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Abstract

In this paper we study estimation and inference of cointegration vector(s) in a fractionally coin-

tegrated system employing a regression-based approach. In ”strongly cointegrated” regressions

(when the difference between integration order of observables and cointegration errors exceeds

1/2) the OLS estimator of the cointegration vector does not have an optimal rate of convergence

in a part of parameter space. We use the approach of Saikkonen (1991) appending the regression

equation with leads and lags of filtered regressor and estimate cointegration vector with OLS in

the appended regression in this way obtaining optimal convergence rate and local asymptotic

mixed normal distribution of the estimator. Although the estimator depends on the values of

integration order and cointegration strength, we show that use of consistent estimates does not

affect asymptotic properties of the estimator. This allows to construct feasible Wald test for

linear restrictions on the coefficients with nuisance-free asymptotic null distribution. Monte

Carlo study illustrating finite sample properties of the estimator and Wald test is provided.
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1 Introduction

Cointegration analysis has become one of the main tools of empirical research in economics and fi-

nance. Traditional cointegration framework assumes observed time series to be a unit root process,

while cointegration errors are assumed to be a weakly stationary process. Although the implicit

knowledge of integration orders of both observed time series and cointegration errors might be

seen restrictive in the light of empirical studies documenting possible fractional behaviour of eco-

nomic/financial time series (see Baillie (1996) for a review), most of the previous theoretical and

empirical work concentrated on this standard I(1)/I(0) case. Hence, it seems natural to embed

cointegration analysis in the fractional framework letting time series be integrated of arbitrary

order. Generally, we will say that multivariate time series Xt is fractionally integrated of order d

and denote it as Xt ∼ I(d), if Xt = ∆−dut1t>0, t ∈ N, for d > −1/2, where ut has a continuous,

bounded, positive semi-definite and non-zero everywhere spectral density matrix (hence we follow a

so called type II definition, cf. Marinucci and Robinson (2000)). We will say that Xt is fractionally

cointegrated, if Xt ∼ I(d), but there exists a non-zero full column rank matrix β: β′Xt ∼ I(d− b),

for some b > 0.

One of the basic questions of interest in a fractionally cointegrated system is the value of

cointegration vector. There has been a number of approaches for inference of cointegration vector

suggested in the literature and they can be attributed to either likelihood-based (see Johansen

(1995) for I(0)/I(1) and Johansen and Nielsen (2010b) for fractional framework) or regression-

based methods. To illustrate the ideas of the latter approach, suppose we observe a non-stationary

bivariate fractionally cointegrated times series Xt = (X1t, X2t)′. Then the normalized cointegration

vector α in the regression:

X1t = αX2t + ut (1)

can be estimated with regression methods upon observing that due to cointegration the strength

of the signal Xt dominates the strength of the noise ut (in a stochastic sense). However, it is well-

known that in I(1)/I(0) case, OLS estimator of (1) is second-order biased and does not bring the

inference problem into locally asymptotically mixed normal (LAMN) family (cf. Phillips (1991)).

The problem runs even deeper in fractional framework: OLS has slower than optimal convergence

rate in the parameter space {2d − b ≤ 1, d ≥ 0, (d, b) 6= (1, 1)}. This can be solved with spectral
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regression methods: narrow-band least squares (NBLS) regression improves convergence rate and

removes second-order bias in case ψ = (d, b) = (1, 1) (cf. Robinson and Marinucci (2001)). Although

the rate of NBLS estimator is yet not optimal, the narrow-band weighted least squares (NBWLS)

regression achieves optimal rate of convergence in the parameter space {d ≥ b > 1/2} (cf. Robinson

and Hualde (2003), Hualde and Robinson (2010)).

On the other hand, the problem of non-optimal rate of OLS estimator in (1) might be solved

correcting for endogeneity in the regression using time-domain methods. There are two established

approaches of this idea in I(1)/I(0) literature: fully-modified estimation (cf. Phillips and Hansen

(1990)) and dynamic OLS estimation (cf. Saikkonen (1991), Stock and Watson (1993)). The former

method has been extended to fractional framework by Kim and Phillips (2001), whereas the goal

of our paper is to extend the latter approach to fractional framework. Dynamic OLS estimation in

I(1)/I(0) is based on appending regression equation (1) with leads and lags of differenced regressor

X2t what removes second-order bias, whereas estimation of fractional regression appended with

fractionally filtered regressor X2t improves rate of convergence of the estimator (as compared to

OLS estimator of (1)) yielding locally asymptotically mixed normal estimator of α. DOLS estimator

was proved to be asymptotically efficient in I(1)/I(0) setting in Saikkonen (1991), provided some

conditions on the rate of growth of number k of appended leads and lags hold. Similar conditions

for k require to hold in a fractional regression. Although in fractional setting typically neither the

order of integration of the original series nor the cointegration strength are known and estimates

of the fractional parameters ψ = (d, b) have to be used, we show that their consistency at a rate of

T κ, for κ > 0, is enough for optimal feasible DOLS estimation.

The rest of the paper is organized as follows: section 2 presents the framework, discusses

the model and assumptions. Section 3 outlines the idea of estimation and presents main results.

The results of Monte Carlo simulations evaluating finite sample performance of the estimator are

presented in the section 4, while section 5 concludes. Proofs are given in the appendices.

We use the following notation in the paper: P→ means convergence in probability, d→ denotes

convergence in distribution. The Euclidian norm of a matrix, vector or scalar Z is denoted as

||Z|| =
√
tr(Z ′Z). We will also use operator norm: ||A||1 =

√
λmax(A′A). AsCov(Z) denotes

asymptotic variance-covariance matrix of asymptotically stationary random vector Z. Finally, we

use shorthand notation for filtered multivariate observables, i.e. ∆dXt denotes a vector Xt with

3



its individual components filtered with ∆d. Also, Du will denote a first-order derivative w.r.t. u.

Wb(s) denotes fractional standard type II Brownian motion which is defined as follows:

Wb(0) = 0, a.s.

Wb(t) =
1

Γ(b+ 1)

∫ t

0
(t− u)bdW (u).

where W (u) is a standard Brownian motion.

2 The model and preliminaries

In the paper we are concerned with generic fractionally cointegrated (FCI) time series:

Assumption 1. Observed n-dimensional time series Xt satisfies:

∆(L,ψ)(β, γ)′Xt = ut, t = 0, 1, . . . (2)

where ∆(L,ψ) = blockdiag{∆d−b
+ Ir,∆d

+In−r}, Ir is a r × r unit matrix and b > 0. β is n × r

matrix, (β, γ) is n×n matrix of full rank, ut is I(0) process and the expression ∆−d+ is a truncated

fractional differencing operator:

∆−d+ ut = (1− L)−d+ ut =
t∑
i=0

Γ(d+ i)
Γ(d)Γ(i+ 1)

ut−i

with Γ(i) - Gamma function.

Our characterization of fractionally integrated process coincides with type II definition, which

defines fractional integration directly in terms of fractional filter, i.e. as a weakly stationary time

series filtered with truncated fractional filter. Different characterization is also possible, but it leads

to different asymptotic inference considerations and have different interpretation for transition

mechanisms of innovation shocks (for a discussion see Shimotsu and Phillips (2006), section 7).

Given this definition, the model (2) formalizes the idea of fractional cointegration in a very general

way: Xt ∼ I(d), but β′Xt ∼ I(d− b).

In the paper we are interested in “strongly“ cointegrated fractional systems:

Assumption 2. b > 1/2.
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Although most empirical studies are concerned with long memory type behaviour of cointe-

gration errors β′Xt, what implies d ≥ b, our framework in principle does not necessitate this

assumption, only requiring strong cointegration. The assumption is crucial for feasible optimal

estimation of cointegration vector: in a fractional regression filtered observables are I(b) and hence

non-stationary processes, wheras the errors are I(0) and stochastic dominance of signal to noise

allows feasible optimal inference. Finally, for the development of partial sum limit theory we need

the following assumption on the errors:

Assumption 3. ut = C(L)εt, where C(L) is a lag matrix polynomial such that det(C(z)) 6=

0, ∀|z| = 1 and coefficients of C(L) and C−1(L) are 1/2-summable, i.e.
∑

j

√
j||Cj || < ∞. εt is

i.i.d. (0,Σ) time series with Σ > 0, E||εt||q <∞ for some q > max{4, (b− 1/2)−1}.

The assumption on the error process ut conveys somewhat restrictive cointegration framework

in a sense that it does not allow multicointegration, i.e. cointegration between cointegration errors

β′Xt (note that under the assumptions long-run covariance matrix of ut: Ω = C(1)ΣC(1)′ is positive

definite). Although it may be plausible to consider multicointegration in the empirical work, from

theoretical perspective the question seems complicated and it does not seem possible to solve it

with our method.1

Assumption 3 ensures that multivariate fractional invariance principle holds for ut (see Marin-

ucci and Robinson (2000), Theorem 1):

T 1/2−b
[Ts]∑
i=0

∆1−b
+ ut ⇒Wb−1(s). (3)

Here Wb−1(s) is type II fractional Brownian motion with covariance matrix Ω = C(1)ΣC(1)′.

Our assumptions for ut are almost identical to that of Robinson and Hualde (2003) and Hualde

and Robinson (2010), where feasible optimal inference for cointegration vector in strongly cointe-

grated systems is also considered, ours being relatively milder requiring 1/2-summability (rather

than 1-summability) for coefficients of C(L), C−1(L), although the setting of Hualde and Robinson

(2010) is more general and allows for multicointegration.
1Our method implicitly relies on the following commutation of lag polynomials: ∆(L, d)A(L) = A(L)∆(L, d),

where ∆(L, d) is a diagonal matrix with ∆d
+ on the diagonal and A(L) is a conformable lag matrix polynomial.
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3 Regression-based dynamic OLS estimation of cointegration vec-

tors

The key element for the regression-based estimation is the following normalization2 of cointegration

vector: β′ = (Ir,−α) and γ′ = (0n−r×r, In−r). The normalization in I(1)/I(0) systems was intro-

duced by Phillips (1991) and conveys triangular representation of a cointegrated system. Similarly

we obtain a fractional triangular model:

∆d−b
+ (X1t − αX2t) = u1t, (4)

∆d
+X2t = u2t. (5)

where Xt = (X ′1t, X
′
2t)
′ and ut = (u′1t, u

′
2t)
′.

Cointegrated regression of the type X1t = αX2t+ut has been studied in a number of papers. It

is well-known that in case of endogeneity between X2t and error term ut in I(1)/I(0) systems, OLS

estimator has second-order bias and does not bring the inference problem into LAMN framework

(cf. Phillips (1991)). However, in case of fractionally cointegrated regressions, endogeneity between

regressors and errors has deeper consequences: its rate of convergence in a part of parameter

space {2d − b ≤ 1, d ≥ 0, (d, b) 6= (1, 1)} is slower than optimal (cf. Robinson and Marinucci

(2001)). Within spectral regression framework the problem can be partly solved with narrow-band

least squares or narrow-band weighted least squares estimation, the latter achieving optimal rate

of convergence in non-stationary strongly cointegrated systems. Our approach uses time-domain

framework and takes idea from dynamic OLS estimation introduced in Saikkonen (1991), where

the regression equation is appended with lags and leads of differenced regressor thus removing

endogeneity effects.

We sketch the idea of dynamic OLS estimation. Note, that absolute summability of ||Cj ||

implies absolute summability of autocovariances of ut. On the other hand, fourth order stationary

time series with absolutely summable coefficients and finite fourth moment of innovation process

implies 4-th order summability of their cummulants. That and positive boundedness of spectral

density of error term fu(λ) = C(eiλ)ΣC ′(e−iλ) = (fij(λ))i,j=1,2 imply (cf. Brillinger (1974), p.

2Validity of normalization is showed in the appendix.
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296):

u1t =
∞∑

i=−∞
Πiu2t−i + vt, (6)

where Π(L) =
∑∞

i=−∞ΠiL
i satisfies Π(e−iλ) = f12(λ)f−1

22 (λ) and hence vt is a stationary process

such that:

� Evtu2t+k = 0,∀k ∈ Z,

�

∑
j ||Πj || <∞,

� Cov(vt) = Ω11 − Ω12Ω−1
22 Ω21.

Where (Ωij)ij=1,2 are the blocks of long-run covariance matrix Ω corresponding to ut = (u′1t, u
′
2t)
′.

If we denote F = σ({u2t, t ∈ Z}) - σ-field generated by a sequence of random variables {u2t, t ∈ Z},

then vt is the difference between u1t and its linear projection onto F and if ut is Gaussian, then

vt = u1t − E(u1t||F). The uncorrelatedness between vt and u2t suggests that appending regres-

sion equation (4) with a finite number of leads and lags of fractionally filtered regressor X2t could

”almost” remove endogeneity effects yielding optimal rate estimator of α, as it does in I(1)/I(0)

systems removing second-order bias. Our proposed dynamic OLS estimator α̂DOLS(d, b) is defined

as OLS estimator in the following regression:

∆d−b
+ X1t = α∆d−b

+ X2t +
k∑

i=−k
Πi∆d

+X2t−i + ṽt, t = k, . . . , T − k (7)

where ṽt = vt+et, et =
∑
|i|>k Πi∆d

+X2t−i. Error term et represents the error due to autoregressive

approximation of vt with finite number of lags k. It is not difficult to show that given the true

values ψ0 = (d0, b0), the infeasible DOLS estimator α̂DOLS(ψ0) has optimal rate of convergence with

LAMN asymptotic distribution (albeit mixing covariates being functionals of fractional Brownian

motion). However, obviously in fractional setting it is rather unrealistic to know the true values

of fractional parameters ψ, but we show that feasible estimator retains its asymptotic properties

under the following conditions on the estimator of ψ and the rate of growth of lag length k:

Assumption 4. Suppose ||ψ̂ − ψ|| = Op(T−κ), κ > 0 and k →∞ are such that:

1. k
(
T−1/2 + log TT−a + T−κ

)
= o(1), for a = min{1, 2b− 1},
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2.
(
log TT 1−b + k

)∑
|j|>k ||Πj || = o(1).

Assumption 4.1 puts an upper bound for the rate k: it does not grow faster than the rate

of estimator ψ̂ and (log TT−a + T−1/2), while assumption 4.2 puts the lower bound for the rate.

Obviously, the bound is infeasible and depends on the structure of the process ut, but for the

ARMA-type processes ut it translates into: k → ∞, when b > 1; k(log log T )−1 → ∞, when b = 1

and k log−1 T →∞, when b < 1 (in case b > 1, the second part of the assumption is innocuous).

Given the above-stated assumptions hold, the following theorem is the main result of the paper:

Theorem 3.1. Under assumptions 1-4 for the feasible estimator α̂ = α̂DOLS(ψ̂) it holds:

T b (α̂DOLS − α) d→
(∫ 1

0
dW1·2W

′
b−1

)(∫ 1

0
Wb−1W

′
b−1

)−1

. (8)

Since Brownian motions W1·2(s) = W1(s)−Ω12Ω−1
22 W2(s) and Wb−1(s) are uncorrelated (hence

independent) and Wb−1(s) is a function of W2(s) (hence independent of W1·2(s)) we might express

the limit distribution using mixture representation (cf. Phillips (1989)):

T b (α̂DOLS − α)
def
=
∫
G>0

N(0,Ω11·2 ⊗G)dP (G) (9)

where

G =
(∫ 1

0 Wb−1W
′
b−1

)−1
and Ω11·2 = Ω11 − Ω12Ω−1

22 Ω21. (10)

Asymptotic mixed normality of DOLS estimator allows standard asymptotic inference on the

parameters of the model. Consider Wald statistic for the linear hypothesis H0 : Rvec(α) = r, where

R is s× r(n− r) matrix, based on the estimator α̂DOLS = α̂DOLS(ψ):

W (ψ) = (Rvec(α̂DOLS)− r)′
(
R(Ω11·2 ⊗ (X2X

′
2)−1)R′

)−1 (Rvec(α̂DOLS)− r) (11)

where X2 = X2(ψ) = (∆d−b
+ X2k, . . . ,∆d−b

+ X2T−k). Then under the null hypothesis for the infeasible

test statistic holds: W (ψ0) d→ χ2
s. Feasible test statistic requires estimation of ψ and long run

covariance matrix of vt. One way to estimate Ω11·2 is with HAC-type estimator (cf. Andrews

(1991)) as weighted sum of the sample autocovariances of regression (7) residuals ˆ̃vt:

Ω̂11·2 = T−1
T−k∑
t1=k

T−k∑
t2=k

ω

(
|t1 − t2|
hT

)
ˆ̃vt1 ˆ̃v′t2 . (12)

If we impose the following conditions on the kernel function and bandwidth:
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Assumption 5. The kernel function ω(·) : R→ [−1, 1] is a continuous, even function, satisfying:

� ω(0) = 1,

�

∫∞
−∞ |w(x)|dx <∞

and the bandwidth hT satisfies: ||ψ̂ − ψ||hT = op(1).

then it guarantees consistency of Ω̂11·2:

Theorem 3.2. Suppose assumptions 1-5 hold. Then Ω̂11·2
P→ Ω11·2.

Given the latter theorem we could use estimate (12) and ψ̂ to construct feasible Wald test

statistic (11) for which: W (ψ̂) d→ χ2
s. Of course, (12) is not the only way for estimating Ω11·2:

another option is to construct Ω̂11·2 from a consistent estimate of Ω. Estimation of Ω can be

achieved with HAC-type or Robinson’s MAC estimator (for a comparison see Abadir et al. (2009)).

Remark 3.3. Note, that theorem 3.1 does not discuss consistency of regression (7) coefficients

Π = (Π−k, . . . ,Πk). The following proposition gives the rate of consistency of Π̂:

Proposition 3.4. Suppose assumptions 1-4 hold. Then ||Π̂−Π||
(
T−1/2 + T−κ +

∑
|i|>k ||Πi||

)−1
=

Op(
√
k).

The proposition effectively states that in case we use ψ̂ instead of ψ0 for estimation of Π, the

highest rate of consistency for Π̂ we achieve is T κ/
√
k, provided T κ

∑
|i|>k ||Πi|| = o(1) holds. That

is in contrast with the case when true ψ0 for estimation is used: rate
√
T/k consistency is achieved,

given
√
T
∑
|i|>k ||Πi|| holds (cf. Saikkonen (1992)). In addition, lower upper bound assumption

k3/T = o(1) used in Saikkonen (1991) and Said and Dickey (1984) for consistency of Π̂ seems to

be not needed.

Remark 3.5. In an empirical analysis it might be reasonable to allow for different integration orders

of individual components of cointegration errors, however, this is not feasible in our framework.

The assumption on homogeneity of memory of error term components is crucial, since it permits

the following commutation: ∆d−b
+ αX2t = α∆d−b

+ X2t allowing regression based estimation of α in

(4).

Remark 3.6. Notice that if b < 1, the assumption 4.3 precludes the use of Akaike, Schwarz and

other lag selection criterias to select the number of lags k in the regression (7) for ARMA type

9



processes, since they select the lag length proportionial to log T . Latter observation is important,

since although assumption 4 specifies admissable growth rates, it does not solve the problem in

finite samples. In case b ≥ 1 the number of lags in finite samples can be selected using selection

rules based on one of information criterias (for a comparison of lag selection rules see Kejriwal and

Perron (2008)).

Remark 3.7. In specific case when the true value of ψ is known, the assumption 4 boils down to:

1. k
(
T−1/2 + log TT−a

)
= o(1), for a = min{1, 2b− 1},

2.
(
log TT 1−b + k

)∑
|j|>k ||Πj || = o(1).

and in the very special case b = 1 assumptions for the rate of k are: kT−1/2 +k
∑
|j|>k ||Πj || = o(1)

and are comparable to the assumptions in Kejriwal and Perron (2008).

Remark 3.8. In ”weak” cointegration case (b < 1/2), optimal inference on cointegration vector

has been studied in Hualde and Robinson (2007), where
√
T -consistent feasible estimator was

derived. Although in this case inference within our framework is also possible,
√
T -consistency is

not achievable and the best achievable rate is
√
T/k.

Remark 3.9. Now suppose, that instead of Xt we observe contaminated time series: X̃t = Xt + ξt,

such that assumptions 1-3 hold for Xt. The contamination term ξt can be interpreted as the term

generated by the initial values of the series or measurement error term. Then under the following

condition3 asymptotics of α̂DOLS is not affected if we use X̃t instead of Xt in the regression (7):

T−b
T−k∑
t=k

tb−1/2(E||∆d−b
+ ξt||2)1/2 + T−b

T−k∑
t=k

E||∆d−b
+ ξt||2 + kT−1

T−k∑
t=k

(E||∆d
+ξt||2)1/2 = o(1). (13)

Notice that assumption 1 assumes X0 = u0, i.e. the initial value of the process Xt has the same

distribution as the error term ut. Obviously, it is restrictive, but condition (13) shows that more

generally we may assume that X0 = Op(1).

4 Finite sample performance

In this section we introduce design of simulated data generating process and present simulation

results. We analyze finite sample performance of proposed estimator and corresponding Wald
3The condition can be proved with a succession of applications of Cauchy-Schwarz inequality.
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test with fractionally cointegrated bivariate time series. Error term is designed to have both

contemporaneous and serial correlation effects. We present RMSE and bias of DOLS and competing

estimators as well as the size of the test based on feasible test statistic.

4.1 Monte Carlo setup

We simulate bivariate fractionally cointegrated model satisfying Assumptions 1-3 without loss of

generality assuming that normalized cointegration vector is α0 = 1:

X1t = X2t + ∆d−b
+ u1t,

X2t = ∆d
+u2t

for t = 1, . . . , T . ut is a bivariate ARMA(1, 1) process:

u′t = φ(L)−1ψ(L)ε′t, t = 1, . . . , T

where φ(L) = 1 − φL, ψ(L) = 1 + ψL and εt is Gaussian4 i.i.d. (0,Ω) process with Ω =

((1, ρ)′, (ρ, 1)′). We simulate this system for the values T = 256, 512, d = 0.8, 1, 1.2, d − b =

0, 0.2, 0.4. The values of coefficients ρ, ψ and φ are presented in the Table 1. A number of 1000

Monte Carlo replications was used.

Feasible estimator is constructed in the following way: d is estimated as the memory of X2t

with exact local Whittle (ELW) estimator (cf. Katsumi and Phillips (2005)) maximizing over

the interval [−0.1, 2] with bandwidth m = [T 0.6], while b is estimated as d̂ minus the memory of

residuals ût = β̂Xt which is also estimated with ELWE and the same bandwidth. Here β̂ is a

pre-estimate of β = (1,−α) with NBLS estimator using bandwidth m = [T 0.65]. Given remark 3.6,

two lag selection rules for feasible DOLS (FDOLS) estimation were compared: Akaike information

criteria (AIC) and k = [4(T/100)1/4], the latter being taken from Demetrescu et al. (2008), given

their superior performance over information criteria-based selection rules.

Feasible DOLS estimator is compared to NBLS (using above bandwidth) and feasible NBZLS

estimators (cf. Hualde and Robinson (2010))5. Selected bandwidth was m = [T 0.8] where d, b are
4Students-t distribution with 5 d.f. was also considered, but results did not differ much.
5We chose to simulate simpler feasible NBZLS (”zero frequency”) estimator which does not require estimation of

spectral density in the whole degenerating band in the light of Monte Carlo results in Hualde and Robinson (2006),

which did not reveal significant differences in finite sample behaviour of NBZLS and NBWLS estimators.
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estimated as above, whereas f̂u(0) is estimated as f̂u(0) = (2m+ 1)−1
∑m

i=0 sjIuf (λj), where Iuf is

a periodogram of time series uft = (∆d̂−b̂
+ β̂X ′t,∆

d̂
+X

′
2t)
′, sj = 1 + 1j>0 and m = [0.5 · T 0.8].

We also simulated empirical size for the null α = 1 for the above design of feasible Wald test

statistic using DOLS estimate of β̂ and Ω̂ estimated as6 2πf̂uf (0).

Table 1: Simulation designs for weakly dependant proces ut

Nr. φ ψ ρ

1 0 0 0

2 0.5 0 0.5

3 0 0.5 0.5

4 0.8 0 0.8

5 0 0.8 0.8

6 0.8 0.8 0.8

4.2 Simulation results

We compare both bias and RMSE of FDOLS with AIC-based lag selection rule, NBLS and FNBZLS

estimators. In terms of bias we see that, except design nr.1, FDOLS estimator generally dominates

FNBZLS and NBLS estimators (the latter being always the worst out of the three). However, in

case of design nr.1 NBLS is an efficient estimator, since regression errors are already ”white” and

results were to be expected. Overall bias tends to grow with b approaching critical value 0.5 and

generally highest for design nr.6. The outcome is rather predictable, since both endogeneity and

serial correlation effects are the strongest in this case and the bias induced due to biases of estimates

of d, b (which are the most sensitive to changes in AR parameter) grows, while on the other hand,

b approaching critical value 0.5 reduces order of stochastic dominance of signal to errors. However,

even with design nr.6 FDOLS estimator tends to be more than 10 times less biased (and in some

cases up to 100 times) than NBLS and more than 2 times less biased than FNBZLS. Although

relative comparison of biases might not give the full picture, since they are small in absolute value,

FDOLS clearly performs best of all three estimators when contemporaneous correlation in the error
6Unreported simulations show better properties of this estimator in compare to (12) and feasible HAC-type

estimator of Ω.
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Table 2: Monte Carlo simulation results
Empirical sizes for Wp4 Empirical sizes for WAIC Bias×103 RMSE

Nr. d d− b T 0.10 0.05 0.01 0.10 0.05 0.01 FDOLS NBLS FNBZLS FDOLS NBLS FNBZLS

0.8 0 256 0.10 0.07 0.02 0.11 0.07 0.02 -0.67 -0.36 0.11 0.024 0.026 0.021

0.8 0 512 0.14 0.08 0.02 0.14 0.07 0.03 -0.34 -0.22 -0.19 0.013 0.014 0.012

0.8 0.2 256 0.20 0.14 0.07 0.21 0.15 0.07 -10.60 -1.27 -0.07 0.288 0.044 0.044

0.8 0.2 512 0.23 0.18 0.08 0.23 0.17 0.08 -0.65 -0.45 -0.30 0.034 0.029 0.028

1 0 256 0.11 0.07 0.02 0.13 0.07 0.02 -0.23 0.04 -0.07 0.010 0.013 0.010

1 0 512 0.14 0.08 0.02 0.14 0.08 0.03 -0.09 -0.24 -0.04 0.005 0.006 0.005

1 0.2 256 0.21 0.16 0.08 0.22 0.16 0.08 -0.70 -0.18 -0.22 0.024 0.025 0.021

1 1 0.2 512 0.24 0.18 0.09 0.25 0.18 0.10 -0.30 -0.51 -0.10 0.013 0.014 0.012

1 0.4 256 0.18 0.12 0.06 0.20 0.13 0.06 -1.87 -0.30 0.37 0.074 0.048 0.047

1 0.4 512 0.19 0.13 0.07 0.20 0.14 0.08 -0.98 -0.90 -0.68 0.036 0.032 0.030

1.2 0 256 0.11 0.07 0.02 0.12 0.07 0.02 -0.07 0.03 -0.07 0.005 0.006 0.004

1.2 0 512 0.13 0.08 0.03 0.13 0.08 0.03 -0.01 -0.09 0.00 0.002 0.003 0.002

1.2 0.2 256 0.22 0.16 0.09 0.22 0.16 0.09 -0.25 -0.02 -0.16 0.010 0.012 0.010

1.2 0.2 512 0.26 0.18 0.10 0.26 0.18 0.10 -0.07 -0.20 -0.03 0.005 0.006 0.005

1.2 0.4 256 0.19 0.15 0.08 0.21 0.16 0.08 -0.60 -0.01 -0.24 0.025 0.024 0.022

1.2 0.4 512 0.19 0.14 0.08 0.19 0.13 0.08 -0.41 -0.40 -0.20 0.013 0.014 0.012

0.8 0 256 0.14 0.09 0.04 0.15 0.09 0.03 0.29 23.06 2.55 0.023 0.034 0.020

0.8 0 512 0.16 0.10 0.03 0.17 0.11 0.04 0.33 14.99 0.93 0.012 0.020 0.012

0.8 0.2 256 0.18 0.13 0.06 0.18 0.13 0.06 0.55 56.64 22.55 0.064 0.072 0.045

0.8 0.2 512 0.20 0.13 0.07 0.22 0.15 0.07 1.32 41.20 12.87 0.035 0.050 0.029

1 0 256 0.14 0.10 0.04 0.15 0.10 0.04 -0.13 2.23 -0.36 0.010 0.012 0.010

1 0 512 0.16 0.09 0.04 0.17 0.11 0.04 -0.01 0.82 -0.16 0.005 0.006 0.005

1 0.2 256 0.18 0.12 0.06 0.18 0.12 0.06 -0.18 13.68 1.42 0.023 0.027 0.021

2 1 0.2 512 0.20 0.13 0.06 0.20 0.14 0.06 0.04 7.88 0.38 0.013 0.015 0.012

1 0.4 256 0.18 0.13 0.06 0.18 0.13 0.06 -0.93 39.96 16.65 0.062 0.061 0.044

1 0.4 512 0.19 0.13 0.07 0.20 0.15 0.07 0.45 26.59 8.59 0.035 0.041 0.028

1.2 0 256 0.14 0.09 0.03 0.14 0.08 0.03 -0.13 -1.73 -0.31 0.004 0.006 0.004

1.2 0 512 0.15 0.09 0.03 0.16 0.09 0.04 -0.04 -0.97 -0.08 0.002 0.003 0.002

1.2 0.2 256 0.17 0.11 0.06 0.16 0.12 0.06 -0.34 1.09 -0.65 0.010 0.011 0.010

1.2 0.2 512 0.17 0.12 0.06 0.18 0.13 0.06 -0.15 0.32 -0.30 0.005 0.006 0.005

1.2 0.4 256 0.16 0.11 0.06 0.16 0.11 0.06 -0.88 9.45 0.41 0.023 0.024 0.021

1.2 0.4 512 0.17 0.11 0.06 0.18 0.12 0.06 -0.45 5.10 -0.30 0.013 0.014 0.012

0.8 0 256 0.12 0.08 0.02 0.13 0.08 0.02 -0.66 26.63 2.03 0.023 0.037 0.020

0.8 0 512 0.15 0.09 0.03 0.16 0.09 0.03 -0.27 16.64 0.43 0.012 0.022 0.011

0.8 0.2 256 0.20 0.14 0.07 0.19 0.15 0.07 -0.20 61.63 24.63 0.062 0.076 0.046

0.8 0.2 512 0.22 0.16 0.08 0.24 0.17 0.08 1.82 43.76 14.47 0.035 0.053 0.029

1 0 256 0.14 0.08 0.03 0.14 0.08 0.03 -0.43 2.90 -0.76 0.009 0.013 0.009

1 0 512 0.15 0.09 0.03 0.16 0.10 0.03 -0.16 1.04 -0.36 0.005 0.006 0.005

1 0.2 256 0.20 0.15 0.08 0.20 0.15 0.08 -0.10 14.98 2.11 0.023 0.028 0.020

3 1 0.2 512 0.24 0.16 0.08 0.23 0.17 0.08 0.26 8.40 0.89 0.012 0.016 0.012

1 0.4 256 0.20 0.15 0.08 0.21 0.16 0.08 -1.06 41.86 17.81 0.060 0.062 0.044

1 0.4 512 0.21 0.15 0.08 0.23 0.17 0.09 0.41 27.42 9.39 0.034 0.041 0.029

1.2 0 256 0.13 0.08 0.03 0.13 0.08 0.02 -0.26 -1.73 -0.41 0.004 0.006 0.004

1.2 0 512 0.14 0.09 0.03 0.15 0.10 0.03 -0.07 -0.97 -0.12 0.002 0.003 0.002

1.2 0.2 256 0.20 0.14 0.08 0.21 0.15 0.08 -0.22 1.27 -0.26 0.010 0.011 0.009

1.2 0.2 512 0.23 0.15 0.08 0.23 0.17 0.08 0.00 0.37 -0.09 0.005 0.006 0.005

1.2 0.4 256 0.19 0.15 0.08 0.20 0.14 0.08 -1.01 9.83 0.89 0.023 0.024 0.020

1.2 0.4 512 0.21 0.13 0.07 0.22 0.15 0.07 -0.33 5.23 -0.09 0.013 0.014 0.012

Note: Bold font signifies the smallest number of the three in absolute value.
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Table 3: Monte Carlo simulation results
Empirical sizes for Wp4 Empirical sizes for WAIC Bias×103 RMSE

Nr. d d− b T 0.10 0.05 0.01 0.10 0.05 0.01 FDOLS NBLS FNBZLS FDOLS NBLS FNBZLS

0.8 0 256 0.15 0.08 0.03 0.14 0.09 0.04 0.65 25.90 3.66 0.023 0.033 0.023

0.8 0 512 0.15 0.08 0.04 0.16 0.10 0.04 0.52 17.67 1.47 0.012 0.021 0.013

0.8 0.2 256 0.22 0.14 0.06 0.20 0.15 0.07 5.70 73.83 34.85 0.060 0.084 0.051

0.8 0.2 512 0.22 0.14 0.06 0.26 0.17 0.08 5.62 55.17 22.01 0.033 0.061 0.033

1 0 256 0.10 0.06 0.03 0.09 0.05 0.03 -0.59 1.82 -1.08 0.009 0.010 0.012

1 0 512 0.10 0.06 0.02 0.10 0.06 0.02 -0.25 0.77 -0.56 0.004 0.005 0.006

1 0.2 256 0.14 0.08 0.03 0.13 0.08 0.03 0.09 17.60 2.53 0.022 0.026 0.023

4 1 0.2 512 0.14 0.08 0.04 0.15 0.09 0.04 0.20 10.85 0.86 0.012 0.016 0.013

1 0.4 256 0.22 0.13 0.05 0.20 0.13 0.07 4.53 56.70 28.65 0.058 0.069 0.048

1 0.4 512 0.22 0.14 0.06 0.24 0.17 0.08 4.72 39.30 17.29 0.032 0.048 0.031

1.2 0 256 0.07 0.04 0.01 0.07 0.03 0.01 -0.35 -2.50 -0.64 0.004 0.005 0.005

1.2 0 512 0.07 0.04 0.02 0.07 0.04 0.02 -0.14 -1.36 -0.23 0.002 0.003 0.002

1.2 0.2 256 0.09 0.05 0.02 0.08 0.05 0.02 -0.76 1.35 -1.28 0.009 0.009 0.012

1.2 0.2 512 0.09 0.05 0.02 0.09 0.05 0.02 -0.34 0.51 -0.70 0.004 0.005 0.006

1.2 0.4 256 0.13 0.08 0.03 0.12 0.07 0.03 -0.54 13.73 1.61 0.022 0.023 0.023

1.2 0.4 512 0.14 0.07 0.04 0.14 0.08 0.03 -0.12 7.87 0.35 0.012 0.014 0.013

0.8 0 256 0.14 0.08 0.03 0.12 0.08 0.03 -1.01 42.72 2.40 0.018 0.049 0.016

0.8 0 512 0.17 0.10 0.04 0.16 0.11 0.04 -0.52 26.75 0.41 0.010 0.030 0.010

0.8 0.2 256 0.23 0.15 0.09 0.22 0.16 0.09 2.21 99.37 36.79 0.050 0.108 0.049

0.8 0.2 512 0.27 0.17 0.09 0.29 0.21 0.10 2.75 70.30 21.93 0.029 0.076 0.031

1 0 256 0.16 0.09 0.04 0.15 0.09 0.03 -0.38 4.58 -0.80 0.007 0.011 0.008

1 0 512 0.17 0.11 0.04 0.17 0.11 0.05 -0.12 1.85 -0.38 0.003 0.005 0.004

1 0.2 256 0.24 0.16 0.09 0.22 0.16 0.09 1.15 24.05 3.59 0.017 0.032 0.017

5 1 0.2 512 0.25 0.18 0.10 0.26 0.19 0.10 0.92 13.82 1.79 0.010 0.018 0.010

1 0.4 256 0.27 0.19 0.11 0.26 0.19 0.11 5.03 67.14 27.70 0.046 0.079 0.043

1 0.4 512 0.30 0.22 0.12 0.32 0.24 0.13 4.11 44.55 16.19 0.027 0.053 0.028

1.2 0 256 0.15 0.08 0.03 0.13 0.08 0.03 -0.21 -2.79 -0.39 0.003 0.006 0.003

1.2 0 512 0.16 0.10 0.03 0.17 0.11 0.04 -0.07 -1.49 -0.13 0.001 0.003 0.001

1.2 0.2 256 0.23 0.16 0.08 0.21 0.15 0.08 0.19 2.03 0.18 0.007 0.009 0.008

1.2 0.2 512 0.23 0.16 0.08 0.23 0.17 0.09 0.15 0.75 0.10 0.004 0.005 0.004

1.2 0.4 256 0.24 0.16 0.10 0.22 0.16 0.09 0.67 15.72 2.55 0.017 0.025 0.017

1.2 0.4 512 0.24 0.18 0.09 0.25 0.18 0.09 0.42 8.68 0.88 0.010 0.014 0.010

0.8 0 256 0.14 0.08 0.03 0.13 0.08 0.04 1.06 25.63 3.34 0.023 0.033 0.024

0.8 0 512 0.13 0.08 0.03 0.15 0.09 0.04 0.58 17.53 1.34 0.012 0.021 0.013

0.8 0.2 256 0.21 0.14 0.05 0.20 0.14 0.08 7.33 73.41 33.61 0.059 0.083 0.051

0.8 0.2 512 0.22 0.14 0.06 0.26 0.18 0.09 5.93 54.94 21.74 0.033 0.061 0.033

1 0 256 0.08 0.05 0.02 0.09 0.06 0.02 -0.56 1.80 -1.11 0.009 0.010 0.012

1 0 512 0.09 0.05 0.02 0.09 0.05 0.02 -0.26 0.76 -0.59 0.004 0.005 0.006

1 0.2 256 0.13 0.08 0.03 0.12 0.08 0.03 0.45 17.54 2.36 0.022 0.026 0.024

6 1 0.2 512 0.14 0.08 0.04 0.15 0.09 0.03 0.35 10.81 0.90 0.012 0.016 0.013

1 0.4 256 0.21 0.13 0.05 0.18 0.13 0.07 5.77 56.59 27.60 0.056 0.069 0.048

1 0.4 512 0.21 0.15 0.06 0.24 0.17 0.08 5.01 39.23 17.04 0.032 0.048 0.031

1.2 0 256 0.06 0.03 0.01 0.06 0.03 0.01 -0.36 -2.48 -0.63 0.004 0.005 0.005

1.2 0 512 0.06 0.04 0.01 0.06 0.04 0.02 -0.14 -1.35 -0.24 0.002 0.003 0.002

1.2 0.2 256 0.08 0.05 0.02 0.08 0.05 0.02 -0.65 1.37 -1.31 0.009 0.009 0.012

1.2 0.2 512 0.09 0.05 0.02 0.09 0.05 0.02 -0.33 0.51 -0.68 0.004 0.005 0.006

1.2 0.4 256 0.13 0.07 0.02 0.11 0.07 0.03 -0.32 13.75 1.33 0.022 0.023 0.024

1.2 0.4 512 0.14 0.07 0.03 0.14 0.08 0.03 -0.04 7.87 0.31 0.012 0.014 0.013

Note: Bold font signifies the smallest number of the three in absolute value.
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term ut is present.

In terms of RMSE, FDOLS estimator performs very much on par with FNBZLS, except for

the cases with b = 0.6 and sample size T = 256, while it performs clearly better than NBLS in

all designs, except nr.1 when NBLS is efficient, with RMSE generally being up to 2 times smaller

(and in some extreme cases more than 3). The cases with b = 0.6 and sample size T = 256 are the

most problematic for FDOLS - stochastic dominance of signal to errors is close to critical value of

0.5 and improper selection of number of lags in the regression distorts the signal enough to affect

the estimate considerably. However, it is reassuring to see drop of RMSE of FDOLS considerably

with T = 512, it being comparable to that of FNBZLS. Summing up, we may conclude that in

terms of RMSE it performs better than NBLS and on par with NBZLS, although it does seem to

underperform with (jointly) small sample size, b close to 0.5 and no contemporaneous correlation

effects.

As far as the empirical test sizes are concerned, both lag selection rules tend to have very

similar sizes and none of them could be more preferred to the other. Generally, empirical sizes

do not seem to vary much across designs (except maybe designs nr.5, nr.6), as a rule both of

them being oversized. Overall the sizes approach nominal values with increase of b, but more

worringly depend little on the sample size. Our (unreported) simulations of empirical size of

infeasible DOLS estimator using ψ0 (but Ω̂ estimated as described above) show very good properties

and we conjecture, that uncertainty coming from the estimates of ψ is more relevant for the test

statistic than the uncertainty of estimate of Ω11·2. Given that the above-described ELW estimator

showed little to no improvement in terms of RMSE with sample size increasing from T = 256 to

T = 512, that most likely explains little effect of increase of sample size to the empirical size. Hence,

improvement in empirical size is expected using more advanced estimation methods of ψ (using

adaptive optimal bandwidth selection procedure or an estimator approximating spectral density in

degenerating band with a polynomial rather than a constant), however we do not explore those

options in this study. We may conclude that given complexity of estimation procedure, feasible

Wald test size shows satisfactory properties.

15



5 Conclusions

The paper established feasible dynamic OLS type procedure for optimal estimation of cointegration

vector in ”strongly” cointegrated fractional regressions with LAMN distribution of the estimator.

Finite sample simulations show superior properties over NBLS estimator and rivals NBWLS es-

timator due to Hualde and Robinson (2010). Thus the estimator may be seen as a feasible time

domain alternative to semiparametric frequency domain narrow-band estimation. Monte Carlo

simulations report feasible Wald test being generally oversized, but our (unreported) simulations

show that the infeasible statistic has very good size properties for the sample sizes considered,

suggesting that uncertainty coming from estimation of ψ is accounted for the size problems, hence

more sophisticated estimation techniques with optimal bandwidth selection could render better test

properties.
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Appendices

A Identification of FCI system

Suppose we have a fractionally cointegrated system Xt satisfying assumptions 1-3 with n × r

cointegration vector β and parameters ψ = (d, b), R = (β, γ) for some process ut. It is not obvious

that the cointegration vector β could be identified as β′ = (Ir,−α) and we show that this is indeed

true, i.e. there exists a r × (n− r) matrix α and a process ũt satisfying assumption 3 such that:

∆(L,ψ)

 Ir −α

0n−r×r In−r

Xt = ũt.
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We can write matrix R as a block matrix:

R =

R1 R2

R3 R4

 .

Then from different representation of Xt we have equality:Ir∆d−b
+ 0r×n−r

0n−r×r In−r∆d
+

R1 R2

R3 R4

 Ir −α

0n−r×r In−r

Ir∆−d+b+ 0r×n−r

0n−r×r In−r∆−d+

 ũt = ut.

Take α = R−1
1 R2. Then:Ir∆d−b

+ 0r×n−r

0n−r×r In−r∆d
+

R1 R2

R3 R4

 Ir α

0n−r×r In−r

Ir∆−d+b+ 0r×n−r

0n−r×r In−r∆−d+

 =

 R1 0r×n−r

∆b
+R3 R4 −R3R

−1
1 R2

 .

Hence we get:

ũt =

 R−1
1 0r×n−r

∆b
+(R4 −R3R

−1
1 R2)−1R3 (R4 −R3R

−1
1 R2)−1

ut = A(L)C(L)εt.

Since for lag polynomials’ A(L), C(L) coefficients’ it holds:
∑

i

√
i(||Ai|| + ||Ci||) < ∞, their con-

volution also satisfies this property and thus the assumption 3 also holds for ũt.

B Notation

We introduce notation for our subsequent analysis. We denote the true parameter ψ value as ψ0

and decompose the error term into the error obtained because of the use of estimate of ψ0 and the

error due to autoregressive approximation:

ṽt = ∆d−b
+ X1t − α∆d−b

+ X2t −
k∑

i=−k
Πi∆d

+X2t−i = ∆d−b
+ (X1t − αX2t)−∆d−d0

+

(
k∑

i=−k
Πi∆d0

+X2t−i

)
=

= ∆d−b−d0+b0
+ u1t −∆d−d0

+ (u1t − vt −
∑
|j|>k

Πj∆d0
+X2t−j) = vt + e1t + e2t,

where:

e1t(ψ) =
∑
|j|>k

Πj∆d
+X2t,

e2t(ψ) = (∆d−b−d0+b0
+ − 1)u1t − (∆d−d0

+ − 1)
∑
j∈Z

Πju2t−j .
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Also additionally denote the following variables depending on ψ = (d, b):

w1t(ψ) = ∆d−b
+ X2t,

w2t(ψ) = (∆d
+X

′
2t+k, . . . ,∆

d
+X

′
2t−k)

′,

wt(ψ) = (w′1t, w
′
2t)
′,

W (ψ) = (wk, . . . , wT−k),

Γij,T (ψ) = T−1
T−k∑
t=k

∆d
+X2t+i∆d

+X
′
2t−j ,

Γij,∞(ψ) = AsCov(∆d
+X2t+i,∆d

+X2t−j),

Γk(ψ) = AsCov(ω2t(ψ)) = (Γij,∞)i,j=−k..k,

DT (ψ, nT ) = blockdiag{IrT−b, In−rn−1
T , . . . , In−rn

−1
T },

RT (ψ) = DT (ψ, T 1/2)WW ′DT (ψ, T 1/2),

R∞(ψ) = blockdiag{T−2b
T−k∑
t=k

w1t(ψ)w′1t(ψ),Γk(ψ)}.

We also denote matrices Ṽ, V, E1, E2,W1,W2 which are column-by-column stacked ṽt’s, vt’s,

eit’s and wit’s with indices running from k to T − k, e.g. V = (vk, . . . , vT−k).

C Additional lemmas

The following lemma gives two criterias for a probabilistic bound of a sum of stochastically bounded

random variables depending on a parameter θ ∈ Θ with growing number of terms7.

Lemma C.1. Suppose we have a collection of random variables {Xi
T (θ), i, T ∈ N}, θ0 ∈ Θ, where

Θ is a compact subset of Euclidian space Rs and a deterministic sequence {ai, i ∈ N}. Also

suppose θT
P→ θ0 ∈ int(Θ) and consider any open neighbourhood Nθ0 of θ. Then

∑kT
j=1 ajX

j
T (θT ) =

Op(
∑kT

j=1 |aj |) for any kT →∞, if one of the two holds:

sup
θ∈Nθ0

sup
i∈N

E(Xi
T (θ))2 =O(1), (14)

sup
θ∈Nθ0

sup
i∈N
|Xi

T (θ)|=Op(1). (15)

7In Kejriwal and Perron (2008) this argument is missed (say, lemma A.1 (ii)): kT terms of order Op(1) may not add

up to Op(kT ) random variable for kT → ∞, T → ∞. For example, take {Xi
T (u) = T1u∈[i−1/kT ,i/kT ]}, i = 1, . . . , kT

for kT = o(T ). Then
∑kT
i=1X

i
T = T .
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Neither condition is stronger than the other. If θT = θ0, the first suprema is vacuous. Also similar

proposition holds for small ”o”.

Proof. Take any ε1,M > 0. Then from Chebyshev’s inequality:

P

(
|
∑kT

i=1 aiX
i
T (θT )|∑kT

j=1 |aj |
≥M

)
≤ P (θT /∈ Nθ0)+

≤ P

θT ∈ Nθ0 , |
kT∑
i=1

ai(Xi
T (θT )− EXi

T (θT ))| ≥M
kT∑
j=1

|aj | −
kT∑
i=1

|ai|E|Xi
T (θT )|


≤ P (θT /∈ Nθ0) +

M kT∑
j=1

|aj | −
kT∑
i=1

|ai|E|Xi
T (θT )|

−2

V ar

(
kT∑
i=1

aiX
i
T (θT )

)

≤ P (θT /∈ Nθ0) +

M kT∑
j=1

|aj | −
kT∑
i=1

|ai|
√
E|Xi

T (θT )|2

−2(
k∑
i=1

|ai|
√
V arXi

T (θT )

)2

≤ P (θT /∈ Nθ0) +

(
M − sup

θ∈Nθ0
sup
i∈N

√
E|Xi

T (θT )|2
)−2(

sup
θ∈Nθ0

sup
i∈N

√
V arXi

T (θ)

)2

< ε1

for every T large enough. On the other hand:

P

(
|
∑kT

j=1 ajX
j
T (θT )|∑kT

j=1 |aj |
≥M

)
≤ P (θT /∈ Nθ0) + P

θT ∈ Nθ0 , |
kT∑
j=1

ajX
j
T (θT )| ≥M

kT∑
j=1

|aj |


≤ P (θT /∈ Nθ0) + P

(
θ ∈ Nθ0 , sup

θ∈Nθ0
sup
i∈N
|Xi

T (θ)| ≥M

)
< ε1

for every T large enough.

To show that neither condition is stronger consider an example of two sequences of random

variables on the interval [0, 1] with Borel measure: {Xi
T (u) =

√
T1u∈[(i−1)/T,i/T ]} and {Xi

T (u) =

T1u∈[0,1/T ]}. Similarly we prove the proposition for small ”o”.

The following lemma specifies the neighbourhood of the true value in which criteria (14) hold

for relevant norm moments, what is at the core of derivation of probabilistic bounds of various

terms. Lemma derives from the results in Johansen and Nielsen (2010a):

Lemma C.2. Denote a η0-neighbourhood around the true value ψ0 = (d0, b0): N(η0) = {ψ :

||ψ − ψ0|| < η0} for some min{1/2, b0 − 1/2} > η0 > 0. Assume that the process ut satisfies
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assumption 3 and consider linear processes:

V 0
t (ψ) = ∆d−d0

+ ut,

V 1
t (ψ) = T−b+0.5∆−b+ ut.

Then for the product moments:

Sabij,T (ψ) = T−1
T−k∑
t=k

V a
t+i(ψ)V b′

t−j(ψ),

it holds,8 as k = kT →∞:

sup
ψ∈N(η0)

sup
i,j∈Z

E
∣∣∣∣∣∣S00

ij,T (ψ)
∣∣∣∣∣∣2 =O(1), (16)

sup
ψ∈N(η0)

sup
i,j∈Z

E
∣∣∣∣∣∣DψS

00
ij,T (ψ)

∣∣∣∣∣∣2 =O(1), (17)

sup
ψ∈N(η0)

sup
i∈Z

E
∣∣∣∣∣∣S10

0i,T (ψ)
∣∣∣∣∣∣2 =O(log2 TT−a+2η0), for a = min{1, 2b0 − 1}, (18)

sup
i∈Z

E
∣∣∣∣∣∣S10

0i,T (ψ0)
∣∣∣∣∣∣2 =O(log2 TT−a), for a = min{1, 2b0 − 1}. (19)

Proof. To keep things somewhat clearer, in the proof we will use Lq-norm for random variables:

||X||q = (E||X||q)1/q. Then:

||S00
ij,T (ψ)||2 ≤ ||S00

00,T (ψ)||2 ≤ T−1
T−k∑
i=k

||V 0
t (ψ)V ′0t (ψ)||2 ≤ T−1

T−k∑
i=k

||V 0
t (ψ)||4||V 0

t (ψ)||4 ≤

≤ K2
1T
−1

T−k∑
i=k

||V 0
t (ψ)||2||V 0

t (ψ)||2 ≤ K2
1K2, ∀i, i ∈ N,∀ψ ∈ N(η0).

The last inequalities follow from multivariate extensions of Lemma B.1 and Lemma C.4 in Johansen

and Nielsen (2010a) applied to the process V 0
t (ψ). Similarly, we prove (17). (19) follows from

multivariate extension of Lemma C.5 in Johansen and Nielsen (2010a). The same lemma could be

used to prove (18) upon noting that the coefficients of V 1
t (ψ) can be bounded uniformly in N(η0)

by the coefficients of V 1
t (ψ0 + η0) = T−b−η0+0.5∆−b−η0+ ut.

In the rest of the section we prove various bounds and convergence results for the terms de-

pending on the estimator ψ̂ and since ψ̂−ψ0 = op(1), in the following we implicitly assume that ψ̂

8As a convention, for i+ j > T we will assume Sabij,T (ψ) = 0.
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is in the η1-neighbourhood N(η1) of ψ0 ”small enough” for lemma C.2 to hold for various fractional

processes whose order of fractionality depends on ψ̂:

N(η1) ⊂ N(η0), N(η1) ⊂ {ψ = (d, b) : d− b− d0 < 1/2,−1/2 < d− b− d0 + b0} .

Lemma C.3. Assume that assumptions 1-4 hold. Then supi∈Z ||S10
0i,T (ψ̂)|| = Op(log2 TT−a), for

a = min{1, 2b0 − 1}.

Proof. Mean value theorem gives:

||S10
0i,T (ψ̂)|| ≤ ||S10

0i,T (ψ0)||+ ||ψ̂ − ψ0||||DψS
10
0i,T (ψ̄)||,

for some ||ψ̄−ψ0|| ≤ ||ψ̂−ψ0||. Notice that the coefficients of DψV
1
t (ψ) can be bounded uniformly

in N(η1) by the coefficients of V 1
t (b0 + η1) and since ||ψ̂ − ψ0|| = Op(T−κ) for some κ > 0, the

second term is of smaller order than the first and the bound follows from Lemma C.2.

Lemma C.4. Assume that assumptions 1-4 hold and denote:

S(ψ) = T−b
T∑
t=1

vt∆d−b
+ X ′2t. (20)

Then it holds:(
T−1/2∆−1

+ v[Ts], T
−b̂+1/2∆d̂−b̂

+ X2[Ts], S(ψ̂)
)
⇒
(
W1·2(s),Wb0−1(s),

∫ 1

0
dW1·2W

′
b0−1

)
. (21)

Proof. Weak convergence of the first component follows from the fact that vt is a stationary (double-

sided) linear time series with absolutely summable coefficients, while convergence of the second

component follows from the tightness of T−u+1/2∆−u+ u2[Ts] in u (cf. Johansen and Nielsen (2010a))

and fractional invariance principle (3). We prove convergence of the third component. Beveridge-

Nelson decomposition for vt:

vt = (Ir, 0r×n−r)C(L)εt −Π(L)(0r×r, In−r)C(L)εt = ξ(L)εt = ξ(1)εt + ∆ξ̄(L)εt

Here ξ(L), ξ̄(L) are double sided filters. Since Π(e−iλ) = f12(λ)f−1
22 (λ) and coefficients of C(L),

C−1(L) are 1/2-summable, that implies 1/2-summability of coefficients of ξ(L) and square summa-

bility of coeficients of ξ̄(L) (cf. Phillips and Solo (1992)). Then we decompose S(ψ) as follows:

S(ψ̂) = T−b̂
T∑
t=1

vt∆d̂−b̂
+ X ′2t = T−b̂

T∑
t=1

ξ(1)εt(∆d̂−b̂−d0
+ − 1)u′2t + T−b̂ξ̄(L)εT (∆d̂−b̂−d0

+ − 1)u′2T+

T−b̂
T∑
t=1

ξ̄(L)εt(∆1+d̂−b̂−d0
+ − 1)u′2t + T−b̂

T∑
t=1

vtu
′
2t = A1 +A2 +A3 +A4.
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Now due to uncorrelatedness of vt and u2t, we have ES(ψ̂) = EA1 = EA4 = 0. On the other

hand ∆d̂−b̂−d0
+ u′2T = Op(T d̂−b̂−d0−1/2) uniformly in N(η1), while T−1/2ξ̄(L)εT = op(1) and hence

A2 = op(1). That implies EA2 = o(1) and hence EA3 = ES(ψ̂) − EA1 − EA2 − EA4 = o(1).

Now, if b0 ≤ 3/2, then central limit theorem (CLT) implies A3 = Op(T−b0+1/2) = op(1), whereas if

b0 > 3/2 Chebyshev’s inequality gives A3 = Op(T−1/2). Finally, CLT implies A4 = Op(T−b0+1/2)

and thus S(ψ̂) = A1 + op(1). The convergence of A1 to stochastic integral follows from application

of Theorem 2.2 in Kurtz and Protter (1991). Finally, since ξ(1) = (Ir,−Ω12Ω−1
22 )C(1), we have

that V ar(ξ(1)εt) = Ω11 − Ω12Ω−1
22 Ω21 = Ω11·2 and the lemma is proved.

Lemma C.5. Suppose, ||ψ̂ − ψ0|| = Op(T−κ), κ > 0 and assumptions 1-4 hold. Then:

1. ||T−1W2(ψ̂)W2(ψ̂)′ − Γk(ψ0)||2 = Op(k2(T−2κ + T−1)) = op(1),

2. ||T−b̂−0.5W1(ψ̂)W ′2(ψ̂)||2 = Op(kT−a log2 T ) = op(1),

3. ||T−b̂E1(ψ̂)W ′1(ψ̂)||2 = Op(log2 TT 1−a)
(∑

|j|>k ||Πj ||
)2

= op(1),

4. ||T−1E1(ψ̂)W ′2(ψ̂)||2 = Op(k)
(∑

|j|>k ||Πj ||
)2

= op(1),

5. ||T−b̂E2(ψ̂)W ′1(ψ̂)||2 = op(1),

6. ||T−1E2(ψ̂)W ′2(ψ̂)||2 = Op(k2T−2κ) = op(1),

7. ||T−b̂VW ′1(ψ̂)||2 = Op(1),

8. ||T−1VW ′2(ψ̂)||2 = Op(kT−1),

with a = min{1, 2b0 − 1}.

Proof. In the proof we will continuously apply Lemma C.1 for big ”O” in combination with Lemma

C.2: we bound the growing sum of either expectations of squared norms of product moments

applying condition (14) or sum of norms applying (15). We will apply mean-value theorem for the

product moments and will use short hand notation for that, e.g. S(ψ) = S(ψ0) + (ψ−ψ0)DψS(ψ̄),

meaning that [S(ψ)]ij = [S(ψ0)]ij + (ψ − ψ0)′Dψ[S(ψ̄)]ij for some ||ψ̄ − ψ|| ≤ ||ψ0 − ψ||.

Proof of (1):

||T−1W2(ψ̂)W2(ψ̂)′ − Γk(ψ0)|| ≤
k∑

i,j=−k
||S00

ij,T (ψ̂)− Γij,∞(ψ0)||2 ≤ 2
k∑

i,j=−k
(||Aij,T ||2 + ||Bij,T ||2),
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where Aij,T = S00
ij,T (ψ0)− Γij,∞(ψ0), Bij,T = S00

ij,T (ψ̂)− S00
ij,T (ψ0).

From Hannan (1974) we have that supi,j∈Z ||Aij,T || = op(1) and since ||Aij,T || = Op(T−1/2)

we have
∑k

i,j=−k ||Aij,T ||2 = Op(k2T−1). Next applying mean-value theorem we get: ||Bij,T || ≤

||ψ̂ − ψ0||||DψS
00
ij,T (ψ̄)|| and from Lemma C.2 we find that

∑k
i,j=−k ||Bij,T ||2 = Op(k2T−2κ). Thus:

||T−1W2(ψ̂)W2(ψ̂)′ − Γk(ψ0)||2 = Op(k2(T−2κ + T−1)).

Proof of (2):

||T−b̂−0.5W1(ψ̂)W2(ψ̂)′||2 =
k∑

i=−k
||T−b̂−0.5

T−k∑
t=k

∆d̂−b̂
+ X2t∆d̂

+X
′
2t−i||2 ≤

k∑
i=−k

||S10
0i,T (ψ̂)||2 = Op(k log2 TT−a).

Similarly proof of (3):

||T−b̂E1(ψ̂)W ′1(ψ̂)|| ≤ ||T−b̂
T−k∑
t=k

∑
|j|>k

Πj∆d̂
+X2t+j∆d̂−b̂

+ X ′2t|| ≤
√
T
∑
|j|>k

||Πj ||||T−b̂−1/2
T−k∑
t=k

∆d̂
+X2t+j∆d̂−b̂

+ X ′2t||

≤
√
T
∑
|j|>k

||Πj ||||S01
j0,T (ψ̂)|| = Op(log TT 1/2−a/2)

∑
|j|>k

||Πj ||

 .

Proof of (4):

||T−1E1(ψ̂)W ′2(ψ̂)||2 ≤
k∑

i=−k
||T−1

T−k∑
t=k

∑
|j|>k

Πj∆d̂
+X2t+j∆d̂

+X
′
2t−i||2 ≤

k∑
i=−k

∑
|j|>k

||Πj ||||T−1
T−k∑
t=k

∆d̂
+X2t+j∆d̂X ′2t−i||

2

=
k∑

i=−k

∑
|j|>k

||Πj ||||S00
ji,T (ψ̂)||

2

= Op(k)

∑
|j|>k

||Πj ||

2

.

Proof of (5):

||T−b̂E2(ψ̂)W ′1(ψ̂)|| ≤ ||T−b̂
T−k∑
t=k

(1−∆d̂−b̂−d0+b0
+ )u1t∆d̂−b̂

+ X ′2t||+ ||T−b̂
T−k∑
t=k

(∆d̂−d0
+ − 1)

∑
j∈Z

Πju2t−j

∆d̂−b̂
+ X ′2t||

≤ ||S01
00,T (ψ̂1)||+ ||S01

00,T (ψ̂2)||+
∑
j∈Z
||Πj ||(||S01

j0,T (ψ̂3)||+ ||S01
j0,T (ψ̂1)||) = op(1),

for ψ̂1, ψ̂2, ψ̂3
P→ ψ0.

Similarly for (6):

||T−1E2(ψ̂)W2(ψ̂)′|| ≤
k∑

i=−k
(||ψ̂1 − ψ0||||DψS

00,T
0i (ψ̄)||+ ||ψ̂2 − ψ0||||DψS

00,T
0i (ψ̄)||)+

+
k∑

i=−k

∑
j∈Z
||Πj ||(||ψ̂3 − ψ0||||DψS

00
ji,T (ψ̂3)||+ ||ψ̂1 − ψ0||||DψS

00
ji,T (ψ̂1)||) = O(kT−κ).
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Proof for (7) follws directly from Lemma C.4. Proof for (8) follows from CLT for product

moments of uncorrelated stationary linear time series and tightness of the product moment in ψ.

Lemma C.6. Suppose, ψ̂ − ψ0 = Op(T−κ), κ > 0 and assumptions 1-4 hold. Then ||R−1
∞ (ψ0) −

R−1
T (ψ̂)||2 = op(1).

Proof. Denote R = R∞(ψ0) and R̂ = RT (ψ̂). Then inequality ||AB|| ≤ ||A||||B||1 implies:

||R−1 − R̂−1|| ≤ ||R̂−1||1||R− R̂||||R−1||1 ≤
(
||R−1 − R̂−1||+ ||R−1||1

)
||R− R̂||||R−1||1. (22)

Applying Lemma C.5 for ||R− R̂|| gives:

||R− R̂|| ≤ ||T−1W2(ψ̂)W ′2(ψ̂)− Γk||+ 2||T−b̂−1/2W1(ψ̂)W ′2(ψ̂)|| = op(1).

Hence (22) implies:

||R−1 − R̂−1|| ≤ ||R−1||21||R− R̂||
1− ||R−1||1||R− R̂||

,

where the inequality holds since the denominator is close to 1 with arbitrary high probability due

to ||R−1||1 = Op(1) (Lemma A.3 in Saikkonen (1991)). Hence: ||R−1 − R̂−1|| = op(1) and the

bound is proved.

Lemma C.7. Suppose ψ̂ − ψ0 = Op(T−κ), κ > 0 and kernel and bandwidth satisfy assumption 5.

Then: ∣∣∣∣∣∣ T−2k∑
j=1

w(j/hT )
1
T

T−j−k∑
t=k

w2t(ψ̂)w′2t+j(ψ̂)
∣∣∣∣∣∣ = Op(k).
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Proof.

∣∣∣∣∣∣ T−2k∑
j=1

w(j/hT )
1
T

T−j−k∑
t=k

w2t(ψ̂)w′2t+j(ψ̂)
∣∣∣∣∣∣ ≤

≤
∣∣∣∣∣∣ T−2k∑

j=1

w(j/hT )
1
T

T−j−k∑
t=k

(
w2t(ψ0)w′2t+j(ψ0)− Ew2t(ψ0)w′2t+j(ψ0)

) ∣∣∣∣∣∣
+
∣∣∣∣∣∣ T−2k∑

j=1

w(j/hT )
1
T

T−j−k∑
t=k

(
w2t(ψ̂)w′2t+j(ψ̂)− w2t(ψ0)w′2t+j(ψ0)

) ∣∣∣∣∣∣
+
∣∣∣∣∣∣ T−2k∑

j=1

w(j/hT )Ew2t(ψ0)w′2t+j(ψ0)
∣∣∣∣∣∣ = Op(kT−1/2)

∑
j

|w(j/hT )|+Op(kT−κ)
∑
j

|w(j/hT )|+

 k∑
i1,i2=−k

∣∣∣∣∣∣ T−2k∑
j=1

w(j/hT )Γi1i2+j(ψ0)
∣∣∣∣∣∣2
1/2

= Op(k)

where the first bound follows from uniform convergence of autocovariances (Hannan (1974)) and

application of Lemma C.1 and the second bound can be obtained with mean-value expansion.

D Proofs of main theorems

Proof of theorem 3.1. Actual proof of the theorem 3.1 consists of applications of Lemmas C.4,C.5

and C.6. We sketch the idea: errors of the regression (7) ṽt consists of error term vt uncorrelated

with regressors, approximation error term e1t stemming from the autoregressive approximation

and e2t stemming from the use of estimates of ψ instead of true values. We show that under the

assumptions the error terms are asymptotically negligible.

We estimate A = (α,Πk, . . . ,Π−k) with feasible DOLS estimator Â(ψ̂) in the regression (7):

Â(ψ̂)−A0 = Ṽ (ψ̂)W ′(ψ̂)
(
W (ψ̂)W ′(ψ̂)

)−1
. (23)

For the sake of clarity in the following we will supress the dependance of matrices W,V, Ṽ, E1, E2

on ψ̂. Denote R = R∞(ψ0), R̂ = RT (ψ̂) then:

(Â−A0)D−1
T (1) = Ṽ W ′DT (

√
T )R̂−1DT (

√
T )D−1

T (1) = Ṽ W ′DT (
√
T )
(
R̂−1 −R−1

)
DT (
√
T )D−1

T (1)+

+ Ṽ W ′DT (T )R−1.

where commutativity of DT (nT ) with block-diagonal matrix R−1 is used. Then for the first term
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it holds:

||Ṽ W ′DT (
√
T )
(
R̂−1 −R−1

)
DT (
√
T )D−1

T (1)||2 ≤ ||Ṽ W ′DT (T )||2||R̂−1 −R−1||2 ≤

≤
(
||VW ′DT (T )||2 + ||E1W

′DT (T )||2 + ||E2W
′DT (T )||2

)
||R̂−1 −R−1||2.

From Lemma C.6 the order of the second term is op(1), while from Lemma C.5: ||E1W
′DT (T )|| =

op(1), ||E2W
′DT (T )|| = op(1) and ||VW ′DT (T )|| = Op(1), hence the whole term is of order op(1).

From ||R−1||1 = Op(1) and inequality ||AB|| ≤ ||A||||B||1 similarly it follows that Ṽ W ′DT (T )R−1 =

VW ′DT (T )R−1 + op(1). Hence:

(Â−A0)DT (1) = VW ′D−1
T (T )R−1 + op(1). (24)

Since R is a block-diagonal matrix, its inverse is too and for the first block of matrix (Â−A0)D−1
T (1)

it holds:

T b0(α̂− α0) = T b0−b̂

(
T−b

T−k∑
t=k

vt∆d̂−b̂
+ X ′2t

)(
T−2b̂

T−k∑
t=k

∆d̂−b̂
+ X2t∆d̂−b̂

+ X ′2t

)−1

+ op(1). (25)

Then Lemma C.4, tightness of T−u+1/2∆−u+ u2t in u, application of continuous mapping theorem

and T b0−b̂
P→ 1, k/T = o(1) finish the proof of convergence (8).

Proof of 3.2. If we show that:

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ˆ̃vt ˆ̃v′t+j =
T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

vtv
′
t+j + op(1) (26)

and:

T−1
T−k∑
t=k

ˆ̃vt ˆ̃v′t = T−1
T−k∑
t=k

vtv
′
t + op(1) (27)

the theorem will follow.
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We apply the following uniform bounds in j:

∣∣∣∣∣∣ T−j−k∑
t=k

ṽtw
′
1t+j

∣∣∣∣∣∣ = Op(T b0),

∣∣∣∣∣∣ T−j−k∑
t=k

ṽtw
′
2t+j

∣∣∣∣∣∣ = Op(
√
kT (T−κ +

∑
|j|>k

||Πj ||)) = op(Tk−1/2),

∣∣∣∣∣∣ T−j−k∑
t=k

w1tw
′
2t+j

∣∣∣∣∣∣ = Op((k log TT 2b0+1−a)1/2) = op(T b0+1/2),

∣∣∣∣∣∣ T−j−k∑
t=k

w1tw
′
1t+j

∣∣∣∣∣∣ = Op(T 2b0).

Also given Lemma C.7 and assumptions, it holds:

||α− α̂|| = Op(T b0), (28)

||(W2W2)−1||1 = Op(T−1), (29)

h−1
T

∑T
j=0 |ω(j/hT )| →

∫∞
0 |ω(x)|dx <∞, (30)∣∣∣∣∣∣∑T−2k

j=1 ω(j/hT )T−1
∑T−j−k

t=k w2tw
′
2t+j

∣∣∣∣∣∣
1

= Op(1). (31)

Now, note that:

ˆ̃vt = ṽt + (A− Â)wt = ṽt + (α− α̂)w1t +
(

(α− α̂)W1 + Ṽ
)
W ′2(W2W

′
2)−1w2t,

where the dependance of wt,W, V on the estimator ψ̂ is implicitly suppresed. From here:

ˆ̃vt ˆ̃v′t+j = ṽtṽ
′
t+j + ṽtw

′
1t+j(α− α̂)′ + ṽtw

′
2t+j(W2W

′
2)−1W2W

′
1(α− α̂)′ + ṽtw

′
2t+j(W2W

′
2)−1W2Ṽ

′+

(α− α̂)w1tw
′
1t+j(α− α̂)′ + (α− α̂)w1tw

′
2t+j(W2W

′
2)−1W2W

′
1(α− α̂)′ + (α− α̂)w1tw

′
2t+j(W2W

′
2)−1W2Ṽ

′+

(α− α̂)W1W
′
2(W2W

′
2)−1w2tw

′
2t+j(W2W

′
2)−1W2W

′
1(α− α̂)′+

(α− α̂)W1W
′
2(W2W

′
2)−1w2tw

′
2t+j(W2W

′
2)−1W2Ṽ

′ + Ṽ W ′2(W2W
′
2)−1w2tw

′
2t+j(W2W

′
2)−1W2Ṽ

′

Applying above bounds and norm inequalities, we have:

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ˆ̃vt ˆ̃v′t+j =
T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ṽtṽ
′
t+j +Op(hTT−1) + op(hTT−1/2)+

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ṽtw
′
2t+j(W2W

′
2)−1W2Ṽ

′ +Op(hTT−1) + op(hTT−1) +Op(hTT−1/2) + op(hTT−1) + op(1).
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The last term can be bounded as follows:∣∣∣∣∣∣ T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ṽtw
′
2t+j(W2W

′
2)−1W2Ṽ

′
∣∣∣∣∣∣ =

∣∣∣∣∣∣ T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

(vt + e1t + e2t)w′2t+j(W2W
′
2)−1W2Ṽ

′
∣∣∣∣∣∣ =

= Op(hTT−1/2) +
∣∣∣∣∣∣ T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

∑
|i|>k

Πi∆dX2t+i

w′2t+j(W2W
′
2)−1W2Ṽ

′
∣∣∣∣∣∣+

+
∣∣∣∣∣∣ T−k∑
j=1

ω(j/hT )
∣∣∣∣∣∣∣∣∣∣∣∣T−1E2(ψ̂)W2(ψ̂)

∣∣∣∣∣∣∣∣∣∣∣∣(W2W
′
2)−1

∣∣∣∣∣∣
1

∣∣∣∣∣∣W2Ṽ
′
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ ∑
|i|>k

Πi

∣∣∣∣∣∣∣∣∣∣∣∣ T−k∑
j=1

ω(j/hT )S00
ij,T (ψ̂)

∣∣∣∣∣∣∣∣∣∣∣∣(W2W
′
2)−1

∣∣∣∣∣∣
1

∣∣∣∣∣∣W2Ṽ
′
∣∣∣∣∣∣+ op(hTk−1/2T−κk1/2) + op(1) = op(1).

Hence:

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ˆ̃vt ˆ̃v′t+j =
T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ṽtṽ
′
t+j + op(1). (32)

Remember, ṽt = vt + e1t + e2t and cross products involving e1t can be treated similarly as in

Kejriwal and Perron (2008), whereas cross-products involving e2t can be bounded using mean-

value expansion and bounds of Lemma C.2, we have:

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

ṽtṽ
′
t+j =

T−k∑
j=1

ω(j/hT )T−1
T−j∑
t=1

vtv
′
t+j + op(1). (33)

Now we prove (27). Observe:

ˆ̃V ˆ̃V ′ = Ṽ Ṽ ′ + Ṽ W ′1(α− α̂)′ + Ṽ W ′2(W2W
′
2)−1W2W

′
1(α− α̂)′ + (α− α̂)W1W

′
1(α− α̂)′+

2(α− α̂)W1W
′
2(W2W

′
2)−1W2W

′
1(α− α̂)′ + 2(α− α̂)W1W

′
2(W2W

′
2)−1W2Ṽ

′ + 2Ṽ W ′2(W2W
′
2)−1W2Ṽ

′.

Then applying Lemma C.5, we find: T−1 ˆ̃V ˆ̃V ′ = T−1Ṽ Ṽ ′+op(1) = T−1V V ′+op(1) and the theorem

is proved.

Proof of 3.4. Take a sequence mT = T−1/2 + T−κ +
∑
|i|>k ||Πi||. Then similarly as in proof of 3.1,

we find:

(Â−A0)D−1
T (mT ) = Ṽ W ′DT (

√
T )
(
R̂−1 −R−1

)
DT (
√
T )D−1

T (mT ) + Ṽ W ′DT (Tm−1
T )R−1.
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We find bound for the second term from Lemma C.5:

||Ṽ W ′DT (Tm−1
T )||2 ≤ ||VW ′DT (Tm−1

T )||2 + ||E1W
′DT (Tm−1

T )||2 + ||E2W
′DT (Tm−1

T )||2 ≤

||T−b̂VW ′1||2 + ||T−b̂E1W
′
1||2 + ||T−b̂E2W

′
1||2 + ||mTT

−1VW ′2||2 + ||mTT
−1E1W

′
2||2+

+ ||mTT
−1E2W

′
2||2 = m2

T (T−1 + T−2κ + (
∑
|i|>k

||Πi||)2)Op(k) = Op(k).

Since the bound of the first term is of smaller stochastic order than the second, we get:

||(Â−A0)D−1
T (mT )||2 = T 2b̂||α̂− α0||2 +m2

T ||Π̂−Π0||2 = Op(k) + op(k) (34)

and since the first term is Op(1), it follows that: mT ||Π̂−Π0|| = Op(
√
k).
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