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Abstract

The parameter space of dynamic stochastic general equilibrium (DSGE) mod-

els typically includes non-identification regions over which the likelihood is flat.

Use of informative priors makes it difficult to diagnose identification problems,

since posteriors can look very different from priors when the model is only par-

tially identified, as is often the case. The Bayes factor is then misleading since

it shows that there is information in the marginal likelihood while actually there

isn’t. Moreover, when flat priors on the structural parameters are used, the pos-

terior piles up in the non-identification region, generating spurious inference.

We propose a solution to the above pathologies that is based on using pri-

ors/posteriors on the structural parameters that are implied by priors/posteriors

on the parameters of an embedding linear model, such as a reduced-form VAR.

Since the reduced-form parameters are well-identified, this approach does not

lead to any a posteriori favor for the non-identification regions. An example of

such a prior is the Jeffreys prior which is particularly appealing due to its invari-

ance and uninformativeness properties. We provide a straigtforward rejection

sampling algorithm with good convergence properties to sample from the priors

and posteriors. We illustrate our analysis using the new Keynesian Phillips curve

estimated using US data, and find that this model is rather poorly identified.
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1 Introduction

There is a large literature that is concerned with identification issues in frequentist

statistical analysis of dynamic stochastic general equilibrium (DSGE) models. This

literature shows that when identification fails, estimators converge to random variables

while the limiting distributions of most test statistics depend on nuisance parameters,

see Kleibergen and Mavroeidis (2009) and the references therein. A class of test statis-

tics, however, exists whose limiting distributions are robust to such identification issues

and these statistics are therefore typically referred to as identification robust statistics.

We establish the analogues of these identification issues for Bayesian analysis of DSGE

models.

First, we document the effect that identification failure has on the update from

prior to posterior. On the one hand, when informative priors are used, the location

and precision of the posterior distributions can change significantly relative to the priors

even when the parameters are only partially identified. Therefore, it is problematic to

assess the quality of identification by comparison of (marginal) priors and posteriors,

for example, using the Bayes factor. On the other hand, when flat priors are used

on the structural parameters, the posteriors will tend to favor the non-identification

region of the parameter space. Therefore, flat priors on the structural parameters are

not uninformative. This is an instance of the identification pathology pointed out

by Kleibergen (1997) and Kleibergen and van Dijk (1998) for simultaneous equations

models.

Second, we propose a solution to the above identification pathologies. We consider

DSGE models whose likelihood can be approximated by a linear model, such as a

vector autoregression (VAR). This includes a large class of models that are estimated

in practice. The (reduced-form) parameters of this embedding linear model are well-

identified, so the updating from prior to posterior is well-understood. We therefore

propose to base inference on the structural DSGE parameters on the priors/posteriors

of the embedding linear model. Specifically, we use the mapping from the DSGE pa-

rameters to the reduced-form parameters in order to obtain priors/posteriors on the

former that are implied by the priors/posteriors on the latter. When the DSGE model

is just-identified, so that the mapping from structural to reduced-form parameters is

invertible, this can be done by a corresponding transformation of random variables.

The priors thus obtained are such that they place zero weight on the non-identification

region of the parameter space, thus avoiding posterior pile-ups and spurious inference.

Over-identified models are more involved, because the structural model places restric-
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tions on the embedding linear model, so the mapping from structural to reduced form

parameters is not invertible. In this case, we define a mapping from the reduced form

to the structural parameters by minimizing a criterion function which corresponds to

the likelihood ratio of the unrestricted and restricted reduced forms. As a by-product

of the minimization, we obtain a vector of auxiliary parameters that measure the dis-

tance of the restricted to the unrestricted model, and which are orthogonal to the

structural parameters. This allows us to obtain a transformation of random variables

from the reduced form to the structural and auxiliary parameters, and perform our

analysis analogously to the just identified case. In addition, the auxiliary parameters

serve as a measure of misspecification. of the overidentifying restrictions.

Our approach can be used with any type of prior on the reduced-form (linear

model) parameters. The Jeffreys prior is particularly appealing because of its invariance

and because it is uninformative for the coefficients of the linear model. Additional

information arising, for instance, from a previous sample, can be incorporated using

natural conjugate priors, such as g-priors. These lead to straightforward posteriors

from which can be sampled easily.

Finally, we provide a rejection sampling algorithm that is straightforward to com-

pute and converges fast. As an illustration, we apply our approach to the estimation of

the new Keynesian Phillips curve (NKPC). We use a g-prior to compute the posteriors

of the NKPC parameters using US data and test if the model is supported by the data.

The paper is organized as follows. In the next section we discuss the identification

problems for an exactly identified DSGE model: the new Keynesian Phillips curve.

In the third section, we discuss the prior specification issues that these identification

problems lead to for such a just identified model. In the fourth section, we extend the

analysis to over-identified models for which we provide a framework to specify invariant

priors that do not lead to an a posteriori favor for the regions of the parameters where

the model is non-identified. We also show that these priors, unlike the priors that

do not account for the identification issues, lead to Bayes factors that only reveal the

information on the parameters available in the likelihood. The fifth section proposes

the prior and posterior simulator. In the sixth section we compute the priors, posteriors

and Bayes factors for the new Keynesian Phillips curve using US data. The seventh

section concludes.
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2 Linear(ized) DSGE models

The results of this paper are applicable to a wide class of DSGEmodels whose likelihood

functions can be represented by a linear model of the form:

Yt = A (θ)0Xt + Ut (1)

where Yt is an m× 1 vector of dependent variables, Xt is a k× 1 vector of independent
(predetermined) variables, Ut is an m× 1 vector of unobservable innovations which we
will assume to be normal, and A (θ) is a known k ×m matrix function of the p × 1
vector of structural parameters θ. Equation (1) is the restricted reduced form (RRF)

of some underlying structural model. With slight abuse of notation, the corresponding

unrestricted reduced from (URF) will be written as

Yt = A0Xt + Ut, (2)

where A is a k × m matrix of unrestricted parameters. A leading case is when Xt

consists of lags of Yt, so that (2) is a vector autoregression (VAR). To clarify the

identification issues, we use the new Keynesian Phillips curve (NKPC) as an example

upon which we return several times throughout this section and the next one and also

in the application in Section 6.

Example: The new Keynesian Phillips curve The NKPC is a forward-looking

model of inflation dynamics that arises from frictions in price adjustment. A typical

version of the model takes the form

yt = λxt + βEt (yt+1) + εt, (3)

where yt denotes inflation, xt denotes some measure of economic slack, such as the

output gap, unemployment rate or the labor share, εt is an unobserved markup shock,

Et (·) denotes expectations conditional on information at time t, and λ and β are un-

known structural parameters, see Gali and Gertler (1999). Other examples of forward-

looking models that take the form of equation (3) include Euler equation models for

consumption, exchange rates and asset pricing, see, e.g., Engel and West (2005).

To complete the model, we need a specification of the law of motion of xt and a

solution of (3). The simplest model that yields identification is

xt = ρ1xt−1 + ρ2xt−2 + vt, (4)
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see Mavroeidis (2005). Under rational expectations, the minimum state variable solu-

tion of equation (3) is given by

yt = α1xt−1 + α2xt−2 + ηt (5)

with ηt =
λ

1−β(ρ1+βρ2)vt + εt and

α1 =
λ (ρ1 + βρ2)

1− β (ρ1 + βρ2)
, α2 =

λρ2
1− β (ρ1 + βρ2)

. (6)

Therefore, the reduced form dynamics of the vector of observables Yt = (yt, xt)
0 are

given by the linear model (1) whereXt = (xt−1, xt−2)
0 , Ut = (ηt, vt)

0 , A (θ) =
µ

α1
α2

... ρ1
ρ2

¶
and θ = (λ, β, ρ1, ρ2)

0.
¤

2.1 Identification

The parameters of the linear model are identified subject to the generally innocuous

rank condition rank [E (XtX
0
t)] = k. The identification of the structural parameters θ

is generally difficult to characterize a priori and depends on whether the mapping from

θ to A, given by A (θ), is invertible. The rank condition for local identification of θ is

given by rank
h
∂vec(A(θ))

∂θ0

i
= p. The regions of the parameter space of θ over which this

condition fails are referred to as local non-identification regions, see Dufour (1997).

The existence of those regions complicates inference on the parameter θ and leads to

various identification pathologies.

Example (continued): NKPC The parameters (λ, β) of the model given by equa-

tions (3) and (4) are identified if and only if λρ2 6= 0, see Mavroeidis (2005). The space
defined by λρ2 = 0 is a local non-identification region of the parameter space. Identi-

fication is weak if ρ2 or λ (and hence α2) are close to zero.
1 In the special case ρ2 = 0,

(λ, β) are only partially identified. Specifically, if ρ1 6= 0, then α1 =
λ
1−β is identified,

since it is a reduced form parameter, but λ and β are not (separately) identified.
¤

In frequentist inference, identification pathologies involve non-normality and in-

consistency of estimators and size distortion of Wald, LM and LR tests. In Bayesian

1The strength of identification can be measured by the concentration parameter, μ2 =
Tρ22
1−ρ22

λ
1−β(ρ1+βρ2)

σ2v
σ2η
, see Kleibergen and Mavroeidis (2009).
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inference the pathologies can be aggravated compared to frequentist analysis by the

specification of the prior. For example, when we use a flat ‘non-informative’ prior, pile

ups in the marginal posterior will appear because of the integration over non-identified

parameters. This will lead to an a posteriori favor for the non-identified parameter

regions which is something which does not occur in frequentist analysis. Moreover,

comparison of posteriors to priors, for example using the Bayes factor via the Savage-

Dickey (SD) density ratio, can give a very misleading picture of the information in the

data about the structural parameters.

We compare two different approaches to prior specification for the models considered

here. The first is the conventional approach in the literature, which is to specify priors

directly on the structural parameters θ. We show below in the context of the NKPC

example that using flat priors on θ leads to pile-ups in the posterior and distorted

Savage-Dickey density ratios. The second approach is to specify priors on the reduced-

form parameters A, and derive the implied priors on θ by the transformation of random

variables A to θ, taking proper account of the Jacobian of the transformation from A

to θ. Del Negro and Schorfheide (2008) also proposed to obtain priors on the structural

parameters from priors on the reduced form parameters, but they did not take into

account the Jacobian of the transformation. We show that this is crucial to ensure the

reliability of this approach.

We start our analysis with just-identified models in which the mapping from θ to

A is invertible, and therefore, the transformation from A to θ is well defined. We

then discuss over-identified models in which we need to define an additional auxiliary

parameter in order to obtain the transformation from A to θ.

3 Analyzing just-identified models

Let D denote the observed data, and l (D|A) the likelihood function. Also, let p (θ)
denote the prior of θ and p (θ|D) ∝ p (θ) l (D|A (θ)) the corresponding posterior. If
there is a nonidentification region in the parameter space and we use a flat prior

p (θ) = 1, then the posterior of some parameters will exhibit pile-ups at points that lie

in the nonidentification region. This means the posterior will spuriously favor certain

regions in the parameter space. Similarly, the SD ratio will exhibit spurious spikes

even when there is no identification.
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Example (continued): NKPC The parameters (λ, β) of the model given by equa-

tions (3) and (4) can be solved from equation (6). When λρ2 6= 0, the inverse of the
mapping A (θ) from θ to A is given by

β =
α1
α2
− ρ1

ρ2
and λ =

α22 − (α1ρ2 − α2ρ1)α1
α2ρ2

and the identities ρ1 = ρ1 and ρ2 = ρ2.

We assume that Ut in (1) is independently N(0,Ω) distributed, with Ω an m×m

dimensional covariance matrix. To show the consequences of a lack of identification,

we consider the data generating process (DGP) given by equations (3) and (4) with

λ = 0.5, β = 0.99, ρ1 = 0.9, ρ2 = −0.2, σv = 1, σε = 1, corr (ε, v) = 0.1, see

Kleibergen and Mavroeidis (2009). Its concentration parameter is around 3, so the

structural parameters are not well identified. We first analyze the joint posterior of

λ and ρ2. Since ρ2 = 0 is a non-identification point, the distribution of λ is almost

flat near ρ2 = 0. Figure 1 reports the contours of the joint posterior of λ and ρ2. It is

evidently flat in λ in the direction of ρ2, as expected. Next, we look at the marginal

distribution of ρ2, which shows the pile-up problem. Since ρ2 is both in θ and in A,

it can be obtained in two ways: (i) from the reduced form specification (2) given some

prior on A, and (ii) from the structural specification (1) given some prior on θ. Even if

the marginal prior on ρ2 is the same in both cases, the posterior will differ if the priors

on the remaining parameters in A and θ differ. Figures 2 and 3 report the marginal

posterior of ρ2 based on the two alternative prior specifications. The marginal posterior

of ρ2 in Figure 2, which is on the left, is the based on a flat (Jeffreys) prior in the linear

model (2) which is equivalent with a Jeffreys prior on the structural parameters. The

marginal posterior of ρ2 in Figure 3, which is on the right, is based on a flat prior in the

structural model (1). Figure 2 shows that ρ2 is a perfectly well identified parameter,

with a posterior distribution nicely centered on the (known) true value of -0.2. However,

Figure 3 displays a pile up at ρ2 = 0, which is spurious, and results from integrating

out λ over the non-identified region.
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¤

The alternative approach to prior specification that we propose in this paper is to

start from a prior on the reduced form parameters A and derive the implied prior on the

structural parameters θ using a proper transformation of random variables. In this way,

conclusions about the structural parameters will be invariant to the parametrization of

the model, so pathologies like the one shown in Figure 3 will be avoided. A flat prior

8



on the parameters of the linear model, A, is identical to the Jeffreys prior which equals

the square root of the determinant of the information matrix. The Jeffreys prior in

the exactly identified model corresponds to the Jacobian of the transformation from

the linear model parameters to the structural parameters, |J (A, θ)|. When we use this
Jeffreys prior, the posteriors of all parameters still reflect the identification issues but

no longer have pile ups.

Example (continued): NKPC The marginal posteriors of the structural param-

eters (λ, β) in the NKPC are given in Figure 4 based on a flat prior and in Figure

5 based on the Jeffreys priors, respectively. All these marginal posteriors exhibit fat

tails, since identification is weak in this example (the concentration parameter is 3).

The posteriors based on the Jeffreys priors are, however, somewhat tighter, indicating

that the model is not completely unidentified.
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Figure 5. Marginal posteriors λ (left) and β (right) Jeffreys prior.

Finally, Figures 6 and 7 show bivariate posteriors for (λ, ρ2) and (λ, β) , respectively.

Comparison of Figure 6 with Figure 1 shows no pile-up problem around ρ2 = 0 for the
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bivariate posterior using the Jeffreys prior in Figure 6, while the joint posterior of

(λ, β) using the flat prior in Figure 1 displays a ridge along the line where λ is locally

non-identified. Figure 6 also shows that the penalization of the identification problem

by the Jeffreys prior is such that there are no awkward discontinuities when ρ2 = 0

which would occur if we penalize it too much.
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Figure 6. Contours of the bivariate posterior of (ρ2, λ) using the Jeffreys prior.

¤

Thus, it seems natural to impose (normal) priors on the parameters of the linear

model and to have these priors imply the priors on the parameters of the NKPC. This

reasoning extends to the parameters of any structural model that is exactly identified

so the same reasoning applies to linear IV, error correction cointegration, etc.

4 Analyzing restricted (over-identified) models

We previously discussed priors for a Bayesian analysis of a just-identified model where

the mapping from the structural to reduced form parameters is invertible. For these

models, we showed that, if we specify the prior directly on the structural form parame-

ters, the implied priors on the well identified reduced form parameters reveal properties

of the marginal posteriors which are not obvious from the priors on the structural pa-

rameters. It seems therefore natural to specify priors directly on the well identified

reduced form parameters and let these priors induce the priors on the structural form

parameters.
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When we follow the above line of argument to construct priors on just identified

models, a disparity occurs with the manner in which we typically specify priors on the

parameters of structural models that are nested within the just identified structural

model. Consider, for example, a (over-identified) structural model that has an one-to-

one mapping with a (restricted) reduced form model:

Y = XA(θ) + U, (7)

with θ the p × 1 vector that contains the structural parameters, Y = (Y1 . . . YT )
0 and

X = (X1 . . .XT )
0 are the T ×m and T × k dimensional matrices with the dependent

and predetermined variables respectively, A(θ) a k ×m dimensional matrix function

of the structural parameters θ and U a T ×m matrix with disturbances. The T rows

of U are independently N(0,Ω) distributed, with Ω the m×m dimensional covariance

matrix. Many models accord with the specification in (7), like, for example, the linear

instrumental variables regression model, the error correction cointegration model, the

New Keynesian Phillips curve and many other DSGE models.

We make the over-identified structural model in (7) just identified by adding km−p
parameters which are contained in a (km− p)× 1 dimensional parameter vector μ so

A = A(θ, μ), (8)

with A unrestricted and an invertible function of (θ, μ), A(θ) = A(θ, μ)|μ=0 and where
|μ=0 stands for evaluated at μ = 0. In such a just identified model, a prior on the unre-
stricted reduced form parameter A implies a prior on the structural form parameters

(θ, μ) and vice versa:

p(θ, μ) = p(A(θ, μ))|J(A, (θ, μ))|
p(A) = p(θ(A), μ(A))|J((θ, μ), A)|, (9)

with p(θ, μ) the prior on (θ, μ), p(A) the prior on A and |J(A, (θ, μ))|, |J((θ, μ), A)| the
Jacobians of the transformation from A to (θ, μ) and vice versa:

J(A, (θ, μ)) = ∂vec(A(θ,μ))
∂θ0 ∂μ0 , J((θ, μ), A) =

∂(θμ)
∂vec(A)0 .

(10)

For the nested (over-identified) structural model, a prior on θ can now be obtained

in two different ways:

1. By directly specifying it on θ, which since θ is an invertible function of A(θ) =

A(θ, μ)|μ=0, corresponds with:
p(θ) ∝ p(A(θ, μ)|μ=0). (11)
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2. By specifying a prior on A and using a transformation of random variables from

A to (θ, μ). The conditional prior of θ given that μ is equal to zero is then the

prior of θ in the nested model:

p(θ) ∝ p(A(θ, μ)|μ=0)|J(A, (θ, μ))|μ=0|. (12)

The difference between the first and second approach is that the second approach

involves the Jacobian of the transformation while the first one does not. When the

Jacobian does not depend on θ, as in linear models, the two approaches are identical

so in linear models we can be thought of to have implicitly used the second approach.

In models that are non-linear in the parameters, the two approaches differ be-

cause the Jacobian of the transformation is no longer constant. For these models,

the first approach is the pre-dominant approach in the literature, see e.g. Del Negro

and Schorfheide (2008). We have showed for just identified structural models that

ignoring the Jacobian of the transformation leads to identification pathologies and the

same therefore occurs in over-identified structural models as well when we ignore the

Jacobian of the transformation, see Kleibergen and Van Dijk (1994,1998). Unlike in

just identified models, the Jacobian of the transformation is, however, not well defined

for over-identified models since it depends on the parameter μ. There is a contin-

uum of specifications of μ which can be used to specify A as an invertible function of

(θ, μ) so the results depend on the chosen specification of μ which is known as the

Borel-Kolmogorov paradox, see e.g. Kolmogorov (1950), Drèze and Richard (1983),

Billingsley (1986) and Wolpert (1995). We therefore put regularity conditions on μ

which ensure that:

1. For every value of θ, A(θ, μ) is a strictly monotonic function of μ so μ reflects

the restriction that results in the over-identified structural model for every value

of θ.

2. If we obtain the prior on θ in the over-identified structural model from a prior onA

in the encompassing linear model that is invariant with respect to the specification

of A, the resulting prior on θ is invariant with respect to the specification of θ as

well.

3. When mapping A onto A(θ), A(θ, 0) is the closest value that results in the over-

identified structural model from the perspective of the prior on A.

The regularity conditions on μ ensure that the resulting priors and posteriors avoid

the Borel-Kolmogorov paradox so they do not suffer from any pathologies which result
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from the specification of μ, see Kleibergen (2004) for an extensive discussion of these

conditions. The first regularity condition certifies that μ is not locally non-identified

for specific values of it or θ. It therefore reflects the restriction that results in the

over-identified structural model for every value of θ. This condition allows all mono-

tonic transformations of a specification of μ that satisfies condition 1 to be used as an

alternative specification of μ as well.

The second regularity condition implies invariance of the resulting priors and poste-

riors of θ. In frequentist inference, the likelihood function is invariant to transformations

of the parameters but since parameters are random variables in Bayesian analysis pri-

ors and posteriors are not necessarily invariant to transformations of θ. For example,

the priors that result from the first approach are not invariant to transformations of θ.

The best known prior which is invariant to transformations of θ is the Jeffreys prior,

which equals the square root of the determinant of the information matrix, see Jeffreys

(1957). The second approach for specifying a prior on θ is such that if we specify a

Jeffreys prior on A, the implied prior on θ in the over-identified structural model is a

Jeffreys prior as well. We can obviously also specify invariant informative priors on

A which will result in invariant informative priors on θ in the nested over-identified

structural model.

In frequentist inference, the large sample distributions of statistics that are not

invariant to parameter transformations, like, for example, the Wald statistic, cannot be

robust to identification failure, see Dufour (1997). All the identification robust statistics

in frequentist inference are therefore invariant to parameter transformations, see e.g.

Anderson and Rubin (1949), Kleibergen (2002,2005), Kleibergen andMavroeidis (2010)

and Moreira (2003). Invariance to parameter transformations is therefore a necessary

property that statistical procedures need to possess in order not to be misleading when

identification fails.

The third regularity condition is not really a condition but shows how we solve θ

from A for the model at hand. It implies a specification of the over-identification/

misspecification. parameter μ which results in a straightforward manner from the part

of A that is not explained by A(θ). In the sequel, we lay out what conditions 1-3 amount

to when we specify a normal g-prior on A.
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4.1 Informative G-prior

We specify a normal g-prior on A given Ω and an inverted-Wishart prior for Ω :

A|Ω ∼ N(A0,Ω⊗ T
g
(X 0X)−1)

Ω ∼ iW (W0, h)
(13)

with g a scalar. The g-prior allows us to use the covariance structure from the data

and focus on the specification of the prior mean A0 for which we often have informa-

tion while we typically have little information on the covariance structure, see Zellner

(1971,1983). The parameter h reflects the degrees of freedom of the inverted-Wishart

prior and the m × m dimensional matrix W0 its scale parameter. The parameter g

is specified such that it reflects the number of observations the prior represents. The

g-prior depends on the data so it, in a sense, violates the likelihood principle.

We transform the prior on (A, Ω) in (13) towards a prior on (θ, Ω) in the nested

over-identified model. We therefore first obtain (θ, μ) from A in a two step manner

that accords with our three regularity conditions:

1. To obtain θ, we conduct a mapping from A to A(θ, 0) which results from the

(likelihood ratio) minimization problem:

θ = argminθ tr [Ω
−1 (A(θ)−A)0X 0X(A(θ)−A)]

= argminθ vec(A(θ)−A)0 [Ω−1 ⊗X 0X] vec(A(θ)−A).
(14)

2. Given our value of θ, μ results from the standardized (orthogonal) left-over part

of the mapping from A to A(θ) :

μ =

∙³
∂vec[A(θ)]

∂θ0

´0
⊥
(Ω⊗ (X 0X)−1)

³
∂vec[A(θ)]

∂θ0

´
⊥

¸−1
³
∂vec[A(θ)]

∂θ0

´0
⊥
[vec(A)− vec(A(θ))]

(15)

with
³
∂vec[A(θ)]

∂θ0

´
⊥
: km× (km− p) and³

∂vec[A(θ)]
∂θ0

´0 ³
∂vec[A(θ)]

∂θ0

´
⊥
≡ 0³

∂vec[A(θ)]
∂θ0

´0
⊥
(Ω⊗ (X 0X)−1)

³
∂vec[A(θ)]

∂θ0

´
⊥
≡ Ikm−p.

(16)

Step 1 shows that we do not conduct a direct transformation from A to (θ, μ) but

since we can specify (14) as well as

θ = argminθ vec
h
(X 0X)

1
2A(θ)Ω−

1
2 − (X 0X)

1
2AΩ−

1
2

i0
vec

h
(X 0X)

1
2A(θ)Ω−

1
2 − (X 0X)

1
2AΩ−

1
2

i
,

(17)
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we first normalize A to a random variable, i.e. its matrix of t-values: (X 0X)
1
2AΩ−

1
2 ,

with an identity covariance matrix. We then obtain (θ, μ) from this random matrix.

Hence we conduct a transformation of random variables fromh
Ω−

1
2 ⊗ (X 0X)

1
2

i
vec(A) ∼ N(

h
Ω−

1
2 ⊗ (X 0X)

1
2

i
vec(A0), Tg Ikm) (18)

towards h
Ω−

1
2 ⊗ (X 0X)

1
2

i h
vec(A(θ) + (Ω⊗ (X 0X)−1) vec

³
∂vec[A(θ)]

∂θ0

´
⊥
μ
i
. (19)

In order to obtain the specification of the prior on (θ,Ω) in the over-identified structural

model, we first construct the Jacobian of the transformation.

Theorem 1 The Jacobian of the transformation from A to (θ, μ) reads

|J(A, (θ, μ))| = ¯̄[F − (Ip ⊗ μ0H 0)G]0 F−1 [F − (Ip ⊗ μ0H 0)G]
¯̄ 1
2 (20)

with
F =

³
∂vec(A(θ))

∂θ0

´0 ¡
Ω⊗ (X 0X)−1

¢ ³∂vec(A(θ))
∂θ0

´
H =

³
∂vec[A(θ)]

∂θ0

´
⊥

G = ∂
∂θ0vec

h³
∂vec[A(θ)]

∂θ0

´i
.

(21)

Proof. see the Appendix.

Using the Jacobian of the transformation from Theorem 1, we construct the prior

on (θ, μ,Ω) that is implied by the prior on (A,Ω). We then obtain the prior of (θ,Ω)

in the over-identified model as equal to the conditional prior for (θ,Ω) given that μ is

equal to zero:

pg(θ,Ω) ∝ pg(θ, μ,Ω)|μ=0
∝ pg(θ, μ|Ω)|μ=0p(Ω)
∝ pg(A(θ, μ)|Ω)|μ=0|J(A, (θ, μ))|μ=0|p(Ω)

∝ |Ω|− 1
2
(h+m+1)

¯̄̄̄³
∂vec(A(θ))

∂θ0

´0
(Ω−1 ⊗X 0X)

³
∂vec(A(θ))

∂θ0

´¯̄̄̄ 12
exp

£−1
2
tr
£
Ω−1

¡
g
T
(A(θ)−A0)

0X 0X(A(θ)−A0) +W0

¢¤¤
,

(22)

where we used the expression of the Jacobian in (20) with a value of μ equal to zero.

The specification of the Jacobian in (22) ensures that the prior is invariant with

respect to the specification of θ and Ω. When g, h and W0 are all equal to zero, the

prior in (22) corresponds with the Jeffreys prior:

pJef(θ,Ω) ∝ |Ω|− 1
2
(m+1)

¯̄̄̄³
∂vec(A(θ))

∂θ0

´0
(Ω−1 ⊗X 0X)

³
∂vec(A(θ))

∂θ0

´¯̄̄̄ 12
, (23)
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so our g-prior has the Jeffreys prior as a special case. While the Jeffreys prior reflects

some notion of uninformativeness for the parameters contained in θ, see Jeffreys (1957),

we often want to specify an informative prior on them. In many cases, we have prior

ideas about θ but not aboutA.We can then calibrate the prior onA to capture our prior

ideas about θ. For example, we can simulate data from the over-identified structural

model using an a priori plausible value of θ and use the least squares estimate of A as

our prior mean A0. In the next section, we discuss prior simulators that allow us to

compute the marginals prior for the different elements of θ which we can also use to

assess whether the prior adequately reflects our prior ideas.

When we update the prior in (22) with the likelihood, we obtain the posterior:

pg(θ,Ω|D) ∝ pg(θ,Ω)L(θ,Ω|D)
∝ pg(A(θ, μ)|Ω,D)|μ=0|J(A, (θ, μ))||μ=0p(Ω|D)

∝ |Ω|− 1
2
(T+h+m+1)

¯̄̄̄³
∂vec(A(θ))

∂θ0

´0
Ω−1 ⊗X 0X)

³
∂vec(A(θ))

∂θ0

´¯̄̄̄ 12
exp

h
−1
2
tr
h
Ω−1

³
( g
T
+ 1)

³
A(θ)− Ã)0X 0X(A(θ)− Ã

´
+ W̃

´ii
,

(24)

with
Ã = 1

T+g
(gA0 + TÂ)

Â = (X 0X)−1X 0Y

W̃ = W0 + Y 0MXY +
g

T+g
(A0 − Â)0X 0X(A0 − Â)

MX = IT −X(X 0X)−1X 0.

(25)

The posterior in (24) has the same functional expression as the prior in (22). The

prior can therefore be thought of as to be a posterior of a previous data-set so it is a

natural conjugate prior. For linear models, the update from prior to posterior is well

understood. For example, in linear models, normal priors lead to normal posteriors

which makes the normal prior a natural conjugate prior for the linear model. The

specification of the prior and posterior in (22) and (24) ensure that these results extend

to non-linear models as well, for example, the natural conjugacy property. The well

behaved prior and posterior on A that result from the g-prior also ensure that there

is no pathological behavior of any of the marginal priors and posteriors of elements of

θ that result from integrating over locally non-identified parameters. This holds since

the prior/posterior on A are well behaved and the transformation of random variables

that we conduct to obtain the prior/posterior on θ in the over-identified model accords

with conditions 1-3.
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As an example of the implications of the priors and posteriors laid out above, we

briefly discuss them for the linear instrumental variables regression model, see e.g.

Kleibergen (1997), Kleibergen and Van Dijk (1998), Kleibergen and Zivot (2003) and

Hoogerheide et. al. (2007).

Linear instrumental variables regression model The structural form of the

linear instrumental variables (IV) regression model,

y = Xβ + ε, X = ZΠ+ V (26)

with y and X T×1 and T×(m−1) dimensional matrices with endogenous variables, Z
a T ×k dimensional matrix of instruments, ε and V T ×1 and T × (m−1) dimensional
matrices with disturbances and β and Π (m − 1) × 1 and k × (m − 1) dimensional
matrices with parameters, so θ = (β,Π), can be cast into the specification of (7) using

A(θ) = Π(β
... Im−1), Y = (y

... X), U = (ε+ V β
... V ). (27)

The rank of the k × m matrix A(θ) is at most m − 1 so the instrumental variables
regression model corresponds with a reduced rank regression. Solving for θ in (17) can

therefore be conducted using a singular value decomposition of (X 0X)
1
2AΩ−

1
2 :

(X 0X)
1
2AΩ−

1
2 = USV 0, (28)

where U and V are k × k and m×m matrices such that U 0U ≡ Ik and V 0V ≡ Im, and

S is a k × m rectangular matrix which contains the non-negative singular values in

decreasing order on its main diagonal (= (s11...smm)) and is equal to zero elsewhere.

The objective function in (17) is minimized when

(X 0X)
1
2A(θ)Ω−

1
2 = U1S1V 01, (29)

for U = (U1
... U2), V = (V1

... V2), S1 =
³
S1
0
0
S2

´
, with U1 : k×(m−1), U2 : k×(k−m+1),

V1 : (m− 1)×m, V2 : 1×m, S1 : (m− 1)× (m− 1), S2 : (k−m+ 1)× 1 dimensional
matrices, so the value of the objective function in (17) equals the square of the smallest

singular value of (X 0X)
1
2AΩ−

1
2 . Solving for Π and β from (29) then results in

Π = (X 0X)−
1
2U1S1V 01Ω2, β = (V 01Ω2)−1 V 01ω1 (30)

for Ω
1
2 = (ω1

... Ω2) with ω1 : m× 1, Ω2 : m× (m− 1) dimensional matrices. To obtain
the specification of μ using (15), we need the derivative of A (θ)

∂vec[A(θ)]
∂θ0 =

µ
e1,m ⊗Π

... (β
... Im−1)0 ⊗ Ik

¶
, (31)
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with θ0 = (β0
... vec(Π)0) and e1,m the first m-dimensional unity vector, and its’ orthog-

onal complement h
∂vec[A(θ)]

∂θ0

i
⊥
=

µ
(β
... Im−1)0⊥ ⊗Π⊥

¶
, (32)

with Π⊥ a k × (k −m+ 1) matrix such that Π0Π⊥ ≡ 0 and Π0⊥(X
0X)−1Π⊥ ≡ Ik−m+1;

(β
... Im−1)⊥ is a 1 ×m vector such that (β

... Im−1)⊥(β
... Im−1)0⊥ ≡ 0, (β

... Im−1)⊥Ω(β
... Im−1)0⊥ ≡ 1, so, see Kleibergen (1997), Kleibergen and Van Dijk (1998) and Hooger-
heide et. al. (2007):

Π⊥ = (X 0X)
1
2U2U−122 (U 022U22)

1
2

(β
... Im−1)⊥ = (v12v

0
12)

1
2v0−112 V 02Ω−

1
2 ,

(33)

for U2 = (U 012
... U 022)0, V 02 = (v012

... v022), U12 : (m − 1) × (k − m + 1), U22 : (k −m +

1) × (k −m + 1), v12 : 1 × 1, v22 : 1 × (m − 1) dimensional matrices. The resulting
specification of μ from (15) then reads

μ = (U 022U22)−
1
2U22S2v012(v12v012)−

1
2 . (34)

Besides solving for (θ, μ) from A, the transformation of random variables from A to

(θ, μ) also involves the Jacobian of the transformation. Alongside the first derivative

of A (θ) with respect to θ and its’ orthogonal complement, this Jacobian, as stated in

(20), also involves the second derivative of A(θ) with respect to θ :

∂
θ0vec

h
∂vec[A(θ)]

∂θ0

i
=
³

0
(e1,m⊗Kkm−1⊗Ik)(Im−1⊗vec(Ik))

(Im−1⊗e1,m⊗Ik)
0

´
. (35)

with Kkm−1 a k(m− 1)× k(m− 1) dimensional commutation matrix, see Magnus and
Neudecker (1988).

One appealing aspect of usage of the g-prior is its natural conjugacy. For the linear

instrumental variables regression model with one included endogenous variable, this

natural conjugacy property is even present in the analytical expressions of the marginal

prior and posteriors of the structural parameter β (given Ω) which are identical, see

Hoogerheide et. al. (2007):

p(β|Ω, (D)) ∝
¯̄̄̄
(β
... Im)Ω−1(β

... Im)0
¯̄̄̄−1

2
(m+1)P∞

j=0

³
1
2

ζ
(β : Im)Ω−1(β : Im)0

´j
2
1
2
Γ( 1

2
(k+2j+1))

Γ( 1
2
(k+2j))j!

(36)

except for the specification of ζ:

ζ = g
T
(β
... Im)Ω−1A00Z

0ZA0Ω−1(β
... Im)0 prior

= (1 + g
T
)Π̄0Z 0ZΠ̄ posterior

(37)
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with Π̄ =
h

T
T+g

(Z 0Z)−1Z 0Y + g
T+g

A0
i
Ω−1(β

... Im)0. When T is large, the marginal

posterior of Ω is centered around 1
T
Y 0Y so the marginal posterior of β then equals the

conditional posterior of β given that Ω = 1
T
Y 0Y. The expressions of ζ for the marginal

prior and posterior of β clearly reveal the update from the prior to the posterior and

therefore further emphasize the natural conjugacy property of the prior.

4.2 Priors directly specified on θ

We just laid out how a prior on the parameters of an encompassing linear model can

be used to obtain an invariant prior on the parameters of a nested over-identified

structural model. The argument also goes the other way around so if we specify a

prior directly on the parameters of the nested over-identified structural model, we can

use the previously discussed framework to determine the implicitly used prior on the

parameters of the encompassing linear model, see Kleibergen and Zivot (2003):

pg(A(θ, μ)|Ω)|μ=0p(Ω) ∝ |J(A, (θ, μ))|μ=0|−1p(θ,Ω). (38)

This way of backing out the implicitly used prior on the parameters of the encompassing

linear model can be used as a reality check for the prior specified on the parameters of

the over-identified structural model. Because of the straightforward update from prior

to posterior in linear models, all elements of the prior on A are present in the posterior.

This is unclear for the prior on the parameters of the over-identified structural model

since the update for prior to posterior is not obvious for non-linear models. The

implied prior on the parameters of the encompassing linear model therefore reveals if

any pathologies arise in the posterior of the parameters of the over-identified structural

model which are not clear from the prior on the parameters of the over-identified

structural model itself. It therefore serves as a reality check.

4.3 Bayes factors and prior specification

Bayes Factors are the Bayesian equivalent of likelihood ratio’s in frequentist inference

and are used for testing point null hypotheses. They equal the ratio of the marginal

likelihoods under the null and alternative hypotheses.

Theorem 2 When θ = (α, β), the Bayes Factor for testing H0 : α = 0 reads

BF (α = 0) =

R
Θβ

p(β)L(D|β)dβR
Θβ

R
Θα

p(α,β)L(D|α,β)dαdβ =
p(α|D)|α=0
p(α)|α=0 ×

R
Θβ

h
p(β)p(β|α,D)|α=0

p(β|α)|α=0

i
dβR

Θβ
p(β|α)|α=0dβ , (39)
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with p(β) the prior on β in the model with α = 0, Θβ the parameter region of β and

p(α, β) the prior in the model including both α and β, p(α, β) = p(β|α)p(α).

Proof. see the Appendix and e.g. Dickey (1971) and Verdinelli and Wasserman

(1995).

When the prior on β is specified as outlined previously so

p(β) = p(β|α)|α=0 (40)

and the conditional prior and posterior of β given α = 0 integrate to one,R
Θβ

p(β|α,D)|α=0dβ =
R
Θβ

p(β|α)|α=0dβ = 1, (41)

the Bayes factor simplifies to

BF (α = 0) = SD(α = 0) ≡ p(α|D)|α=0
p(α)|α=0 , (42)

which is known as the Savage-Dickey (SD) density ratio. The SD density ratio shows

that the ratio of the posterior over the prior reveals the support for the null hypothesis

by the (marginal) likelihood but only so if the prior on β in the nested model is specified

according to the nesting principle. It implies that if we do not specify the prior on

β in the nested model with α equal to zero according to the nesting principle, the

update from the prior to the posterior of α in the encompassing model does not reveal

the Bayes factor and therefore the support for the null hypothesis by the marginal

likelihood.

4.3.1 Savage-Dickey density ratio for the linear IV regression model

Alongside the issue of the correspondence between Bayes factors and SD density ratios

because of how priors are specified, we also have to be careful when using the SD

density ratio for testing hypotheses on parameters that are locally non-identified. To

exemplify this, we consider the linear IV regression model in (26) with one included

endogenous parameter and the SD ratio that tests for a specific value of β, say β0,

H0 : β = β0. The parameter β is locally non-identified when Π = 0.When we specify a

flat prior on the parameters of the linear IV regression model, the marginal posterior

for β reads, see e.g. Drèze (1976) and Kleibergen and Zivot (2003):

p(β|D) ∝ |1 +AR(β)|− 1
2
T
¯̄̄
(β − β̂)0X 0X(β − β̂) + Y 0MXY

¯̄̄− 1
2
k

, (43)
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with AR(β) = (y−Xβ)0PZ(y−Xβ)
(y−Xβ)0MZ(y−Xβ)

and β̂ = (X 0X)−1X 0y. To show the consequences of
prior specification for the Bayes factor, we consider three different priors, an indepen-

dent normal prior on β, independent normal priors on β and π and the g-prior in (36).

For all cases we use the setting of one included endogenous variable so m = 1.

Independent normal prior on β. If we specify an independent normal prior on β,

p(β) ∝ exp
£− 1

2a2
(β − β0)

2
¤
, (44)

the marginal posterior of β using this informative prior equals the prior in (44) times

the posterior in (43) since the prior does not involve any of the other parameters. When

we compute the SD density ratio, the prior in the posterior in the numerator cancels

out with the prior in the denominator so the SD density ratio is proportional to the

marginal posterior of β in (43):

SD(β) ∝ p(β|D). (45)

The Anderson-Rubin (AR) statistic, AR(β), is not informative about the value of β

when it is weakly identified. This holds since the AR statistic converges to a constant

when β gets large, i.e. the first stage F -statistic, see Kleibergen (2007). When β is

weakly identified, the first stage F -statistic is not significant so the AR statistic leads to

an unbounded confidence set in such instances, see e.g. Dufour (1997) and Staiger and

Stock (1997). The expression of the SD ratio in (45) shows that it is always informative

about β. The second part of the posterior in (43) namely converges to zero irrespective

of how well β is identified by the likelihood so the SD ratio in (45) also converges to

zero when β gets large irrespective of how well β is identified by the likelihood. This

implies that the SD ratio is always informative about β. Hence, if we are interested

in the set of values for which the SD density ratio exceeds some threshold that set is,

unlike the confidence set that results from the AR statistic, always bounded. The SD

density ratio in (45) does therefore not satisfy the criteria from Dufour (1997) for valid

(frequentist) inference on parameters that can be locally non-identified.

Independent normal priors on β and π. If we specify independent normal priors

on β and π,

p(β, π) ∝ exp
£−1

2

©
1
a
(β − β0)

2 + (π − π0)
0B(π − π0)

ª¤
, (46)
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the joint posterior for (β,Ω) reads2

p(β,Ω|D) ∝
h¡

β
1

¢0
Ω−1

¡
β
1

¢i−1
2
k
¯̄̄̄h¡

β
1

¢0
Ω−1

¡
β
1

¢i−1
B + Z 0Z

¯̄̄̄− 1
2

exp
£− 1

2a
(β − β0)

2
¤

exp

∙
−1
2

½
tr

µ
Ω−1(y

... X)0(y
... X)

¶
−
µ
Bπ0 + Z 0(y

... X)Ω−1
¡
β
1

¢¶
h
B +

¡
β
1

¢0
Ω−1

¡
β
1

¢
Z 0Z

i−1µ
Bπ0 + Z 0(y

... X)Ω−1
¡
β
1

¢¶¾¸
.

(47)

Although we cannot compute the marginal posterior for β analytically, the joint poste-

rior for (β,Ω) in (47) is such that the Bayes factor for testing hypotheses on β will be

informative even when the likelihood contains little information on β. The likelihood

contains little information on β if Z 0(y
... X) is relatively small so the posterior for Ω

given β is concentrated around 1
T
(y
... X)0(y

... X). The marginal posterior of β for such

values of Z 0(y
... X) is therefore roughly equal to the conditional posterior of β given

that Ω equals 1
T
(y
... X)0(y

... X). The Bayes factor or Savage-Dickey density ratio for

testing hypotheses on β for such values of Z 0(y
... X) is then such that

SD(β) ∝
h¡

β
1

¢0
Ω̂−1

¡
β
1

¢i− 1
2
k
¯̄̄̄h¡

β
1

¢0
Ω̂−1

¡
β
1

¢i−1
B + Z 0Z

¯̄̄̄− 1
2

exp

∙
−1
2

µ
Bπ0 + Z 0(y

... X)Ω̂−1
¡
β
1

¢¶h
B +

¡
β
1

¢0
Ω̂−1

¡
β
1

¢
Z 0Z

i−1µ
Bπ0 + Z 0(y

... X)Ω̂−1
¡
β
1

¢¶¶¸
,

(48)

with Ω̂ = 1
T
(y
... X)0(y

... X). Similar to Savage-Dickey density ratio in (45), this Savage-

Dickey density ratio is informative about β when Z 0(y
...X) is small. This results largely

because of the first component in (48) which goes to zero when β gets large.

g-prior on (β, π).Whenwe compute the SD density ratio using the (g-) priors/posteriors
in (36)-(37), it does not necessarily have to go to zero when β gets large. For example,

since the marginal posterior ofΩ is centered closely around Ω̄ = 1
T

£
W0 + Y 0Y + g

T
A00Z

0ZA0
¤
,

see Hoogerheide et. al. (2007), we can plug this value into the conditional prior and

posterior of β given Ω in (36) to get the marginal prior and posterior of β so these are

p(β|(D)) ∝
¯̄̄̄
(β
... Im)Ω̄−1(β

... Im)0
¯̄̄̄− 1

2
(m+1)P∞

j=0

³
1
2

ζ
(β : Im)Ω−1(β : Im)0

´j
2
1
2
Γ( 1

2
(k+2j+1))

Γ( 1
2
(k+2j))j!

(49)

2The joint posterior of (β,Ω) results by integrating over π. We cannot compute the marginal
posterior for β for this specification of the joint prior for (β, π) analytically.
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with ζ:

ζ = g
T
(β
... Im)Ω̄−1A00Z

0ZA0Ω̄−1(β
... Im)0 prior

= (1 + g
T
)Π̄0Z 0ZΠ̄ posterior

(50)

and Π̄ =
h

T
T+g

(Z 0Z)−1Z 0Y + g
T+g

A0
i
Ω̄−1(β

... Im)0. When (Z 0Z)−1Z 0Y is small com-

pared to A0, the SD density ratio will be rather flat and can lead to unbounded areas

where it does not exceed a specific threshold. The SD density ratio that results from

the priors/posteriors in (36)-(37) does therefore satisfy the criteria from Dufour (1997)

for valid (frequentist) inference on parameters that can be locally non-identified.

Bayes factor for simulated data. To exemplify the previous discussion on Bayes
factors and SD ratios, we consider a simulated data set from the IV regression model in

(26) withm = 2 (one included endogenous variable), k = 5, T = 100 and the true values

of the parameters are Ω =
¡

1
0.99

0.99
1

¢
, β = 1 and π = (0.1 0 0 0 0)0. The instruments

are simulated from a N(0, I5) distribution so the concentration parameter is around

1 which indicates a very weak instrument. We compute the marginal posteriors and

Bayes factors/SD ratios for β that result from using an independent normal prior on

β, N(1, 1), and the g-prior (50) that results from the nesting principle with Ω0 and A0
set equal to their true values, A0 = (0.1 0 0 0 0)0(1 1), and g = 2. Alongside the weakly
identified data, we also simulated data from the same model but with π = (1 0 0 0

0) so the concentration parameter is around 100 which indicates strong identification.

Panels 1 and 2 show the priors, posteriors, Bayes factors and also the AR statistic.
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Panel 1: Priors, Posterior and Bayes Factors resulting from two different priors for

a weakly identified data set
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Figure 1.1: Normal prior (dash-dot), pos- Figure 1.2: g-prior (dash-dot), posterior

terior (dashed) and Bayes Factor (solid) (dashed) and Bayes Factor (solid)
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Figure 1.3: Bayes factors normal prior (solid) and g-prior (dashed)

and AR statistic (dash-dotted)

The Bayes factors3 in Panels 1 and 2 show that, as shown in (45), independent

normal priors lead to informative Bayes factors even when the likelihood contains little

information about the parameter of interest. Interestingly the latter property is cleared

revealed by the Bayes factors/SD ratios that result from the g-prior. For the weakly

identified data set, this Bayes factor is similar to the AR statistic and both are only

informative about some values of β between one and two which they both deem unlikely

when we use the 95% critical value for the AR statistic which equals 2.21. All other

possible values of the structural parameter are equally plausible according to both

3The Bayes factors shown in Panels ? and ? are just proportional to the true Bayes factors.
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statistics. For the well identified data, the prior specification is much less relevant and

both priors lead to similar posteriors and Bayes factors which both are also closely

related to the AR statistic.

Panel 2: Priors, Posterior and Bayes Factors resulting from two different priors for

a well identified data set
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Figure 2.1: Normal prior (dash-dot), pos- Figure 2.2: g-prior (dash-dot), posterior

terior (dashed) and Bayes Factor (solid) (dashed) and Bayes Factor (solid)
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Figure 2.3: Bayes factors normal prior (solid) and g-prior (dashed)

and AR statistic (dash-dotted)

5 Prior/Posterior simulator

Unless the restrictions we impose on A to obtain A(θ) are linear, we cannot directly

sample from the prior/posterior of (θ,Ω). We therefore sample from these densities

using a candidate approximating density. The candidate density that we propose is
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the prior/posterior of (A,Ω) in the unrestricted model. We then compute θ from the

sampled values of (A,Ω) using the likelihood ratio minimization problem in (14). We

solve for μ using (15) and make an assumption about its distribution under our model

of interest, see Kleibergen and Paap (2002). Finally we compute the weight function

that is to be used in an Accept-Reject, Importance or Metropolis-Hastings Sampler,

see e.g. Kloek and Van Dijk (1978).

The algorithm for sampling (θ,Ω) from the prior or posterior is then as follows:

1. Sample (Ai,Ωi) according to:

Prior:

(
A|Ω ∼ N(A0,Ω⊗ T

g
(X 0X)−1)

Ω ∼ iW (W0, h)
,

Posterior:

(
A|Ω, D ∼ N(Ã,Ω⊗ ( g

T
+ 1)(X 0X)−1)

Ω|D ∼ iW (W̃ , T + h)
.

(51)

2. Obtain θi using the (likelihood ratio) minimization problem:

θi = argminθ vec(A(θ)−Ai)0 [(Ωi)−1 ⊗X 0X] vec(A(θ)−Ai). (52)

3. Compute μi :

μi =

µ
∂vec[A(θi)]

∂θ0

¶0
⊥
[vec(Ai)− vec(A(θ))] (53)

with
³
∂vec[A(θ)]

∂θ0

´
⊥
: km× (km− p) and³

∂vec[A(θ)]
∂θ0

´0 ³
∂vec[A(θ)]

∂θ0

´
⊥
≡ 0³

∂vec[A(θ)]
∂θ0

´0
⊥
(Ω⊗ (X 0X)−1)

³
∂vec[A(θ)]

∂θ0

´
⊥
≡ Ikm−p.

(54)

4. Assume that μ results from

μi ∼ N(μ̃, T
T+g

Ikm−p), (55)

with μ̃ =
³
∂vec(A(θi))

∂θ0

´0
⊥

h
vec

³
A(θi)− Ã

´i
in case of the posterior and μ̃ =³

∂vec(A(θi))
∂θ0

´0
⊥

£
vec

¡
A(θi)−A0

¢¤
in case of the prior.

5. Compute weights:

(a) wi
1 =

|J(Ai,(θi,μi))|μ=0|
|J(Ai,(θi,μi))|
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(b) wi
2 = (2π T

T+g
)−

1
2
(km−p) exp

h
−1
2
g+T
T

n
tr
³
(Ωi)−1

³
A(θi)− Ã)0X 0X(A(θi)− Ã

´´
+

(μi − μ̃)0(μi − μ̃)− tr
³
(Ωi)−1

³
Ai − Ã)0X 0X(Ai − Ã

´´oi
where Ã is to be replaced by A0 in case we sample from the prior.

(c) w = max wi
1w

i
2

6. Generate uniform random variable u.

7. Accept θi as a realization from the prior/posterior if (can also do Importance/Metropolis-

Hastings Sampling instead):

u <
wi
1w

i
2

w
, (56)

with w = maxi(w
i).

The above algorithm samples (θ, μ,Ω) from the joint density

p(θ, μ,Ω|(D)) = p(μ|θ,Ω, (D))p(θ,Ω|(D)), (57)

where p(θ,Ω|(D)) equals (22) in case of the prior and it equals (24) in case of the
posterior and p(μ|θ, μ, (D)) is the density function of (55). The density of μ can be
chosen freely, since μ is not present in the over-identified structural model, and we

specified it such that we obtained a convenient specification of the weight function, see

e.g. Kleibergen and Paap (2002). The resulting weight function w is such that

w = p(μi|θi,Ωi,(D))p(θi,Ωi|(D))
p(Ai,Ωi|(D)) , (58)

so

w × p(Ai,Ωi|(D)) = p(μi|θi,Ωi, (D))p(θi,Ωi|(D)). (59)

The weight function can be used to compute the Bayes factor for comparing the

nested over-identified model with the encompassing linear model, see Kleibergen and

Paap (2002).

6 Empirical illustration: the NKPC

The pure NKPC (3) that we discussed previously is an obvious special case of the

hybrid NKPC, which takes the form:

yt = λxt + γfEt (yt+1) + γbyt−1 + εt. (60)
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Several authors argue that the pure NKPC does not adequately capture the persistence

in inflation, and the hybrid model is used in part to address this misspecification. It

has also served as a basis for assessing the degree to which price setting behavior is

forward- versus backward-looking, by comparing the coefficients γf and γb, see Gali

and Gertler (1999). We apply the above methodology to the analysis of the hybrid

NKPC proposed by Gali and Gertler (1999), where xt is the (log) labor share and yt

is measured using the GDP deflator. We estimate the model using quarterly data for

the US over the period 1957 to 2009.

To complete the model, we also generalize the AR(2) model for xt (4) to an

ADL(2,2) model:

xt = φ1yt−1 + ρ1xt−1 + φ2yt−2 + ρ2xt−2 + vt. (61)

With these extensions, the minimum state variable solution for the system of equa-

tions (60) and (61) is given by a reduced form VAR(2) in yt and xt. This can be

written in the form of (1) and (7) with Yt = (yt xt)
0 , Xt = (yt−1 xt−1 yt−2 xt−2)

0 , and
θ =

¡
λ γf γb φ1 ρ1 φ2 ρ2

¢0
. Since A is a 4 × 2 matrix, the model is over-identified of

degree one. Moreover, unlike the pure NKPC we discussed previously, the solution of

the current model is not available analytically but has to be obtained by numerical

methods. To this end, we use the method of Sims (2002) that is based on the general-

ized Schur decomposition. The solver is used to compute the unique stable solution of

the model (if it exists), or select among multiple stable solutions using the minimum

state variable criterion. The requirement of stability of the resulting reduced form,

which is the standard assumption in the literature, is an additional restriction on the

reduced form.

It is well-established that the above model suffers from identification problems

and in frequentist analysis, these problems are reflected in wide (identification robust)

confidence intervals on the parameters, see Kleibergen and Mavroeidis (2009). In

Bayesian analysis, weak identification can cause difficulties with the convergence of the

numerical optimization algorithm of the prior/posterior simulator (see step 2 in Section

5). When using a flat (Jeffreys) prior the convergence performance can deteriorate

due to the flatness of the objective function. This problem is akin to the difficulty

in computing continuously updating GMM estimators in frequentist estimation. The

problem of convergence is also aggravated, in part, by the fact that we need to solve

for A (θ) numerically. To avoid such problems, we calibrate our priors to the region

of reasonably strong identification. We can do that using the characterization of the

strength of identification of this model given in Mavroeidis (2005). We can then vary
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the prior variance to make the priors more or less informative.

All computations are performed using Ox, see Doornik (2007). The prior/posterior

simulator proceeds according to steps 1 through 7 in Section 5. The optimization in

step 2 is done using the BFGS algorithm in Ox, which converged all the time, and

the Jacobians in step 3 are computed using numerical derivatives. The acceptance

probability is somewhat low (just under 5%), so there are potentially substantial gains

to be obtained from using a Metropolis-Hastings or Importance sampling extension of

the algorithm. Since the model is relatively small, solution and optimization is fast,

and the procedure takes only a modest amount of time (about 6 hours on a 2.6 GHz

PC for about 100000 accepted draws). So, we did not pursue the alternative sampling

schemes for the present application, but it is probably worth doing when estimating

larger scale models, where the solution and optimization steps are more expensive

computationally.

In order to specify a prior that reflects reasonably strong identification, we proceed

as follows. We pick values of the structural parameters that correspond to strong

identification, simulate data from the resulting data generating process and use them

to estimate W0 and A0 in the specification of the prior in (51). The key parameters

that drive identification are λ and ρ2. We set ρ2 = −0.8, following the analysis in
Mavroeidis (2005), which is about 16 times larger than the unrestricted OLS estimate

of ρ2 in the data. We set λ = 0.29 such that it corresponds to a frequency of price

adjustment of two quarters in the model of Gali and Gertler (1999). The values of the

γf , γb are similar to the estimates in Gali and Gertler (1999), γf = 0.71, γb = 0.29, and

φ1, ρ1, φ2 are close to the unrestricted OLS estimates: φ1 = −0.1, ρ1 = 0.8, φ2 = 0.05.
The variance matrix of the shocks (εt, vt) is set to the identity, which results in a

reduced form error variance W0 that is over 20 times larger than the corresponding

OLS estimate from the data. Therefore, the prior of A is relatively uninformative.

Finally, g = h = T . We could have alternatively made g small to increase the prior

variance.

Panel 3 contains the figures of the marginal priors/posteriors of the structural pa-

rameters λ, γf , γb, φ1, ρ1, φ2, ρ2, and the misspecification. parameter μ, when the

priors are relatively wide. Starting from the behavior of μ, whose posterior and the

standard normal density are shown in the figure at the bottom right hand side of Panel

3, we see that its posterior is very close to the standard normal density. This shows

that the nesting model is well-specified against the unrestricted encompassing specifi-

cation so the restriction imposed by the hybrid NKPC on the encompassing VAR(2)

model is a plausible one. Turning to the parameters of the hybrid NKPC, λ, γf and

29



γb, we observe that the posteriors are quite similar to the priors and are therefore very

wide. Thus there is little information on the parameters in the data which confirms

our concerns about the identification of the parameters in the model. The posteriors

for γf and γb are centered at 0.7 and 0.3 respectively, which are very similar to the

frequentist point estimates reported in Gali and Gertler (1999), and consistent with

the view that inflation dynamics are predominantly forward-looking. The 95% highest

posterior density regions of λ, γf and γb are, however, quite wide and they are very

similar to the identification robust frequentist confidence intervals reported in Kleiber-

gen and Mavroeidis (2009), which are a lot wider than the conventional Wald-based

confidence intervals. The posterior for λ is also quite wide, and has considerable mass

around 0, which is a point of non-identification. Moreover, we clearly see that there

are no pile-ups in any of the parameters at the non-identification region, e.g., around

0 for ρ2. Given the identification issues such pile-ups would have occurred when we

would have used a prior which did not account for these identification issues like, for

example, a flat prior.

Panel 3: Priors and posteriors on the parameters of the hybrid NKPC

based on wide priors
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Panel 4 contains the figures with the SD density ratios corresponding to the priors

and posteriors in Panel 3. The SD density ratios are Bayes factors so they show what

we learn from the (marginal) likelihood about the parameters. As we discussed in

Section 4, our manner of specifying the prior certifies that the SD density ratio only

reveal information from the likelihood. Other priors can lead to SD density ratio which

give the impression that there is information about the parameters in the likelihood

while actually there isn’t. Most of the SD density ratios in Panel 4 are flat which

highlights the identification problem. The SD density ratios show that even though

the posteriors are not entirely uninformative they mainly reflect the information which

is already in the prior. The only noticeable exception is for ρ2, where the update from

the prior to the posterior looks rather informative. This is because the prior is centered

on −0.8, while the unrestricted OLS estimate of ρ2 is −0.05 . So the effect of the prior
is to push the posterior far from the nonidentification region.

Panel 4: Savage-Dickey density ratios corresponding to priors and posteriors in Panel 3

for the hybrid NKPC for the hybrid NKPC
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7 Conclusions

We propose a framework for specifying priors on the parameters of over-identified

DSGE models. These priors do not lead to pile-ups in the marginal posteriors because

of integrating over locally non-identified parameters which occurs for many other priors.

They also lead to Bayes factors and SD density ratios that only reveal the informa-

tion in the marginal likelihood. Sampling from the priors and resulting posteriors is

straightforward using the provided algorithm.

Our analysis in this paper focused on models that are identified through restric-

tions on the coefficients of the reduced form. However, DSGE models also typically

imply restrictions on the covariance of the shocks, see e.g., the prototypical new Key-

nesian monetary policy model of Clarida et. al. (2000). Such restrictions are often

very informative for identification, see Lubik and Schorfheide (2004). It is conceptu-

ally straightforward to apply our approach to such cases. In general, one will need

to work out new formulae for the weights of the prior/posterior simulator. When the

covariance restrictions can be reformulated as zero restrictions on the coefficients of

an appropriately defined system of linear regression equations, the adaptations of the

above formulae is very simple.
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Appendix

Proof of Theorem 1. The Jacobian of the transformation is characterized by:

|J(A, (θ, μ))| =
¯̄̄̄µ

∂vec(
³
Ω−

1
2⊗(X0X)

1
2

´
A)

∂θ0 ∂μ0

¶¯̄̄̄
=

¯̄̄³
Ω−

1
2 ⊗ (X 0X)

1
2

´³
∂vec(A)
∂θ0 ∂μ0

´¯̄̄
=

¯̄̄̄³
∂vec(A)
∂θ0 ∂μ0

´0
(Ω−1 ⊗X 0X)

³
∂vec(A)
∂θ0 ∂μ0

´¯̄̄̄ 12
with

∂vec(A)
∂θ0 = ∂vec(A(θ))

∂θ0 +
¡
μ0 ⊗ Ω⊗ (X 0X)−1

¢ h
∂
∂θ0vec

³
∂vec[A(θ)]

∂θ0

´
⊥

i
and

∂vec(A)
∂μ0 =

¡
Ω⊗ (X 0X)−1

¢ ³∂vec[A(θ)]
∂θ0

´
⊥
.

The orthogonality conditions imply that

∂
∂θ0vec

∙³
∂vec[A(θ)]

∂θ0

´0 ³
∂vec[A(θ)]

∂θ0

´
⊥

¸
= 0⇔µ³

∂vec[A(θ)]
∂θ0

´0
⊥
⊗ Ip

¶ ∙
∂
∂θ0vec

∙³
∂vec[A(θ)]

∂θ0

´0¸¸
+µ

Ikm−p ⊗
³
∂vec[A(θ)]

∂θ0

´0¶h
∂
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h³
∂vec[A(θ)]

∂θ0

´
⊥

ii
= 0⇔µ³

∂vec[A(θ)]
∂θ0
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∂θ0vec

h³
∂vec[A(θ)]

∂θ0

´ii
+³

Ikm−p ⊗
³
∂vec[A(θ)]

∂θ0

´´0 h
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∂θ0vec
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∂vec[A(θ)]

∂θ0

´
⊥

ii
= 0

with Kkm,p and Kkm−p,p commutation matrices, see Magnus and Neudecker (1988),
and we have used the property of the commutation matrix that (A ⊗ B)Kkm,p =
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Kkm−p,p(B⊗A) for A and B (km− p)×km and p× p dimensional matrices resp., and

∂
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by further exploiting the consequences of the orthogonality conditions, we can also
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obtain that³
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∂θ0

´0
Ikm−p ⊗

³
∂vec[A(θ)]

∂θ0

´0
⊥

¡
Ω⊗ (X 0X)−1

¢
⎞⎠−1 =

⎛⎝ Ikm−p ⊗
³
∂vec[A(θ)]

∂θ0

´0 ³
Ω−

1
2 ⊗ (X 0X)

1
2

´
Ikm−p ⊗

³
∂vec[A(θ)]

∂θ0

´0
⊥

³
Ω

1
2 ⊗ (X 0X)−

1
2

´
⎞⎠−1 =⎛⎝ Ikm−p ⊗

³
Ω−

1
2 ⊗ (X 0X)

1
2

´³
∂vec[A(θ)]

∂θ0

´
Ikm−p ⊗

³
Ω

1
2 ⊗ (X 0X)−

1
2

´³
∂vec[A(θ)]

∂θ0

´0
⊥

⎞⎠
⎛⎜⎝ Ikm−p ⊗

µ³
∂vec[A(θ)]

∂θ0

´0
(Ω−1 ⊗X 0X)

³
∂vec[A(θ)]

∂θ0

´¶−1
0

0 I2km−2p

⎞⎟⎠
−1

since
³
∂vec[A(θ)]

∂θ0

´0
⊥

¡
Ω⊗ (X 0X)−1

¢ ³∂vec[A(θ)]
∂θ0

´
= Ikm−p.

Proof of Theorem 2: Savage-Dickey density ratio: Consider θ = (α, β) and we
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want to compute the marginal likelihood under H0 : α = 0 :

ML(α = 0) =
R
Θβ

p(β)L(D|β)dβ

= p(α|D)|α=0
nR

Θβ

h
p(β)L(D|β)
p(α|D)|α=0

i
dβ
o

= p(α|D)|α=0
nR

Θβ

h
p(β)L(D|β)p(β|α,D)|α=0
p(α|D)|α=0p(β|α,D)|α=0

i
dβ
o

= p(α|D)|α=0
nR

Θβ

h
p(β)L(D|β)p(β|α,D)|α=0

p(α,β|D)|α=0

i
dβ
o

= p(α|D)|α=0
½R

Θβ

∙
p(β)L(D|β)p(β|α,D)|α=0
p(α,β)|α=0L(D|β,α)α=0

cα,β

¸
dβ

¾

= cα,β × p(α|D)|α=0
nR

Θβ

h
p(β)p(β|α,D)|α=0

p(α,β)|β=0

i
dβ
o

= cα,β × p(α|D)|α=0R
Θβ

p(β|α)|α=0dβ

nR
Θβ

h
p(β)p(β|α,D)|α=0
p(α)|α=0p(β|α)|α=0

i
dβ
o

= cα,β × p(α|D)|α=0
p(α)|α=0 ×

R
Θβ

h
p(β)p(β|α,D)|α=0

p(β|α)|α=0

i
dβR

Θβ
p(β|α)|α=0dβ

with Θα, Θβ the parameter regions of α, β resp. and we have used that L(D|β) =
L(D|α, β)|α=0,

cα,β =
R
Θβ

R
Θα

p(α, β)L(D|α, β)dαdβ,
so

BF (α = 0) =

R
Θβ

p(β)L(D|β)dβR
Θβ

R
Θα

p(α,β)L(D|α,β)dαdβ

= p(α|D)|α=0
p(α)|α=0 ×

R
Θβ

h
p(β)p(β|α,D)|α=0

p(β|α)|α=0

i
dβR

Θβ
p(β|α)|α=0dβ
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