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Abstract

We propose two reality checks to gauge factor pricing. We do so since the typically used R2 and
t-statistics from the second pass of the Fama and MacBeth (1973) two pass procedure signal factor
pricing when the observed factors miss the unobserved factor structure of portfolio returns. A
large number of (macro-economic) factors that are commonly used, like, for example, consumption
and labor income growth, housing collateral, consumption-wealth ratio, labor income-consumption
ratio, interactions of either one of the latter three with other factors, fail to capture any of the
unobserved factor structure in the portfolio returns so the R2’s and t-statistics reported for (the
risk premia on) them are spurious. The reality checks reveal the (un)reliability of these statistics.
The first reality check shows if there is any factor structure left in the residuals from the first
pass of the Fama-MacBeth two pass procedure by computing the percentage of the variation of the
residuals that is explained by their three largest principal components. If this percentage is large,
the R2 of the second pass regression is spuriously large so we cannot interpret it. The second reality
check computes 95% confidence sets for the risk premia on the factors using statistics whose large
sample distributions remain valid when the observed factors miss the unobserved factor structure.
These confidence sets show, since they are then unbounded, that we cannot determine risk premia
on observed factors that do not capture any of the unobserved factor structure of the portfolio
returns.

1 Introduction

An important part of the asset pricing literature is concerned with the relationship between portfolio
returns and (macro-) economic factors. Support for such a relationship is often established using
linear factor models, see e.g. Fama and French (1992,1993,1996), Jagannathan and Wang (1996,1998),
Lettau and Ludvigson (2001), Lustig and Van Niewerburgh (2005), Li et. al. (2006), Santos and
Veronesi (2006) and Yogo (2006). Linear factor models postulate a linear relationship between expected
portfolio returns and the β’s of the (macro-) economic factors, see e.g. Lintner (1965), Fama and
MacBeth (1973), Gibbons (1982), Shanken (1992) and Cochrane (2001). This relationship is typically
estimated using the Fama-MacBeth (FM) two pass procedure, see Fama and MacBeth (1973). The FM
two pass procedure first estimates the β’s by regressing the portfolio returns on the (macro-) economic
factors. The second pass then obtains the estimates of the risk premia on the factors by regressing
the average portfolio returns on the estimated β’s from the first pass. The R2 of the second pass
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regression and the t-statistics of the risk premia are used to indicate a relationship between expected
asset returns and the involved factors.

Portfolio returns exhibit a (unobserved) factor structure, see e.g. Merton (1973), Ross (1976),
Roll and Ross (1980) and Chamberlain and Rothschild (1983). The presence of a factor structure is
typically established using the principal components (or characteristic roots of the covariance matrix)
of the portfolio returns, see e.g. Anderson (1984, Chap 11). The number of factors equals the number
of principal components that are distinctly larger than the other principal components. This leads
to three factors for portfolio returns which explain around ninety five percent of the variation of
the portfolio returns when we consider twenty-five portfolios and around eighty five percent of the
variation when we consider one hundred portfolios. These factors are, however, unobserved so linear
factor models replace them with observed factors. Given the pervasiveness of the factor structure, it
is of the utmost importance that the linear factor model properly captures the (unobserved) factor
structure. We measure the extent to which the observed factors eradicate the factor structure using
the percentage of the variation of the residuals from the first pass of the FM two pass procedure that is
explained by their three largest principal components. This reality check shows that the Fama-French
factors, see Fama and French (1992, 1993), eradicate the factor structure but many other factors
proposed in the literature do not capture any of the (unobserved) factor structure. For example,
none of the factors other then the Fama-French factors that are proposed in Jagannathan and Wang
(1996), Lettau and Ludvigson (2001), Lustig and Van Niewerburgh (2005), Li et. al. (2006), Santos
and Veronesi (2006) and Yogo (2006), capture any of the (unobserved) factor structure. When we
use (some of) these factors in the first pass of the FM two pass procedure, the three largest principal
components of the residuals are almost identical to the three largest principal components of the
original portfolio returns so these factors do not capture any of the (unobserved) factor structure. It
is therefore doubtful if they represent any risk characteristics as well.

The novel macro-economic factors, which we refer to as those not included in the Fama-French
factors, are proposed largely on the basis of the R2 of the second pass regression and the t-statistics
associated with their risk premia. We reveal that, because of the (unobserved) factor structure of the
portfolio returns, both of these criteria show support for factors that do not capture the (unobserved)
factor structure of the portfolio returns. Since the findings from the R2 and FM t statistics reinforce
one another, usage of these criteria easily leads to inclusion of factors that are irrelevant.

We show that the R2 of the second pass regression is spurious when there is a (unobserved) factor
structure but the observed factors fail not capture it by computing the distribution of the R2 for such
instances. This distribution lies at rather high values. For instance, there is a sixty percent probability
of a R2 that exceeds fifty percent when there are three (unobserved) factors but we happen to use
three unrelated ones. The distribution of our percentage of variation reality check, i.e. the percentage
of the variation of the first pass residuals that is explained by their three largest principal components,
then lies around ninety five percent so it shows that the observed factors have completely missed the
(unobserved) factor structure. It thus shows that the high R2’s are spurious. This explains the high
R2’s from the second pass regressions that are reported in Jagannathan and Wang (1996), Lettau and
Ludvigson (2001), Lustig and Van Niewerburgh (2005), Li et. al. (2006), Santos and Veronesi (2006)
and Yogo (2006), using factors that differ from the Fama-French factors since for all these settings we
also find large values for our percentage of variation reality check. Hence, the R2’s reported in these
studies are spurious. It shows that the R2 cannot be interpreted without a measure that reflects the
remaining factor structure in the residuals of the first pass regression like, for example, our percentage
of variation reality check. If this reality check shows that there is no factor structure left in the
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residuals, we can interpret the R2 but not if there remains a strong factor structure.
The distribution of the R2 of the second pass regression is also analyzed in Lewellen et. al. (2009).

They show that if the factors of the linear factor model are correlated with the true unobserved factors
that the distribution of the R2 lies at a rather high value. This results because although the factors are
not priced themselves they are correlated with the factors which are priced and can therefore replace
them in the linear factor model. We obtain a rather different, albeit not contradictory, result and
show that, in the presence of an unobserved factor structure for the portfolio returns, the distribution
of the R2 lies at a high value when there is no correlation between the factors in the linear factor
model and the true unobserved factors. Hence, when the observed factors completely miss the factor
structure in the portfolio returns, the R2 of the second pass regression is spuriously large. We can
therefore only sensibly interpret the R2 if there is no factor structure left in the residuals from the
first pass of the FM two pass procedure and we propose our reality check to verify this.

When the factors of the linear factor model fail to capture the factor structure of the portfolio
returns, the β’s from the first pass regression are relatively small. This makes the standard normal
approximation of the large sample distribution of the FM t-statistic from the second pass invalid since
it only applies for sizeable values of the β’s, see Kleibergen (2009). Hence, the statistical significance
of the FM t-statistic when the factors of the linear factor model fail to capture the factor structure
is anomalous. In Kleibergen (2009) statistics for testing the risk premia are proposed that remain
trustworthy when the β’s are small or zero. These statistics are extensions of the identification robust
statistics proposed for the instrumental variables regression model and the generalized method of
moments, see e.g. Anderson and Rubin (1949), Kleibergen (2002, 2005), Kleibergen and Mavroeidis
(2009) and Moreira (2003). We use these statistics to propose a second reality check of factor pricing,
the 95% confidence sets of the risk premia that result from them. These 95% confidence sets accurately
show the amount of information that we have on the risk premia even when the factors fail to capture
the factor structure. In the latter case, these confidence sets are unbounded which shows that, as
expected, we learn little about the risk premia. We find such unbounded 95% confidence sets for the
risk premia on the factors proposed in Lettau and Ludvigson (2001), Lustig and Van Niewerburgh
(2005), Li et. al. (2006), Santos and Veronesi (2006) and Yogo (2006). Except for the risk premia
on the Fama-French factors, we find all 95% confidence sets to be unbounded. When we use the
Fama-French factors, we find that our second reality check shows that the hypothesis of factor pricing
is rejected which does not happen when we use the other factors. This occurs because of the smaller
covariance matrix that results when we use the Fama-French factors, since they capture the factor
structure, which increases the test statistics so they are significant. Rejection of factor pricing using
the Fama-French factors is also reported in Lettau and Ludvigson (2001).

The paper is organized as follows. In the second section we discuss the (missed) factor structure
in the portfolio returns and our first reality check based upon the percentage of the variation of the
residuals from the first pass of the FM two pass procedure that is explained by their three largest
principal components. The third section analyzes the implications of the missed factor structure for
the R2 and the FM t-statistic. It also proposes our second reality check based upon the 95% confidence
sets that result from the identification robust factor statistics. The fourth section concludes.

2 Factor Model for Portfolio returns

Portfolio returns exhibiting a (unobserved) factor structure with k factors result from a statistical
model that is characterized by, see e.g. Merton (1973), Ross (1976), Roll and Ross (1980) and Cham-
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LL01 JW96 F52-01
1 2720 3116 2434
2 113.8 180.2 140.5
3 98.6 80.6 108.9
4 18.36 28.5 26.7
5 17.61 25.4 19.9
6 13.48 16.2 14.0
7 12.11 14.8 11.6
8 9.31 14.0 10.9
9 8.42 12.6 9.92
10 7.25 12.1 8.18
11 6.02 12.1 7.19
12 5.4 11.4 6.32
13 4.9 11.3 6.17
14 4.38 11.1 5.63
15 4.26 10.8 5.21
16 3.93 10.3 5.02
17 3.5 10.2 4.4
18 3.39 9.9 3.83
19 3.02 9.6 3.43
20 2.71 9.5 2.9
21 2.5 9.2 2.79
22 2.18 9.0 2.75
23 1.74 8.9 2.47
24 1.46 8.7 2.12
25 0.93 8.4 1.77

REAL1 95.5% 86% 94.3%

Table 1: Largest twenty five principal components (in descending order) of the covariance matrix of the
portfolio returns (LL01 stands for Lettau and Ludvigson (2001), JW96 stands for Jagannathan and
Wang (1996) and F52-01 stands for the portfolio returns from Ken French’s website from 1952-2001).
REAL1 equals the percentage of the variation explained by the three largest principal components.
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berlain and Rothschild (1983):

rit = μi + βi1f1t + . . .+ βikfkt + εit, i = 1, . . . , N, t = 1, . . . , T ; (1)

with rit the return on the i-th portfolio in period t; μi the mean return on the i-th portfolio; fjt the
realization of the j-th factor in period t; βij the factor loading of the j-th factor for the i-th portfolio,
εit the idiosyncratic disturbance for the i-th portfolio return in the t-th period and N and T the
number of portfolios and time periods. We can reflect the factor model in (1) as well using vector
notation:

Rt = μ+ βFt + εt, (2)

with Rt = (r1t . . . rNt)
0, μ = (μ1 . . . μN )0, Ft = (f1t . . . fkt)0, εt = (ε1t . . . εNt)

0 and

β =

⎛⎜⎝ β11 . . . β1k
...

. . .
...

βN1 . . . βNk

⎞⎟⎠ . (3)

The vector notation of the factor model in (2) shows that, if the factors are i.i.d. with finite variance
and are uncorrelated with the disturbances which are i.i.d. with finite variance as well, the covariance
matrix of the portfolio returns reads

VRR = βVFFβ
0 + Vεε, (4)

with VRR, VFF and Vεε the N ×N, k× k and N ×N dimensional covariance matrices of the portfolio
returns, factors and disturbances respectively.

The covariance matrix of the factors, VFF , is considered to be much larger (in a matrix sense) than
the covariance matrix of the disturbances, Vεε. This assumption allows us to identify the number of
factors using principal components analysis, see e.g. Anderson (1984, Chap 11). When we construct
the spectral decomposition of the covariance matrix of the portfolio returns,

VRR = PΛP 0, (5)

with P = (p1 . . . pN) the N × N orthonormal matrix of characteristic vectors (or eigenvectors) and
Λ the N ×N diagonal matrix of principal components or characteristic roots (eigenvalues) which are
in descending order on the main diagonal, the number of factors can be estimated as the number of
principal components that are distinctly larger than the other principal components. The literature
on selecting the number of factors is vast and contains further refinements of this factor selection
procedure and settings with fixed and increasing number of portfolios. We do not contribute to this
literature but just use some elements of it to shed light on statistical issues involved with estimating
risk premia using the FM two pass procedure.

2.1 Factor structure in observed portfolio returns

We use three different data-sets to discuss the statistical issues that arise because of the factor structure
in the portfolio returns for the FM two pass procedure. The first data-set is the one used by Lettau
and Ludvigson (2001). The portfolio returns used by Lettau and Ludvigson (2001) consist of quarterly
observations from the third quarter of 1963 to the third quarter of 1998 of the return on twenty-five
size and book-to-market sorted portfolios so N = 25 and T = 141. The second data-set results from
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Jagannathan and Wang (1996) and their portfolio return series consist of the monthly returns on one
hundred size and beta sorted portfolios. Their return series begin in July 1963 and end in December
1990 so T = 330 and N = 100. The third data-set consists of quarterly returns on twenty-five size and
book to market sorted portfolio’s and are obtained from Ken French’s website. The return series are
from the first quarter of 1952 to the fourth quarter of 2001 so T = 200 and N = 25.

Table 1 lists the (largest) twenty-five principal components1 of the three different sets of portfolio
returns. It is clear from these principal components that there is a rapid decline of the value of the
principal components from the largest to the third largest one and a much more gradual decline from
the fourth largest one onwards. This indicates that the number of factors is (most likely) equal to
three. We use the fraction of the variance of the portfolio returns that is explained by these three
largest principal components as our first reality check for the presence of a factor structure. Our first
reality check therefore reads

REAL1 =
λ1 + λ2 + λ3
λ1 + . . .+ λN

(6)

with λ1 > λ2 > . . . > λN the principal components in descending order. Our reality check, REAL1,
equals 95.5% for the Lettau-Ludvigson (LL01) data, 86% for the Jagannathan and Wang (JW96) data
and 94.3% for the French (F52-01) data. Using the statistic proposed in, for example, Anderson (1984,
Section 11.7.2), it can be shown that the hypothesis that the three largest principal components explain
less than 80% of the variation of the portfolio returns is rejected with more than 95% significance for
each of these three data sets.

2.2 Factor models with observed factors

Table 1 shows that there is compelling evidence for a factor structure in portfolio returns. Alongside
describing portfolio returns using “unobserved factors” as briefly discussed previously, a large literature
exists which explains portfolio returns using observed factors. The observed factors that are used in
this literature consist both of asset return based factors and macro-economic factors. The observed
factor model is identical to the factor model in (2) but with a value of Ft that is observed and a known
value of the number of factors, say m :

Rt = μ+BGt + εt, (7)

with Gt = (g1t . . . gmt)
0 the m-dimensional vector of observed factors and B the n ×m dimensional

matrix that contains the β’s of the portfolio returns with the observed factors. In the sequel we discuss
the observed factors used in seven different articles: Fama and French (1993), Jagannathan and Wang
(1996), Lettau and Ludvigson (2001), Li et. al. (2006), Lustig and van Nieuwerburgh (2005), Santos
and Veronesi (2006) and Yogo (2006).

Fama and French (1993) show that the variation in portfolio returns can be explained using a
factor model with three observed asset return based factors: the return on a value weighted portfolio,
a “small minus big” (SMB) factor which consists of the difference in returns on a portfolio consisting
of assets with a small market capitalization minus the return on a portfolio consisting of assets with
a large market capitalization and a “high minus low” (HML) factor which consists of the difference
in the returns on a portfolio consisting of assets with a high book to market ratio minus the return

1The data-set from Jagannathan and Wang (1996) consists of one hundred portfolio returns so Table 1, for reasons
of brevity, only shows the largest twenty-five principal components.
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on a portfolio consisting of assets with a low book to market ratio. We use the portfolio returns of
the twenty-five size and book to market sorted portfolio’s from Ken French’s website to estimate the
observed factor model. The three Fama-French factors are obtained from this website as well.

Table 2 shows the principal components of the covariance matrix of the portfolio returns and of the
covariance matrix of the residuals that results from the observed factor model with the three Fama-
French factors. Table 2 shows that the three largest principal components of the covariance matrix
have decreased substantially after incorporating the three Fama-French factors. Our reality check
shows that the factors associated with the three largest principal components of the residuals explain
47.5% of their variation while the factors associated with the three largest principal components of
the covariance matrix of the portfolio returns explain 94.3% of its variation. This shows that the
three Fama-French factors basically eradicate the factors associated with the three largest principal
components of the portfolio returns, see also Bai and Ng (2006). After incorporating the Fama-French
factors, there is no factor structure left over in the residuals since the principal components of their
covariance matrix decline gradually and do not have a specific cutoff after which the decline of the
principal components becomes much more gradual.

The principal components of the covariance matrices can be used to test the significance of the
parameters associated with the observed factors. The likelihood ratio (LR) statistic for testing the null
hypothesis that the parameters associated with the observed factors are all equal to zero, H0 : B = 0,
against the alternative hypothesis that they are unequal to zero, H1 : B 6= 0, can be specified as

LR = T
hPN

i=1 log(λi,port)− log(λi,res)
i
, (8)

with λi,port, i = 1, . . . , N, the principal components of the portfolio returns and λi,res, i = 1, . . . , N,
the principal components of the residuals of the observed factor model. The LR statistic in (8) has
a χ2(3N) distribution in large samples. The value of the LR statistic using the Fama-French factors
stated in Table 2 equals 2064 which is strongly significant since its p-value is 0.000 which is in line with
our finding that the Fama-French factors eradicate the factors associated with the largest principal
components of the covariance matrix of the portfolio returns.

Alongside the LR statistic that tests the significance of all the parameters associated with the
Fama-French factors, Table 2 also lists the LR statistic that tests the significance of the parameters
associated only with the SMB and HML factors. The expression for this LR statistic is identical to
that in (8) if we replace the principal components of the covariance matrix of the raw portfolio returns,
λi,port, with the principal components of the covariance matrix of the residuals of an observed factor
model that has the value weighted return as the only factor. This LR statistic is equal to 1285 which
is strongly significant if compared with its 95% critical value that results from a χ2(2N) distribution
so the parameters of the SMB and HML factors are significant.

Jagannathan and Wang (1996) propose a conditional version of the capital asset pricing model
which they estimate using three observed factors: the return on a value-weighted portfolio, a corporate
bond yield spread and a measure of per capita labor income growth. Table 2 contains the largest
twenty-five principal components of the covariance matrices that result for the Jagannathan and
Wang (1996) data set. Besides the principal components of the covariance matrix of the raw portfolio
returns, Table 2 contains the principal components of the covariance matrix of the residuals of three
observed factor models. The first one of these uses the three Fama-French factors (for which we use
the SMB and HML factors from Ken French’s website), the second one has the value weighted return,
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F52-01 JW96
raw FF factors raw FF factors Rvw JW96 factors

1 2434 54.94 3116 70.5 600.6 594.0
2 140.5 38.87 180.2 50.0 81.24 78.9
3 108.9 22.77 80.6 38.6 48.4 48.0
4 26.7 18.24 28.5 27.3 28.5 28.0
5 19.9 12.47 25.4 16.0 17.1 17.0
6 14.0 10.8 16.2 14.7 14.8 14.8
7 11.6 9.17 14.8 13.9 14.4 14.3
8 10.9 8.61 14.0 13.5 13.7 13.6
9 9.92 7.84 12.6 12.2 12.2 12.2
10 8.18 6.55 12.1 11.7 12.1 12.0
11 7.19 6.43 12.1 11.6 11.8 11.7
12 6.32 5.77 11.4 11.3 11.3 11.2
13 6.17 5.16 11.3 10.7 11.1 11.1
14 5.63 5.09 11.1 10.6 10.8 10.8
15 5.21 4.64 10.8 10.4 10.5 10.5
16 5.02 4.31 10.3 10.3 10.3 10.3
17 4.4 3.88 10.2 9.81 10.2 9.94
18 3.83 3.47 9.9 9.58 9.80 9.71
19 3.43 2.95 9.6 9.38 9.54 9.51
20 2.9 2.83 9.5 9.03 9.18 9.17
21 2.79 2.74 9.2 8.90 9.11 9.11
22 2.75 2.51 9.0 8.88 8.91 8.85
23 2.47 2.19 8.9 8.64 8.70 8.51
24 2.12 1.76 8.7 8.39 8.47 8.44
25 1.77 1.64 8.4 8.15 8.36 8.30

REAL1 94.3% 47.5% 86% 23% 57% 57%

LR against raw 2064
0.000

2994
0.000

1586
0.000

1845
0.000

LR against Rvw 1285
0.000

1408
0.000

259
0.004

Table 2: The largest twenty five principal components (in descending order) of the covariance matrix
of the portfolio returns and residuals that result using Fama-French factors (French’s website data
1952-2001) and those that result from using the Jagannathan and Wang (1996) data with different
observed factors. The likelihood ratio (LR) statistic tests against the indicated specification (p-value
is listed below). REAL1 equals the percentage of the variation explained by the largest three principal
components.
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Rvw, as the only factor while the third specification uses all three factors from Jagannathan and Wang
(1996).

The principal components associated with the Jagannathan and Wang (1996) data show that the
Fama-French factors remove the factor structure in the portfolio returns since the principal components
of the covariance matrix of the residuals decline gradually so there are no principal components that
are distinctly larger than all the others. This is further reflected by the value of the reality check
of 23%. The LR statistics indicate that the parameters of all the Fama-French factors are strongly
significant. All these findings are identical to those previously discussed for the quarterly portfolio
returns.

If the value weighted return is the only factor in the observed factor model, Table 2 shows that
there remains a considerable factor structure in the residuals since the principal components of the
covariance matrix of the residuals indicate that there are (probably) still two factors present. This is
further indicated by the reality check of 57% which indicates a factor structure in the residuals. The
LR statistic in Table 2 shows that the parameters of the value weighted return are highly significant.

If we add the yield spread and labor income factors to the factor model with only the value weighted
return, Table 2 shows that the principal components of the covariance matrix of the residuals hardly
change. The reality check remains equal to 57% since the principal components only decrease minorly
compared with the specification that has the value weighted return as the only factor. It indicates
that the yield spread and labor income factors do not capture the two remaining factors present in
the residuals that result from the factor model with only the value weighted return. This is further
reflected by the LR statistic that tests the significance of the parameters associated with the yield
spread and labor income factors. This LR statistic is equal to 259 and results from an expression
identical to (8) but using the principal components from the residual covariance matrices that result
from factor models with only the value weighted return and all three factors used by Jagannathan and
Wang (1996) for which the largest twenty-five are stated in the sixth and seventh columns of Table
2. Although this LR statistic is significant compared with its 95% critical value from a χ2(2N = 200)
distribution, its p-value is only 0.004. This indicates that the parameters associated with the yield
spread and labor income factors are all rather close to zero.

Lettau and Ludvigson (2001) use a number of specifications of an observed factor model to
estimate different conditional asset pricing models. The observed factors that they consider are the
value weighted return (Rvw), the consumption-wealth ratio (cay), consumption growth (∆c), labor
income growth (∆y), the Fama-French factors and interactions between the consumption wealth ratio
and consumption growth (cay∆c), the value weighted return (cayRvw) and labor income growth
(cay∆y). The principal components of the covariance matrix of the residuals that result from six
different observed factor models estimated in Lettau and Ludvigson (2001) are stated in Table 3.

The principal components in Table 3 show that for all specifications of the observed factor model,
except the one using the Fama-French factors, the residuals still contain a factor structure. This is
reflected by our reality check which is above 82% for all these models. For the observed factor models
that do not contain the value weighted return as one of the factors, the reality check equals the one
which results for the portfolio returns itself. Hence, there are still three factors present in the residuals
of these factor models while there are two factors present in the residuals of the factors models that
include the value weighted return (except for the specification that includes all three Fama-French
factors).

The likelihood ratio statistics reported in Table 3 test the significance of the parameters associated
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LL01
raw Rvw ∆c FF factors cay,Rvw, cay,∆c, cay,Rvw,∆y,

cayRvw cay∆c cayRvw, cay∆y

1 2720 435 2676 26.5 433 2414 412
2 114 99.5 111 22.3 98.0 105 97.2
3 98.6 26.2 98.6 14.3 26.0 96.0 25.6
4 18.4 18.36 18.1 13.9 17.9 17.9 17.8
5 17.6 13.8 16.8 11.2 12.9 16.7 12.8
6 13.5 12.2 13.5 8.91 12.1 13.0 11.8
7 12.1 9.33 12.0 8.0 9.20 11.9 9.19
8 9.31 8.51 9.28 7.03 8.31 9.24 8.18
9 8.42 7.26 8.37 6.27 7.06 8.24 6.91
10 7.25 6.03 7.12 5.17 5.75 7.09 5.65
11 6.02 5.53 6.01 4.65 5.02 5.61 4.95
12 5.4 4.91 5.34 4.40 4.88 5.27 4.87
13 4.9 4.38 4.86 4.25 4.36 4.86 4.25
14 4.38 4.26 4.38 3.73 3.99 4.34 3.93
15 4.26 3.97 4.18 3.61 3.85 3.89 3.85
16 3.93 3.54 3.93 3.34 3.40 3.85 3.40
17 3.5 3.39 3.44 3.06 3.38 3.35 3.32
18 3.39 3.03 3.30 2.91 2.99 3.12 2.92
19 3.02 2.77 3.01 2.52 2.77 2.98 2.73
20 2.71 2.51 2.69 2.29 2.49 2.68 2.48
21 2.5 2.33 2.46 2.07 2.30 2.42 2.29
22 2.18 1.99 2.17 1.54 1.99 2.16 1.97
23 1.74 1.47 1.73 1.44 1.42 1.71 1.41
24 1.46 1.44 1.46 0.95 1.33 1.38 1.30
25 0.93 0.92 0.92 0.68 0.90 0.91 0.90

Real1 95.5% 82.1% 95.5% 38.2% 82.5% 95.2% 82.1%
LR against raw 765

0.000
36.4
0.064

1940
0.000

856.4
0.000

128.2
0.001

902.5
0.000

LR against Rvw 1175
0.000

91.4
0.000

138.5
0.007

LR against ∆c 91.8
0.000

LR against cay,
Rvw, cayRvw

46.1
0.630

Table 3: The twenty five principal components (in descending order) of the covariance matrix of
the portfolio returns and residuals that result using different specifications from Lettau and Ludvig-
son (2001). The likelihood ratio (LR) statistic tests against the indicated specification (p-value is
listed below). REAL1 equals the percentage of the variation explained by the largest three principal
components.
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with the observed factors. They result from a specification identical to the one in (8) when the
principal components are chosen from the appropriate columns in Table 3. The degrees of freedom
of their χ2 large sample distribution equals the number of tested parameters. The likelihood ratio
statistics show that only the parameters of the Fama-French factors and the value weighted return
are strongly significant. For all the other specifications, the likelihood ratio statistic are always less
than twice the number of estimated parameters. This indicates that although the LR statistic might
be significant at the 95% significance level, which is not even the case for the consumption growth,
the value of the parameters associated with the observed factors are all close to zero.

Li, Vassalou and Xing (2006) use investments made by households (HHOLD), nonfinancial cor-
porate firms (NFINCO) and financial companies (FINAN) as factors in an observed factor model
which they then use to estimate a stochastic discount factor model. We estimate this observed factor
model using the previously discussed quarterly portfolio returns from French’s website.

Table 4 contains the estimation results for the observed factor model from Li et. al. (2006). It
contains two specifications of the observed factor model, one which uses all three factors and one which
only uses the FINAN factor. For both specifications, the principal components of the covariance matix
of the residuals are comparable to those of the covariance matrix of the raw portfolio returns. Hence,
both specifications do not capture the factor structure of the portfolio returns. This is further reflected
by the reality check which for both specifications equals the one of the raw portfolio returns which is
94.3%. The LR statistics reported in Table 2 therefore show that the parameters of the FINAN factors
are not significant at the 95% significance level while the parameters of the HHOLD and NFINCO
factors are only significant at the 99% significance level. Hence, the parameters of all three factors are
close to zero.

Lustig and Van Nieuwerburgh (2005) employ an observed factor model that contains non-
durable consumption growth (∆cnondur), a housing collateral ratio (myfa) and the interaction between
nondurable consumption growth and the housing collateral ratio (∆cnondur×myfa). We estimate this
model using the quarterly portfolio returns from French’s website. The results are reported in Table
4.

Table 4 contains two specifications of the factor model used by Lustig and Van Nieuwerburgh
(2005). One of these specifications uses all three factors while the other one has nondurable consump-
tion growth as the only factor (∆cnondur column). The principal components in Table 4 show that
both specifications do not capture the factor structure of portfolio returns since Table 4 shows that the
residuals of both of these two models still contain three factors. This is further reflected by the reality
check which equals 93.9% for the specification with nondurable consumption growth as the only factor
and 93.8% for the specification that uses all three factors. The likelihood ratio statistics that test
the significance of the parameters of the consumption growth and the joint significance of the housing
collateral and the interaction factor are only significant at the 98% and 59% significance level. This
further shows that the empirical support for the factors proposed by Lustig and Van Nieuwerburgh
(2005) is rather minor.

Santos and Veronesi (2006) use adaptations of the factors from Lettau and Ludvigson (2001).
Alongside the value weighted returns, Santos and Veronesi (2006) use both the consumption-wealth
ratio (cay), previously used by Lettau and Ludvigson (2001), and a labor income to consumption ratio
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F52-01
raw Rvw ∆cnondurable FINAN LVX06 LN05 SV06 Y06

1 2434 465.2 2250 2422 2404 2204 439.7 465.1
2 140.5 140.3 139.5 138.9 137.7 137.0 122.7 139.1
3 108.9 36.7 108.8 105.9 103.9 108.0 36.3 36.1
4 26.7 21.6 26.6 26.6 25.1 26.5 21.5 21.6
5 19.9 16.8 19.9 19.5 19.2 19.7 16.3 16.1
6 14.0 12.3 13.9 13.9 13.8 13.8 12.2 11.9
7 11.6 10.9 11.1 11.6 11.3 11.1 10.9 10.8
8 10.9 9.98 10.8 10.8 10.8 10.8 9.90 9.86
9 9.92 8.24 9.89 9.71 9.70 9.76 8.01 8.19
10 8.18 7.22 8.13 8.14 8.12 8.12 6.91 7.22
11 7.19 6.50 7.19 7.16 7.00 7.16 6.33 6.47
12 6.32 6.19 6.24 6.31 6.31 6.23 6.16 6.15
13 6.17 5.70 6.17 6.17 6.16 6.09 5.64 5.66
14 5.63 5.59 5.61 5.62 5.59 5.55 5.57 5.56
15 5.21 5.03 5.20 5.20 5.19 5.19 4.98 5.01
16 5.02 4.62 5.02 5.02 5.00 4.99 4.57 4.51
17 4.4 4.31 4.39 4.29 4.25 4.37 4.31 4.21
18 3.83 3.62 3.81 3.82 3.77 3.79 3.48 3.53
19 3.43 3.43 3.42 3.40 3.32 3.38 3.37 3.41
20 2.9 2.89 3.88 2.84 2.77 2.84 2.87 2.88
21 2.79 2.79 2.78 2.77 2.74 2.75 2.69 2.77
22 2.75 2.71 2.73 2.73 2.68 2.53 2.60 2.67
23 2.47 2.39 2.46 2.47 2.43 2.45 2.27 2.40
24 2.12 2.12 2.10 2.10 2.00 2.09 2.10 2.10
25 1.77 1.62 1.76 1.73 1.72 1.74 1.61 16.2

largest three roots 94.3% 81.4% 93.9% 94.3% 94.3% 93.8% 80.5% 81.5%

LR against raw 854
0.000

41.9
0.019

35.2
0.085

111
0.004

93.5
0.07

972
0.000

904
0.00

LR against FINAN 75.87
0.011

LR against ∆cnondurable 51.6
0.41

863
0.000

LR against Rvw 118
0.000

50.4
0.46

Table 4: The twenty five principal components (in descending order) of the covariance matrix of the
portfolio returns and residuals that result using different specifications from Li et. al. (2006) (LVX06),
Lustig and Van Nieuwerburgh (2005) (LN05), Santos and Veronesi (2006) (SV06) and Yogo (2006)
(Y06). All use the quarterly portfolio returns from French’s website. The likelihood ratio (LR) statistic
tests against the indicated specification (p-value is listed below). REAL1 equals the percentage of the
variation explained by the largest three principal components.
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(sw) interacted with the value weighted return as factors. We estimate their specification using the
portfolio returns from French’s website.

Table 4 contains the estimation results for two specifications of the observed factor model used by
Santos and Veronesi (2006). The first specification has the value weighted return as the only factor
while the other specification uses all three factors. The principal components of the covariance matrix
of the residuals that results for the first specification show that the value weighted return removes
one factor so the residuals contain two factors. Table 4 shows that if we consider all three observed
factors, the residuals still have a factor structure with two factors. This is further reflected by the
reality check which equals 81.4% for the specification with the value weighted return as the only factor
and 80.5% for the specification with all three factors. Hence, the additional two factors explain little of
the variation in the portfolio returns. The likelihood ratio statistic that tests the joint significance of
the cay and labor-consumption ratios is equal to 118. Although this is a rather significant value of the
LR statistic, we have to consider that it tests fifty parameters so it is only twice the number of tested
parameters which shows that all these parameters are relatively close to zero. The LR statistic which
tests the significance of the parameters of the value weighted return is obviously highly significant.

Yogo (2006) considers a specification of the observed factor model that alongside the value weighted
return has consumption growth in durables (∆cdur) and nondurables (∆cnondur) as the three observed
factors. We estimate his specification using the portfolio returns from French’s website.

Table 4 contains two specifications of the observed factor model from Yogo (2006). The first
one has the value weighted return as the only factor and has been discussed previously. The other
specification has all three factors. The principal components of the factor model with all three factors
show that the additional two consumption growth factors fail to absorb the two factors left over in the
residuals from the model with the value weighted return as the only factor. The principal components
of the covariance matrices of the residuals of these two models are almost identical which indicates
that there are still two factors left in the residuals of the three factor model. This is further reflected
by the reality check which equals 81.4% for the specification with only the value weighted return
and 81.5% for the specification with all three factors. The likelihood ratio statistic which tests the
joint significance of the parameters associated with the two consumption growth factors is also only
significant at the 54% significance level so we cannot rule out that the parameters associated with the
two consumption growth factors are all equal to zero.

3 Implications of missed factors for the FM two pass procedure

Stochastic discount factor models, see e.g. Cochrane (2001), stipulate a relationship between the
expected returns on the portfolios and the β’s of the portfolio returns with their (unobserved) factors:

E(Rt) = ιnλ0 + βλF , (9)

with ιn the n-dimensional vector of ones, λ0 the zero-β return and λF the k-dimensional vector of factor
risk premia. To estimate the risk premia, Fama and MacBeth (1973) propose a two pass procedure:

1. Estimate the observed factor model in (7) by regressing the portfolio returns Rt on the observed
factors Gt to obtain the least squares estimator:

B̂ =
PT

t=1 R̄tḠ
0
t

³PT
t=1 ḠtḠ

0
t

´−1
, (10)
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with Ḡt = Gt − Ḡ, G = 1
T

PT
t=1Gt, R̄t = Rt − R̄ and R̄ = 1

T

PT
t=1Rt.

2. Regress the average returns, R̄, on the vector of constants ιn and the estimated β’s, to obtain
estimates of the zero-β return and the risk premia:µ

λ̂0
λ̂F

¶
=

∙
(ιn

... B̂)0(ιn
... B̂)

¸−1
(ιn

... B̂)0R̄. (11)

The FM two pass procedure uses the least squares estimator that results from the observed factor
model to estimate the risk premia. The adequacy of the results that stem from the FM two pass
regression therefore crucially hinge on the ability of the observed factor model to capture the factor
structure of the portfolio returns. We show this for two statistics that are commonly reported to
reflect the validity of the results and the significance of the risk premia: the R2 of the second pass
regression and the t-statistics of the risk premia.

3.1 The R2 of the second pass regression

It is common practice to measure the explanatory power of a regression using a goodness of fit measure
like the R2. The R2 of the second pass regression of the FM two pass procedure is therefore often
reported for this purpose. It equals the explained sum of squares over the total sum of squares when
we only use a constant term so its expression reads

R2 =
R̄0PMιnB̂

R̄

R̄0MιnR̄
= R̄0MιnB̂(B̂

0MιnB̂)
−1B̂0MιnR̄

R̄0MιnR̄
, (12)

with R̄ the average portfolio returns and PA = A(A0A)−1A0, MA = I − PA for a full rank matrix A
and I the identity matrix. To assess the adequacy of the R2 to reflect the goodness of fit, we assume
that the portfolio returns are generated by the unobserved factor model in (2). The least squares
estimator of the observed factors B̂ then provides an estimate of

B̂ ≈ βVFGV
−1
GG, (13)

with VFG the covariance between the unobserved and observed factors, VFG = cov(Ft, Gt), and VGG
is the covariance matrix of the observed factors, VGG = var(Gt). If βVFGV −1GG in (13) is a full rank
matrix, the number of observed and unobserved factors is identical and B̂ is a precise estimator of the
expression in (13), so its approximation error is small, the R2 in (12) is close to one which results if
we substitute (13) and that R̄ is approximately equal to (9) into the expression of the R2 in (12):

R2 ≈ λ0F β
0MιN βVFGV

−1
GG[V

−10
GG V 0FGβ

0MιN βVFGV
−1
GG]

−1
V −1GGV

0
FGβ

0MιnβλF
λ0F β

0MιnβλF
= 1. (14)
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Figure 1.1. Density functions of the R2 Figure 1.2. Distribution functions of the R2
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Figure 1.3. Density functions REAL1 Figure 1.4. Distribution REAL1

Panel 1. Density and distribution functions of the R2 and REAL1 (the ratio of the sum of the three
largest principal components of the residual covariance matrix over the sum of all principal components)
when we use one of the three factors (solid line), two (dashed-dotted line) and all three (dashed line).

A large value of the R2 is therefore typically seen as an indication that the observed factors explain
a large part of the variation of the average portfolio returns. We obtained the R2 using the observed
factors which are not necessarily the factors that generated the portfolio returns. When the observed
factors are correlated with the unobserved true factors, they can serve as proxies for them and explain
the average portfolio returns equally well as the unobserved true factors. We just showed the validity
of this argument in (14) which is also put forward in Lewellen et. al. (2009). Lewellen et. al. (2009)
also show that when the number of observed factors is less than the number of unobserved true factors
but are still correlated with it, the R2 goes down proportionally.

The argument goes, however, much further since theR2 is strongly influenced by the (missed) factor
structure in the portfolio returns irrespective of the correlation between the observed and unobserved
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factors. To illustrate this phenomenon, we conduct a simulation experiment calibrated to data from
Lettau and Ludvigson (2001). We therefore estimate the risk premia using their data of returns on
twenty-five size and book to market sorted portfolios from 1963 to 1998 on the three Fama-French
factors. We then generate portfolio returns from the factor model in (2) with the estimated values of
β, λ1 and λF as the true values and factors Ft and disturbances εt that are generated as i.i.d. normal
with mean zero and covariance matrices V̂FF and V̂εε with V̂FF the covariance matrix of the three
Fama-French factors and V̂εε the residual covariance matrix that results from regressing the portfolio
returns on the three Fama-French factors.

We use the simulated portfolio returns to compute the density and distribution functions of the
R2 from (12) using an observed factor Gt that first only consists of the first (observed) factor, then
of the first two factors and then of all three factors. The Figures in Panel 1 show that, as expected,
the distribution of the R2 moves to the right when we add an additional true factor. Figures 1.1 and
1.2 also show that the R2 is close to one when we use all three factors as indicated by (14). It is
somewhat surprising though that the R2 in case we use just one factor lies around zero. To show that
the observed factor model only captures part of the factor structure of the portfolio returns, Panel 1
also shows the density and distribution functions of our reality check. These Figures show that when
we use only one factor, the three largest roots explain around 81% of the variation which is roughly
equal to the 82% that we stated in Tables 3 and 4 when we use the value weighted return as the only
factor.2 The variation explained by the largest three roots decreases to 58% when we use two factors
and 38% when we use all three factors. The last percentage is again similar to the percentage in Table
3 when we use all three Fama-French factors.

Panel 2 shows the density and distribution functions that result from another simulation experiment
where we simulate from the same model as used previously but now we estimate an observed factor
model with only useless factors. We begin with an observed factor model with one useless factor and
then add one or two additional useless factors. The density and distribution functions of the R2 in
Figures 2.1 and 2.2 are rather surprising. They dominate the distribution of the R2 in case we only
use one of the true factors. Hence, based on the R2, observed factors models with useless factors
outperform an observed factor model which just has one of the three true factors. It is even such that
the R2 when we use three useless factors often exceeds the R2 when we use two valid factors. This
becomes even more pronounced when we add more useless factors which we do not show. To reveal
that the observed factor models with the useless factors do not explain anything, we also computed
the density and distribution functions of the reality check. As expected, its’ density and distribution
functions that result from the three specifications with the useless factors all lie on top of one another
at 95% which is identical to the value of the ratio is Tables 2 and 4 when the observed factors matter
very little.

2We note that the Jagannathan-Wang data contains one hundred portfolio returns so the explained percentage of the
variation is not comparable with that which results when we use the value weigthed return as the only factor for the
Jagannathan-Wang data.
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Figure 2.1. Density functions of the R2 Figure 2.2. Distribution functions of the R2
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Figure 2.3. Density functions REAL1 Figure 2.4. Distribution REAL1

Panel 2. Density and distribution functions of the R2 and REAL1 (the ratio of the sum of the three
largest principal components of the residual covariance matrix over the sum of all principal components)
when we use one useless factor (solid line), two (dashed-dotted line) and three (dashed line).

Panels 1 and 2 show that the distribution of the R2 is heavily influenced by the (missed) factor
structure in the portfolio returns. To further emphasize this, we conducted another simulation exper-
iment where we specifically analyze the influence of the factor structure. We therefore estimate an
observed factor model that has three useless factors. To show the sensitivity of the R2 to the factor
structure, we simulate from the same model as used previously but we now use three different settings
of the covariance matrix Vεε of the disturbances in the original factor model: Vεε = 25V̂εε (weak
factor structure), Vεε = V̂εε (factor structure) and Vεε = 0.04V̂εε (strong factor structure) with V̂εε the
residual covariance matrix that results from regressing the portfolio returns on the three Fama-French
factors. The results are reported in Panel 3.
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Figure 3.1. Density functions of the R2 Figure 3.2. Distribution functions of the R2
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Figure 3.3. Density functions REAL1 Figure 3.4. Distribution REAL1

Panel 3. Density and distribution functions of the R2 and REAL1 (the ratio of the sum of the three
largest principal components of the residual covariance matrix over the sum of all principal components)
when we use three useless factors and there is a factor structure (solid line), strong factor structure
(dashed line) and weak factor structure (dashed-dotted line).

The Figures in Panel 3 show that the distribution of the R2 is very sensitive to the remaining
factor structure in the residuals. Figures 3.1 and 3.2 show that for the same irrelevant explanatory
power of the observed factor model, the R2 can vary greatly. Figures 3.3 and 3.4 show that for the
observed factor models where the R2 is high in Figures 3.1 and 3.2 that also the factor structure in
the residuals is very strong. For the observed factor model where the factor structure in the residuals
is rather mild, the density of the R2 is as expected and close to zero. Hence, for the models where
there is still a strong factor structure in the residuals, the R2 does not represent the quality of the
model.

Panels 1-3 show that the R2 of the second pass regression cannot be interpreted sensibly without
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LL01
Rvw ∆c FF factors cay,Rvw, cay,∆c, cay,Rvw,∆y,

cayRvw cay∆c cayRvw, cay∆y

R2 0.01 0.16 0.80 0.31 0.70 0.77

REAL1 82.1% 95.5% 38.2% 82.5% 95.2% 82.1%

Table 5: R-squared of the second pass regression of the FM two pass procedure and REAL1 (the per-
centage of the variation explained by the largest three principal components) for different specifications
from Lettau and Ludvigson (2001).

F52-01
Rvw ∆c FINAN LVX06 LN05 SV06 Y06

R2 0.07 0.04 0.51 0.58 0.74 0.65 0.54
REAL1 81.4% 93.9% 94.3% 94.3% 93.8% 80.5% 81.5%

Table 6: R-squared of the second pass regression of the FM two pass procedure and REAL1 (the
percentage of the variation explained by the largest three principal components) using the factors
from Li et. al. (2006) (LVX06), Lustig and Van Nieuwerburgh (2005) (LN05), Santos and Veronesi
(2006) (SV06) and Yogo (2006) (Y06). All use the quarterly portfolio returns from French’s website.

some diagnostic statistics, like, for example, our reality check, that report on the remaining factor
structure in the residuals from the first pass of the FM two pass procedure. If there is a strong factor
structure in the residuals, the R2 can be spuriously low as is the case with one valid factor in Panel 1
or spuriously high as shown in the cases with the useless factors. Panels 1-3 therefore show that the
R2 is only trustworthy when there is hardly any factor structure left in the residuals.

Tables 5 and 6 report the R2 of the second pass regression and our reality check, REAL1, for the
specifications in Tables 3 and 4. Many of the specifications stated in Tables 5 and 6 have high values
of the R2. Except for the specification using the Fama-French factors, all of these specifications also
have large values of the reality check which indicates that a factor structure remains present in the
first pass residuals. We just showed that the R2 of the second pass regression is spuriously high when
the reality check is large. Hence, the high values of the R2 associated with a large value of the reality
check in Tables 5 and 6 are spuriously large as well. Tables 5 and 6 correspond with Lettau and
Ludvigson (2001), Li et. al. (2006), Lustig and Van Nieuwerburgh (2006), Santos and Veronesi (2006)
and Yogo (2006) so the R2’s reported in these papers are spuriously high. They do, because of the
remaining factor structure in the first pass residuals, not appropriately reflect the explanatory power
of the average returns by the β’s of the involved observed factors.

3.2 Tests on the risk premia

We just showed that we can only interpret the R2 of the second pass regression when there is no factor
structure left in the first pass residuals. We therefore analyze the R2 given a statistic that reflects
if such a factor structure remains present. Analyzing the R2 without such a statistic, for example
to compute the confidence set of the R2 as in Lewellen et. al. (2009), is not feasible since we cannot
characterize the distribution of the R2 without knowing the remaining factor structure in the first
pass residuals. The R2 is not the only statistic whose (large sample) distribution crucially depends
on the value of some of the other parameters of the observed factor model. Another example of such
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a statistic is the t-statistic of the risk-premia estimator from the second pass of the FM two pass
procedure.

The FM two pass t-statistic testing the hypothesis that the i-th risk premia is equal to λi,0,
H0 : λi = λi,0, reads

t(λi) =
λ̂i−λi,0√
var(λ̂i)

, (15)

with λ̂F = (λ̂1 . . . λ̂m)
0 resulting from (11) and var(λ̂i) the variance of the i-th element of λ̂F . The

variance of (λ̂0, λ̂F ) equals

var(λ̂0, λ̂F ) =
1
T

∙
(ιn

... B̂)0(ιn
... B̂)

¸−1
(ιn

... B̂)0Θ̂(ιn
... B̂)

∙
(ιn

... B̂)0Θ̂(ιn
... B̂)

¸−1
, (16)

where Θ̂ = V̂εε(1 + λ̂
0
F (V̂GG)

−1λ̂F ), and the variance of the i-th element of λ̂F equals the (i + 1)-th
diagonal element of this covariance matrix, see Shanken (1992). The FM two pass t-statistic has a
standard normal distribution in large samples when the null hypothesis holds and the estimand of B̂,
βVFGV

−1
GG defined in (13), has a full rank value. This implies that both β and VFG have to be full rank

matrices. If the full rank assumption does not hold, for example, since VFG is close to zero because
the observed and unobserved factors are uncorrelated, the large sample distribution of the FM two
pass t-statistic is not normal and we cannot use the FM two pass t-statistic to conduct inference, see
Kleibergen (2009) and Kan and Zhang (1999). We just showed that many observed factors used in
practice fail to eradicate the factor structure in portfolio returns. For these factors, the estimand of
B̂ is close to zero so the two pass t-statistics of the, with these factors associated, risk premia do not
have a standard normal distribution in large samples. Thus we cannot determine if these t-statistics
are significant and usage of standard normal critical values leads to erroneous conclusions.

The statistical issues associated with small values of the β’s and/or of the covariance between the
true and observed factors, VFG, for inference on the risk premia using the FM two pass t-statistic
are analogous to the weak instrument problem in the linear instrumental variables regression model
in econometrics, see e.g. Staiger and Stock (1997). The traditional manner to analyze the linear
instrumental variables regression model is also by means of a two stage regression procedure, i.e. two
stage least squares. There is an extensive literature on weak instruments in econometrics which has
led to the development of statistics whose large sample distributions are not affected by the weak
instrument problem, see e.g. Anderson and Rubin (1949), Kleibergen (2002), Moreira (2003) and
Kleibergen and Mavroeidis (2009). Still, the traditional t-statistic is commonly used. Stock and Yogo
(2001) therefore analyze the sensitivity of the large sample distribution of the t-statistic to the value
of a pre-test for weak instruments that results from the first stage regression, i.e. the first stage F -
statistic. Stock and Yogo (2001) show that the large sample distribution of the t-statistic is standard
normal when the first stage F -statistic exceeds ten and differs from a normal distribution when the
first stage F -statistic is less than ten. Hence, for values of the first stage F -statistic that exceed ten
we can use the t-statistic for inference and for values of the first stage F -statistic that are less than
ten we have to use a weak instrument robust statistic to conduct inference.

The first stage F -statistic tests if the instruments used for the instrumental variables regression
are jointly significant in the first stage regression. With respect to the FM two pass regression, this is
analogous to testing if the observed factors in the first pass regression are jointly significant. The LR
statistics in Tables 2-4 test the significance of the observed factors in the first pass regression. Because
the first stage F -statistic is defined as an F -statistic, so it results from dividing by the number of
tested parameters, a value of the first stage F -statistic of around ten is comparable with a value of
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the LR statistic that equals ten times the number of tested parameters. This means that the cutoffs
for the LR statistic that allow us to use the FM t-statistic are two hundred and fifty in case of twenty
five parameters, five hundred in case of fifty parameters, seven hundred and fifty in case of seventy
five parameters etc.. The only two settings in Tables 2-4 for which the LR statistics exceed these
thresholds are when there is one observed factor which equals the value weighted return or when the
observed factors equal the Fama-French factors. For all other specifications either the LR statistic that
tests the parameters of all observed factors or the LR statistic that tests the value of the parameters
of the observed factors that are incremental to the value weighted return are below the threshold
value which allows the FM two pass t-statistic to be compared to a standard normal distribution.
These specifications are obviously also those for which the observed factors fail to eradicate the factor
structure in the first pass residuals. For all these specifications we should use the analogs of the weak
instrument robust statistics for factor models which are developed in Kleibergen (2009). A brief review
of them that discusses how to compute them and what their properties are is provided in Appendix
B, see also Kleibergen (2009).

Usage of confidence sets as reality check Alongside the reality check for factor pricing based
on the remaining factor structure in the first pass residuals, we propose a second reality check that
uses the 95% confidence sets that result from the identification robust factor statistics. We use the
four identification robust factor statistics discussed in Appendix B: the factor Anderson-Rubin (FAR)
statistic, the factor extension of Kleibergen’s (2002, 2005) Lagrange multiplier statistic (FKLM), the
factor extension of Kleibergen’s (2005) J-statistic (FJKLM) and the factor extension of Moreira’s
(2003) conditional likelihood ratio statistic (FCLR). If we want to test a hypothesis on one element of
λF , say H0 : λ1 = λ1,0, these statistics test it in different manners. The FAR statistic tests the joint
hypothesis of factor pricing stated in (9) and H0. The hypothesis of factor pricing given that H0 holds
is tested using the FJKLM statistic while the FKLM and FCLR statistics both just test H0 : λ1 = λ1,0.
We can use each of these four statistics to construct a 95% confidence set for λ1 by specifying a grid
of s different values for λ1,0, (λ11,0 . . . λ

s
1,0). We then compute the statistics for each different value of

λ1,0 in the grid. The 95% confidence set consists of all values of λ1,0 for which the statistic is below
its 95% critical value. In case one of the elements of λF is not well identified, because of the small
value of β and/or VFG, the 95% confidence sets are unbounded, see e.g. Dufour (1997). Our second
reality check for factor pricing therefore uses the 95% confidence sets for the risk premia that result
from the identification robust factor statistics. These confidence sets are trustworthy for all possible
values of β and VFG and show if the observed series are informative about the risk premia. If the
latter is not the case, these confidence sets are unbounded which shows that the observed series do
not contain (much) information about the pricing of the associated factors. In the sequel, we discuss
these confidence sets and how we turn them into a reality check for the previously analyzed series.
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Figure 4.1: p-value plot λ∆c Figure 4.2: p-value plot λcay
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Figure 4.3: p-value plot λ∆c×cay Figure 4.4: p-value plot λrvw

Panel 4. p-value plots for the risk premia that result from different specifications used in Lettau

and Ludvigson (2001). Figures 4.1-4.3: three factor model. Figure 4.4 single factor model. FM

two pass t-statistic (solid line), MLE t-statistic (points), FKLM (solid-plusses), FCLR (dashed),

FJKLM (dash-dotted), FAR (dotted).

Lettau-Ludvigson (2001): consumption based and value weighted return factors We dis-
cuss two different specifications from Lettau and Ludvigson (2001) which are representative for the
results at large. After that we briefly mention the results for the other specifications in Lettau and Lud-
vigson (2001), Lustig and Van Niewerburgh (2005), Li et. al. (2006), Santos and Veronesi (2006) and
Yogo (2006) that we discussed previously. The first specification has three consumption based factors:
consumption growth, the consumption wealth ratio (cay) and the interaction between consumption
growth and the consumption wealth ratio. The second specification has the value weighted return
as its single factor. The specifications correspond with the “cay, ∆c, cay∆c” and “Rvw” columns in
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LL01
Rvw ∆c cay cay∆c

FM 0.022
0.16

−0.13
0.40

0.057
0.025

MLE −1.44
1.10

−3.78
3.00

0.0077
0.06

FM −0.31
0.96

MLE −1.38
0.68

Table 7: FM two pass and ML estimates of the risk premia for different specifications used in Lettau
and Ludvigson (2001). Standard errors (with Shanken correction for FM standard errors) are listed
below the estimates.

Table 3. Table 7 contains the FM two pass and maximum likelihood (ML) estimates, see Gibbons
(1982).3 We use the four identification robust factor statistics, the FM two pass t-statistic and the
t-statistic based on the ML estimator to construct the confidence sets for the risk premia. Figures
4.1-4.4 in Panel 4 therefore each contain six (one minus the) p-value plots, one for every statistic.
These figures also contain a straight line at 0.95 which enables us to construct the 95% confidence set
using the intersection of the p-value plot with the line at 0.95.

For the first specification with the consumption based factors, Figures 4.1-4.3 show the p-value
plots of the risk premia using the different statistics. The FM t-statistic is the statistic that is almost
solely used in the literature. Figures 4.1-4.3 show that according to the FM t-statistic the risk premia
on the consumption growth factor and consumption-wealth ratio are not significant at the 95% level
while the risk premium on the interaction between consumption growth and the consumption wealth
ratio is. This can be concluded from the intersection of the p-value plot of the FM t-statistic and the
line at 0.95. It also results from the risk premia estimates and standard errors in Table 7. Lettau and
Ludvigson (2001) use the significant risk premium on the interaction between consumption growth and
the consumption-wealth ratio to advocate an extension of the consumption capital asset pricing model
in which the consumption growth’s risk premium changes over the business cycle. These findings,
however, do not correspond with those obtained from the identification robust factor statistics. For
all three risk premia, the 95% confidence sets that result from any of the identification robust factor
statistics are unbounded. The p-value plots of these statistics in Figures 4.1-4.3 do namely not intersect
with the line at 0.95 or lie below it at large values of the risk premia. Hence, the 95% confidence sets
that result from the identification robust factor statistics are unbounded. It shows that we cannot
determine the risk premia. This results since the consumption based factors are not able to eradicate
the factor structure as shown in Table 3. Because the consumption based factors do not eradicate
the factor structure, β and/or VFG are rather small which is revealed by the LR statistics in Table
3.4 The risk premia are then hard to identify so a large range of values is plausible as indicated
by the unbounded confidence sets. We therefore propose to use these confidence sets as another
reality check for factor pricing. When β and/or VFG are sizeable, the confidence sets are small and
similar for all the different statistics. When β and/or VFG are small, we can, however, only use the
identification robust factor statistics since their distributions do, unlike that of the FM t-statistic,
not depend on it. Because the distribution of the FM t-statistic differs from a standard normal one

3As discussed in Appendix B, the four identification robust statistics all have the ML estimator as their minimizer so
we do not report separate estimators for these statistics.

4For example, Table 3 shows that the p-value for testing the significance of consumption growth is only 6%.
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when β and/or VFG are small, it gives rise to misleading conclusions when we assess its significance
using the standard normal distribution. This is what happens here with the FM t-statistic of the
risk premium on the interaction between the consumption growth and the consumption wealth ratio.
When the confidence sets that result from the identification robust factor statistics are small, the data
is informative about the risk premia so factor pricing occurs. When they are, however, unbounded,
the data is not informative about the risk premia so it is unlikely that factor pricing occurs. The
confidence sets that result from the identification robust factors statistics therefore provide another
reality check of factor pricing.

The differences in the p-value plots of the identification robust factor statistics in Figures 4.1-4.3
result since they do not test the same hypothesis. The FKLM and FCLR statistics just test if the
respective risk premium is equal to a specific value which explains why they are rather similar and
equal to zero at the ML estimate. The FAR and FJKLM statistics also or just, in case of the FJKLM
statistic, test the hypothesis of factor pricing which is stated in (9). This explains why the p-value
plots associated with them are never equal to zero because the number of moment equations in (9)
exceeds the number of risk premia.

Besides the identification robust factor statistics and the FM t-statistic, Figures 4.1-4.3 also show
the p-value plots of the ML t-statistic which results from the estimates and standard errors in Table
7. This t-statistic suffers from the same statistical issues as the FM t-statistic being only valid when
β and/or VFG are sizeable. Identical to the FM t-statistic, the confidence sets that it leads to can
therefore not be trusted when β and/or VFG are small. To show that the confidence sets that result
from the different statistics are similar when β and/or VFG are sizeable, we compute them using an
observed factor that has such sizeable values, the value weighted return.

Figure 4.4 contains the (one minus the) p-value plots for the risk premium on the value weighted
return when it is the only factor. They are computed using the statistics discussed before. The
results in Figure 4.4 correspond with the “Rvw” column in Table 3. Table 3 shows that the value
weighted return eradicates one of the factors in the portfolio returns. The values of its β and VFG
parameters are therefore sizeable as revealed by the huge value of the likelihood ratio statistic testing
the significance of these parameters, 765. Because of these large values, the p-value plots that result
from the identification robust factor statistics and the FM and MLE t-statistics are almost identical
and all indicate that the risk premium on the value weighted return is not significant at the 95% level.

The p-value plots of the identification robust FAR and FJKLM statistics are not visible in Figure
4.4. This results because they are significant for all values of the risk premium. It shows that the
hypothesis of factor pricing is rejected when we use the value weighted return as the only factor.
Hence, the factor pricing moment equation in (9) does not hold so the average portfolio returns are
not spanned by the β’s of the value weighted return. Given the small value of the R2 in Table 5,
0.01, this does not come as a surprise. We have, however, previously shown that the R2 is unreliable
when there is still a considerable factor structure left over in the residuals of the first pass of the FM
two pass procedure. Table 3 shows that two factors remain in these residuals so the R2 in Table 5 is
unreliable but coincidentally not in disagreement with the rejection of the factor pricing hypothesis
by the FAR and FJKLM statistics.

The p-value plots of the FAR and FJKLM statistics in Figures 4.1-4.3 lie below 0.95 so the factor
pricing hypothesis is not rejected when we use the consumption based factors while it is when we use
the value weighted return as the only factor. Similar results are documented in Table 8 in Lettau
and Ludvigson (2001) where the factor pricing hypothesis is tested using the Hansen-Jagannathan
distance, see Hansen and Jagannathan (1997). The rejection of factor pricing when we use the value
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weighted return as the single factor compared to the non-rejection for the three factor model with the
consumption based factors is surprising since the three factors in the latter specification do not explain
any of the factor structure in the portfolio returns while the value weighted return at least eradicates
one of the factors as shown in Table 3. The non-rejection of the factor pricing hypothesis when we
use the consumption based factors therefore results because these factors do not eradicate any of the
factor structure. The value of the covariance matrix involved in the FAR and FJKLM statistics is
therefore much larger when we use the consumption based factors compared to the value weighted
return. Since we divide by the covariance matrix to obtain the statistics, a smaller covariance matrix
leads to a larger and thus also more likely to be significant value of the statistics. This explains why
the FAR and FJKLM statistics are significant when we use the value weighted return as the only
factor but not when we use the three consumption based factors.

The ML estimates for the risk premia on the consumption based factors in Table 7 can be large
and quite different from the FM two pass estimates. Table 3 shows that the β and/or VFG parameters
associated with the consumption based factors are all quite small. In the second pass, we kind of
divide by the estimated parameters from the first pass so their proximity to zero explains the large
values of the ML estimates5. This also explains why the FM and ML estimates of the risk premium
on the value weighted return in Table 7 are quite similar because its β and/or VFG parameters are
sizeable.

Lettau-Ludvigson (2001): Remaining factor specifications Table 8 and Panels 5 and 6 in
Appendix A contain the estimates and p-value plots for the remaining specifications from Lettau and
Ludvigson (2001) which are listed in Table 3. These results can be classified along the lines of the
two specifications discussed previously. First there are the specifications for which, according to Table
3, the observed factors do not fully eradicate the factor structure. These are the single factor model
with consumption growth as its single factor, the three factor model with the value weighted return,
consumption wealth ratio and the interaction of the consumption wealth ratio with the value weighted
return as its factors and the five factor model with the value weighted return, consumption wealth
ratio, income growth and the interactions of the consumption wealth ratio with the value weighted
return and income growth as its factors. Second is the specification for which Table 3 shows that the
observed factors do eradicate the factor structure which is the three factor model with the Fama-French
factors.

For the first set of specifications, the ML estimates of the risk premia in Table 8 are all considerably
different from the FM two pass estimates. Also the p-value plots in Figures 5.1 and 6.1-6.6 show that
the 95% confidence sets that result from the identification robust factor statistics for all of the risk
premia are unbounded. These results are identical to those for the three factor model with the
consumption based factors discussed previously. The conclusion for that specification based on our
second reality check, that there is no information on any of the risk premia, applies to all of these
specifications therefore as well. Because of the proximity to zero of the β and VFG parameters in
the first pass, the behavior of the FM two pass t-statistic is anomalous. Its’ indication of factor
pricing through significant t-statistics, which applies here, for example, for the interaction of the value

5For the same reason, the distribution of the ML estimator, just like the distribution of the ML estimator in the
linear instrumental variables regression model, has no moments so the mean and variance of the distribution of the ML
estimator are infinite. The same holds to a lesser extent for the FM two pass risk premia estimator for which we can
show that its moments exist up to the order of the number of portfolios minus the number of factors which is around 25.
Its’ distribution therefore has a finite mean and variance so extreme values of the FM risk premium estimator are less
likely than for the ML estimator, see Kleibergen (2009).
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weighted return with the consumption wealth ratio in Figure 6.3 and which we have shown previously
for the interaction between consumption growth and the consumption wealth ratio as well, is therefore
spurious so it provides no indication of factor pricing.

For the second kind of specification, the ML estimates of the risk premia in Table 8 are somewhat
similar to that of the FM two estimates which results because the parameters in the first pass are all
considerably different from zero. The p-value plots of the FAR and FJKLM factor pricing statistics
are, however, hardly visible because of their proximity to one which makes them highly significant.
The significance of the FAR and FJKLM factor pricing statistics again results since the Fama-French
factors, as shown in Table 3, explain a lot of the variation of the portfolio returns so the residual
covariance matrix is small which leads to large values of the FAR and FJKLM factor pricing statistics.
This conclusion is in line with that of the specification discussed previously which has the value
weighted return as its single factor.

Li et. al. (2001), Lustig and Van Nieuwerburgh (2005), Santos and Veronesi (2006) and
Yogo (2006) The same distinction based on whether the observed factors can eradicate the factor
structure reported in Tables 3 and 5 can be made to classify the results for the factor specifications
used in Li et. al. (2001), Lustig and Van Nieuwerburgh (2005), Santos and Veronesi (2006) and
Yogo (2006). Except for the specification that has the value weighted return as its single factor,
whose p-value plots are shown in Figure 7.1 in Appendix A, Tables 4 and 6 show that none of these
specifications manage to eradicate the same number of unobserved factors as the number of observed
factors that they contain. Table 9 in Appendix A therefore shows that the ML estimates of the
risk premia for these specifications typically differ considerably from the FM two pass estimates. It
also implies that the p-value plots in Figure 7.2-7.6, 8.1-8.6 and 9.1-9.3 in Appendix A all indicate
that the 95% confidence sets that result from the identification robust factor statistics for all of the
risk premia are unbounded. Our second reality check thus shows that we cannot determine the risk
premia. Because of the proximity to zero of the β and VFG parameters in the first pass, the FM two
pass t-statistic is unreliable. Its’ indications of significant risk premia, as, for example, for FINAN
and HHOLD in the specification of Li et. al. (2001) shown in Figures 7.4 and 7.5 and the interaction
of the growth of the consumption of nondurables and MYFA in the specification of Lustig and Van
Nieuwerburgh (2005) shown in Figure 8.3, are therefore anomalous.

Identical to the previous specification that we analyzed that had the value weighted return as its
single factor, Figure 7.1 shows that all p-value plots are rather similar since the β and VFG parameters
from the first pass are sizeable. Again the p-value plot of the factor pricing FAR and FJKLM statistics
lies at one which shows that factor pricing is strongly rejected.

We do not compute the confidence sets for the specifications used by Jagannathan and Wang
(1996) because the results are rather similar to those from the other specifications.

4 Conclusions

Portfolio returns exhibit a (unobserved) factor structure. This factor structure has to be captured
appropriately to obtain reliable results from stochastic discount factor models using the traditional
statistical criteria. If the factor structure is not captured by the observed factors, the traditional
statistical criteria to assess stochastic discount factors, which are theR2 and t-statistics from the second
pass of the FM two pass procedure, falter. Hence, they often signal relationships between observed
factors and portfolio returns which are essentially non-existent. Many of the factors proposed in the
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literature, like, for example, consumption and labor income growth, housing collateral, consumption-
wealth ratio, labor income-consumption ratio, interactions of either one of the latter three with other
factors, etc., are supported by their high R2’s and significant t-statistics but fail to capture any of
the factor structure of the portfolio returns. These results can therefore not be trusted. To indicate
whether we can trust the support for factor pricing, we propose two reality checks. The first reality
check shows if the observed factors eradicate the factor structure. The second reality check assesses
whether factor pricing occurs using the 95% confidence sets that result from the identification robust
factor statistics. Unlike the FM t-statistic, these statistics remain reliable when the observed factors do
not capture the factor structure. The first reality check shows that many factors used in the literature
fail to eradicate the factor structure in portfolio returns. The second one shows that, since the 95%
confidence sets for the risk premia on these factors are then unbounded, we cannot determine the risk
premia on observed factors that do not eradicate any of the unobserved factors.

27



Appendix A: Tables and Figures

LL01
Rvw ∆c SMB HML cay cayRvw cay∆c ∆y cay∆y

FM 0.21
0.18

MLE −2.68
1.95

FM 1.32
1.58

0.47
0.1

1.46
0.12

MLE −11.2
3.44

0.68
0.11

1.52
0.15

FM −0.52
3.28

−0.05
1.47

1.13
0.46

MLE 32.4
14.32

0.67
2.41

1.79
0.87

FM −1.98
1.58

−0.44
0.45

0.34
0.32

0.56
0.44

−0.17
0.12

MLE −10.75
17.97

−5.66
9.70

−2.93
5.40

−2.86
5.41

−1.94
3.18

Table 8: FM two pass and ML estimates of the risk premia for different specifications used in Lettau
and Ludvigson (2001). Standard errors (with Shanken correction for FM standard errors) are listed
below the estimates.

Rvw ∆cNondur FIN HHOLD NFIN swRvw cayRvw ∆cDur myfa myfa∆c

FM −0.85
0.94

MLE −1.90
0.69

FM 0.13
0.21

MLE −4.65
4.84

FM 0.078
0.034

MLE −54.9
4138

FM 0.092
0.04

0.027
0.016

0.008
0.011

MLE 0.079
0.061

0.10
0.047

−0.003
0.016

FM 0.14
0.33

0.015
0.028

0.050
0.025

MLE 0.016
0.43

−0.047
0.047

0.11
0.067

FM 0.49
1.02

0.61
0.88

0.016
0.03

MLE 5.69
5.77

3.71
4.34

−2.86
0.36

FM 0.064
1.70

0.68
0.38

−0.12
0.30

MLE 32.6
292

10.5
90.4

38.2
327

Table 9: FM two pass and ML estimates of the risk premia for different specifications used in Li et.
al. (2006), Lustig and Van Nieuwerburgh (2005), Santos and Veronesi (2006) and Yogo (2006). All
use the portfolio returns from the website of Ken French. Standard errors (with Shanken correction
for FM standard errors) are listed below the estimates.
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Panel 5. p-value plots for the risk premia that result from different specifications used in Lettau

and Ludvigson (2001). Figure 5.1: single factor model, Figures 5.2-5.4: Three factor model. FM

two pass t-statistic (solid line), MLE t-statistic (points), FKLM (solid-plusses), FCLR (dashed),

FJKLM (dash-dotted), FAR (dotted).
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Panel 6. p-value plots. Figure 6.1-6.3 three factor model. Figure 6.4-6.5: five factor model.
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Panel 7. p-value plots. Figures 7.1-7.3 single factor models. Figure 7.4-7.6, three factor model

from Li et. al (2001).
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Panel 8. p-value plots. Figure 8.1-8.3 three factor model from Lustig and Van Nieuwerburgh (2005).

Figure 8.4-8.6 three factor model from Santos and Veronesi (2006).
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Panel 9. p-value plots. Figure 9.1-9.3 three factor model from Yogo (2006).

Appendix B. Identification robust factor statistics

To test a hypothesis on one element of λF , say λ1, the identification robust factor statistics first
remove the zero-β return λ0 by taking all portfolio returns in deviation from a baseline portfolio return,
say rt,n :

Rt = R1t − ιn−1rnt

with R1t = (r1t . . . rn−1t)0 and ιn−1 is a (n− 1)-dimensional vector of ones. The identification robust
factor statistics are invariant with respect to the choice of the baseline portfolio and also with respect
to other transformations.

33



If λF has more than one element and we want to test the hypothesis, H0 : λ1 = λ1,0, we first com-
pute the maximum likelihood estimates under H0 of the other elements of λF : λ2 . . . λm, see Gibbons
(1982). These result from the characteristic vectors (eigenvectors) of a characteristic polynomial for
which we use the residuals of three linear regressions:

Rt = α1(Ḡ1t + λ1,0) + R̃t

1 = α2(Ḡ1t + λ1,0) + 1̃t
Ḡ2t = α3(G2t + λ1,0) + G̃2t

(17)

where Gt =
¡
G1t
G2t

¢
with G1t a scalar and G2t a (m − 1)-dimensional vector, Gt is the vector with

observed factors in (7). When we estimate α1, α2 and α3 using least squares and R̃t, 1̃t and G̃2t are
the residuals of these least squares regressions, the characteristic polynomial from which we obtain
the maximum likelihood estimators reads¯̄̄̄

θ

∙
1
T

PT
t=1

¡ 1̃t
G̃2t

¢¡ 1̃t
G̃2t

¢0¸− h 1T PT
t=1

¡ 1̃t
G̃2t

¢R̃0tiΣ−1 ∙ 1T PT
t=1 R̃t

¡ 1̃t
G̃2t

¢0¸¯̄̄̄
= 0, (18)

with Σ = 1
T

PT
t=1 R̃tR̃0t. The maximum likelihood estimator of λF,2 = (λ2 . . . λm)0 then equals

λ̃F,2 =W−10
2 w01, (19)

with w1 a m dimensional row vector and W2 a m×m dimensional matrix which are such that
¡
w1
W2

¢
contains the m characteristic vectors that are associated with the m largest roots of the characteristic
polynomial in (18), see Kleibergen (2009) and Shanken and Zhou (2007). We then proceed with
computing the least squares estimator of B under H06 :

B̂ =
PT

t=1Rt

¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢ ∙PT
t=1

¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢0¸−1
, (20)

which provides the base for our four identification robust factor statistics, see Kleibergen (2009):

1. The factor Anderson-Rubin (FAR) statistic which is based on the Anderson-Rubin statistic, see
Anderson and Rubin (1949):

FAR(λ1,0) = T

1−(λ1,0
λ̃F,2
)
0
Q̂−1GG(

λ1,0

λ̃F,2
)

h
R̄− B̂

¡λ1,0
λ̃F,2

¢i0
Σ̃−1

h
R̄− B̂

¡λ1,0
λ̃F,2

¢i
, (21)

with R̄ = 1
T

PT
t=1Rt, Q̂GG =

1
T

PT
t=1

¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢0
and Σ̃ = 1

T−k
PT

t=1

h
R̄t − B̂

¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢ih
R̄t − B̂

¡Ḡ1t+λ1,0
Ḡ2t+λ̃F,2

¢i0
and whose large sample distribution is bounded by a χ2(N−m) distributed

random variable when the sample size T gets large.

2. The factor extension of Kleibergen’s (2002,2005) Lagrange Multiplier statistic:

FKLM(λ1,0) = T

1−(λ1,0
λ̃F,2
)
0
Q̂−1GG(

λ1,0

λ̃F,2
)

h
R̄− B̂

¡λ1,0
λ̃F,2

¢i0
Σ̃−1B̂(B̂0Σ̃−1B̂)−1B̂0Σ̃−1

h
R̄− B̂

¡λ1,0
λ̃F,2

¢i
,

(22)
whose large sample distribution is bounded by a χ2(1) distributed random variable when the
sample size gets large.

6We are essentially estimating B1 − ιn−1bn if B =
¡
B1
bn

¢
, with B1 a (n− 1)×m dimensional matrix and bn a 1×m

dimensional row vector.
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3. The factor extension of Kleibergen’s (2005) J-statistic:

FJKLM(λ1,0) = FAR(λ1,0)− FKLM(λ1,0), (23)

whose large sample distribution is bounded by a χ2(N−m−1) distributed random variable when
the sample size gets large. This χ2(N −m − 1) distributed random variable is independent of
the χ2(1) distributed random variable which bounds the large sample distribution of the FKLM
statistic.

4. The factor extension of Moreira’s (2003) conditional likelihood ratio statistic:

FCLR(λ1,0) = 1
2 [FKLM(λ1,0) + FJKLM(λ1,0)− r(λ1,0)+ ,p
(FKLM(λ1,0) + FJKLM(λ1,0) + r(λ1,0))2 − 4r(λ1,0)FJKLM(λ1,0)

i
,

(24)

with r(λ1,0) the smallest root of the characteristic polynomial:¯̄̄
μQ̂−1GG − B̂0Σ̃−1B̂

¯̄̄
= 0. (25)

In large samples the distribution of the FCLR statistic is bounded by a random variable whose
distribution is conditional on the value of r(λ1,0). The (bounding) critical values of the FCLR
statistic are therefore a function of r(λ1,0) and the independent χ2(1) and χ2(N −m− 1) large
sample distributions of the FKLM and FJKLM statistics. We obtain these critical values by
fixing r(λ1,0) and simulating the FKLM and FJKLM statistics from their independent large
sample distributions to compute the FCLR statistic using the simulated values of the FKLM
and FJKLM statistics, see Kleibergen (2009).

The critical values that result from the bounding distributions for each of the four identification
robust factor statistics are such that these statistics are size correct when (λ2 . . . λm) are well identified
so the associated values of β and VFG constitute sizeable full rank matrices. When (λ2 . . . λm) are not
well identified because of small or zero values of the associated values of β and VFG, the critical values
are such that the rejection frequencies of the identification robust factor statistics are smaller than
the size of the test. The maximal rejection frequencies of the identification robust factor statistics are
therefore equal to the size of the test which makes them size correct, see Kleibergen and Mavroeidis
(2009).

The identification robust factor statistics test different hypothezes. The FAR statistic tests the
joint hypothesis of factor pricing and λ1 = λ1,0: HFAR : E(Rt) = B

¡λ1,0
λF,2

¢
where λF,2 is to be estimated.

The hypothesis of factor pricing given that λ1 = λ1,0 is tested using the FJKLM statistic while the
FKLM and FCLR statistics both test H0 : λ1 = λ1,0.

We can use each of the four different statistics to construct a 95% confidence set for λ1 by specifying
a grid of s different values for λ1,0, (λ11,0 . . . λ

s
1,0). We then compute the statistics for each different

value of λ1,0 in the grid. The 95% confidence set consists of all values of λ1,0 for which the statistic is
below its 95% (conditional) critical value. In case that one of the elements of λF is not well identified,
the 95% confidence sets is unbounded, see e.g. Dufour (1997).

The above discussion deals with testing one element of λF so it assumes that λF has more than one
element, m > 1. When λF just consists of one element, λF,2 is not present so we do not conduct the
computations in (17)-(19). The expressions of the identification robust factor statistics then extend
to the case that there is just one observed factor when we remove λ̃F,2 and Ḡ2t + λ̃F,2 from (20)-(25).
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The performance of the identification robust FKLM and FCLR statistics is similar to that of
t-statistics based on FM two pass or maximum likelihood estimators when the β’s and VFG are
sizeable. The latter two, however, become unreliable when the β’s and/or VFG are quite small. The
identification robust factor statistics remain reliable in these cases. It is therefore important to use
them for computing confidence sets on the risk premia when the β’s and/or VFG are quite small.
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