probably because DGP’s with a similar ρ2 and ρ3 but higher
ρ23 are not feasible. Here D3 does no longer outperform T 3. For the other tests the
rejection probabilities that should increase with |ρ2| do indeed, and we find that the
probability of misguidance by the full-set tests exploiting an invalid instrument is
even more troublesome now.

These results (which also hold for n = 100) already indicate that sub-set tests are
indispensable in a comprehensive sequential strategy to classify regressors as either
endogenous or exogenous. Because, after a two degrees of freedom full-set test may
have indicated that at least one of the two regressors is endogenous, neither of the one
degree of freedom full-set tests will be capable of indicating which one is endogenous
if there is one endogenous and one exogenous regressor, unless these two regressors
are mutually orthogonal. However, the two sub-set tests demonstrate that they can
be used to diagnose the endogeneity/exogeneity of the regressors, especially when
the endogeneity is serious, irrespective of their degree of multicollinearity. We shall
now examine how these capabilities are affected by the strength of the instruments.
Because of the poor performance of test Ho we skip it.

The results in Table 2 stem from similar DGP’s which differ from the previous
ones only in the increased strength of both the instruments, which forces further limi-
tations on multicollinearity, due to (4.6). Note that the size properties have not really
improved. Due to the limitations on varying multicollinearity its effects can hardly be
assessed from this table. The rejection probabilities of false null hypotheses are larger
when the maintained hypothesis is valid, whereas the tests which impose an invalid
orthogonality condition become even more confusing when the genuine instruments
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are stronger. Multicollinearity still has an increasing effect on the rejection probabil-
ity of all the full-set tests, which is very uncomfortable for the implementations which
impose a false exogeneity assumption.

Table 2: One endogenous regressor and stronger instruments:

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

14b 0.0 0.0 0.0 0.049 0.059 0.070 0.046 0.055 0.066 0.050 0.049 0.071 0.049 0.048 0.046 0.069 0.046 0.040 0.043 0.083
14c 0.0 0.0 0.0 0.045 0.053 0.066 0.046 0.055 0.066 0.050 0.047 0.067 0.046 0.049 0.047 0.069 0.046 0.039 0.042 0.085
15b 0.0 0.0 -0.2 0.044 0.055 0.067 0.045 0.056 0.067 0.055 0.050 0.074 0.049 0.051 0.047 0.070 0.046 0.040 0.044 0.084
15c 0.0 0.0 -0.2 0.043 0.054 0.068 0.042 0.054 0.067 0.052 0.048 0.068 0.047 0.053 0.048 0.070 0.047 0.040 0.043 0.085
16b 0.0 0.0 0.2 0.044 0.058 0.068 0.044 0.055 0.069 0.052 0.048 0.072 0.047 0.054 0.051 0.070 0.049 0.040 0.043 0.086
16c 0.0 0.0 0.2 0.042 0.053 0.066 0.043 0.053 0.066 0.049 0.046 0.067 0.045 0.054 0.050 0.072 0.049 0.040 0.043 0.084

17b 0.2 0.0 0.0 0.048 0.059 0.070 0.328 0.357 0.392 0.046 0.045 0.066 0.043 0.329 0.323 0.385 0.322 0.224 0.244 0.351
17c 0.2 0.0 0.0 0.045 0.054 0.066 0.329 0.357 0.392 0.044 0.043 0.065 0.041 0.327 0.323 0.388 0.322 0.222 0.238 0.348
18b 0.2 0.0 -0.2 0.043 0.056 0.066 0.305 0.330 0.373 0.212 0.202 0.252 0.195 0.476 0.461 0.529 0.458 0.356 0.365 0.482
18c 0.2 0.0 -0.2 0.042 0.056 0.068 0.302 0.329 0.375 0.210 0.199 0.254 0.192 0.478 0.464 0.534 0.461 0.357 0.363 0.482
19b 0.2 0.0 0.2 0.045 0.059 0.067 0.305 0.332 0.376 0.218 0.208 0.262 0.202 0.487 0.473 0.539 0.468 0.357 0.365 0.490
19c 0.2 0.0 0.2 0.043 0.054 0.067 0.306 0.331 0.373 0.216 0.204 0.260 0.198 0.486 0.471 0.540 0.467 0.357 0.364 0.489

20b 0.5 0.0 0.0 0.043 0.063 0.067 0.999 0.999 1.000 0.023 0.022 0.035 0.020 1.000 0.999 1.000 0.999 0.998 0.998 0.999
20c 0.5 0.0 0.0 0.041 0.060 0.063 0.999 1.000 1.000 0.024 0.023 0.037 0.022 0.999 0.999 1.000 0.999 0.999 0.998 1.000
21b 0.5 0.0 -0.2 0.040 0.059 0.063 0.993 0.991 0.996 0.980 0.977 0.987 0.957 1.000 1.000 1.000 1.000 1.000 1.000 1.000
21c 0.5 0.0 -0.2 0.043 0.062 0.065 0.993 0.991 0.996 0.981 0.978 0.987 0.955 1.000 1.000 1.000 1.000 1.000 1.000 1.000
22b 0.5 0.0 0.2 0.045 0.063 0.067 0.993 0.991 0.996 0.979 0.976 0.987 0.954 1.000 1.000 1.000 1.000 1.000 1.000 1.000
22c 0.5 0.0 0.2 0.040 0.058 0.063 0.993 0.992 0.995 0.980 0.977 0.987 0.955 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Staiger and Stock (1997) found that full-set tests have correct asymptotic size,
although being inconsistent under weak instrument asymptotics. The following three
tables illustrate cases in which the instruments are weak for one of the two potentially
endogenous variables or for both.

In the DGP’s used to generate Table 3, the instruments are weak for y(2) but
strong for y(3). So now the two implementations of the sub-set tests examine different
situations (even when ρ2 = ρ3 = 0) and so do the two one degree of freedom full-set
test implementations. Especially the sub-set Wo tests and the two degrees of freedom
W 23 test are seriously undersized. When the endogeneity of the weakly instrumented
regressor is tested by W 2

3 the type I error probability is seriously affected by (lack of)
multicollinearity. All full-set To tests are oversized. Only the Do tests would require
just a (mostly) moderate size correction. When ρ23 = 0 test S2

3 is oversized. The
probability that sub-set test D2(= S2) will detect the endogeneity is small, which was
already predicted immediately below (2.18). D3

2 and S3
2 will again provide confusing

evidence, unless the regressors are orthogonal. Full set tests D2
3, S

2
3 and D23(= S23)

have power only under multicollinearity. The latter result can be understood upon
specializing (2.18) for this case, where the contributions with c1 and c3 disappear
because Ke = 0 and L1 = 0. Using ΣZ′Z = I and ΣY ′oYo = I we have to find a solution
c2 satisfying c2 = σ2γo 6= 0 and Πoc2 = 0. Since γo = (ρ2 0)′ and the first column
of Πo vanishes asymptotically there is such a solution indeed, but not if ΣY ′oYo were
nondiagonal.

The situation is reversed in Table 4, where the instruments are weak for y(3) and
strong for the possibly endogenous y(2). Cases 23 and 24 are mirrored in cases 29
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Table 3: One endogenous regressor and weak instruments for y(2):

R2
2;z2 = 0.01, R2

2;z23 = 0.02, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

23b 0.0 0.0 0.0 0.012 0.034 0.022 0.001 0.059 0.055 0.050 0.048 0.073 0.047 0.002 0.044 0.070 0.073 0.005 0.044 0.086
23c 0.0 0.0 0.0 0.012 0.032 0.020 0.001 0.058 0.055 0.048 0.047 0.068 0.046 0.002 0.049 0.073 0.077 0.004 0.040 0.086
24b 0.0 0.0 0.5 0.002 0.058 0.015 0.001 0.059 0.061 0.056 0.049 0.071 0.048 0.045 0.046 0.071 0.047 0.006 0.045 0.085
24c 0.0 0.0 0.5 0.002 0.059 0.014 0.001 0.058 0.062 0.052 0.045 0.069 0.043 0.045 0.046 0.068 0.046 0.006 0.042 0.087

25b 0.2 0.0 0.0 0.012 0.033 0.022 0.001 0.060 0.056 0.048 0.047 0.072 0.046 0.002 0.048 0.069 0.075 0.005 0.047 0.088
25c 0.2 0.0 0.0 0.012 0.034 0.021 0.001 0.061 0.056 0.048 0.047 0.071 0.046 0.003 0.052 0.074 0.081 0.004 0.044 0.088
26b 0.2 0.0 0.5 0.004 0.059 0.029 0.001 0.063 0.064 0.337 0.317 0.381 0.312 0.309 0.315 0.382 0.317 0.090 0.244 0.350
26c 0.2 0.0 0.5 0.003 0.060 0.029 0.001 0.063 0.065 0.338 0.317 0.381 0.312 0.309 0.317 0.378 0.319 0.089 0.241 0.348

27b 0.5 0.0 0.0 0.012 0.039 0.022 0.001 0.083 0.079 0.050 0.047 0.073 0.047 0.002 0.061 0.085 0.094 0.005 0.059 0.112
27c 0.5 0.0 0.0 0.011 0.036 0.020 0.002 0.085 0.079 0.047 0.046 0.069 0.046 0.003 0.064 0.092 0.098 0.005 0.063 0.109
28b 0.5 0.0 0.5 0.026 0.066 0.124 0.001 0.088 0.103 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.699 1.000 1.000
28c 0.5 0.0 0.5 0.026 0.067 0.124 0.002 0.090 0.102 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.702 1.000 1.000

Table 4: One endogenous regressor and weak instruments for y(3):

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

29b 0.0 0.0 0.0 0.000 0.054 0.050 0.013 0.033 0.021 0.002 0.047 0.068 0.073 0.048 0.045 0.070 0.045 0.005 0.044 0.082
29c 0.0 0.0 0.0 0.001 0.053 0.051 0.012 0.030 0.021 0.002 0.047 0.070 0.072 0.047 0.045 0.070 0.045 0.006 0.043 0.083
30b 0.0 0.0 0.5 0.001 0.056 0.058 0.001 0.053 0.012 0.046 0.048 0.070 0.048 0.056 0.048 0.071 0.047 0.007 0.043 0.085
30c 0.0 0.0 0.5 0.000 0.056 0.058 0.002 0.054 0.014 0.047 0.049 0.071 0.050 0.056 0.048 0.071 0.047 0.006 0.043 0.085

31b 0.2 0.0 0.0 0.000 0.054 0.055 0.098 0.135 0.139 0.005 0.156 0.196 0.248 0.327 0.322 0.386 0.321 0.070 0.238 0.347
31c 0.2 0.0 0.0 0.001 0.054 0.054 0.104 0.136 0.147 0.006 0.155 0.198 0.249 0.327 0.323 0.388 0.322 0.069 0.237 0.347
32b 0.2 0.0 0.5 0.001 0.056 0.067 0.017 0.072 0.093 0.863 0.865 0.898 0.866 0.887 0.876 0.906 0.872 0.439 0.807 0.880
32c 0.2 0.0 0.5 0.001 0.057 0.061 0.018 0.072 0.091 0.860 0.863 0.897 0.863 0.888 0.875 0.906 0.871 0.435 0.807 0.880

33b 0.5 0.0 0.0 0.001 0.060 0.071 0.566 0.453 0.639 0.065 0.607 0.639 0.818 0.999 0.999 1.000 0.999 0.663 0.998 0.999
33c 0.5 0.0 0.0 0.001 0.059 0.071 0.578 0.459 0.647 0.067 0.602 0.634 0.816 0.999 0.999 1.000 0.999 0.674 0.998 1.000
34b 0.5 0.0 0.2 0.001 0.061 0.076 0.423 0.297 0.546 0.432 0.865 0.881 0.949 1.000 1.000 1.000 1.000 0.709 1.000 1.000
34c 0.5 0.0 0.2 0.001 0.061 0.074 0.427 0.308 0.540 0.432 0.867 0.880 0.945 1.000 1.000 1.000 1.000 0.704 1.000 1.000

and 30. The Wo tests are seriously undersized, except W 2
3 (building on exogeneity

of y(3), it is not affected by its weak external instruments) and W 3
2 (provided the

multicollinearity is substantial). The full-set To tests are again oversized. Some Do

(and more So) implementations show some size distortions. Because of the findings
below (2.18) it is no surprise that the sub-set tests on y(2) exhibit deminishing power
for more severe multicollinearity. After size correction it seems likely that W 2 or
especially T 2 would do better than D2(= S2). All the tests that exploit the exogeneity
of y(3) show power for detecting endogeneity of y(2) when the instruments are weak
for exogenous regressor y(3), and their power increases with multicollinearity and of
course with ρ2.

Next we construct DGP’s in which the instruments are weak for both regressors.
Given our predictions below (2.18) and because we found mixed results when the
instruments are weak for one of the two regressors, not much should be expected
when both are affected. The results in Table 5 do indeed illustrate this. The Wo tests
underreject severely, To gives a mixed picture, but Do would require only a minor (and
So a more substantial) size correction, although they will yield very modest power.

In addition to cases in which the two instruments have similar strength for y(2)
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Table 5: One endogenous regressor and weak instruments:

R2
2;z2 = 0.01, R2

2;z23 = 0.02, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

35b 0.0 0.0 0.0 0.000 0.032 0.016 0.001 0.031 0.017 0.001 0.051 0.074 0.077 0.002 0.048 0.070 0.076 0.000 0.042 0.086
35c 0.0 0.0 0.0 0.000 0.030 0.018 0.000 0.034 0.016 0.002 0.048 0.070 0.076 0.002 0.049 0.072 0.078 0.000 0.041 0.086
36b 0.0 0.0 0.5 0.000 0.036 0.018 0.000 0.036 0.020 0.002 0.048 0.069 0.071 0.002 0.044 0.067 0.071 0.000 0.043 0.083
36c 0.0 0.0 0.5 0.000 0.034 0.016 0.000 0.037 0.019 0.003 0.047 0.067 0.069 0.003 0.049 0.072 0.074 0.000 0.041 0.087

37b 0.2 0.0 0.0 0.000 0.033 0.018 0.000 0.032 0.018 0.001 0.050 0.073 0.080 0.003 0.050 0.072 0.078 0.000 0.046 0.088
37c 0.2 0.0 0.0 0.000 0.033 0.016 0.000 0.035 0.018 0.002 0.048 0.070 0.076 0.003 0.051 0.075 0.078 0.000 0.045 0.088
38b 0.2 0.0 0.5 0.000 0.038 0.021 0.000 0.039 0.020 0.002 0.051 0.076 0.075 0.003 0.049 0.072 0.074 0.000 0.047 0.092
38c 0.2 0.0 0.5 0.000 0.033 0.018 0.000 0.039 0.022 0.002 0.051 0.073 0.077 0.002 0.052 0.078 0.080 0.000 0.048 0.092

39b 0.5 0.0 0.0 0.000 0.037 0.019 0.000 0.040 0.026 0.002 0.057 0.086 0.092 0.002 0.063 0.087 0.095 0.000 0.058 0.107
39c 0.5 0.0 0.0 0.000 0.036 0.020 0.000 0.041 0.022 0.002 0.056 0.081 0.090 0.003 0.064 0.090 0.097 0.000 0.062 0.108
40b 0.5 0.0 0.5 0.000 0.048 0.025 0.000 0.051 0.030 0.005 0.083 0.116 0.123 0.007 0.089 0.122 0.130 0.000 0.087 0.148
40c 0.5 0.0 0.5 0.000 0.049 0.025 0.001 0.057 0.030 0.004 0.081 0.112 0.118 0.006 0.092 0.125 0.132 0.000 0.089 0.151

and y(3), we present a couple of cases in which this differs. Note that the inequality
(4.7) is now satisfied by all four combinations in (4.25). The reason that not every
case in Table 6 consists of four subcases is that not every subcase satisfies the second
part of (4.6). The results for the sub-set tests can differ greatly between the four
subcases. Subcases ”a” and ”d” show lower rejection probabilities for Wo and To,
whereas Do and So seem hardly affected under the null hypothesis. This suggests
that the estimate β̂r (and hence σ̂2

r) is probably less affected by (d23, d33) in these
subcases than σ̂2 and σ̈2.

The sub-set tests on y(2) and y(3) behave similarly although the (joint) instrument
strength is a little higher for the former. Whereas the results between the subcases
are quite different for the sub-set tests and the two degrees of freedom full-set tests,
the one degree of freedom full-set test seem less dependent on the choice of (d23, d33).

When y(2) is endogenous D2 has substantially less power in subcases ”a” and ”d”
even though under the null hypothesis it rejects less often in subcases ”c” and ”d”.
For the full-set test things are different. These reject far more often in subcases ”a”
and ”d” when there is little or no multicollinearity. However, when multicollinearity
is more pronounced the tests reject less often in subcases ”a” and ”d” than in ”b” and
”c”. From these results we conclude that the relevant nuisance parameters for these
asymptotic tests are not just simultaneity, multicollinearity and instrument strength,
but also the actual signs of the reduced form coefficients.

5.2 Both regressors endogenous

The rejection probabilities of the sub-set tests estimated under the alternative hypoth-
esis in the previous subsection are only of secondary interest, because the sub-set that
was not tested and allowed to be endogenous was actually exogenous. In such cases
application of the one-degree of freedom full-set test is more appropriate. Now the
not tested sub-set which is treated as endogenous will actually be endogenous, so
we will get crucial information on the practical usefulness of the sub-set tests, and
further evidence on the possible misguidance by the here inappropriate one degree of
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Table 6: One endogenous regressor and asymmetric instrument strength:

R2
2;z2 = 0.30, R2

2;z23 = 0.50, R2
3;z2 = 0.10, R2

3;z23 = 0.40

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

41a 0.0 0.0 0.0 0.002 0.054 0.030 0.001 0.054 0.026 0.053 0.048 0.070 0.047 0.056 0.049 0.070 0.047 0.007 0.042 0.085
41b 0.0 0.0 0.0 0.032 0.054 0.066 0.038 0.054 0.063 0.041 0.050 0.073 0.051 0.044 0.048 0.070 0.048 0.024 0.042 0.083
41c 0.0 0.0 0.0 0.033 0.052 0.064 0.035 0.050 0.063 0.038 0.046 0.066 0.047 0.046 0.048 0.069 0.048 0.026 0.044 0.083
41d 0.0 0.0 0.0 0.001 0.056 0.035 0.002 0.056 0.027 0.054 0.049 0.072 0.048 0.056 0.050 0.071 0.048 0.007 0.041 0.084
42b 0.0 0.0 -0.2 0.026 0.052 0.063 0.030 0.052 0.060 0.047 0.048 0.072 0.048 0.050 0.048 0.072 0.048 0.026 0.042 0.082
42c 0.0 0.0 -0.2 0.034 0.053 0.064 0.040 0.051 0.063 0.039 0.046 0.067 0.048 0.045 0.047 0.069 0.047 0.027 0.042 0.085
42d 0.0 0.0 -0.2 0.001 0.056 0.024 0.002 0.054 0.018 0.045 0.049 0.073 0.049 0.048 0.050 0.072 0.050 0.007 0.043 0.085
43a 0.0 0.0 0.2 0.002 0.052 0.023 0.002 0.051 0.017 0.043 0.049 0.070 0.049 0.048 0.048 0.072 0.048 0.007 0.042 0.085
43b 0.0 0.0 0.2 0.034 0.055 0.065 0.039 0.053 0.064 0.038 0.047 0.070 0.049 0.044 0.046 0.070 0.047 0.027 0.042 0.085
43c 0.0 0.0 0.2 0.029 0.052 0.061 0.027 0.050 0.059 0.046 0.046 0.068 0.047 0.051 0.049 0.071 0.049 0.026 0.043 0.084
44c 0.0 0.0 -0.5 0.032 0.058 0.068 0.032 0.055 0.064 0.052 0.047 0.069 0.046 0.054 0.049 0.069 0.048 0.029 0.041 0.084
44d 0.0 0.0 -0.5 0.004 0.051 0.025 0.008 0.047 0.021 0.021 0.048 0.069 0.054 0.034 0.047 0.068 0.050 0.008 0.043 0.084
45a 0.0 0.0 0.5 0.003 0.051 0.024 0.007 0.046 0.022 0.021 0.048 0.070 0.054 0.033 0.046 0.068 0.049 0.007 0.042 0.082
45b 0.0 0.0 0.5 0.033 0.060 0.071 0.034 0.056 0.067 0.053 0.049 0.070 0.048 0.052 0.047 0.070 0.046 0.030 0.044 0.087

46a 0.2 0.0 0.0 0.002 0.055 0.044 0.006 0.067 0.070 0.697 0.679 0.737 0.675 0.711 0.691 0.750 0.685 0.300 0.586 0.696
46b 0.2 0.0 0.0 0.032 0.055 0.066 0.186 0.230 0.262 0.054 0.062 0.088 0.066 0.222 0.232 0.287 0.233 0.120 0.169 0.260
46c 0.2 0.0 0.0 0.032 0.053 0.064 0.190 0.234 0.266 0.052 0.061 0.088 0.064 0.222 0.231 0.290 0.233 0.123 0.170 0.262
46d 0.2 0.0 0.0 0.002 0.056 0.044 0.006 0.069 0.072 0.708 0.693 0.748 0.686 0.719 0.700 0.757 0.694 0.310 0.595 0.706
47b 0.2 0.0 -0.2 0.027 0.053 0.062 0.154 0.198 0.238 0.185 0.191 0.239 0.191 0.347 0.343 0.409 0.340 0.210 0.259 0.365
47c 0.2 0.0 -0.2 0.033 0.054 0.064 0.201 0.242 0.273 0.050 0.058 0.085 0.063 0.230 0.239 0.294 0.240 0.128 0.177 0.266
47d 0.2 0.0 -0.2 0.003 0.056 0.031 0.010 0.075 0.054 0.245 0.262 0.326 0.267 0.289 0.290 0.350 0.290 0.082 0.214 0.314
48a 0.2 0.0 0.2 0.003 0.053 0.029 0.012 0.073 0.054 0.249 0.264 0.327 0.267 0.282 0.286 0.348 0.286 0.081 0.216 0.312
48b 0.2 0.0 0.2 0.033 0.056 0.066 0.203 0.243 0.273 0.051 0.061 0.089 0.065 0.230 0.238 0.298 0.240 0.126 0.179 0.273
48c 0.2 0.0 0.2 0.028 0.053 0.060 0.158 0.200 0.241 0.186 0.188 0.241 0.190 0.347 0.343 0.411 0.340 0.210 0.258 0.361
49c 0.2 0.0 -0.5 0.032 0.058 0.067 0.171 0.203 0.252 0.616 0.599 0.663 0.591 0.725 0.709 0.761 0.705 0.587 0.604 0.715
49d 0.2 0.0 -0.5 0.007 0.052 0.030 0.033 0.102 0.077 0.054 0.112 0.153 0.130 0.136 0.169 0.219 0.176 0.041 0.130 0.207
50a 0.2 0.0 0.5 0.006 0.054 0.029 0.033 0.101 0.072 0.055 0.111 0.152 0.127 0.128 0.166 0.215 0.173 0.038 0.123 0.202
50b 0.2 0.0 0.5 0.032 0.060 0.070 0.168 0.203 0.253 0.611 0.597 0.665 0.590 0.725 0.709 0.767 0.705 0.590 0.607 0.716

51b 0.5 0.0 0.0 0.029 0.061 0.064 0.947 0.952 0.967 0.148 0.169 0.218 0.206 0.975 0.975 0.984 0.975 0.937 0.957 0.976
51c 0.5 0.0 0.0 0.028 0.059 0.060 0.947 0.951 0.967 0.147 0.167 0.213 0.203 0.976 0.976 0.984 0.975 0.937 0.957 0.979
52b 0.5 0.0 -0.2 0.027 0.059 0.060 0.842 0.836 0.903 0.933 0.933 0.954 0.932 1.000 1.000 1.000 1.000 0.996 1.000 1.000
52c 0.5 0.0 -0.2 0.028 0.059 0.060 0.960 0.963 0.973 0.144 0.164 0.207 0.201 0.984 0.984 0.990 0.985 0.958 0.969 0.985
52d 0.5 0.0 -0.2 0.014 0.061 0.086 0.101 0.193 0.326 0.990 0.991 0.995 0.992 0.998 0.998 0.999 0.998 0.720 0.996 0.998
53a 0.5 0.0 0.2 0.012 0.059 0.086 0.097 0.189 0.317 0.990 0.992 0.995 0.992 0.997 0.997 0.998 0.996 0.699 0.994 0.997
53b 0.5 0.0 0.2 0.030 0.061 0.063 0.959 0.962 0.972 0.149 0.169 0.213 0.205 0.984 0.983 0.988 0.983 0.955 0.968 0.985
53c 0.5 0.0 0.2 0.027 0.057 0.060 0.846 0.842 0.910 0.933 0.934 0.954 0.932 1.000 1.000 1.000 1.000 0.996 1.000 1.000
54d 0.5 0.0 -0.5 0.024 0.063 0.073 0.310 0.423 0.510 0.437 0.619 0.674 0.699 0.868 0.905 0.930 0.911 0.503 0.869 0.922
55a 0.5 0.0 0.5 0.023 0.063 0.077 0.298 0.418 0.499 0.441 0.623 0.675 0.698 0.864 0.905 0.931 0.911 0.489 0.869 0.921

freedom full-set tests. Similar cases in terms of instrument strength have been chosen
to keep comparability with the previous subsection.

The DGP’s used for Table 7 mimic those of Table 1 in terms of instrument
strength. In most cases the sub-set tests behave roughly the same as when the
maintained regressor was actually exogenous, although multicollinearity is now found
to have a small though clear asymmetric impact on the rejection probabilities. When
multicollinearity is of the same sign as the simultaneity in y(3), test statistics Wo and
To reject less often than when these signs differ. This is not caused by the fixed nature
of the instruments, because simulations (not reported) in which the instruments are
random show the same effect. On the other hand, the differences between subcases
diminish when the instruments are random. Multicollinearity decreases the rejection
probabilities, but less so when the endogeneity of the maintained regressor is more
severe. The full-set tests with one degree of freedom are affected more by multi-
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Table 7: Two endogenous regressors and mildly strong instruments:

R2
2;z2 = 0.20, R2

2;z23 = 0.40, R2
3;z2 = 0.20, R2

3;z23 = 0.40

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

57b 0.2 -0.2 0.0 0.126 0.183 0.203 0.125 0.183 0.202 0.146 0.173 0.217 0.180 0.141 0.166 0.211 0.174 0.129 0.222 0.329
57c 0.2 -0.2 0.0 0.124 0.181 0.200 0.124 0.179 0.199 0.142 0.166 0.213 0.173 0.141 0.165 0.211 0.173 0.128 0.223 0.325
58b 0.2 -0.2 -0.2 0.109 0.175 0.191 0.103 0.171 0.184 0.076 0.085 0.117 0.087 0.073 0.084 0.114 0.087 0.070 0.147 0.230
58c 0.2 -0.2 -0.2 0.105 0.173 0.188 0.107 0.176 0.188 0.073 0.083 0.111 0.085 0.072 0.081 0.112 0.084 0.072 0.146 0.230
59b 0.2 -0.2 0.2 0.131 0.173 0.208 0.132 0.175 0.209 0.381 0.403 0.468 0.412 0.385 0.408 0.477 0.415 0.334 0.434 0.552
59c 0.2 -0.2 0.2 0.128 0.171 0.207 0.130 0.174 0.208 0.382 0.406 0.477 0.414 0.382 0.406 0.484 0.415 0.331 0.427 0.551
60b 0.2 -0.2 -0.5 0.071 0.148 0.166 0.071 0.146 0.163 0.054 0.047 0.074 0.045 0.053 0.048 0.069 0.046 0.046 0.097 0.165
60c 0.2 -0.2 -0.5 0.073 0.150 0.165 0.072 0.154 0.170 0.056 0.049 0.073 0.047 0.054 0.047 0.069 0.045 0.046 0.101 0.167
61b 0.2 -0.2 0.5 0.119 0.148 0.201 0.120 0.152 0.207 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
61c 0.2 -0.2 0.5 0.117 0.146 0.200 0.117 0.146 0.206 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

62b 0.2 0.2 0.0 0.122 0.177 0.199 0.124 0.182 0.201 0.140 0.164 0.208 0.172 0.140 0.165 0.212 0.171 0.128 0.221 0.324
62c 0.2 0.2 0.0 0.124 0.177 0.197 0.126 0.179 0.199 0.141 0.164 0.208 0.171 0.143 0.165 0.211 0.172 0.129 0.222 0.326
63b 0.2 0.2 -0.2 0.127 0.170 0.205 0.125 0.169 0.205 0.373 0.400 0.469 0.408 0.381 0.406 0.473 0.415 0.328 0.424 0.538
63c 0.2 0.2 -0.2 0.129 0.172 0.205 0.133 0.175 0.207 0.381 0.407 0.478 0.417 0.378 0.403 0.476 0.412 0.327 0.424 0.544
64b 0.2 0.2 0.2 0.107 0.174 0.185 0.106 0.176 0.189 0.070 0.081 0.108 0.084 0.074 0.085 0.117 0.089 0.067 0.147 0.231
64c 0.2 0.2 0.2 0.104 0.168 0.182 0.108 0.172 0.186 0.072 0.079 0.110 0.082 0.075 0.085 0.117 0.089 0.069 0.147 0.229
65b 0.2 0.2 -0.5 0.113 0.145 0.205 0.115 0.146 0.204 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000
65c 0.2 0.2 -0.5 0.115 0.145 0.201 0.120 0.151 0.206 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
66b 0.2 0.2 0.5 0.073 0.150 0.166 0.074 0.151 0.171 0.055 0.049 0.070 0.046 0.053 0.048 0.071 0.046 0.043 0.098 0.168
66c 0.2 0.2 0.5 0.069 0.147 0.162 0.072 0.148 0.166 0.051 0.045 0.070 0.044 0.053 0.047 0.072 0.045 0.042 0.096 0.165

67b 0.5 -0.2 0.0 0.127 0.201 0.208 0.814 0.861 0.882 0.182 0.208 0.258 0.240 0.848 0.867 0.901 0.875 0.771 0.886 0.930
67c 0.5 -0.2 0.0 0.124 0.199 0.206 0.816 0.863 0.884 0.182 0.209 0.262 0.244 0.855 0.874 0.906 0.882 0.775 0.883 0.935
68b 0.5 -0.2 -0.2 0.093 0.193 0.177 0.780 0.852 0.874 0.049 0.056 0.080 0.068 0.737 0.754 0.805 0.760 0.592 0.770 0.848
68c 0.5 -0.2 -0.2 0.089 0.192 0.173 0.779 0.851 0.875 0.048 0.054 0.079 0.064 0.736 0.754 0.806 0.762 0.591 0.766 0.846
69b 0.5 -0.2 0.2 0.151 0.190 0.226 0.754 0.779 0.840 0.876 0.886 0.917 0.899 0.997 0.998 0.998 0.997 0.992 0.999 1.000
69c 0.5 -0.2 0.2 0.150 0.186 0.224 0.757 0.776 0.837 0.884 0.893 0.922 0.905 0.997 0.997 0.999 0.997 0.993 0.999 1.000
70b 0.5 -0.2 -0.5 0.040 0.166 0.134 0.595 0.690 0.767 0.996 0.995 0.997 0.992 1.000 1.000 1.000 1.000 0.989 1.000 1.000
70c 0.5 -0.2 -0.5 0.043 0.163 0.133 0.595 0.691 0.767 0.995 0.994 0.997 0.990 1.000 1.000 1.000 1.000 0.989 1.000 1.000

71b 0.5 0.2 0.0 0.124 0.195 0.201 0.815 0.861 0.882 0.180 0.206 0.256 0.240 0.848 0.866 0.899 0.874 0.772 0.883 0.932
71c 0.5 0.2 0.0 0.126 0.196 0.202 0.810 0.859 0.886 0.176 0.202 0.253 0.236 0.846 0.866 0.900 0.875 0.772 0.881 0.931
72b 0.5 0.2 -0.2 0.147 0.186 0.224 0.752 0.773 0.835 0.884 0.894 0.922 0.907 0.997 0.997 0.999 0.998 0.992 0.999 1.000
72c 0.5 0.2 -0.2 0.149 0.184 0.222 0.754 0.772 0.838 0.880 0.890 0.919 0.902 0.997 0.997 0.998 0.997 0.993 0.998 0.999
73b 0.5 0.2 0.2 0.090 0.193 0.170 0.783 0.854 0.872 0.050 0.057 0.083 0.067 0.738 0.756 0.809 0.763 0.597 0.768 0.850
73c 0.5 0.2 0.2 0.087 0.189 0.168 0.787 0.855 0.875 0.047 0.055 0.078 0.065 0.741 0.757 0.809 0.764 0.595 0.769 0.845
74b 0.5 0.2 0.5 0.045 0.166 0.138 0.598 0.692 0.767 0.997 0.995 0.998 0.992 1.000 1.000 1.000 1.000 0.988 1.000 1.000
74c 0.5 0.2 0.5 0.044 0.162 0.132 0.596 0.688 0.767 0.996 0.995 0.997 0.990 1.000 1.000 1.000 1.000 0.988 1.000 1.000

75b 0.5 -0.5 0.0 0.799 0.834 0.866 0.804 0.838 0.870 0.935 0.945 0.962 0.958 0.937 0.949 0.963 0.961 0.985 1.000 1.000
75c 0.5 -0.5 0.0 0.806 0.840 0.872 0.804 0.837 0.865 0.937 0.947 0.962 0.959 0.938 0.947 0.961 0.959 0.987 1.000 1.000
76b 0.5 -0.5 -0.2 0.796 0.891 0.891 0.799 0.886 0.889 0.409 0.433 0.500 0.465 0.412 0.434 0.502 0.465 0.843 0.970 0.985
76c 0.5 -0.5 -0.2 0.804 0.892 0.893 0.803 0.887 0.889 0.412 0.436 0.509 0.469 0.411 0.436 0.498 0.468 0.848 0.971 0.986
77b 0.5 -0.5 -0.5 0.600 0.797 0.810 0.600 0.797 0.812 0.060 0.054 0.079 0.046 0.058 0.052 0.075 0.045 0.348 0.684 0.782
77c 0.5 -0.5 -0.5 0.607 0.803 0.818 0.602 0.799 0.812 0.061 0.055 0.079 0.046 0.056 0.051 0.074 0.043 0.351 0.684 0.784

78b 0.5 0.5 0.0 0.804 0.840 0.869 0.801 0.835 0.867 0.940 0.950 0.965 0.963 0.939 0.950 0.964 0.963 0.985 1.000 1.000
78c 0.5 0.5 0.0 0.802 0.838 0.867 0.801 0.835 0.867 0.938 0.949 0.962 0.961 0.937 0.946 0.963 0.958 0.985 1.000 1.000
79b 0.5 0.5 0.2 0.799 0.891 0.891 0.800 0.886 0.887 0.409 0.431 0.504 0.467 0.413 0.435 0.503 0.468 0.848 0.973 0.987
79c 0.5 0.5 0.2 0.799 0.887 0.888 0.798 0.887 0.888 0.412 0.434 0.503 0.467 0.406 0.429 0.494 0.458 0.847 0.970 0.985
80b 0.5 0.5 0.5 0.598 0.798 0.812 0.606 0.800 0.812 0.052 0.046 0.070 0.039 0.061 0.054 0.079 0.046 0.340 0.680 0.780
80c 0.5 0.5 0.5 0.602 0.797 0.812 0.602 0.800 0.815 0.058 0.052 0.075 0.045 0.061 0.055 0.079 0.047 0.348 0.682 0.782

collinearity than the sub-set tests. As is to be expected, the two degrees of freedom
full-set tests reject more often now that both regressors are endogenous. The rejection
probabilities of these full-set tests, Do included, decrease dramatically if ρ23 and ρ3

are of the same sign, and they do that much more than for the sub-set tests. Note
that the cases in which ρ3 takes on a negative value are very similar to cases in which
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ρ3 is positive and the sign of ρ23 is changed, or those of (d32, d33). More specifically,
case 63b corresponds with case 59c and case 63c with case 59b. Therefore, we will
exclude cases with negative values for ρ3 from future tables and stick to their positive
counterparts.

In Table 8 we examine stronger instruments. Comparing with Table 2 we find
that the rejection probabilities seem virtually unaffected by choosing ρ3 6= 0. As
we found before the rejection probabilities are affected in a positive manner by the
increased strength of the instruments. The sub-set tests reject almost every time if
the corresponding degree of simultaneity is .5. The effect of having ρ23 and ρ3 both
positive seems less severe. As long as this is not the case, the one degree of freedom
full-set tests reject more often than the sub-set tests. If ρ23 and ρ3 do not differ in
sign Wo and Do reject more often when applied to a sub-set than for their one degree
and two degrees of freedom full-set versions.

Table 8: Two endogenous regressors and stronger instruments:

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

81b 0.2 0.2 0.0 0.322 0.349 0.383 0.330 0.359 0.393 0.327 0.321 0.388 0.319 0.331 0.327 0.394 0.322 0.475 0.494 0.607
81c 0.2 0.2 0.0 0.327 0.357 0.388 0.330 0.361 0.395 0.331 0.326 0.392 0.323 0.330 0.325 0.392 0.323 0.477 0.497 0.620
82b 0.2 0.2 -0.2 0.315 0.321 0.377 0.319 0.327 0.381 0.934 0.929 0.951 0.923 0.934 0.928 0.949 0.921 0.954 0.950 0.973
82c 0.2 0.2 -0.2 0.315 0.323 0.380 0.316 0.324 0.382 0.934 0.926 0.948 0.920 0.931 0.925 0.948 0.920 0.949 0.947 0.972
83b 0.2 0.2 0.2 0.285 0.331 0.360 0.293 0.340 0.368 0.099 0.091 0.125 0.087 0.103 0.097 0.132 0.093 0.237 0.279 0.384
83c 0.2 0.2 0.2 0.291 0.338 0.362 0.295 0.342 0.366 0.098 0.092 0.127 0.087 0.101 0.093 0.131 0.090 0.237 0.275 0.385

84b 0.5 0.2 0.0 0.337 0.370 0.397 0.999 0.999 0.999 0.400 0.394 0.474 0.369 1.000 1.000 1.000 0.999 1.000 1.000 1.000
84c 0.5 0.2 0.0 0.334 0.368 0.397 0.999 0.999 0.999 0.402 0.394 0.472 0.366 1.000 1.000 1.000 0.999 1.000 1.000 1.000
85b 0.5 0.2 0.2 0.273 0.356 0.352 0.998 0.998 0.999 0.194 0.183 0.241 0.148 0.997 0.996 0.998 0.996 0.998 0.998 0.999
85c 0.5 0.2 0.2 0.277 0.363 0.357 0.998 0.998 0.999 0.191 0.181 0.236 0.149 0.997 0.997 0.998 0.996 0.999 0.999 0.999

86b 0.5 0.5 0.2 1.000 1.000 1.000 0.999 0.999 1.000 0.634 0.616 0.693 0.535 0.636 0.617 0.698 0.532 1.000 1.000 1.000
86c 0.5 0.5 0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.637 0.616 0.698 0.533 0.626 0.609 0.690 0.525 1.000 1.000 1.000

Because Tables 3 and 4 are very similar, we only need to consider the equivalent
table of the latter when both regressors are endogenous. In Table 9 the instruments
are weak for y(3) but strong for y(2). Obviously the sub-set tests for y(3) lack power
now, as was already concluded from Table 3. However, sub-set tests for y(2) show
power also in the presence of a maintained endogenous though weakly instrumented
regressor. Note that when ρ3 is increased all sub-set tests for y(2) reject more often.
This dependence was not apparent under non-weak instruments.

As we found in Table 5 the sub-set tests perform badly when the instruments are
weak for both regressors. From the results on the sub-set test for y(3) we expect the
same for the case in which ρ3 6= 0. This we found to be true in further simulations
(not reported here).

Tables 7, 8 and 9 demonstrate that the sub-set tests are indispensable when there
is more than one regressor that might be endogenous. Using only full-set tests seri-
ously hampers to correctly classify the individual variables as either endogenous or
exogenous. However, all tests examined here, especially Wo and To, show substantial
size distortions in finite samples. Moreover, these size distortions are found to be
determined in a complex way by the model characteristics. In fact the various tables
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Table 9: Two endogenous regressors and weak instruments for y(3):

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

87b 0.2 0.2 0.0 0.001 0.059 0.057 0.103 0.140 0.147 0.006 0.162 0.206 0.260 0.339 0.334 0.400 0.332 0.074 0.253 0.361
87c 0.2 0.2 0.0 0.001 0.059 0.059 0.109 0.143 0.152 0.006 0.164 0.205 0.260 0.337 0.334 0.400 0.333 0.077 0.251 0.361
88b 0.2 0.2 -0.2 0.001 0.058 0.058 0.099 0.131 0.152 0.095 0.386 0.447 0.467 0.541 0.532 0.605 0.530 0.159 0.435 0.552
88c 0.2 0.2 -0.2 0.001 0.061 0.063 0.103 0.131 0.161 0.096 0.385 0.446 0.469 0.542 0.533 0.604 0.531 0.162 0.434 0.555
89b 0.2 0.2 0.2 0.001 0.059 0.059 0.052 0.103 0.084 0.028 0.164 0.208 0.212 0.259 0.252 0.309 0.251 0.054 0.186 0.284
89c 0.2 0.2 0.2 0.001 0.059 0.056 0.051 0.099 0.088 0.029 0.162 0.206 0.210 0.259 0.252 0.307 0.251 0.054 0.186 0.279
90b 0.2 0.2 -0.5 0.001 0.059 0.075 0.041 0.076 0.191 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.739 1.000 1.000
90c 0.2 0.2 -0.5 0.001 0.060 0.078 0.043 0.075 0.189 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.747 1.000 1.000
91b 0.2 0.2 0.5 0.000 0.060 0.063 0.006 0.069 0.041 0.270 0.277 0.338 0.279 0.314 0.294 0.355 0.289 0.073 0.217 0.318
91c 0.2 0.2 0.5 0.001 0.060 0.063 0.006 0.069 0.040 0.269 0.277 0.336 0.278 0.316 0.293 0.356 0.288 0.076 0.219 0.317

92b 0.5 0.2 0.0 0.001 0.062 0.073 0.578 0.456 0.645 0.070 0.617 0.650 0.828 1.000 1.000 1.000 1.000 0.671 0.999 1.000
92c 0.5 0.2 0.0 0.001 0.065 0.077 0.591 0.470 0.655 0.071 0.611 0.639 0.825 1.000 1.000 1.000 1.000 0.684 0.999 1.000
93b 0.5 0.2 -0.2 0.001 0.064 0.086 0.448 0.295 0.569 0.489 0.905 0.915 0.970 1.000 1.000 1.000 1.000 0.739 1.000 1.000
93c 0.5 0.2 -0.2 0.001 0.065 0.087 0.454 0.300 0.582 0.490 0.902 0.912 0.966 1.000 1.000 1.000 1.000 0.754 1.000 1.000
94b 0.5 0.2 0.2 0.001 0.064 0.077 0.409 0.314 0.529 0.385 0.828 0.848 0.922 0.999 0.999 1.000 0.999 0.666 0.998 0.999
94c 0.5 0.2 0.2 0.001 0.064 0.074 0.415 0.324 0.531 0.382 0.820 0.839 0.919 0.999 0.999 0.999 0.999 0.675 0.998 0.999

95b 0.5 0.5 0.0 0.002 0.093 0.110 0.608 0.475 0.676 0.096 0.672 0.700 0.871 1.000 1.000 1.000 1.000 0.705 1.000 1.000
95c 0.5 0.5 0.0 0.001 0.092 0.112 0.615 0.486 0.680 0.101 0.676 0.701 0.868 1.000 1.000 1.000 1.000 0.705 1.000 1.000
96b 0.5 0.5 0.2 0.002 0.088 0.102 0.418 0.359 0.541 0.342 0.791 0.813 0.900 0.999 0.999 0.999 0.998 0.629 0.998 0.999
96c 0.5 0.5 0.2 0.002 0.090 0.102 0.426 0.376 0.551 0.347 0.780 0.804 0.894 0.999 0.998 0.999 0.998 0.637 0.997 0.999
97b 0.5 0.5 0.5 0.001 0.088 0.103 0.067 0.159 0.285 0.998 0.998 0.999 0.998 1.000 1.000 1.000 1.000 0.674 0.998 1.000
97c 0.5 0.5 0.5 0.001 0.088 0.101 0.070 0.161 0.282 0.998 0.998 0.999 0.998 1.000 1.000 1.000 0.999 0.677 0.999 1.000

illustrate that it are not just the design parameters simultaneity, multicollinearity
and instrument strength which determine the size of these tests. The differences be-
tween the subcases illustrate that the size also depends on the actual reduced form
coefficients and therefore in fact on the degree by which the multicollinearity stems
from correlation between the reduced form disturbances (κ). Trying to mitigate the
size problems by simple degrees of freedom adjustments or by transformations to F
statistics seems therefore a dead-end.

6 Results for bootstrapped tests

Because all the test statistics that are under investigation here are based on appro-
priate first order asymptotics, it should be feasible to mitigate the size problems by
bootstrapping.

6.1 A bootstrap routine for sub-set DWH test statistics

Bootstrap routines for testing the orthogonality of all possibly endogenous regressors
have previously been discussed by Wong (1996). Implementation of these bootstrap
routines is relatively easy due to the fact that no regressors are assumed to be endoge-
nous under the null hypothesis. This in contrast to the test of sub-sets where some
regressors are endogenous also under the null hypothesis. Their presence complicates
matters as bootstrap realizations have to be generated on both the dependent vari-
able and the maintained set of endogenous regressors. We discuss two routines; first
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a parametric and next a semiparametric bootstrap. For the former routine we have
to assume a distribution for the disturbances, which we choose to be the normal.

Consider the n× (1 + Ke) matrix U = (u, Ve). Its elements can be estimated by:
ûr = y − Xβ̂r and V̂er = Ye − ZrΠ̂er, where Π̂er = (Z ′rZr)

−1Z ′rYe. Under the null
hypothesis β̂r and Π̂er are consistent estimators and it follows that Ûr = (ûr, V̂er) is
consistent for U , and hence Σ̂ = n−1Û ′rÛr is a consistent estimator of the variance
of its rows. The following illustrates the steps that are required for the bootstrap
procedure.

1. Draw pseudo disturbances of sample size n from the N(0, Σ̂) distribution and

collect them in U (b) = (u(b), V
(b)
e ) . Obtain bootstrap realizations on the en-

dogenous explanatory variables and the dependent variable through: Y
(b)
e =

ZrΠ̂er + V
(b)
e and y(b) = X(b)β̂r + u(b), where X(b) = (Y

(b)
e , Yo, Z1). Calculate the

test statistic of choice Υ and store its value Υ̂(b).

2. Repeat step (1) B times resulting in the B × 1 vector Υ̂B = (Υ̂(1), ..., Υ̂(B))′ of
which the elements should be sorted in increasing order.

3. The null hypothesis should be rejected if for the empirical value Υ̂, calculated
on the basis of y, X and Z, one finds Υ̂ > Υ̂bc

α , the (1 − α)(B + 1)-th value of
the sorted vector.

Applying the semiparametric bootstrap is very similar as it only differs from the
parametric one in step (1). Instead of assuming a distribution for the disturbances
we resample by drawing rows with replacement from Ûr.

6.2 Simulation results for bootstrapped test statistics

Wong (1996) concludes that bootstrapping the full-set test statistics yields an im-
provement over using first order asymptotics, especially in the case where the (in his
case external) instrument is weak. In this subsection we will discuss simulation results
for the bootstrapped counterparts of the various test statistics. Again all results are
obtained with R = 10000 and n = 40, additionally we choose the number of bootstrap
replications to be B = 199. To mimic as closely as possible the way the bootstrap
would be employed in practice, for each case and each test statistic we calculated the
bootstrap critical value Υ̂bc

α again in each separate replication.
Table 10 is the bootstrapped equivalent of Table 1. Whereas we found that the

crude asymptotic version of Wo underrejects while To overrejects, bootstrapping these
test statistics results in a substantial improvement18 of their size properties. In fact,
in this respect all three tests perform now equally well with mildly strong instru-
ments, because the estimated actual significance level lies always inside the 99.75%
confidence interval for the nominal level. Not only the sub-set tests profit from being

18Although the current implementation of the bootstrap already performs quite well, even better
results may be obtained by rescaling the reduced form residuals by a loss of degrees of freedom
correction.
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bootstrapped, the one degree and two degrees of freedom full-set tests do as well. In
terms of power we find that the bootstrapped versions of Wo, To, Do and So perform
almost equally well. We do find minor differences in rejection frequencies under the
alternative, but often these seem still to be the results of minor differences in size.
Nevertheless, on a few occasions test Do seems to fall behind, whereas So seems to
perform slightly better when L > K (we found this too for n = 100). Now we estab-
lish more convincingly that exploiting correctly the exogeneity of y(2) in a full-set test
provides more power, especially when multicollinearity is present, than not exploiting
it in a sub-set test. Of course, the unfavorable substantial rejection probability of the
exogeneity of the truly exogenous y(3), caused by wrongly treating y(2) as exogenous in
a full-set test, cannot be healed by bootstrapping. Similar conclusions can be drawn
from Table 11 which contains results for stronger instruments.

Table 10: Bootstrapped: One endogenous regressor and mildly strong instruments:

R2
2;z2 = 0.20, R2

2;z23 = 0.40, R2
3;z2 = 0.20, R2

3;z23 = 0.40

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

1b 0.0 0.0 0.0 0.050 0.047 0.049 0.058 0.054 0.056 0.048 0.048 0.048 0.049 0.051 0.051 0.051 0.051 0.051 0.053 0.053
1c 0.0 0.0 0.0 0.051 0.046 0.049 0.059 0.054 0.057 0.048 0.048 0.048 0.048 0.053 0.053 0.053 0.053 0.051 0.051 0.051
2b 0.0 0.0 -0.2 0.051 0.048 0.050 0.057 0.052 0.055 0.049 0.049 0.049 0.048 0.054 0.054 0.054 0.055 0.050 0.051 0.051
2c 0.0 0.0 -0.2 0.049 0.046 0.048 0.055 0.051 0.053 0.049 0.049 0.049 0.049 0.054 0.054 0.054 0.054 0.053 0.051 0.051
3b 0.0 0.0 0.2 0.052 0.050 0.051 0.057 0.054 0.056 0.048 0.048 0.048 0.049 0.051 0.051 0.051 0.051 0.052 0.051 0.051
3c 0.0 0.0 0.2 0.052 0.048 0.050 0.056 0.053 0.055 0.049 0.049 0.049 0.049 0.051 0.051 0.051 0.051 0.052 0.052 0.052
4b 0.0 0.0 -0.5 0.051 0.051 0.051 0.055 0.053 0.055 0.049 0.049 0.049 0.049 0.052 0.052 0.052 0.052 0.051 0.051 0.051
4c 0.0 0.0 -0.5 0.051 0.051 0.050 0.055 0.053 0.054 0.047 0.047 0.047 0.047 0.052 0.052 0.052 0.052 0.051 0.050 0.050
5b 0.0 0.0 0.5 0.052 0.052 0.052 0.054 0.055 0.055 0.048 0.048 0.048 0.049 0.050 0.050 0.050 0.050 0.048 0.048 0.048
5c 0.0 0.0 0.5 0.057 0.055 0.056 0.053 0.053 0.053 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.051 0.049 0.049

6b 0.2 0.0 0.0 0.050 0.047 0.049 0.175 0.166 0.171 0.048 0.048 0.048 0.050 0.163 0.163 0.163 0.162 0.125 0.130 0.130
6c 0.2 0.0 0.0 0.050 0.047 0.049 0.172 0.166 0.171 0.051 0.051 0.051 0.053 0.163 0.163 0.163 0.163 0.124 0.128 0.128
7b 0.2 0.0 -0.2 0.051 0.048 0.051 0.170 0.155 0.168 0.084 0.084 0.084 0.085 0.194 0.194 0.194 0.195 0.155 0.152 0.152
7c 0.2 0.0 -0.2 0.049 0.048 0.048 0.170 0.158 0.167 0.079 0.079 0.079 0.081 0.198 0.198 0.198 0.198 0.156 0.154 0.154
8b 0.2 0.0 0.2 0.052 0.050 0.050 0.168 0.158 0.166 0.077 0.077 0.077 0.079 0.192 0.192 0.192 0.192 0.151 0.151 0.151
8c 0.2 0.0 0.2 0.051 0.049 0.050 0.171 0.157 0.167 0.079 0.079 0.079 0.079 0.192 0.192 0.192 0.193 0.151 0.148 0.148
9b 0.2 0.0 -0.5 0.052 0.051 0.051 0.150 0.130 0.151 0.684 0.684 0.684 0.679 0.741 0.741 0.741 0.740 0.700 0.652 0.652
9c 0.2 0.0 -0.5 0.051 0.051 0.051 0.152 0.130 0.152 0.681 0.681 0.681 0.677 0.741 0.741 0.741 0.740 0.703 0.650 0.650

10b 0.2 0.0 0.5 0.053 0.053 0.054 0.152 0.132 0.151 0.670 0.670 0.670 0.665 0.732 0.732 0.732 0.730 0.690 0.644 0.644
10c 0.2 0.0 0.5 0.054 0.055 0.054 0.150 0.131 0.150 0.675 0.675 0.675 0.670 0.733 0.733 0.733 0.731 0.693 0.649 0.649

11b 0.5 0.0 0.0 0.049 0.050 0.048 0.864 0.850 0.862 0.051 0.051 0.051 0.062 0.842 0.842 0.842 0.845 0.773 0.788 0.788
11c 0.5 0.0 0.0 0.048 0.049 0.046 0.860 0.846 0.858 0.053 0.053 0.053 0.064 0.846 0.846 0.846 0.847 0.777 0.789 0.789
12b 0.5 0.0 -0.2 0.050 0.052 0.049 0.827 0.784 0.829 0.347 0.347 0.347 0.371 0.931 0.931 0.931 0.931 0.894 0.897 0.897
12c 0.5 0.0 -0.2 0.048 0.050 0.046 0.832 0.792 0.833 0.345 0.345 0.345 0.367 0.931 0.931 0.931 0.932 0.897 0.895 0.895
13b 0.5 0.0 0.2 0.050 0.053 0.049 0.829 0.788 0.828 0.341 0.341 0.341 0.363 0.926 0.925 0.925 0.926 0.893 0.893 0.893
13c 0.5 0.0 0.2 0.048 0.052 0.047 0.822 0.781 0.821 0.345 0.345 0.345 0.370 0.928 0.928 0.928 0.929 0.896 0.896 0.896

On the other hand, we find in Table 12 that bootstrapping does not achieve
satisfactory size control for most of the sub-set tests, when the instruments are weak
for one regressor. And when testing the endogeneity of y(2) (for which the instruments
are weak) there is hardly any power. The full-set tests do not show substantial size
distortions and the one degree of freedom full-set test on y(2) and the two degrees of
freedom test demonstrate power provided the regressors show multicollinearity. The
results in Table 13 indicate that the sub-set test is of more use when weakness of
instruments does not concern the variable under test. We can conclude that Wo and
To have more power than Do, since they reject less often under the null hypothesis but
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Table 11: Bootstrapped: One endogenous regressor and stronger instruments:

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

14b 0.0 0.0 0.0 0.049 0.048 0.049 0.055 0.054 0.054 0.050 0.050 0.050 0.050 0.053 0.053 0.053 0.054 0.052 0.052 0.052
14c 0.0 0.0 0.0 0.048 0.048 0.048 0.055 0.054 0.055 0.049 0.049 0.049 0.049 0.053 0.053 0.053 0.053 0.050 0.050 0.050
15b 0.0 0.0 -0.2 0.050 0.049 0.049 0.054 0.054 0.054 0.048 0.048 0.048 0.048 0.054 0.054 0.054 0.054 0.052 0.052 0.052
15c 0.0 0.0 -0.2 0.050 0.049 0.050 0.054 0.053 0.053 0.047 0.047 0.047 0.047 0.055 0.055 0.055 0.056 0.050 0.050 0.050
16b 0.0 0.0 0.2 0.049 0.049 0.049 0.055 0.054 0.054 0.048 0.048 0.048 0.048 0.051 0.051 0.051 0.051 0.050 0.051 0.051
16c 0.0 0.0 0.2 0.053 0.052 0.052 0.055 0.055 0.055 0.048 0.048 0.048 0.048 0.053 0.053 0.053 0.052 0.051 0.049 0.049

17b 0.2 0.0 0.0 0.049 0.048 0.048 0.331 0.329 0.331 0.047 0.047 0.047 0.045 0.323 0.323 0.323 0.323 0.252 0.252 0.252
17c 0.2 0.0 0.0 0.050 0.049 0.050 0.331 0.327 0.330 0.046 0.046 0.046 0.045 0.322 0.322 0.322 0.323 0.253 0.254 0.254
18b 0.2 0.0 -0.2 0.051 0.049 0.049 0.312 0.299 0.310 0.208 0.208 0.208 0.204 0.471 0.471 0.471 0.470 0.386 0.377 0.377
18c 0.2 0.0 -0.2 0.049 0.050 0.049 0.319 0.304 0.318 0.204 0.204 0.204 0.199 0.470 0.470 0.470 0.469 0.389 0.380 0.380
19b 0.2 0.0 0.2 0.049 0.049 0.048 0.319 0.305 0.317 0.196 0.196 0.196 0.191 0.459 0.459 0.459 0.460 0.376 0.367 0.367
19c 0.2 0.0 0.2 0.052 0.052 0.051 0.314 0.299 0.312 0.204 0.204 0.204 0.199 0.458 0.458 0.458 0.457 0.378 0.369 0.369

20b 0.5 0.0 0.0 0.049 0.050 0.048 1.000 1.000 1.000 0.024 0.024 0.024 0.021 1.000 1.000 1.000 0.999 0.999 0.999 0.999
20c 0.5 0.0 0.0 0.048 0.049 0.047 0.999 0.999 0.999 0.022 0.022 0.023 0.021 0.999 0.999 0.999 0.999 0.998 0.998 0.998
21b 0.5 0.0 -0.2 0.053 0.055 0.053 0.996 0.990 0.995 0.976 0.976 0.976 0.957 1.000 1.000 1.000 1.000 1.000 1.000 1.000
21c 0.5 0.0 -0.2 0.052 0.053 0.051 0.995 0.988 0.994 0.971 0.971 0.971 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000
22b 0.5 0.0 0.2 0.050 0.051 0.050 0.994 0.989 0.994 0.975 0.975 0.975 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000
22c 0.5 0.0 0.2 0.053 0.056 0.053 0.994 0.989 0.994 0.977 0.977 0.977 0.957 1.000 1.000 1.000 1.000 1.000 1.000 1.000

more often under the alternative. Because we were unable yet to properly size correct
the sub-set test on the strongly instrumented regressor in Tables 12 and 13, we know
that we will be unable to do so too when all regressors are weakly instrumented. This
is supported by the results summarized in Table 14, which also show that there is
little or no power under instrument weakness.

Table 12: Bootstrapped: One endogenous regressor and weak instruments for y(2):

R2
2;z2 = 0.01, R2

2;z23 = 0.02, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

23b 0.0 0.0 0.0 0.030 0.037 0.029 0.032 0.053 0.048 0.049 0.049 0.049 0.048 0.050 0.050 0.050 0.050 0.048 0.049 0.049
23c 0.0 0.0 0.0 0.029 0.034 0.028 0.032 0.052 0.047 0.049 0.049 0.049 0.049 0.052 0.052 0.052 0.051 0.047 0.052 0.052
24b 0.0 0.0 0.5 0.014 0.052 0.024 0.035 0.053 0.050 0.049 0.049 0.049 0.049 0.047 0.047 0.047 0.048 0.048 0.048 0.048
24c 0.0 0.0 0.5 0.016 0.051 0.025 0.034 0.053 0.049 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049 0.047 0.050 0.050

25b 0.2 0.0 0.0 0.034 0.037 0.033 0.033 0.056 0.050 0.051 0.051 0.051 0.051 0.053 0.053 0.053 0.054 0.049 0.051 0.051
25c 0.2 0.0 0.0 0.030 0.036 0.029 0.035 0.054 0.052 0.048 0.048 0.048 0.048 0.054 0.054 0.054 0.057 0.046 0.054 0.054
26b 0.2 0.0 0.5 0.020 0.053 0.033 0.034 0.055 0.051 0.302 0.302 0.302 0.301 0.302 0.302 0.302 0.301 0.246 0.237 0.237
26c 0.2 0.0 0.5 0.020 0.052 0.034 0.036 0.056 0.053 0.310 0.310 0.310 0.309 0.312 0.312 0.312 0.312 0.251 0.245 0.245

27b 0.5 0.0 0.0 0.034 0.044 0.033 0.045 0.078 0.068 0.048 0.048 0.048 0.048 0.063 0.063 0.063 0.066 0.044 0.067 0.067
27c 0.5 0.0 0.0 0.029 0.043 0.029 0.045 0.077 0.068 0.049 0.049 0.049 0.049 0.065 0.065 0.065 0.068 0.043 0.069 0.069
28b 0.5 0.0 0.5 0.037 0.056 0.083 0.048 0.078 0.079 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.845 1.000 1.000
28c 0.5 0.0 0.5 0.040 0.055 0.084 0.048 0.078 0.080 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.844 1.000 1.000

For DGP’s in which both regressors are endogenous we again construct three
tables. From subsection 5.2 we learned that under the alternative hypothesis the
tests behave similar to cases in which only y(2) is endogenous. This is found here too
as can be seen from Table 15. We find further evidence that the sub-set version of
Do performs less than Wo and To, whereas for some cases So modestly outperforms
all other tests. New in comparison with Table 7 is that the two degrees of freedom
full-set tests generally exhibit more power than the one degree of freedom full-set tests
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Table 13: Bootstrapped: One endogenous regressor and weak instruments for y(3)

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

29b 0.0 0.0 0.0 0.028 0.049 0.043 0.034 0.042 0.033 0.053 0.053 0.053 0.050 0.054 0.054 0.054 0.054 0.052 0.054 0.054
29c 0.0 0.0 0.0 0.030 0.047 0.045 0.034 0.038 0.034 0.052 0.052 0.052 0.053 0.054 0.054 0.054 0.054 0.053 0.052 0.052
30b 0.0 0.0 0.5 0.029 0.047 0.044 0.012 0.048 0.023 0.050 0.050 0.050 0.050 0.048 0.048 0.048 0.048 0.049 0.048 0.048
30c 0.0 0.0 0.5 0.032 0.049 0.046 0.014 0.048 0.023 0.048 0.048 0.048 0.048 0.051 0.051 0.051 0.051 0.049 0.050 0.050

31b 0.2 0.0 0.0 0.030 0.050 0.045 0.177 0.141 0.177 0.152 0.152 0.152 0.189 0.321 0.321 0.321 0.321 0.266 0.250 0.250
31c 0.2 0.0 0.0 0.029 0.048 0.044 0.178 0.136 0.180 0.157 0.157 0.157 0.190 0.320 0.320 0.320 0.320 0.257 0.249 0.249
32b 0.2 0.0 0.5 0.030 0.047 0.046 0.042 0.063 0.074 0.853 0.853 0.853 0.853 0.864 0.864 0.864 0.863 0.690 0.802 0.802
32c 0.2 0.0 0.5 0.032 0.049 0.049 0.039 0.058 0.072 0.854 0.854 0.854 0.855 0.864 0.864 0.864 0.863 0.683 0.806 0.806

33b 0.5 0.0 0.0 0.032 0.051 0.054 0.586 0.394 0.615 0.598 0.598 0.598 0.801 0.999 0.999 0.999 0.999 0.841 0.999 0.999
33c 0.5 0.0 0.0 0.027 0.050 0.053 0.589 0.397 0.615 0.598 0.598 0.598 0.799 0.999 0.999 0.999 0.999 0.843 0.999 0.999
34b 0.5 0.0 0.2 0.029 0.049 0.053 0.398 0.235 0.461 0.873 0.873 0.873 0.950 1.000 1.000 1.000 1.000 0.861 1.000 1.000
34c 0.5 0.0 0.2 0.030 0.048 0.053 0.394 0.233 0.460 0.870 0.870 0.870 0.947 1.000 1.000 1.000 1.000 0.864 1.000 1.000

Table 14: Bootstrapped: One endogenous regressor and weak instruments:

R2
2;z2 = 0.01, R2

2;z23 = 0.02, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

35b 0.0 0.0 0.0 0.028 0.035 0.028 0.029 0.038 0.029 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.050 0.051 0.051
35c 0.0 0.0 0.0 0.028 0.036 0.028 0.030 0.040 0.030 0.050 0.050 0.050 0.050 0.054 0.054 0.054 0.052 0.051 0.050 0.050
36b 0.0 0.0 0.5 0.027 0.039 0.028 0.030 0.040 0.031 0.051 0.051 0.051 0.050 0.051 0.051 0.051 0.051 0.047 0.052 0.052
36c 0.0 0.0 0.5 0.026 0.039 0.028 0.029 0.042 0.032 0.048 0.048 0.048 0.050 0.051 0.051 0.051 0.052 0.050 0.051 0.051

37b 0.2 0.0 0.0 0.027 0.037 0.028 0.030 0.038 0.030 0.053 0.053 0.053 0.053 0.051 0.051 0.051 0.052 0.051 0.053 0.053
37c 0.2 0.0 0.0 0.026 0.038 0.029 0.028 0.037 0.028 0.051 0.051 0.051 0.051 0.052 0.052 0.052 0.051 0.053 0.053 0.053
38b 0.2 0.0 0.5 0.028 0.040 0.029 0.029 0.040 0.032 0.054 0.054 0.054 0.053 0.053 0.053 0.053 0.055 0.052 0.055 0.055
38c 0.2 0.0 0.5 0.029 0.042 0.030 0.029 0.043 0.030 0.050 0.050 0.050 0.052 0.053 0.053 0.053 0.053 0.051 0.055 0.055

39b 0.5 0.0 0.0 0.026 0.044 0.029 0.031 0.048 0.034 0.062 0.062 0.062 0.063 0.061 0.061 0.061 0.065 0.054 0.066 0.066
39c 0.5 0.0 0.0 0.029 0.046 0.033 0.033 0.046 0.036 0.057 0.057 0.057 0.062 0.063 0.063 0.063 0.065 0.051 0.067 0.067
40b 0.5 0.0 0.5 0.034 0.051 0.039 0.039 0.061 0.044 0.085 0.085 0.085 0.088 0.086 0.086 0.086 0.091 0.071 0.093 0.093
40c 0.5 0.0 0.5 0.032 0.054 0.037 0.040 0.061 0.043 0.082 0.082 0.082 0.085 0.089 0.089 0.089 0.092 0.065 0.094 0.094

when the instruments are mildly strong. However, this was already found for cases
with stronger instruments without bootstrapping. Increasing the instrument strength
raises the rejection probabilities as before as can be seen from Table 16. That our
current implementation of the bootstrap does not offer satisfactory size control for
most sub-set tests when y(3) is weakly instrumented was already demonstrated in
Table 12 and we conclude the same for the case when both regressors are endogenous
as is obvious from the results in Table 17.
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Table 15: Bootstrapped: Two endogenous regressors and mildly strong instruments:

R2
2;z2 = 0.20, R2

2;z23 = 0.40, R2
3;z2 = 0.20, R2

3;z23 = 0.40

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

57b 0.2 -0.2 0.0 0.164 0.156 0.161 0.176 0.168 0.173 0.161 0.161 0.161 0.164 0.167 0.167 0.167 0.171 0.218 0.230 0.230
57c 0.2 -0.2 0.0 0.174 0.164 0.170 0.174 0.168 0.172 0.164 0.164 0.164 0.168 0.170 0.170 0.170 0.173 0.223 0.234 0.234
58b 0.2 -0.2 -0.2 0.149 0.152 0.147 0.161 0.160 0.158 0.081 0.081 0.081 0.081 0.086 0.086 0.086 0.087 0.131 0.152 0.152
58c 0.2 -0.2 -0.2 0.158 0.155 0.155 0.162 0.161 0.159 0.083 0.083 0.083 0.084 0.086 0.086 0.086 0.088 0.132 0.155 0.155
59b 0.2 -0.2 0.2 0.174 0.149 0.172 0.181 0.159 0.177 0.392 0.392 0.392 0.395 0.402 0.402 0.403 0.406 0.447 0.425 0.425
59c 0.2 -0.2 0.2 0.178 0.155 0.175 0.181 0.156 0.179 0.402 0.402 0.402 0.407 0.406 0.406 0.406 0.411 0.456 0.436 0.436
60b 0.2 -0.2 -0.5 0.126 0.129 0.126 0.132 0.133 0.132 0.049 0.049 0.049 0.049 0.053 0.053 0.053 0.052 0.081 0.105 0.105
60c 0.2 -0.2 -0.5 0.131 0.131 0.130 0.134 0.134 0.132 0.050 0.050 0.050 0.049 0.053 0.053 0.053 0.052 0.079 0.106 0.106
61b 0.2 -0.2 0.5 0.171 0.128 0.171 0.168 0.129 0.170 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
61c 0.2 -0.2 0.5 0.170 0.131 0.172 0.169 0.129 0.171 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

62b 0.2 0.2 0.0 0.178 0.170 0.176 0.176 0.166 0.171 0.170 0.170 0.170 0.173 0.166 0.166 0.166 0.170 0.230 0.240 0.240
62c 0.2 0.2 0.0 0.172 0.161 0.169 0.173 0.167 0.172 0.165 0.165 0.165 0.168 0.166 0.166 0.166 0.169 0.226 0.235 0.235
63b 0.2 0.2 -0.2 0.185 0.161 0.183 0.182 0.157 0.180 0.407 0.407 0.407 0.411 0.407 0.407 0.407 0.412 0.458 0.436 0.436
63c 0.2 0.2 -0.2 0.181 0.155 0.177 0.180 0.156 0.177 0.402 0.402 0.402 0.408 0.408 0.408 0.408 0.413 0.451 0.432 0.432
64b 0.2 0.2 0.2 0.165 0.165 0.163 0.161 0.160 0.158 0.084 0.084 0.084 0.086 0.083 0.083 0.083 0.083 0.136 0.159 0.159
64c 0.2 0.2 0.2 0.159 0.160 0.158 0.161 0.160 0.159 0.084 0.084 0.084 0.086 0.081 0.081 0.081 0.083 0.132 0.153 0.153
65b 0.2 0.2 -0.5 0.172 0.134 0.174 0.169 0.126 0.172 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
65c 0.2 0.2 -0.5 0.169 0.131 0.172 0.169 0.129 0.171 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
66b 0.2 0.2 0.5 0.139 0.140 0.138 0.135 0.137 0.134 0.051 0.051 0.051 0.050 0.049 0.049 0.049 0.048 0.083 0.107 0.107
66c 0.2 0.2 0.5 0.130 0.134 0.130 0.133 0.134 0.133 0.051 0.051 0.051 0.051 0.050 0.050 0.050 0.049 0.081 0.104 0.104

67b 0.5 -0.2 0.0 0.174 0.164 0.169 0.863 0.842 0.860 0.203 0.203 0.203 0.233 0.861 0.861 0.861 0.869 0.872 0.883 0.883
67c 0.5 -0.2 0.0 0.183 0.172 0.180 0.859 0.833 0.855 0.210 0.210 0.210 0.239 0.861 0.861 0.861 0.868 0.877 0.884 0.884
68b 0.5 -0.2 -0.2 0.138 0.160 0.137 0.843 0.832 0.842 0.056 0.056 0.056 0.063 0.760 0.760 0.760 0.764 0.739 0.769 0.769
68c 0.5 -0.2 -0.2 0.145 0.167 0.144 0.847 0.835 0.845 0.055 0.055 0.055 0.064 0.755 0.754 0.754 0.759 0.738 0.771 0.771
69b 0.5 -0.2 0.2 0.203 0.155 0.197 0.815 0.735 0.816 0.887 0.887 0.887 0.900 0.998 0.998 0.998 0.998 0.998 0.999 0.999
69c 0.5 -0.2 0.2 0.204 0.157 0.200 0.807 0.727 0.808 0.887 0.887 0.887 0.902 0.997 0.997 0.997 0.997 0.998 0.998 0.998
70b 0.5 -0.2 -0.5 0.095 0.139 0.097 0.710 0.648 0.722 0.995 0.995 0.995 0.993 1.000 1.000 1.000 1.000 0.996 1.000 1.000
70c 0.5 -0.2 -0.5 0.100 0.142 0.102 0.719 0.656 0.729 0.994 0.994 0.994 0.991 1.000 1.000 1.000 1.000 0.997 1.000 1.000

71b 0.5 0.2 0.0 0.187 0.177 0.183 0.859 0.837 0.856 0.213 0.213 0.213 0.243 0.861 0.861 0.861 0.866 0.874 0.883 0.883
71c 0.5 0.2 0.0 0.182 0.169 0.178 0.863 0.841 0.860 0.204 0.204 0.204 0.234 0.866 0.866 0.866 0.872 0.874 0.881 0.881
72b 0.5 0.2 -0.2 0.208 0.162 0.205 0.813 0.728 0.813 0.889 0.889 0.889 0.902 0.997 0.997 0.997 0.997 0.997 0.998 0.998
72c 0.5 0.2 -0.2 0.206 0.159 0.203 0.818 0.736 0.817 0.884 0.884 0.884 0.897 0.996 0.996 0.996 0.996 0.998 0.999 0.999
73b 0.5 0.2 0.2 0.151 0.173 0.150 0.848 0.835 0.845 0.056 0.056 0.056 0.065 0.749 0.749 0.749 0.754 0.735 0.769 0.769
73c 0.5 0.2 0.2 0.147 0.170 0.146 0.840 0.826 0.838 0.058 0.058 0.058 0.066 0.750 0.750 0.750 0.756 0.734 0.768 0.768
74b 0.5 0.2 0.5 0.102 0.145 0.103 0.719 0.652 0.727 0.995 0.995 0.995 0.992 1.000 1.000 1.000 1.000 0.997 1.000 1.000
74c 0.5 0.2 0.5 0.097 0.143 0.099 0.709 0.647 0.717 0.995 0.995 0.995 0.992 1.000 1.000 1.000 1.000 0.996 1.000 1.000

75b 0.5 -0.5 0.0 0.859 0.788 0.854 0.861 0.790 0.856 0.944 0.944 0.944 0.958 0.948 0.948 0.948 0.959 0.999 1.000 1.000
75c 0.5 -0.5 0.0 0.861 0.796 0.857 0.856 0.782 0.852 0.945 0.945 0.945 0.959 0.948 0.948 0.948 0.960 0.998 1.000 1.000
76b 0.5 -0.5 -0.2 0.862 0.865 0.863 0.864 0.866 0.862 0.421 0.421 0.421 0.449 0.433 0.433 0.434 0.465 0.943 0.972 0.972
76c 0.5 -0.5 -0.2 0.864 0.864 0.862 0.862 0.859 0.860 0.431 0.431 0.431 0.463 0.437 0.437 0.437 0.467 0.940 0.968 0.968
77b 0.5 -0.5 -0.5 0.756 0.769 0.759 0.756 0.766 0.758 0.055 0.055 0.055 0.048 0.055 0.055 0.055 0.048 0.500 0.683 0.683
77c 0.5 -0.5 -0.5 0.761 0.776 0.764 0.761 0.773 0.766 0.054 0.054 0.054 0.049 0.051 0.051 0.051 0.045 0.503 0.686 0.686

78b 0.5 0.5 0.0 0.869 0.801 0.866 0.857 0.788 0.852 0.945 0.945 0.945 0.959 0.944 0.944 0.944 0.957 0.998 1.000 1.000
78c 0.5 0.5 0.0 0.865 0.798 0.862 0.861 0.793 0.856 0.942 0.942 0.942 0.955 0.945 0.945 0.945 0.957 0.998 1.000 1.000
79b 0.5 0.5 0.2 0.871 0.872 0.870 0.864 0.863 0.864 0.429 0.429 0.429 0.460 0.427 0.427 0.426 0.459 0.941 0.970 0.970
79c 0.5 0.5 0.2 0.869 0.868 0.867 0.866 0.864 0.865 0.430 0.430 0.430 0.459 0.430 0.430 0.430 0.461 0.943 0.970 0.970
80b 0.5 0.5 0.5 0.763 0.775 0.765 0.761 0.774 0.764 0.054 0.054 0.054 0.047 0.052 0.052 0.052 0.045 0.506 0.693 0.693
80c 0.5 0.5 0.5 0.759 0.770 0.761 0.754 0.766 0.757 0.053 0.053 0.053 0.046 0.055 0.055 0.055 0.048 0.500 0.685 0.685
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Table 16: Bootstrapped: Two endogenous regressor and stronger instruments:

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.30, R2

3;z23 = 0.60

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

81b 0.2 0.2 0.0 0.342 0.334 0.340 0.332 0.328 0.331 0.326 0.326 0.326 0.324 0.330 0.330 0.330 0.327 0.510 0.512 0.512
81c 0.2 0.2 0.0 0.335 0.329 0.333 0.335 0.329 0.335 0.328 0.328 0.328 0.326 0.328 0.328 0.328 0.326 0.507 0.510 0.510
82b 0.2 0.2 -0.2 0.333 0.299 0.332 0.326 0.290 0.322 0.929 0.929 0.929 0.924 0.921 0.921 0.921 0.914 0.955 0.950 0.950
82c 0.2 0.2 -0.2 0.327 0.289 0.326 0.331 0.298 0.330 0.926 0.926 0.926 0.920 0.922 0.922 0.922 0.915 0.954 0.949 0.949
83b 0.2 0.2 0.2 0.312 0.316 0.311 0.309 0.313 0.308 0.100 0.100 0.100 0.098 0.095 0.095 0.095 0.092 0.267 0.288 0.288
83c 0.2 0.2 0.2 0.304 0.308 0.302 0.304 0.308 0.303 0.096 0.096 0.096 0.092 0.096 0.096 0.096 0.093 0.269 0.289 0.289

84b 0.5 0.2 0.0 0.348 0.329 0.344 0.999 0.998 0.999 0.396 0.397 0.397 0.375 1.000 1.000 1.000 1.000 1.000 1.000 1.000
84c 0.5 0.2 0.0 0.356 0.334 0.352 0.999 0.998 0.999 0.393 0.393 0.393 0.366 1.000 1.000 1.000 1.000 1.000 1.000 1.000
85b 0.5 0.2 0.2 0.308 0.332 0.307 0.999 0.998 0.998 0.179 0.179 0.179 0.148 0.996 0.996 0.996 0.995 0.999 0.998 0.998
85c 0.5 0.2 0.2 0.298 0.324 0.297 0.999 0.998 0.999 0.184 0.184 0.184 0.149 0.996 0.996 0.996 0.995 0.999 0.999 0.999

86b 0.5 0.5 0.2 0.999 0.999 0.999 1.000 1.000 1.000 0.610 0.610 0.610 0.530 0.610 0.610 0.610 0.524 1.000 1.000 1.000
86c 0.5 0.5 0.2 1.000 1.000 1.000 1.000 0.999 1.000 0.607 0.607 0.607 0.526 0.611 0.611 0.611 0.528 1.000 1.000 1.000

Table 17: Bootstrapped: Two endogenous regressor and weak instruments for y(3):

R2
2;z2 = 0.30, R2

2;z23 = 0.60, R2
3;z2 = 0.01, R2

3;z23 = 0.02

Case ρ2 ρ3 ρ23 W 3 D3 T 3 W 2 D2 T 2 W 3
2 D3

2 T 3
2 S3

2 W 2
3 D2

3 T 2
3 S2

3 W 23 D23 T 23

87b 0.2 0.2 0.0 0.029 0.052 0.050 0.180 0.145 0.183 0.163 0.163 0.163 0.197 0.335 0.335 0.335 0.334 0.271 0.263 0.263
87c 0.2 0.2 0.0 0.031 0.052 0.049 0.185 0.143 0.185 0.161 0.161 0.161 0.196 0.333 0.333 0.333 0.333 0.263 0.260 0.260
88b 0.2 0.2 -0.2 0.032 0.053 0.051 0.159 0.119 0.167 0.383 0.383 0.383 0.421 0.533 0.533 0.534 0.533 0.417 0.443 0.443
88c 0.2 0.2 -0.2 0.032 0.053 0.050 0.161 0.120 0.170 0.381 0.381 0.381 0.418 0.535 0.535 0.535 0.534 0.420 0.441 0.441
89b 0.2 0.2 0.2 0.030 0.051 0.048 0.089 0.098 0.096 0.162 0.162 0.162 0.179 0.249 0.249 0.249 0.249 0.206 0.195 0.195
89c 0.2 0.2 0.2 0.030 0.052 0.048 0.090 0.097 0.097 0.162 0.162 0.162 0.175 0.246 0.246 0.246 0.247 0.205 0.196 0.196
90b 0.2 0.2 -0.5 0.033 0.053 0.058 0.056 0.059 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.877 1.000 1.000
90c 0.2 0.2 -0.5 0.033 0.053 0.058 0.057 0.061 0.122 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.876 1.000 1.000
91b 0.2 0.2 0.5 0.034 0.052 0.050 0.029 0.063 0.047 0.268 0.268 0.268 0.268 0.284 0.283 0.283 0.283 0.231 0.223 0.223
91c 0.2 0.2 0.5 0.030 0.051 0.048 0.025 0.059 0.043 0.268 0.268 0.268 0.268 0.282 0.282 0.282 0.281 0.232 0.223 0.223

92b 0.5 0.2 0.0 0.032 0.053 0.057 0.583 0.391 0.614 0.614 0.614 0.614 0.814 1.000 1.000 1.000 1.000 0.841 0.999 0.999
92c 0.5 0.2 0.0 0.031 0.053 0.056 0.597 0.398 0.626 0.606 0.606 0.606 0.814 1.000 1.000 1.000 1.000 0.846 0.999 0.999
93b 0.5 0.2 -0.2 0.032 0.054 0.063 0.404 0.220 0.480 0.905 0.905 0.905 0.964 1.000 1.000 1.000 1.000 0.879 1.000 1.000
93c 0.5 0.2 -0.2 0.035 0.054 0.065 0.414 0.222 0.492 0.903 0.903 0.903 0.966 1.000 1.000 1.000 1.000 0.879 1.000 1.000
94b 0.5 0.2 0.2 0.031 0.053 0.056 0.392 0.253 0.451 0.834 0.834 0.834 0.924 0.999 0.999 0.999 0.999 0.840 0.998 0.998
94c 0.5 0.2 0.2 0.030 0.053 0.055 0.391 0.249 0.447 0.834 0.834 0.834 0.924 0.999 0.999 0.999 0.999 0.840 0.999 0.999

95b 0.5 0.5 0.0 0.047 0.078 0.085 0.604 0.387 0.641 0.683 0.683 0.683 0.867 1.000 1.000 1.000 1.000 0.851 1.000 1.000
95c 0.5 0.5 0.0 0.046 0.077 0.086 0.614 0.403 0.648 0.671 0.671 0.671 0.863 1.000 1.000 1.000 1.000 0.856 1.000 1.000
96b 0.5 0.5 0.2 0.045 0.078 0.078 0.397 0.288 0.457 0.796 0.796 0.796 0.898 0.998 0.998 0.998 0.998 0.811 0.997 0.997
96c 0.5 0.5 0.2 0.041 0.075 0.076 0.411 0.291 0.468 0.796 0.796 0.796 0.898 0.998 0.998 0.998 0.998 0.814 0.997 0.997
97b 0.5 0.5 0.5 0.049 0.082 0.078 0.104 0.136 0.210 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000 0.838 0.998 0.998
97c 0.5 0.5 0.5 0.044 0.076 0.074 0.104 0.133 0.207 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.837 0.999 0.999

7 Empirical case study

A classic application involving more than one possibly endogenous regressor is Griliches
(1976), which studies the effect of education on wage. It is often used to demonstrate
instrumental variable techniques. Both education and IQ are presumably endogenous
due to omitted regressors. However, testing this assumption is often overlooked. Here
we shall examine the exogeneity status of both regressors jointly and individually by
means of the full-set tests and the sub-set tests. The same data are used as in Hayashi
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(2000, p.236). We have the wage equation and reduced form equations

logWi = β1Si + β2IQi + Z1iγ1 + ui (7.1)

Yi = Z1iΠ1 + Z2iΠ2 + Vi, (7.2)

where W is the hourly wage rate, S is schooling in years and IQ is a test score.
All explanatories of logWi that are assumed to be predetermined or exogenous are
included in Z1; these are an intercept (CONS), years of experience (EXPR), tenure
in years (TEN), a dummy for southern states (RNS) and a dummy for metropolitan
areas (SMSA). Additionally Z2 includes the external instruments age, age squared,
mother education, KWW test score and a marital status dummy. In accordance with
our previous notation both potentially endogenous regressors are included in Y .

Table 18 presents the results of four regressions. OLS treats both S and IQ as
exogenous, whereas they are both assumed to be endogenous in the IV regression.
In Sanderson and Windmeijer (2016) the standard first stage F-statistic is shown to
be uninformative in the two-endogenous-variable model. They propose a correction
to the conditional F-statistic of Angrist and Pischke (2009), which was originally
introduced to deal with this issue. The corrected F-statistic19 is 14.65 for S and 10.96
for IQ. In IV1 regressor S is treated as predetermined and IQ as endogenous (with
relevant F value of 8.77), whereas in IV2 regressor IQ is treated as predetermined
and S as endogenous (with relevant F value of 96.07). The F-values indicate that the
external instruments Z2 can be characterized as strong for S and rather weak for IQ,
although in the case in which S and IQ are both treated as endogenous the results
are mixed.

Table 18: Regression results for Griliches data, n = 758

OLS IV IV1 IV2

logW Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.
S 0.093 0.007 0.178 0.019 0.129 0.016 0.155 0.011
IQ 0.003 0.001 -0.010 0.005 -0.009 0.005 -0.002 0.001
EXPR 0.039 0.006 0.046 0.008 0.035 0.007 0.050 0.007
RNS -0.075 0.029 -0.101 0.036 -0.110 0.034 -0.077 0.030
TEN 0.034 0.008 0.040 0.009 0.039 0.009 0.036 0.008
SMSA 0.137 0.028 0.129 0.032 0.148 0.031 0.121 0.030
CONS 30.895 0.109 40.105 0.355 40.660 0.329 30.564 0.124

Next, in Table 19, we test various hypotheses regarding the exogeneity of one
or both potentially endogenous regressors. We use both the crude asymptotic tests
and their refined bootstrapped versions. Joint exogeneity of schooling and IQ is
rejected. Hence, at least one of these regressors is endogenous and we should use the
sub-set tests to find out whether it is just one or both. However, first we examine
the effect of using the full-set test on the individual regressors. In both cases the
null hypothesis is rejected. From the Monte Carlo simulation results we learned

19The corrected F-statistics are implicitly compared to Stock-Yogo critical values.
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that the full-set tests are inappropriate for correctly classifying individual regressors
in the presence of other endogenous regressors. Therefore, we better employ the
sub-set tests. Again we reject the null hypothesis that schooling is exogenous, but
the null hypothesis that IQ is exogenous is not rejected at usual significance levels,
except by the Sargan test. Bootstrapping the test statistics does not lead to different
conclusions. Based on these results (and neglecting the Sargan outcome) one could
greet regression IV2 instead of IV , resulting in reduced standard errors and a less
controversial result on the effect of IQ, as can be seen from Table 18. However, in
some of our simulation results the Sargan test demonstrated slightly better power
than its competitors. Hence, treating both S and IQ as endogenous would make
sense too and yields more cautious inferences.

Table 19: DWH tests for Griliches data:

Variables Test Statistics Critical Values

Test type Tested Instruments W D T H S χ2
.05 Ŵ bc

.05 D̂bc
.05 T̂ bc.05 Ĥbc

.05 Ŝbc.05

Full-set S, IQ Z1, Z2 46.87 59.42 65.13 40.79 66.39 5.99 6.87 7.36 7.50 6.68 7.81
Full-set S Z1, Z2, IQ 50.64 55.99 61.06 47.70 59.45 3.84 4.45 4.45 4.52 4.45 4.45
Full-set IQ Z1, Z2, S 6.28 7.24 7.38 6.23 18.58 3.84 3.32 3.56 3.61 3.31 3.62
Sub-set S Z1, Z2 41.16 45.24 46.74 38.28 47.82 3.84 5.02 5.22 5.09 4.86 5.31
Sub-set IQ Z1, Z2 2.72 3.12 2.88 2.70 6.94 3.84 3.72 4.46 4.03 3.68 4.85

8 Conclusions

In this study various tests on the orthogonality of arbitrary subsets of explanatory
variables are motivated and their performance is compared in a series of Monte Carlo
experiments. We find that genuine sub-set tests play an indispensable part in a
comprehensive sequential strategy to classify regressors as either endogenous or ex-
ogenous. Full-set tests have a high probability to classify an exogenous regressor
wrongly as endogenous if it is merely correlated with an endogenous regressor. In our
derivations of the various tests we indicate flaws at various places in the established
literature.

Regarding type I error performance we find that sub-set tests benefit from es-
timating variances under the null hypothesis (Do), as in Lagrange multiplier tests.
Estimating the variances under the alternative (Wo), as in Wald-type tests, leads to
underrejection when the instruments are not very strong. However, bootstrapping
results in good size control for all test statistics as long as the instruments are not
weak for one of the endogenous regressors. When the various tests are compared in
terms of power the bootstrapped Wald-type tests and the Sargan test behave often
slightly more favorable. This falsifies earlier theoretical presumptions on the better
power of the To type of test.

Even when the instruments are weak for the maintained endogenous regressor but
strong for the regressor under inspection we find that the sub-set tests exhibit power,
but there is insufficient size control, also when bootstrapped. This is in contrast to
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situations in which the instruments are not weak. Then, when bootstrapped, the sub-
set and full-set tests can jointly be used fruitfully to classify individual explanatory
variables and groups of them as either exogenous or endogenous. In further work
we hope to report on the performance of tests of the orthogonality of sub-sets of
external instruments and on joint tests of the orthogonality of included and excluded
instruments.

Although our experiments involved static models of Gaussian IID variables only,
with a degree of overidentification of just zero or one, we found that the nuisance
parameter space which determines size distortions is quite intricate. Apart from
degree of endogeneity and instrument strength, also multicollinearity and particular
reduced form characteristics play a role. This may explain why so few simulation
studies regarding inference on endogeneity are available yet for more realistic models.
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