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Abstract

This manuscript considers locally best invariant tests for sphericity in heterogeneous panel

models. The associated test statistics take the form of a weighted sum of individual test statis-

tics, each of which is a quadratic form in a spherical random vector under the null. An exact

integral expression for the distribution of such a weighted sum, and hence the null distribution

of the test, is provided, valid for any size of the cross-sectional and time series dimensions.

Addressing the need to quickly compute approximate p-values in empirical work, a highly

accurate saddlepoint approximation is also derived, which offers a substantial improvement

over the normal approximation in applications where the cross-sectional dimension is small.

A panel stationarity test serves as a numerical example.

Key Words: Saddlepoint Approximation, Panel Data, Locally Best Test.

JEL Classification: C12, C23, C63

∗

E-mail address: s.a.broda@uva.nl



1 Introduction

Testing for spherically symmetric errors in the linear model has a long history. For example, the

problems of testing for serial correlation, spatial correlation, unit roots, and stationarity can all

be cast in this framework. In most of these problems, no uniformly most powerful test exists,

which has lead to the adoption of weaker optimality criteria. The locally best invariant (LBI)

test, for example, is that which maximizes the slope of the power function at the null hypothesis

among all invariant tests. Invariance, in this context, is with respect to changes in the regression

coefficients and scaling of the disturbance vector. In the aforementioned problems, Cliff and Ord’s

(1973) test for spatial correlation, Dufour and King’s (1991) test for serial correlation and unit

roots, and Kwiatkowski, Phillips, Schmidt, and Shin’s (1992) test for stationarity are all locally

best invariant. The statistics associated with these tests are in the form of ratios in quadratic

forms in elliptically symmetric random vectors, and, consequently, a sizeable body of literature

has emerged dealing with the computation of tail probabilities of such ratios, both exactly (Grad

and Solomon, 1955; Imhof, 1961; Davies, 1973; Forchini, 2002) and approximately (Lieberman,

1994; Marsh, 1998; Butler and Paolella, 2008). Forchini’s paper is a rich source of references on

the topic.

In recent years, there has been considerable interest in the corresponding test procedures for

panel data models, see, for example, Baltagi (2005) and the references therein. In this manuscript,

we consider an exact locally best invariant test for spherical symmetry in heterogeneous panel

models. In the absence of cross-sectional correlation, the test statistic is given by a weighted sum

of the corresponding individual test statistics, each of which is in the form of a ratio of quadratic

forms in an elliptically symmetric random vector. In the limit as the number of individuals tends

to infinity, the null distribution converges to a Gaussian; if, however, one is to control the size of

the test in finite samples, then the finite-sample null distribution is required, which, unlike in the

pure time-series case, appears to have eluded computation to date.

This paper provides an exact expression for the null distribution of the test. By appealing to

a conditioning argument and inverting the corresponding characteristic function, the distribution

is obtained in the form of a nested integral. The expression can be evaluated numerically to any

desired degree of accuracy and hence used for tabulating critical points. For computing p-values

however, as is often required in empirical work, such a calculation is arguably too involved, and

an approximation may be desirable. Such an approximation is also presented herein. In partic-

ular, we show that the same conditioning argument can be employed to arrive at a saddlepoint

approximation. This type of approximation is well-known to offer excellent accuracy in the cor-

responding testing problems in the simple linear regression model. It is perhaps not surprising

that this property carries over to the panel setting to which they are generalized herein.

The remainder of this manuscript is organized as follows. Section 2 summarizes the theory of

locally best invariant tests in the panel context. Section 3 provides the exact expression for the

corresponding null distributions. The saddlepoint approximation is derived in Section 4, and its

accuracy is exemplified by applying it to the panel stationarity test of Hadri and Larsson (2005)

in Section 5. Section 6 concludes.
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2 Locally Best Tests in Heterogenous Panels

Consider the heterogenous panel data model

yi = Xiβi + ui, i ∈ {1 . . . N}, (1)

where Xi is a known constant Ti × ki matrix of rank ki, and the ui are mutually independent

Ti × 1 random vectors. Each ui is distributed according to an elliptically symmetric law, with

density

fi(ui; θ, σi) =
∣

∣σ2iΣi(θ)
∣

∣

−1/2
gi

(

u′
i

(

σ2iΣi(θ)
)−1

ui

)

, (2)

for some known function gi : R+ → R+ such that fi is a valid density with respect to Lebesgue

measure on RTi
. In (2), each Σi(θ) is a known, symmetric, differentiable matrix function of the

common, but unknown parameter θ ∈ Θ ≡ {θ ∈ R : Σi > 0∀i}, and without any loss of generality,

we assume that Σi(0) = ITi
. (Typically, matrices Σi(θ) will have the same structure, but possibly

different dimensions.) We consider the problem of testing H0 : θ = 0 against Ha : θ = a ∈ Θ∩R+.

Our discussion is analogous to that given in King and Hillier (1985) for the simple linear model.

Let

Mi ≡







ITi
−Xi (X

′
iXi)

−1
X′

i, if ki > 0,

ITi
, otherwise,

and for each i, choose a matrix Pi such that PiP
′
i = ITi−ki and P′

iPi = Mi. Let y = [y′
1, . . . ,y

′
N ]′;

then the vector v = [v′
1, . . . ,v

′
N ]′, where vi = Piyi/‖Piyi‖, is a maximal invariant with respect

to transformations of the form

y → ỹ, ỹ = [ỹ′
1, . . . , ỹ

′
N ]′, ỹi = aiyi +Xibi. (3)

The density (with respect to the uniform measure on the unit mi-sphere) of vi under Hθ is

hi(vi; θ) =
∣

∣PiΣi(θ)P
′
i

∣

∣

−1/2
[

v′
i

(

PiΣi(θ)P
′
i

)−1
vi

]−
mi

2

,

where mi = Ti − ki; see Kariya (1980) and King (1980). Thus, from independence, the density of

v is

h(v; θ) =
N
∏

i=1

hi(vi; θ), (4)

based on which optimal invariant tests can be constructed. From Ferguson (1967, p. 236), a

locally best invariant test of size α of H0 : θ = 0 against Ha : θ = a ∈ Θ ∩ R+ is to reject H0

whenever
∂

∂θ
log h(v; θ)

∣

∣

∣

θ=0

> d1,

where d1 is a constant chosen such that the size of the test is α. Applied to the density (4), this
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yields critical regions of the form

τ(y) ≡
N
∑

i=1

miv
′
iPiΣ̇i(0)P

′
ivi =

N
∑

i=1

mi
y′
iMiΣ̇i(0)Miyi

y′
iMiyi

> d,

where Σ̇i(θ) denotes the elementwise derivative ofΣi(θ) with respect to θ. The constant d satisfies

1− α = Prθ=0[τ(y) < d] = Prθ=0

[

N
∑

i=1

mi
u′
iMiΣ̇i(0)Miui

u′
iMiui

< d

]

= Prθ=0

[

N
∑

i=1

mi
ũ′
iAiũi

ũ′
iImi

ũi
< d

]

, (5)

where Ai = PiΣ̇i(0)P
′
i, ũi ≡ Piui, and under H0, ũi, like ui, has a spherically symmetric density

f̃i(ũi) = g̃i
(

ũ′
iũi

)

, (6)

see Kelker (1970).

3 Exact Null Distribution

In order to determine the critical value d in (5), we require the distribution function of statistics

of the form

R̄ ≡ 1

N

N
∑

i=1

Ri, where Ri ≡
Ui

Di
≡ u′

iAiui

u′
iui

, (7)

each Ai is a symmetric mi ×mi matrix, ui has density (6), and, for notational convenience, we

write u and g instead of ũ and g̃. The characteristic function of Ri is

ψRi
(t) ≡ E[exp{itRi}] = 1F1(1/2,mi/2, itAi), (8)

where i2 ≡ −1, see, e.g., Hillier (2001). In (8), 1F1(a, b,Z) denotes the confluent hypergeometric

function of matrix argument. The fact that this function is notoriously difficult to evaluate with

high precision makes it doubtful that the distribution function of R̄ could be efficiently obtained

by numerical inversion of the characteristic function. When N = 1, this difficulty is usually

circumvented by exploiting the relation

Pr
(u′

1A1u1

u′
1
u1

≤ r
)

= Pr
(

u′
1[A1 − rIm1

]u1 ≤ 0
)

and then using the result of Imhof (1961), but this method fails when N > 1. As such, we shall

consider a different approach in what follows.

In order to simplify the derivations, suppose for the moment that mi = T for all i; if mi 6= mj

for some i, j, all occurrences of T should be replaced by mi in Theorems 1 and 2; such would be

the situation in an unbalanced panel, or if a different number of regressors is included for at least
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some individuals. Noting that the null distribution of R̄ is independent of the specific choice of

gi in (6), we shall further assume, without loss of generality, that

gi(u
′
iui) = (2π)−T/2 exp{u′

iui} ∀i,

i.e., the ui are independently distributed as N(0, IT ).

In order to derive an expression for the distribution of R̄ in (7), we will exploit the fact that

as a scale-free function of ui,

Ri ⊥ Dj ∀i, j ∈ {1, . . . , N},

i.e., each ratio Ri in (7) is independent of its own denominator Di, a result that dates back to

Fisher (1930) and Geary (1933). Our use of the result resembles that of Butler and Paolella

(1998), who brought it to bear in their derivation of the joint density of the serial correlogram.

Trivially, each Ri is also independent of the denominators of the remaining ratios in the sum,

and we have that

Pr
(

R̄ ≤ r̄
)

= Pr
( 1

N

N
∑

i=1

Ui

Di
≤ r̄
)

= Pr
( 1

N

N
∑

i=1

Ui

Di
≤ r̄

∣

∣

∣
Di = 1 ∀i ∈ {1, . . . , N}

)

= Pr
(

N
∑

i=1

Ui ≤ r
∣

∣

∣
Di = 1 ∀i ∈ {1, . . . , N}

)

, (9)

where r = r̄N .

Next, define X :=
∑N

i=1
Ui and D = [D1, . . . , DN ]′, and let ψX|D=1(s) denote the character-

istic function (c.f.) of X, conditional on D = 1. By the inversion formula of Gil-Pelaez (1951),

Pr
(

X ≤ r
∣

∣

∣
D = 1

)

=
1

2
− 1

π

∫ ∞

0

Im
[

e−isrψX|D=1(s)
] ds

s
,

and it remains to find an expression for the conditional c.f. To that end, first note that from

independence, ψX|D=1(s) factors as

ψX|D=1(s) =
N
∏

i=1

ψUi|D=1(s) =
N
∏

i=1

ψUi|Di=1(s).

Then, from Bartlett (1938),

ψUi|Di=1(s) =

1

2π

∫ ∞

−∞
ψUi,Di

(s, t)e−itdt

1

2π

∫ ∞

−∞
ψUi,Di

(0, t)e−itdt

, (10)

where ψUi,Di
is the joint c.f. of Ui and Di, which is easily seen to be given by

ψUi,Di
(s) =

T
∏

j=1

(1− 2isωij − 2it)−1/2 ,
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where {ωij}j∈{1,...,T} are the eigenvalues of (Ai +A′
i)/2. Finally, noting that the denominator in

(10) is just the density, at one, of a chi-square with T degrees of freedom, it follows that

ψUi|Di=1(s) =
2T/2Γ(T/2)e1/2

2π

∫ ∞

−∞
e−it

T
∏

j=1

(1− 2isωij − 2it)−1/2 dt.

We have then proven the following result.

Theorem 1. Let Ri ≡ u′
iAiui/u

′
iui, i ∈ {1, . . . , N}, where the ui are independently distributed

with densities of the form gi(u
′
iui). Then the distribution function of R̄ ≡ N−1

∑N
i=1

Ri can be

computed as

FR̄(r̄) =
1

2
− 1

π

∫ ∞

0

Im

[

e−isNr̄
N
∏

i=1

ψUi|Di=1(s)

]

ds

s
(11)

where

ψUi|Di=1(s) =
2T/2Γ(T/2)e1/2

2π

∫ ∞

−∞
e−it

T
∏

j=1

(1− 2isωij − 2it)−1/2 dt,

and {ωij}j∈{1,...,T} are the eigenvalues of (Ai +A′
i)/2.

That is, we have expressed the required tail probability as a double integral, which lends itself

to numeric evaluation.

4 Saddlepoint Approximation

Even though Theorem 1 provides a computable expression for the critical values of the panel LBI

test, its computational complexity may be unacceptably high for routine applications. As such, it

will be useful to have available an approximation which improves upon the accuracy of the normal

approximation, while at the same time maintaining relative computational simplicity. Such a

trade-off is afforded by the saddlepoint approximation. However, because the moment generating

function of R̄ — as a product of confluent hypergeometric functions of matrix argument — is

numerically intractable, it appears infeasible to obtain an asymptotic expansion of its distribution

function by a direct application of saddlepoint methods. Instead, the idea is to approximate the

conditional distribution appearing in (9) by the double saddlepoint approximation of Skovgaard

(1987), which we briefly discuss next.

Let X and Y have dimensions 1 × 1 and d × 1, respectively, and assume that the random

vector (X,Y ′)′ possesses a joint density and a joint cumulant generating function K(s, t) ≡
logE[exp(sX+ t′Y )]. Denote by Ks, s ∈ {s, t}, the vector of partial derivatives of K with respect

to the elements of s, and by K
′′(s, t) its Hessian. Skovgaard (1987) shows that a saddlepoint

approximation for the conditional distribution of X given Y = y is given by

Pr (X ≤ x,Y = y) ≈ Φ(ŵ) + φ(ŵ)
(

ŵ−1 − û−1
)

, (12)
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where

ŵ ≡ sgn(ŝ)

√

2
(

ŝx+ t̂′y −K
(

ŝ, t̂
)

− t̂′
0
y +K

(

0, t̂0
)

)

and û ≡ ŝ

√

∣

∣

∣
K′′
(

ŝ, t̂
)

∣

∣

∣

/
∣

∣

∣
K′′
(

0, t̂0
)

∣

∣

∣
.

The quantity
(

ŝ, t̂
)

appearing in (12) is commonly referred to as the numerator saddlepoint. It

solves the system

Ks

(

ŝ, t̂
)

= x

Kt

(

ŝ, t̂
)

= y.

The denominator saddlepoint t̂0 solves Kt(0, t̂0) = y. Approximation (12) is the leading term in

an asymptotic expansion, the second-order term in which has been derived in Kolassa (1996).

In order to apply this result to the problem at hand, we require the joint cumulant generating

function of X =
∑N

i=1
Ui and D = [D1, . . . , DN ]′, which follows easily from the arguments

concerning the joint c.f. above. The result is

K(s, t) ≡ logE

[

exp

{

s
N
∑

i=1

Ui +
N
∑

i=1

tiDi

}]

=
1

2

N
∑

i=1

T
∑

j=1

log νij ,

where νij ≡ (1− 2sωij − 2ti)
−1, and for each value of i, {ωij}j∈{1,...,T} are the eigenvalues of Ai.

In obvious notation, its derivatives are

Ks(s, t) =
N
∑

i=1

T
∑

j=1

ωijνij , Kti(s, t) =
T
∑

j=1

νij , Kss(s, t) = 2
N
∑

i=1

T
∑

j=1

ω2
ijν

2
ij ,

Ksti(s, t) = 2
T
∑

j=1

ωijν
2
ij , Ktitk(s, t) = 0, i 6= k, and Ktiti(s, t) = 2

T
∑

j=1

ν2ij ,

so that the numerator saddlepoint solves

r =

N
∑

i=1

T
∑

j=1

ωij ν̂ij

1 =
T
∑

j=1

ν̂ij , i ∈ {1, . . . , N},
(13)

where hatted quantities depend on (ŝ, t̂) rather than (s, t). This system of N +1 equations must

be solved numerically for each value of r̄, which, owing to the sparsity of the problem’s Jacobian,

is a less daunting task than may at first appear.

The denominator saddlepoint t̂0 = (t0,1, . . . t0,N )′ is given analytically as t̂i,0 = (1− T )/2, i ∈
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{1, . . . , N}, so that

K
(

0, t̂0
)

= −(NT/2) log T and
∣

∣

∣
K

′′
(

0, t̂0
)

∣

∣

∣
= (2/T )N . (14)

A further simplification occurs in (12) by noting that it follows from (13) that

N
∑

i=1

T
∑

j=1

(ωij − r̄)ν̂ij = 0 ⇔ (15)

ŝ
N
∑

i=1

T
∑

j=1

(ωij − r̄)ν̂ij +
N
∑

i=1

t̂i

T
∑

j=1

ν̂ij = ŝ · 0 + t̂′1 ⇔

N
∑

i=1

T
∑

j=1

(ŝωij − ŝr̄ + t̂i)ν̂ij = t̂′1 ⇔

−1

2

N
∑

i=1

T
∑

j=1

(1− 2ŝωij − 2t̂i + 2ŝr̄ − 1)ν̂ij = t̂′1 ⇔

−1

2

N
∑

i=1

T
∑

j=1

(ν̂−1

ij + 2ŝr̄ − 1)ν̂ij = t̂′1 ⇔

N(1− T )

2
= t̂′01 = ŝr + t̂′1, (16)

so that

ŵ = sgn(ŝ)

√

2
(

K
(

0, t̂0
)

−K
(

ŝ, t̂
)

)

= sgn(ŝ)

√

√

√

√−
N
∑

i=1

T
∑

j=1

log(T ν̂ij).

Next, we will simplify the expression for û. In order to economize the notation, let κ̂00 ≡
Kss(ŝ, t̂), κ̂0i ≡ Ksti(ŝ, t̂), i ∈ {1, . . . , N}, and κ̂i ≡ Ktiti(ŝ, t̂), i ∈ {1, . . . , N}. Then differentiating

equations (13) and (16) with respect to r gives

dŝ

dr
=

(

κ̂00 −
N
∑

i=1

κ̂20iκ̂
−1

i

)−1

,
dt̂i
dr

= −dŝ

dr

κ̂0i
κ̂i
, and 0 =

dŝ

dr
r + ŝ+

N
∑

i=1

dt̂i
dr
,
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so that

ŝ

(

κ̂00 −
N
∑

i=1

κ̂20iκ̂
−1

i

)

= −r +
N
∑

i=1

κ̂0iκ̂
−1

i

= ŝ−1

(

−ŝr +
N
∑

i=1

2
∑T

j=1
ŝωijν

2
ij

2
∑T

j=1
ν2ij

)

= ŝ−1

(

−ŝr +
N
∑

i=1

1

2
− t̂i +

∑T
j=1

−ν̂2ij + 2t̂iν
2
ij + 2ŝωijν

2
ij

2
∑T

j=1
ν2ij

)

= ŝ−1

(

−ŝr + N

2
−
(

N(1− T )

2
− ŝr

)

+
N
∑

i=1

−∑T
j=1

ν̂ij

2
∑T

j=1
ν2ij

)

= ŝ−1

(

NT

2
−

N
∑

i=1

κ̂−1

i

)

, (17)

where the penultimate and last equalities follow from (16) and (13), respectively. The determinant

of K′′(ŝ, t̂) appearing in (12) evaluates to

∣

∣

∣
K

′′
(

ŝ, t̂
)

∣

∣

∣
=

(

κ̂00 −
N
∑

i=1

κ̂20iκ̂
−1

i

)

N
∏

i=1

κ̂i,

which, together with (14) and (17), and with γ̂i ≡ T κ̂i/2, i ∈ {1, . . . , N}, yields

û = sgn(ŝ)

√

√

√

√

1

2

[

N
∏

i=1

γ̂i

]

N
∑

i=1

T (1− γ̂−1

i ).

We collect the relevant formulae in the following theorem.

Theorem 2. Let Ri ≡ u′
iAiui/u

′
iui, i ∈ {1, . . . , N}, where the ui are independently distributed

with densities of the form gi(u
′
iui). Then a saddlepoint approximation to the distribution function

of R̄ ≡ N−1
∑N

i=1
Ri is given by

F̂ (r̄) ≡ Φ(ŵ) + φ(ŵ)
(

ŵ−1 − û−1
)

, (18)

where

ŵ = sgn(ŝ)

√

√

√

√−
N
∑

i=1

T
∑

j=1

log(T ν̂ij), û = sgn(ŝ)

√

√

√

√

1

2

[

N
∏

i=1

γ̂i

]

N
∑

i=1

T (1− γ̂−1

i ),

ν̂ij = (1− 2ŝωij − 2t̂i)
−1, γ̂i = T

∑T
j=1

ν̂2ij, {ωij}j∈{1,...,T} are the eigenvalues of (Ai+A′
i)/2, and

the saddlepoint (ŝ, t̂) solves

r̄ = N−1

N
∑

i=1

T
∑

j=1

ωij ν̂ij , 1 =
T
∑

j=1

ν̂ij , i ∈ {1, . . . , N}.

8



5 Application

In this section, we demonstrate the accuracy of the saddlepoint approximation by applying it to

the stationarity test of Hadri and Larsson (2005). The intuition of the test, which is a general-

ization of the KPSS test for stationarity (Kwiatkowski et al., 1992) to panel data models, is to

decompose the error term, for each individual, into a white noise component and a random walk.

The null hypothesis is that the variance of the innovation sequence of the random walk is zero.

The results of this paper allow us to obtain the finite sample null distribution of the test, thus

generalizing the results of Hornok and Larsson (2000), who considered the pure time-series case,

i.e., the KPSS test. We consider Hadri and Larsson’s Model (2), where under the alternative,

some series are stationary around incidental trends. In terms of model (1), Xi = [1Ti
tTi

], where

1Ti
is a Ti × 1 vector of ones and tTi

is a Ti × 1 vector of consecutive natural numbers starting at

1,

σ2iΣi(θ) = σ2i [θFTi
+ ITi

] ,

and the (j, k)th element of FTi
is min(j, k). It is immediate that

Σ̇i(0) = FTi
,

so that the locally best test of H0 : θ = 0 versus Ha : θ > 0, invariant to transformations of the

form (3), is the one which rejects for large values of

τ(y) =
N
∑

i=1

τi(yi) ≡
N
∑

i=1

(Ti − 2)
y′
iMiFTi

Miyi

y′
iMiyi

.

In order to ensure that its distribution converge to a standard Gaussian under the null, Hadri

and Larsson define their test statistic in the slightly modified form

ZτNT ≡ 1√
N

N
∑

i=1

τi(yi)− (T 2
i − 4)/15

√

(Ti + 2)(Ti − 2)2(13T 2
i + 23)/(2100Ti)− (T 2

i − 4)2/225
.

Clearly, if Ti = T∀i, then the tests based on τ(y) and on ZτNT are equivalent; if, however,

the time series dimensions differ across individuals, then the latter is no longer locally best, but

only approximately so. The intuition behind this is as follows: suppose the panel consists of

N − 1 individuals of time series dimension T1, and one — individual N , say — with time series

dimension TN , much larger than T1. Suppose that the Nth series contains a unit root, which is

correctly detected by the LBI test. The test based on ZτNT places a relatively lower weight on

the Nth individual statistic, and, hence, may not detect the nonstationarity.

Figure 1 offers a comparison of the approximate null distributions of the ZτNT -test obtained

from the saddlepoint and normal approximations, respectively, for a model with N = 10 and Ti =

10, i ∈ {1, . . . , N}. Depicted is the relative error in percent, defined as 100(F̂ −F )/min(F, 1−F ),
where F̂ denotes the respective approximate distribution function, and the exact values F have
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Figure 1: Relative Error in %, defined as 100(F̂ (x) − F (x))/min(F (x), 1 − F (x)), of approximations for the
distribution of ZτNT , where N = T = 10.

been computed from (11). The computation of the 55 tail probabilities in the graph took 429

milliseconds using the saddlepoint approximation, whereas the exact values required 43.4 seconds,

about 100 times longer. As expected, the normal approximation deteriorates in the tails of the

distribution — the crucial part of the support in hypothesis testing —, whereas the relative

error of the saddlepoint approximation never exceeds 20%. This is in stark contrast with the

Cornish-Fisher expansion explored by Hadri and Larsson, who note on Page 60:

We tried to improve the empirical size of our two tests particularly for T < 10 by using

the Fisher-Cornish expansion [. . . ]. However, the improvements were very marginal.

This is not surprising as it is well known that the Fisher-Cornish expansion like the

Edgeworth expansion from which it is derived deteriorates in the tails.

The saddlepoint approximation, on the other hand, can be thought of as an Edgeworth expansion

applied to the exponentially tilted density, and does not suffer from this deficiency.

6 Conclusions

The locally best invariant test for sphericity in a heterogeneous panel model is given by a weighted

sum of the individual tests. While the limiting (as N → ∞) null distribution of the appropriately

scaled test statistic is Gaussian, the finite sample distribution is of considerable interest, for

the following reasons: First, in macroeconomic panels, the cross-section dimension is typically

small, so that use of asymptotic critical values will incur significant size distortions; second, even

for moderate values of N , the quality of the normal approximation, for any particular test, is

10



unknown a priori. The results provided herein address both of these problems: the exact integral

expression for the distribution function is useful for determining the accuracy of the Normal

approximation when devising a test; the saddlepoint approximation, owing to its relative ease of

computation, can serve as a routine tool for the computation of p-values. While also approximate

in nature, the saddlepoint p-values have relative error, as opposed to the absolute error associated

with the normal approximation, and thus preserve good accuracy even in the extreme tails of the

distribution.
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King, M. L. (1980): “Robust Tests for Spherical Symmetry and Their Application to Least

Squares Regression,” The Annals of Statistics, 8, 1265–1271. 2

King, M. L. and G. H. Hillier (1985): “Locally Best Invariant Tests of the Error Covariance

Matrix of the Linear Regression Model,” Journal of the Royal Statistical Society: Series B, 47,

98–102. 2

Kolassa, J. E. (1996): “Higher Order Approximations to Conditional Distribution Functions,”

The Annals of Statistics, 24, 353–364. 6

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the Null

Hypothesis of Stationarity Against the Alternative of a Unit Root,” Journal of Econometrics,

54, 91–115. 1, 9

Lieberman, O. (1994): “Saddlepoint Approximation for the Distribution of a Ratio of Quadratic

Forms in Normal Variables,” Journal of the American Statistical Association, 89, 924–928. 1

Marsh, P. W. N. (1998): “Saddlepoint Approximations for Noncentral Quadratic Forms,”

Econometric Theory, 14, 539–559. 1

Skovgaard, I. M. (1987): “Saddlepoint Expansions for Conditional Distributions,” Journal of

Applied Probability, 24, 875–887. 5

13


	Introduction
	Locally Best Tests in Heterogenous Panels
	Exact Null Distribution
	Saddlepoint Approximation
	Application
	Conclusions

