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Abstract

Expected shortfall, as a coherent risk measure, has received a substantial amount of at-

tention in the literature recently. For many distributions of practical interest however, it can-

not be obtained in explicit form, and numerical techniques must be employed. The present

manuscript derives a saddlepoint approximation for the expected shortfall associated with

certain random variables that permit a stochastic representation in terms of some underly-

ing random variables possessing a moment generating function. The new approximation can

be evaluated quickly and reliably, and provides excellent accuracy. The doubly noncentral t

distribution is considered as an example.
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1 Introduction

The question of how to adequately measure risk is central to risk management, and has seen

much controversy lately: beginning with the seminal paper of Artzner, Delbaen, Eber, and Heath

(1999), an enormous body of literature has accumulated which criticizes the most widely used risk

measure, Value at Risk (VaR), for its failure to be coherent. In particular, VaR is not subadditive,

thus violating one of the four axioms defining a coherent risk measure. The expected shortfall,

as a coherent alternative, appears to be emerging as a new standard.

Suppose the return on a financial position is represented by a continuous random variable

X with density fX(x). Then the expected shortfall (ES) is defined, for a given confidence level

q ∈ (0, 1), as

ES(q)(X) ≡ −E [X|X ≤ xq] = −1

q

∫ xq

−∞

xfX(x)dx, (1)

where xq is the corresponding VaR, i.e., the 100q% quantile ofX, see Acerbi and Tasche (2002a,b).

Often q is set to 1%. Note that here, we have defined the expected shortfall in terms of relative

loss, as is common. For many distributions of interest, (1) must be evaluated numerically. This

time-consuming task potentially precludes the use of certain distributions in computationally de-

manding tasks such as mean-ES portfolio allocation, so that a reliable approximation is desirable.

The saddlepoint approximation, introduced next, is a natural candidate.

Saddlepoint approximations for densities result from expanding the Fourier-Mellin integral of

the moment generating function (hereafter mgf) in an asymptotic series. Since their introduction

by Daniels (1954), they have been found to deliver excellent accuracy in countless applications; see

Butler (2007), Broda and Paolella (2011), and the references therein. The cumulative distribution

function could be approximated by numerically integrating the approximate density; however,

Lugannani and Rice (1980) derived a direct approximation to the distribution function which

circumvents this need. Both Daniels’s and Lugannani and Rice’s approximation require that the

random variable to which the approximation is to be applied possess an mgf. Daniels and Young

(1991) have generalized these results to marginal distributions of nonlinear functions of bivariate

random vectors; see also Jing and Robinson (1994).

Concerning the expected shortfall as defined in (1) above, the result of Martin (2006) can be

used whenever the moment generating function of X exists. For certain problems however, X

does not possess an mgf, but may permit a stochastic representation in terms of random variables

that do. The present paper derives a saddlepoint approximation that is applicable in this setting.

At first glance, it might perhaps appear as if the most natural route to such a result were via

a routine application of asymptotic expansions. This is certainly possible (if a bit tedious), and

would lead to a result which generalizes that of Martin (2006) in much the same the way Daniels

and Young’s result generalizes that of Lugannani and Rice. However, careful scrutiny of the

results available in the univariate setting reveals that an alternative strategy may lead to an

approximation that is both more accurate and simpler to compute. This is the approach taken

here.

The plan is as follows. Section 2 reviews some useful results from the theory of saddlepoint
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approximations. Section 3 demonstrates an alternative method of proof for some known sad-

dlepoint approximations to expected shortfall, and motivates the new approximation given in

Section 4. Section 5 applies the approximation to the noncentral t distribution and concludes.

2 Saddlepoint Approximations for Densities and Tail Probabili-

ties

Consider the mean of n independent and identically distributed variables, X̄ = n−1
∑n

i=1Xi,

and suppose that each Xi possesses a density, and that its cumulant generating function KX(t)

converges in a nonvanishing interval containing the origin. The cumulant generating function is

the natural logarithm of the mgf, which is, in turn, defined as

MX(t) ≡ E
[

etX
]

whenever the expectation exists. It generates the moments of a distribution, in the sense that its

jth derivative evaluated at zero equals the jth moment of X. The usefulness of the mgf in the

context of risk management derives from the fact that the mgf corresponding to the convolution

of two distributions (viz., the mgf of a sum of two independent random variables) is given by the

product of the individual mgfs. Hence, the mgf possesses a tractable form in many cases in which

the distribution function does not. If the distribution of X̄ is absolutely continuous, as we shall

assume throughout, then its density fn(x̄) can be recovered from the mgf via the Fourier-Mellin

integral

fn(x̄) =
n

2πi

∫ i∞

−i∞
en(KX(t)−tx)dt. (2)

Similar expressions exist for the distribution function and the expected shortfall. Typically,

the integral in (2) permits no analytical solution, and numerical quadrature must be used. An

alternative is to approximate the integral by means of a truncated asymptotic series: Daniels

(1954) derived the asymptotic expansion

fn(x̄) = gn(x̄)

[

m
∑

k=0

ak
nk

+O
(

n−(m+1)
)

]

, (3)

where

gn(x̄) =

√

n

2πK ′′

X

(

t̂
)e−nŵ2/2, ŵ = sgn

(

t̂
)

√

2t̂x̄− 2KX

(

t̂
)

,

and the saddlepoint t̂ = t̂ (x̄) solves

x̄ = K
′

X

(

t̂
)

.

In most applications this has to be evaluated numerically for each x̄ at which the density is to be

approximated. The first two coefficients in the expansion (3) are

a0 = 1 and a1 =
1

8
λ̂4 −

5

24
λ̂23,
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where λ̂j = KX
(j)/ (K ′′

X)
j/2, and the truncated series gn is referred to as the saddlepoint approxi-

mation to fn.

A uniform asymptotic expansion for the distribution function of X̄ has been derived in Lu-

gannani and Rice (1980). It is given by

Fn(x̄) = Φ
(

ŵn1/2
)

+

√

1

2πn
e−nŵ2/2

[

m
∑

k=0

bk
nk

+O
(

n−(m+1)
)

]

, (4)

where Φ is the cdf of the standard normal distribution. The first two coefficients in the expansion

(4) are

b0 =
1

ŵ
− 1

û
and b1 =

1

û3
− 1

ŵ3
+

λ̂3
2û2

− a1
û
,

where

û = t̂
√

K
′′

X

(

t̂
)

and a1 is as in (3).

Lugannani and Rice derived expansion (4) using complex variable methods. It can, however,

also be obtained from (3) by means of the following result of Temme (1982), which we shall use

frequently.

Theorem 1 (Temme, 1982). Suppose Ψn(ζ) is analytic in a strip containing the real axis in its

interior and such that, for some fixed λk and ω,

dk

dζk
Ψn(ζ) = O

(∣

∣

∣
ζλk

∣

∣

∣
eωζ

2
)

as Re ζ → ∞.

If Ψn(ζ) permits the asymptotic expansion

Ψn(ζ) =

m
∑

k=0

ψk(ζ)

nk
+O

(

Ψn(ζ)n
−(m+1)

)

,

where the ψk(ζ) are analytic in ζ and do not depend on n, then

Hn(η) =

√

n

2π

∫ η

−∞

e−nζ2/2Ψn(ζ)dζ =

= Φ
(

ηn1/2
)

[

m
∑

k=0

Ak

nk
+O(n−(m+1))

]

+

√

1

2πn
e−nη2/2

[

m
∑

k=0

Bk(η)

nk
+O

(

n−(m+1)
)

]

,

where Ak are the coefficients in the asymptotic expansion

Hn(∞) =
∞
∑

k=0

Ak

nk
,

B−1(η) = 0, and ηBk(η) = Ak − ψk(η) +
d

dη
Bk−1(η), k ∈ {0, 1, . . .}.
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3 Saddlepoint Approximations for Expected Shortfall

The first step to approximating the expected shortfall of X̄ is to find an approximation to its

quantiles x̄q. This can be achieved by truncating the series for Fn(x̄) after k terms, yielding the

approximation F̂ k
n (x̄), say, and numerically solving

F̂ k
n (ˆ̄x

k
q ) = q, q ∈ (0, 1). (5)

It then remains to find an approximation to integrals of the form

In(c) =

∫ c

−∞

x̄fn(x̄)dx̄. (6)

Martin (2006) shows that

In(c) = Φ(ŵcn
1/2)µ+

√

1

2πn
e−nŵ2

c/2

(

µ

ŵc
− c

ûc
+O

(

n−1
)

)

, (7)

where µ = K
′

X(0), and hatted quantities with a subscript c correspond to those in (3) and (4),

but evaluated at c rather than x̄. Martin derived his approximation using the same technique

employed by Lugannani and Rice in obtaining their expansion of the distribution function. The

same result is obtained by applying Theorem 1 to the integral in (6) and retaining only the leading

term. Incorporating the second term, which is derived in Appendix A, one has

In(c) = Φ(ŵcn
1/2)µ+

+

√

1

2πn
e−nŵ2

c/2

(

µ

ŵc
− c

ûc
+

1

n

[

c

û3c
− µ

ŵ3
c

+
cλ̂3,c
2û2c

− ca1
ûc

− 1

t̂cûc

]

+O
(

n−2
)

)

, (8)

where a1 is as in (3).
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Figure 1: Approximations to In(c) (left panel) and relative error in percent (right panel).
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Figure 2: Approximations (left panel) and relative error in percent (right panel) for the expected shortfall at level
q.

Butler and Wood (2004), via a completely different method of proof, obtained an approxi-

mation for the mgf, and its logarithmic derivatives, of the truncated random variable aX̄b with

density fn(x̄)I(a,b)(x̄)/(Fn(b)−Fn(a)), where as before, fn and Fn are the density and distribution

function of X̄, respectively. Setting a = −∞, b = c, and evaluating their approximation for the

logarithmic derivative at zero produces the following approximation:

In(c) = Φ(ŵcn
1/2)µ+

√

1

2πn
e−nŵ2

c/2

(

µ

ŵc
− c

ûc
+

1

n

[

c

ŵ3
c

− µ

ŵ3
c

− 1

t̂ûc

]

+O
(

n−1
)

)

. (9)

We illustrate the relative merits of approximations (7), (8) and (9) by considering one copy

(i.e., n = 1) of a Normal Inverse Gaussian (NIG) random variable with parameters (α, β, δ, µ) =

(1,−1/2, 2, 0). The NIG belongs to the family of Generalized Hyperbolic (GHyp) distributions.

These, and the NIG in particular, have been very successfully applied to financial returns data,

see, e.g., Eberlein and Keller (1995), Barndorff-Nielsen (1997) and Broda and Paolella (2009).

As shown in the latter paper, the saddlepoint approximation for the NIG is explicit, and the

relevant quantities are t̂c = zα/ȳ − β, z = (c− µ)/δ, ȳ =
√
1 + z2, K

′′

X(t̂c) = ȳ3δ3α, ŵc =

sgn(t̂c)[2δ(ȳα− zβ − (α2 − β2)1/2]1/2, λ̂3,c = 3z(ȳαδ)−1/2 and λ̂4,c = 3(1 + 5z2)(ȳαδ)−1.

The results are shown in Figure 1. As expected, the second order approximation (8) clearly

dominates the first order approximation (7), with under 10% error across the entire support. It is

also observed that despite being formally accurate to the same order, approximation (9) cannot

compete even with (7). This picture changes dramatically if instead of the tail integral In(c), one

considers its normalized version, viz., the expected shortfall: the approximation is

ES(q)(X) ∼ −
Iℓn(ˆ̄x

k
q )

F̂ k(ˆ̄xkq )
,

where ℓ = 1 refers to approximation (7), ℓ = 2 to approximation (8), and ℓ = 3 to approximation

(9), and ˆ̄xkq is determined according to (5) with k = 1 if ℓ ∈ {1, 3} and k = 2 if ℓ = 2. In
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other words, the order of the approximation to the distribution function used in determining the

quantile is chosen to agree with that of the approximation to In.

The approximations are illustrated in Figure 2. Despite the fact that (9) is only an expansion

to order n−3/2, the resulting approximation to the expected shortfall is comparable to that based

on (8), which is O
(

n−5/2
)

. The reason for this is the following: In order to benefit from error

cancellation, one would ideally approximate the expected shortfall by

ES(q)(X) ∼ −
∫ ˆ̄xk

q

−∞

x̄f̂ ℓn(x̄)dx̄

[

∫ ˆ̄xk
q

−∞

f̂ ℓn(x̄)dx̄

]

−1

,

that is, use the same approximation f̂ ℓn(x̄) in both the numerator and denominator. If the

first order approximation to the distribution function, F̂ 1(ˆ̄xkq ), is used as the denominator, this

amounts to approximating the numerator integral by applying Theorem 1 to

−
∫ ˆ̄xk

q

−∞

x̄

[

d

dx̄
F̂ 1
n(x̄)

]

dx̄.

Now, differentiating the distribution function approximation yields

d

dx̄
F̂ 1
n(x̄) = gn(x̄)

(

1 +
c1
n

)

,

where

c1 =
1

û2
+
λ̂3
2û

− û

ŵ3
.

A simple way of seeing that this approach leads to approximation (9) is to replace a1 with

c1 +O
(

n−1
)

in the second-order expansion (8).

4 Expected Shortfall for Transformed Means

The approximations given in the foregoing section are limited to random variables which possess

an mgf. This section derives an approximation for the case where the random variable of interest

does not possess an mgf, but can be represented as a smooth function of two underlying random

variables that do. The derivation is motivated by the following observation: as demonstrated

above for the NIG distribution, the expected shortfall approximation based on (9) provides similar

accuracy to that based on (8), despite the fact that the former only involves quantities which

are anyway needed for the saddlepoint approximation to the distribution function (4). Note that

prior to computing the expected shortfall, one needs to find the relevant quantile of the loss

distribution, and thus evaluate the approximate distribution function. Therefore computing the

expected shortfall via approximation (9), unlike using (8), entails no extra effort.

To fix ideas, let X = (X1, X2) be a bivariate random vector having a density and a joint

cumulant generating function, and denote the latter as KX(t). Denote by K
′

X(t) and K
′′

X(t) its

gradient and hessian, respectively, and by X̄ = (X̄1, X̄2) the mean of X from a sample of n
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observations. Consider a smooth bijection g mapping the support of Y onto the support of X,

such that X̄ = g(Y ) = (g1(Y ), g2(Y ))′, and denote its inverse by h so that Y = (Y1, Y2) = h(X̄) =

(h1(X̄), h2(X̄))′. We wish to obtain an approximation for the expected shortfall of Y1 which is

analogous to (9); that is, we will approximate

In(c) =

∫ c

−∞

x̄fn(y1)dx̄ (10)

by replacing fn(y1) with the first derivative of the appropriate distribution approximation and

then applying Theorem 1.

Our starting point is the following result from Daniels and Young (1991). Let ∇yig(y) =

(∂g1/∂yi, ∂g2/∂yi)
′, i ∈ {1, 2}, and let Jg(y) =

(

∂g/∂y
)

denote the Jacobian of g. The density

and distribution function of Y1 are

fn(y1) =

√

n

2πK̃
e−nw̃2/2

[

1 +O
(

n−1
)]

and

Fn(y1) = Φ
(

w̃n1/2
)

+

√

1

2πn
e−nw̃2/2

[

1

w̃
− 1

ũ
+O

(

n−1
)

]

, (11)

respectively, where w̃ = sgn(y1 − α)
√

2
(

t̃′g(ỹ)−KX(t̃)
)

, ỹ = (y1, ỹ2), α = h1(µ), µ = K
′

X(0),

K̃ =
det
(

K
′′

X(t̃)
)

det2Jg(ỹ)

[

∇y2g(ỹ)
′
(

K
′′

X(t̃)
)

−1∇y2g(ỹ) + t̃′∇2
y2g(ỹ)

]

,

ũ =
(

t̃′∇y1g(ỹ)
)

K̃1/2, and, for each value of y1, t̃ and ỹ2 solve the system

K
′

X(t̃) = g(ỹ)

t̃′∇y2g(ỹ) = 0.

The next step is to differentiate the expansion for Fn. This yields

fn(y1) =

√

n

2πK̃
e−nw̃2/2

[

1− 1

n

[

ũ

w̃3
+ K̃1/2 d

dy1

1

ũ

]

+O
(

n−1
)

]

.

As shown in Appendix B, substituting this into (10) and applying Theorem 1 yields

In(c) = Φ(w̃cn
1/2)

(

A0 +
1

n
A1

)

+

+

√

1

2πn
e−nw̃2

c/2

(

A0

w̃c
− c

ũc
+

1

n

[

A1

w̃c
+

c

w̃3
c

− A0

w̃3
c

− 1
(

t̃c
′∇y1g(ỹc)

)

ũc

]

+O
(

n−1
)

)

, (12)

where as before, tilded quantities with a subscript c are evaluated at c rather than x̄, and A0

and A1 are coefficients in the asymptotic expansion of E[y1]. Denoting the elements of the

Hessian of h1(X̄) evaluated at µ as hij and the elements of K
′′

X(0) as κij , these are A0 = α
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and A1 = hijκij/2, see Hurt (1976). Here we have used the summation convention, i.e., indices

appearing as both a subscript and a superscript are to be summed over. For practical purposes,

saddlepoint approximations are often applied for n = 1, incorporating the convolution into the

mgf itself. Following that practice, we have the following result.

Theorem 2. Let X = (X1, X2) be a bivariate random vector possessing a density and joint cumu-

lant generating function KX(t). Let g be a smooth bijection such that X = g(Y ) = (g1(Y ), g2(Y ))′,

with inverse Y = (Y1, Y2) = h(X) = (h1(X), h2(X))′. Then

E
[

Y1
∣

∣Y1 < c
]

≈ (α+A1) +
φ(w̃c)

F̂ 1(c)

(

(c− α)

(

1

w̃3
c

− 1

ũc

)

− 1
(

t̃c
′∇y1g(ỹc)

)

ũc
+
A1

ũc

)

, (13)

where w̃c = sgn(c − α)
√

2
(

t̃c
′

g(ỹc)−KX(t̃c)
)

, ỹc = (c, ỹ2,c), α = h1(µ), µ = K
′

X(0), A1 =

hijκij/2, h
ij and κij are the elements of the Hessian of h1(X̄) at µ and K

′′

X(0), respectively,

K̃c =
det
(

K
′′

X(t̃c)
)

det2J(ỹc)

[

∇y2g(ỹc)
′
(

K
′′

X(t̃c)
)

−1∇y2g(ỹc) + t̃′c∇2
y2g(ỹc)

]

, ũc =
(

t̃′c∇y1g(ỹc)
)

K̃1/2
c ,

F̂ 1(c) = Φ (w̃c) + φ(w̃c)
[

w̃−1
c − ũ−1

c

]

, and t̃c and ỹ2,c solve the system

K
′

X(t̃c) = g(ỹc)

t̃′c∇y2g(ỹc) = 0.

5 Application

In this section, we apply our approximation to the doubly noncentral t distribution, which has

recently found application as a model for financial returns, see Harvey and Siddique (1999),

Broda and Paolella (2007), Paolella (2010), and the references therein. Despite the excellent fit

it offers, the widespread adoption of this distribution has been hampered by the computational

difficulties associated with it: neither the density nor the distribution function can be expressed

in closed form. This limitation is overcome by the saddlepoint approximations for the density

and distribution functions derived in Broda and Paolella (2007). The resulting approximations

are explicit and hence trivially computed, while offering extraordinary accuracy. This benefit is

inherited by the expected shortfall calculation as well.

Apart from location and scale parameters (which, without loss of generality, can be taken

to be zero and one, respectively), the doubly noncentral t distribution has 3 parameters: the

numerator noncentrality µ, denominator noncentrality θ, and the degrees of freedom, n. The

relevant quantities entering the approximations are

(

t̃′c∇y1g(ỹc)
)

= (t̃1,cỹ2,c), K̃c =
[

(c2 + 2nt̃2,c)(2nν
2 + 4θν3) + 4n2ỹ22,c

]

/(

2nỹ22,c

)2
,

w̃c =
√

−µt̃1,c − n log ν − 2θνt̃2,c sgn
(

c− α
)

, α = µ/
√

1 + θ/n,

8



where ν = (1 − 2t̃2,c)
−1, t̃1,c = −µ + cỹ2,c, t̃2,c = −(ct̃1c)/(2nỹ2,c), and, with a3 = c4 + 2nc2 +

n2, a2 = −2c3µ− 2cnµ, a1 = c2µ2 − nc2 − n2 − θn, a0 = cnµ,

c2 =
a2
a3
, c1 =

a1
a3
, c0 =

a0
a3
, q =

1

3
c1 −

1

9
c22,

r =
1

6
(c1c2 − 3c0)−

1

27
c32, m = q3 + r2, and s1,2 = (r ±

√
m)1/3,

ỹ2,c =
√

−4q cos
(

cos−1
(

r/
√

−q3
)

/3
)

− c2
3
,

and it is easily seen that A1 = 3α(n + 2θ)/(4(n + θ)2). With these, approximation (13) can be

computed. For illustration, we choose the set of parameters (µ, θ) = (−10, 10), which corresponds

to a heavily left-skewed distribution. For n ∈ {2, 4, 8, 16}, Figure 3 displays the accuracy of (13).

The exact values (the solid line in the graph) are obtained from the relationship

In(c) = cFn(c)−
∫ c

−∞

Fn(x̄)dx̄, c < 0, (14)

which follows from (6) upon integration by parts, and where the exact distribution function Fn

is computed via the algorithm described in Reeve (1986). The accuracy of the approximation

clearly improves with larger n, as expected, but is already quite good for n as low as 2 (note

that for n = 1, the doubly noncentral t does not possess a mean, and thus the expected shortfall

is not defined). When the t distribution is fitted to actual financial returns data, the degrees

of freedom parameter is typically estimated between 4 and 8. The approximation is certainly

accurate enough in this range for all practical purposes.
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Figure 3: Approximations to expected shortfall of a doubly noncentral t with µ = −10, θ = 10, and n = 2, 4, 8, 16,
from top left to bottom right.
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A Proof of (8)

Replacing fn(x̄) in (6) with its second order saddlepoint approximation and applying Theorem 1

yields

In(c) =

∫ c

−∞

x̄fn(x̄)dx̄

=

√

n

2π

∫ ŵc

−∞

x̄
√

K ′′

x(t̂)
e−nŵ2/2

[

1 +
a1
n

+O
(

n−2
)

]

dx̄

=

√

n

2π

∫ ŵc

−∞

dx̄

dŵ

x̄
√

K ′′

x(t̂)
e−nŵ2/2

[

1 +
a1
n

+O
(

n−2
)

]

dŵ

=

√

n

2π

∫ ŵc

−∞

e−nŵ2/2Ψn(ŵ)dŵ,

where

Ψn(ŵ) ≡
dx̄

dŵ

x̄
√

K ′′

x(t̂)

[

1 +
a1
n

+O
(

n−2
)

]

=
ŵx̄

û

[

1 +
a1
n

+O
(

n−2
)

]

= ψ0(ŵ) +
ψ1(ŵ)

n
+O

(

n−2
)

, (15)

with

ψ0(ŵ) ≡
ŵx̄

û
and ψ1(ŵ) ≡

ŵx̄

û

[

1

8
λ̂4 −

5

24
λ̂23

]

.
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Equation (15) is in the form of Theorem 1. The coefficients in the expansion evaluate to

B0(ŵc) =
µ

ŵc
− c

ûc

and

ŵcB1(ŵc) = A1 − ψ1(ŵc) +
d

dŵc
B0(ŵc)

= − ŵcc

ûc

[

1

8
λ̂4 −

5

24
λ̂23

]

− µ

ŵ2
c

− 1

ûc

dc

dŵc
+

c

û2c

d

dŵc
ûc

= − ŵcc

ûc

[

1

8
λ̂4 −

5

24
λ̂23

]

− µ

ŵ2
c

− ŵc

t̂cûc
+

c

û2c

[

ŵc

ûc
+

1

2
ŵcλ̂3

]

⇔ B1(ŵc) = − c

ûc

[

1

8
λ̂4 −

5

24
λ̂23

]

− µ

ŵ3
c

− 1

t̂cûc
+

c

û3c
+
cλ̂3
2û2c

.

�

B Proof of (12)

Replacing fn(y1) in (10) with the first derivative of the appropriate tail probability approximation

and applying Theorem 1 yields

In(c) =

∫ c

−∞

y1fn(y1)dy1

=

√

n

2π

∫ c

−∞

y1
√

K̃
e−nw̃2/2

[

1− 1

n

[

ũ

w̃3
+ K̃1/2 d

dy1

1

ũ

]

+O
(

n−1
)

]

dy1

=

√

n

2π

∫ w̃c

−∞

dy1
dw̃

y1
√

K̃
e−nw̃2/2

[

1− 1

n

[

ũ

w̃3
+ K̃1/2 d

dy1

1

ũ

]

+O
(

n−1
)

]

dw̃

=

√

n

2π

∫ w̃c

−∞

e−nw̃2/2Ψn(w̃)dw̃,

where

Ψn(w̃) ≡
dy1
dw̃

y1
√

K̃

[

1− 1

n

[

ũ

w̃3
+ K̃1/2 d

dy1

1

ũ

]

+O
(

n−1
)

]

=
w̃y1
ũ

[

1− 1

n

[

ũ

w̃3
+ K̃1/2 d

dy1

1

ũ

]

+O
(

n−1
)

]

= ψ0(w̃) +
ψ1(w̃)

n
+O

(

n−1
)

, (16)

with

ψ0(w̃) ≡
w̃y1
ũ

and − ψ1(w̃) ≡
y1
w̃2

+
w̃y1K̃

1/2

ũ

d

dy1

1

ũ
.
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Again, Equation (16) is in the form of Theorem 1, with the coefficients in the expansion given by

B0(w̃c) =
A0

w̃c
− c

ũc

and

w̃cB1(w̃c) = A1 − ψ1(w̃c) +
d

dw̃c
B0(w̃c)

= A1 +
c

w̃2
c

+
w̃ccK̃

1/2
c

ũc

d

dc

1

ũc
+

d

dw̃c

[

A0

w̃c
− c

ũc

]

= A1 +
c

w̃2
c

+
w̃ccK̃

1/2
c

ũc

d

dc

1

ũc
− A0

w̃2
c

− d

dw̃c

c

ũc

= A1 +
c

w̃2
c

+
w̃ccK̃

1/2
c

ũc

d

dc

1

ũc
− A0

w̃2
c

− dc

dw̃c

d

dc

c

ũc

= A1 +
c

w̃2
c

+
w̃ccK̃

1/2
c

ũc

d

dc

1

ũc
− A0

w̃2
c

− w̃cK̃
1/2
c

ũc

[

1

ũc
+ c

d

dc

1

ũc

]

= A1 +
c

w̃2
c

− A0

w̃2
c

− w̃cK̃
1/2
c

ũ2c
.

�
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