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Abstract

In designing Monte Carlo simulation studies for analyzing �nite sample prop-
erties of econometric inference methods, one can use either IID drawings in each
replication for any series of exogenous explanatory variables or condition on just
one realization of these. The results will usually di¤er, as do their interpretations.
Conditional and unconditional limiting distributions are often equivalent, thus
yielding similar asymptotic approximations. However, when an estimator is incon-
sistent, its limiting distribution may change under conditioning. These phenomena
are analyzed and numerically illustrated for OLS (ordinary least-squares) and IV
(instrumental variables) estimators in single static linear simultaneous equations.
The results obtained supplement �and occasionally correct �earlier results. The
�ndings demonstrate in particular that the asymptotic approximations to the un-
conditional and a conditional distribution of OLS are very accurate even in small
samples, and that the actual absolute estimation errors of inconsistent OLS in
�nite samples are often much smaller than those of consistent IV, even when the
instruments are not extremely weak. It is also shown that conditioning reduces
the estimation errors of OLS, whereas it deranges the distribution of IV when in-
struments are weak. Finally it is indicated how OLS could be modi�ed to produce
accurate inference under assumptions regarding the degree of simultaneity.

1 Introduction

Classic Monte Carlo simulation is widely used to assess �nite sample distributional
properties of parameter estimators and associated test procedures when employed to

�corresponding author: Tinbergen Institute and Department of Quantitative Economics, Amster-
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particular classes of models. This involves executing experiments in which data are
being generated from a fully speci�ed DGP (data generating process) over a grid of rel-
evant values in its parameter space. The endogenous variable(s) of such a DGP usually
depend on some exogenous explanatory variables, and in a time-series context they may
also depend on particular initial conditions. These initial observations and exogenous
variables are either generated by particular typical synthetic and possibly stochastic
processes or they are taken from empirically observed samples. In the latter case, and
if in the former case all replications use just one single realization of such exogenous
and pre-sample processes, then the simulation yields the conditional distribution of the
analyzed inference methods with respect to those particular realizations. The uncon-
ditional distribution is obtained when each replication is based on new independent
random draws of these variables. In principle, both simulation designs may yield very
useful information, which, however, addresses aspects of di¤erent underlying popula-
tions. For practitioners, it may often be the more speci�c conditional distribution that
will be of primary interest, provided that the conditioning involves �or mimics very well
� the actually observed relevant empirical exogenous and pre-sample variables. Note
that a much further �ne-tuning of the simulation design (such that it may come very
close to an empirically observed DGP, possibly by using for the parameter values in the
simulated data their actual empirical estimates) may convert a classic Monte Carlo sim-
ulation study on general properties in �nite samples of particular inference methods into
the generation of alternative inference on a particular data set obtained by resampling,
popularly known as bootstrapping.
The large sample asymptotic null distribution of test statistics in well-speci�ed mod-

els is usually invariant with respect to the exogenous regressors and their coe¢ cient
values. In �nite samples this is also the case in the classic normal linear regression
model and in a few other cases. In many situations, however, the �nite sample null
distribution is nonpivotal, and in a Monte Carlo study of possible size distortions and
of test power, it will generally matter which type of process is chosen for the exogenous
variables, and also whether one conditions on just one realization or does not. For con-
sistent estimators under usual regularity conditions, their conditional and unconditional
limiting distributions are equivalent, and when translating these into an asymptotic ap-
proximation to the �nite sample distribution, it does not seem to matter whether one
aims at a conditional or an unconditional interpretation. For inconsistent estimators,
however, their limiting distributions may be substantially di¤erent depending on whether
one conditions or not, which naturally induces a di¤erence between conditional and un-
conditional asymptotic approximations. In this paper, these phenomena are analyzed
analytically and they are also implemented in simulation experiments, when applying
either OLS (ordinary least-squares) or IV (instrumental variables) estimators in single
static linear simultaneous equations. The results obtained extend �and some of them
correct �earlier results published in Kiviet and Niemczyk (2007). The major corrections
and their direct consequences have been implemented in the (online available) discussion
paper Kiviet and Niemczyk (2009a), which conforms to Chapter 2 of Niemczyk (2009).
These closely follow the earlier published text of Kiviet and Niemczyk (2007), and hence
provide a refurbished version, in which: (a) the main formula (asymptotic variance of
inconsistent OLS) is still the same, but its derivation has been corrected; (b) it is shown
now to establish a conditional asymptotic variance for static simultaneous models; (c)
also an unconditional asymptotic variance of OLS has been obtained; (d) illustrations
are provided which enable to compare (both conditional and unconditional) the asymp-
totic approximations to and the actual empirical distributions of OLS and IV estimators
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in �nite samples.
In the present study these new results are more systematically presented and at the

same time put into a broader context. Conditioning and its implications for both as-
ymptotic analysis and simulation studies are examined, and especially the consequences
of conditioning on latent variables are more thoroughly analyzed and illustrated. Our
�ndings demonstrate that inference based on inconsistent OLS, especially when condi-
tioned on all the exogenous components of the relevant partial reduced form system,
may often be more attractive than that obtained by consistent IV when the instruments
are very or just moderately weak. However, such inference is unfeasible, because some
of its components become available only if one makes an assumption on the degree of
simultaneity in the model. If one is willing to do so, possibly for a range of likely sit-
uations, this may provide useful additional inference (conditional on the assumptions
made).
Recent studies on general features which are relevant when designing Monte Carlo

studies, such as Doornik (2006) and Kiviet (2007), do not address the issue of whether
one should or should not condition on just one realization of the exogenous variables
included in the examined DGP. An exception is Edgerton (1996), who argues against con-
ditioning. However, his only argument is that a conditional simulation study, although
unbiased, provides an ine¢ cient assessment of the unconditional distribution. This is
obviously true, but it is not relevant when recognizing that the conditional distribution
may be of interest in its own right. Actually, it is sometimes more and sometimes less
attractive than the unconditional distribution for obtaining inference on the parameters
of interest, as we will see. Below, we will reconsider these issues. Our illustrations show
that both approaches deserve consideration and comparison, especially in cases where
they are not just di¤erent in �nite samples, but di¤er asymptotically as well. We also
show that conditioning on purely arbitrary draws of the exogenous variables leads to
results that are hard to interpret, but that this is avoided by stylizing these draws in
such a way that comparison with unconditional results does make sense.
As already mentioned, conditioning has consequences asymptotically too when we

consider inconsistent estimators. We shall focus on applying OLS to one simultaneous
equation from a larger system. Goldberger (1964) did already put forward the uncon-
ditional limiting distribution for the special case where all structural and reduced form
regressors are IID (independently and identically distributed). We shall critically re-
view the conditions under which this result holds. Phillips and Wickens (1978, Question
6.10c) consider the model with just one explanatory variable which is endogenous and
has a reduced form with also just one explanatory variable. Because this exogenous
regressor is assumed to be �xed, the variables are not IID here. In their solution to the
question, they list the various technical complexities that have to be surpassed in order
to �nd the limiting distribution of the inconsistent OLS coe¢ cient estimator, but they do
not provide an explicit answer. Hausman (1978) considers the same type of model and,
exploiting an unpublished result for errors in variables models by Rothenberg (1972),
presents its limiting distribution, self-evidently conditioning on the �xed reduced form
regressors. Kiviet and Niemczyk (2007) aimed at generalizing this result for the model
with an arbitrary number of endogenous and exogenous stationary regressors, without
explicitly specifying the reduced form. Below, we will demonstrate that the limiting
distribution they obtained is correct for the case of conditioning on all exogenous infor-
mation, but that the proof that they provided has some �aws. These will be repaired
here, and at the same time we will further examine the practical consequences of the
conditioning. In the illustrations in Kiviet and Niemczyk (2007) the obtained asymp-
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totic approximation was compared inappropriately with simulation results in which we
did not condition on just one single draw of the exogenous regressors. (We thank Peter
Boswijk for bringing this to our attention.) Here, we will provide illustrations which
allow to appreciate the e¤ects of conditioning both for the limiting distribution of OLS,
and for its distribution in �nite samples. Moreover, we make comparisons between the
accuracy of inconsistent OLS and consistent IV estimation, both conditional and uncon-
ditional. Results for inconsistent IV estimators can be found in Kiviet and Niemczyk
(2009b).
Our major �ndings are that inconsistent OLS often outperforms consistent IV when

the sample size is �nite, irrespective of whether one conditions or not. For a simple spe-
ci�c class of models we �nd that in samples with a size between 20 and 500 the actual
estimation errors of IV are noticeably smaller than those of OLS only when the degree
of simultaneity is substantial and the instruments are far from weak. However, when
instruments are weak OLS always wins, even for a substantial degree of simultaneity.
We also �nd that the �rst-order asymptotic approximations (both conditional and un-
conditional) to the estimation errors of OLS are very accurate even in relatively small
samples. This is not the case for IV when instruments are weak, see also Bound et al.
(1995). For consistent IV one needs alternative asymptotic sequences when instruments
are weak, see for an overview Andrews and Stock (2007). However, we also �nd that the
problems with IV when instruments are weak are much less serious for the unconditional
distribution than for the conditional one, which is in�icted by serious skewness and bi-
modality, see Woglom (2001). Especially when simultaneity is serious, the conditional
distribution of OLS is found to be more e¢ cient than its unconditional counterpart.
The structure of this paper is as follows. Section 2 introduces the single structural

equation model from an only partially speci�ed linear static simultaneous system. Next,
in separate subsections, two alternative frameworks are de�ned for obtaining either un-
conditional or conditional asymptotic approximations to the distribution of estimators,
and for generating their �nite sample properties from accordingly designed simulation
experiments. In Section 3 the unconditional and conditional limiting distributions of IV
and OLS coe¢ cient estimators are derived. These are shown to be similar for consistent
IV and diverging for inconsistent OLS. Section 4 discusses particulars of the simulation
design of the various simple cases that we considered, and addresses in detail how we im-
plemented conditioning in the simulations. Next, graphical results are presented which
easily allow to make general and more speci�c comparisons between IV and OLS esti-
mation and analyze the e¤ects of the particular form of conditioning that we adopted.
Finally, we indicate how our �ndings might be used in practice. Section 5 concludes.

2 Model and two alternative frameworks

To examine the consequences for estimators under either a particular unconditional
regime or under conditioning on some relevant information set, we will de�ne in sep-
arate subsections two alternative frameworks, viz. Framework U and Framework C.
For both we will examine in Section 3 how IV and OLS estimators converge under a
matching asymptotic sequence. In Section 4 both will also establish the blueprint for
two alternative data generating schemes to examine in �nite samples by Monte Carlo
experiments unconditional and conditional inference respectively. These two frameworks
are polar in nature, but intermediary implementations could be considered too. First,
we will state what both implementations do have in common.
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Both focus on a single standard static linear simultaneous equation

yt = x
0
t� + "t; (1)

for observations t = 1; :::; n; where xt and � are k � 1 vectors. Both these vectors can
be partitioned correspondingly in k1 and k2 = k � k1 � 0 elements respectively, giving
x0t� = x

0
1t�1 + x

0
2t�2: Regarding the disturbances we assume that "t � IID(0; �2"); but

also that E("t j x2t) 6= 0; hence x2t; if not void, will contain some endogenous explanatory
variables. In addition, we have l � k variables collected in an l� 1 vector zt; which can
be partitioned in k1 and l � k1 � 0 elements respectively, i.e. z0t = (z01t z

0
2t); whereas

z1t = x1t: Below, we will distinguish between nonrandom and random zt: In the latter
case we assume that "t j z1; :::; zn � IID(0; �2"): Hence, in both cases the variables zt are
exogenous and establish valid instruments. If k1 > 0 then equation (1) contains at least
k1 exogenous regressors x1t.
All n observations on the variables and the n realizations of the random disturbances

can be collected, as usual, in vectors y and " and matrices X = (X1; X2) and Z =
(Z1; Z2); where Z1 = X1: Both X and Z have full column rank, and so has Z 0X; thus
the necessary and su¢ cient condition for identi�cation of the coe¢ cients � by the sample
are satis�ed; i.e. a unique generalized IV estimator exists. Note that we did not specify
the structural equations for the variables in X2; nor their reduced form equations, so
whether the necessary and su¢ cient rank condition for asymptotic identi�cation holds
is not clear at this stage.

2.1 Framework U

Under this framework for unconditional analysis we assume that all variables are random,
and that after centering they are weakly stationary. So, xt �E(xt) and zt �E(zt) have
constant and bounded second moments. Using E(yt) = E(x0t)� and subtracting it from
(1) leads to a model without intercept (if there was one) where all variables have zero
mean. Since our primary interest lies in inference on slope parameters we may therefore
assume, without loss of generality, that yt; xt and zt (after the above transformation of
the model) all have zero mean. For the second moments we de�ne (all plim0s are here
for n!1)

�X0X � plim 1
n
X 0X = E(xtx

0
t); �Z0Z � plim 1

n
Z 0Z = E(ztz

0
t);

�Z0X � plim 1
n
Z 0X = E(ztx

0
t); 8t:

(2)

We also assume that �X0X ; �Z0Z and �Z0X all have full column rank, which guarantees
the asymptotic identi�cation of � by these instruments. Note that, although we assume
that (z0t x

0
2t) has 8t identical second moments, (2) does not imply that (z0t x02t) and (z0s

x02s) are independent for t 6= s; but any dependence should disappear for jt� sj large.
Using �Z0X = (�Z0X1 ;�Z0X2) and de�ning

� � ��1Z0Z�Z0X = ��1Z0Z(�Z0X1 ;�Z0X2) = ((Ik1 ; Ok1;k2)0;�2) ; (3)

where Ip is a p�p identity matrix and Op;q a p�q zero matrix, we can easily characterize
implied linear reduced form equations for x2t as follows. Decomposing x2t into two
components, where one is linear in zt; we obtain

x02t = z
0
t�2 + v

0
2t; (4)
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where E(v02t) = 0
0 and E(ztv02t) = E[zt(x

0
2t�z0t�2)] = �Z0X2��Z0Z�2 = Ol;k2 : Equations

(4) correspond with the genuine reduced form equations only if zt contains all exogenous
variables from the complete simultaneous system, which we leave unspeci�ed.
The endogeneity of x2t implies nonzero covariance between v2t and "t:We may denote

(i.e. parametrize) this covariance as

E("tx
0
2t) = E("tv

0
2t) � �2"�02: (5)

This enables to decompose v2t as

v02t = �v
0
2t + "t�

0
2; (6)

where E(�v02t) = 0
0 and E("t�v02t) = 0

0: Now another decomposition for x02t is

x02t = �x
0
2t + "t�

0
2; (7)

where
�x02t = z

0
t�2 + �v

0
2t: (8)

This establishes a di¤erent decomposition of the endogenous regressors as the implied
partial reduced form equations (4) do. The latter have an exogenous component that is
a linear combination of just the instruments z0t and the former have an exogenous com-
ponent that also contains �v02t; which establishes the implied reduced form disturbances
in as far as uncorrelated with "t: These could be interpreted as the e¤ects on x02t of all
exogenous variables yet omitted from the implied reduced form (4).
Decomposition (7) implies 8t

x0t = �x
0
t + "t�

0; (9)

where � � (00; �02)0; with
E(xt"t) = �

2
"�: (10)

Hence,
X = �X + "�0; (11)

with

plim
1

n
X 0" = �2"�; plim

1

n
�X 0 �X = �X0X � �2"��0 and plim

1

n
Z 0 �X = �Z0X : (12)

Decomposition (11) will be relevant too when we consider conditioning, as we shall see.

2.2 Framework C

In this framework the variables zt; and hence x1t; are all (treated as) �xed for t = 1; :::; n:
Like in Framework U, the structural equation (now in matrix notation) is

y = X1�1 +X2�2 + "; (13)

and "t is correlated with x2t: This correlation can again be parametrized, like in (5), so
that

E(X 0
2") � n�2"�2: (14)
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Indicating the "genuine" partial reduced form disturbances for X2 as V �2 � X2�E(X2);
and decomposing V �2 = �V �2 + "�

0
2 with E( �V

�0
2 ") = 0; we �nd a decomposition of X which

can be expressed (again) as

X = �X + "�0; with �X = ( �X1; �X2) and �
0 = (00; �02); (15)

where now
X2 = �X2 + "�

0
2 = E(X2) + �V �2 + "�

0
2: (16)

Here E(X2) contains the deterministic part of the genuine partial reduced form (a linear
combination of all exogenous regressors from the unspeci�ed system), whereas com-
ponent �V �2 is random with zero mean; its tth row �v�02t consists of components of the
disturbances from the genuine but unspeci�ed reduced form, in as far as uncorrelated
with "t:
We can use this framework to analyze the consequences of conditioning on the ob-

tained realizations of zt = (x01t; z
0
2t)

0: However, in the practical situation in which an
investigator realizes that the variables zt will most probably contain only a subset of the
regressors of the reduced form, one might also contemplate conditioning on an extended
information set, not only containing zt; but also E(x02t); and even �v

�
2t; although both

E(x02t) and �v
�
2t are unobserved. That they are in practice unobserved is no limitation in

a Monte Carlo simulation study, where these components of the DGP �like the in prac-
tice unobserved parameter values �will always be available. Also in practice, though,
one may have the ambition to condition inference on all the speci�c circumstances (both
observed and unobserved) which are exogenous with respect to the disturbances "t: Be-
low we will examine whether it is worthwhile to use for conditioning the widest possible
set, which is provided under Framework C by (z0t; �x

0
t):

For an asymptotic analysis in large samples under Framework C we will resort to
the "constant in repeated samples" concept, see Theil (1971, p.364). Thus, we consider
samples of size mn in which Zm is an mn � l matrix in which the n � l matrix Z has
been stacked m times. Then we obtain (now all plim0s are for m!1)

�Z0Z � plim
1

mn
Z 0mZm = plim

1

mn

Pm
j=1 Z

0Z =
1

n
Z 0Z; (17)

implying �X0
1X1

= 1
n
X 0
1X1 and �Z0X1 =

1
n
Z 0X1; which are all �nite, self-evidently. How-

ever, one does not keep " constant in these (imaginary) enlarged samples. All the com-
ponents of the mn� 1 vector "m are IID(0; �2"); and because E(Z 0m"m) = Z 0mE("m) = 0;
also E(Z 0m"m)�

0
2 = Ol;k2 : Thus, �Z0X2 = plim

1
mn
Z 0m

�X2m =
1
n
Z 0 �X2 and �X0

1X2
= 1

n
X 0
1
�X2;

whereas �X0
2X2

= 1
n
�X 0
2
�X2 + �

2
"�2�

0
2; thus

�X0X =
1

n
�X 0 �X + �2"��

0; �Z0X =
1

n
(Z 0X1; Z

0 �X2): (18)

Note that the above implementation of the "constant in repeated samples" concept
excludes the possibility that some of the instruments (or variables in x1t) are actually
weakly-exogenous, because that would require to incorporate lags of "t in zt:
In both frameworks U and C, the asymptotic sequence leads to �nite second data

moments, but these are being assembled in di¤erent ways. In both frameworks X can
be decomposed as in (11). But, under U the matrix �X is random and

�X0X = plim
n!1

1

n
�X 0 �X + �2"��

0 = E�xt�x
0
t + �

2
"��

0; 8t; (19)

whereas under C the matrix �X is nonrandom and �X0X is given by (18). In the next
sections we will examine the respective consequences for estimation.
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3 Limiting distributions for IV and OLS

We shall now derive the limiting distributions of the IV and OLS estimators of � un-
der both frameworks, and from these investigate the analytical consequences regarding
the �rst-order asymptotic approximations in �nite samples to the unconditional and
conditional distributions.

3.1 IV estimation

The model introduced above is in practice typically estimated by the methods of mo-
ments technique, in which a surplus of l � k moment conditions is optimally exploited
by the (generalized) IV estimator

�̂GIV = (X
0PZX)

�1X 0PZy; (20)

where PZ � Z(Z 0Z)�1Z 0: When l = k; thus Z 0X is a square and invertible matrix, this
simpli�es to �̂IV = (Z

0X)�1Z 0y: For l � k; and under the regularity conditions adopted
in either Framework U or Framework C, it can be shown in the usual way that GIV is
consistent and asymptotically normal with limiting distribution

n1=2(�̂GIV � �)
d! N

�
0;AVar(�̂GIV )

�
; (21)

where
AVar(�̂GIV ) = �

2
"(�

0
Z0X�

�1
Z0Z�Z0X)

�1: (22)

The estimator for �2" is based on the GIV residuals "̂GIV = y�X�̂GIV . It is not obvious
in what way its �nite sample properties could be improved by employing a degrees of
freedom correction and therefore one usually employs simply the consistent estimator

�̂2";GIV =
1

n
"̂0GIV "̂GIV : (23)

Hence, in practice, one uses under both frameworks

dV ar(�̂GIV ) = �̂2";GIV (X 0PZX)
�1 (24)

as an estimator of V ar(�̂GIV ); because ndV ar(�̂GIV ) is a consistent estimator of (22).
This easily follows from the consistency of �̂2";GIV ; and because under both frameworks
n(X 0PZX)

�1 = [ 1
n
X 0Z( 1

n
Z 0Z)�1 1

n
Z 0X]�1 has probability limit (�0Z0X�

�1
Z0Z�Z0X)

�1:
Hence, irrespective of whether one adopts Framework U or C, there are no ma-

terial di¤erences between the consequences of standard �rst-order asymptotic analysis
for consistent IV estimation. In both cases the consistent estimators �̂GIV ; �̂

2
";GIV anddV ar(�̂GIV ) are all obtained from the very same expressions in actually observed sample

data moments. How well they serve to approximate the characteristics of the actual
unconditional and conditional distributions in �nite samples will be examined by simu-
lations under the two respective frameworks. A point of special concern here is that in
�nite samples �̂GIV has no �nite moments from order l � k + 1 onwards, which is not
re�ected by the Gaussian approximation. As a consequence, dV ar(�̂GIV ) approximates a
non-existing quantity when l = k or l = k + 1: Therefore, in the illustrations in Section
4, we will only present density functions and particular quantiles.
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3.2 OLS estimation

When one neglects the simultaneity in model (1) and employs the OLS estimator

�̂OLS = (X
0X)�1X 0y; (25)

then under both frameworks its probability limit is

��OLS � plim �̂OLS = � + ��1X0X plimn
�1X 0" = � + �2"�

�1
X0X�: (26)

This is the so-called pseudo true value of �̂OLS: We may also de�ne

��OLS � ��OLS � � = �2"��1X0X�; (27)

which is the inconsistency of the OLS estimator.
Under both frameworks we will next derive the limiting distribution n1=2(�̂OLS �

��OLS)
d! N(0; V ): Note that this is not centered at �; but at ��OLS; and that V will

be di¤erent under the two frameworks. For the variance matrix V of this zero mean
limiting distribution we will �nd a di¤erent expression under Framework U than under
C. In Section 4 we shall use ��OLS � � = ��OLS = �2"�

�1
X0X� as a �rst-order asymptotic

approximation to the bias of �̂OLS in �nite samples, and V=n for the variance of �̂OLS:
Or, rather than ��OLS and V=n; similar expressions in which the matrix of population
data moments �X0X has been replaced by the corresponding sample data moments. Like
��OLS; both expressions for V=n will also appear to depend on the parameters �

2
" and �:

That is not problematic when we evaluate these �rst-order asymptotic approximations
in the designs that we use for our simulation study in order to examine the qualities of
the asymptotic approximations, but of course it precludes that these can be used simply
and directly for inference in practice.

3.2.1 Unconditional limiting distribution of OLS

For obtaining a characterization of the unconditional limiting distribution of inconsistent
OLS, like Goldberger (1964, p.359), we rewrite the model as

y = X(��OLS � ��OLS) + " = X��OLS + u; (28)

where u � "�X��OLS: Under Framework U we have (after employing the transformation
that removed the intercept) E(X) = On;k; and hence E(u) = 0: From V ar(xt) = �X0X

and (10) we �nd for ut � "t � x0t��OLS that

�2u � E(u2t ) = �
2
"(1� 2��

0
OLS�) +

��
0
OLS�X0X

��OLS
= �2"(1� �2"�0��1X0X�) = �

2
"(1� �0��OLS): (29)

Moreover, E(xtut) = E(xt"t) � E(xtx0t)��OLS = �2"� � �X0X
��OLS = 0: Thus, in the

alternative model speci�cation (28) OLS will yield a consistent estimator for ��OLS:
To obtain its limiting distribution, one has to evaluate V ar(xtut) = E(u2txtx

0
t) and

E(utusxtx
0
s) for t 6= s: These depend on characteristics of the joint distribution of "t

and xt that have not yet been speci�ed in Framework U. Here we will just examine the
consequences of a further specialization of Framework U by assuming that 8t

"t � NID(0; �2") and xt � NID(0;�X0X): (30)
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Note that by assuming independence of xt and xs for t 6= s typically most time-series
applications are excluded.
From (30) we obtain ut � NID(0; �2u); so that E(xtut) = 0 now implies independence

of xt and ut: Then we �nd E(u2txtx
0
t) = �

2
u�X0X and also E(utusxtx0s) = Ok;k for t 6= s; so

that a standard central limit theorem can be invoked, yielding the limiting distribution

n1=2(�̂OLS � ��OLS)
d! N

�
0;AVarNIDU (�̂OLS)

�
; (31)

with
AVarNIDU (�̂OLS) � (1� �2"�0��1X0X�)�

2
"�

�1
X0X ; (32)

where self-evidently the indices U and NID refer to the adopted framework, specialized
with (30). Goldberger (1964, p.359) presents a similar result without adopting normality
of "t and xt, which does not seem right. The same remark is made by Rothenberg (1972,
p.16), but he condemns result (31) anyhow, simply because he �nds the assumption
E(xt) = 0 unrealistic in general. We claim, however, that this can be justi�ed in
Framework U by interpreting this limiting distribution as just referring to the slope
coe¢ cients after centering the relationship.
For the OLS residuals û = y �X�̂OLS one easily obtains

plim
1

n
û0û = plim

1

n
("�X��OLS)0("�X��OLS) = �2u: (33)

Thus, when the data are Gaussian and IID, standard OLS inference in the regression of
y on X; and estimating V ar(�̂OLS) by

û0û
n
(X 0X)�1; makes sense and is in fact asymp-

totically valid, but it concerns unconditional (note that it has really been built on the
stochastic properties of X) inference on the pseudo true value ��OLS = �+�

2
"�

�1
X0X�; and

not on �; unless � = 0:

3.2.2 Conditional limiting distribution of OLS

Next we shall focus on the limiting distribution while conditioning on the exogenous
variables �X for which Framework C is suitable, because it treats �X as �xed. So, we do
no longer restrict ourselves to (30), hence nonnormal disturbances and serially correlated
regressors are allowed again. However, as will become clear below, we have to extend
Framework C with the assumption V ar(" j �X) = �2"In; and hence exclude particular
forms of conditional heteroskedasticity.
The conditional limiting distribution is obtained as follows. Obvious substitutions

yield

n1=2(�̂OLS � ��OLS) = n1=2[(
1

n
X 0X)�1n�1X 0"� ��OLS]

= (
1

n
X 0X)�1[n�1=2X 0"� n�1=2X 0X��OLS]: (34)

To examine the terms in square brackets, we substitute the decomposition (15), and for
the second term we also use that from (18) and (27) it follows that

�X 0 �X��OLS = n�X0X
��OLS � n�2"��0��OLS = n�2"(1� �0��OLS)�:
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Then we obtain

n�1=2X 0"� n�1=2X 0X��OLS
= n�1=2[( �X 0"+ "0"�)� ( �X 0 �X + �X 0"�0 + �"0 �X + "0"��0)��OLS]

= n�1=2[( �X 0"+ "0"�)� n�2"(1� �0��OLS)� � ( �X 0"�0 + �"0 �X)��OLS � (�0��OLS)"0"�]
= n�1=2f[(1� �0��OLS)Ik � ���

0
OLS]

�X 0"+ (1� �0��OLS)�("0"� n�2")g
= n�1=2[A0"+ a("0"� n�2")]; (35)

with
A0 � [(1� �0��OLS)Ik � ���

0
OLS]

�X 0;

a � (1� �0��OLS)�;
(36)

which, when conditioning on �X; are both deterministic.
This conforms to equations (20)-(22) in Kiviet and Niemczyk (2007), which were

obtained under the extra assumption that the expression in their equation (19) has to
be zero. By putting the derivations now into Framework C, thus fully recognizing that
we condition on �X; that speci�c expression is zero by de�nition. Also note that the
equation at the bottom of Kiviet and Niemczyk (2007, p.3300) only holds when �X is
nonrandom, which was not respected in the simulations presented in that paper.
The conditional limiting distribution now follows exactly as in the derivations in

Kiviet and Niemczyk (2007, p.3301) and, when one assumes E("3i ) = 0 and E("
4
i ) = 3�

4
";

that leads to
n1=2(�̂OLS � ��OLS)

d! N
�
0;AVarNC (�̂OLS)

�
; (37)

with

AVarNC (�̂OLS) (38)

� (1� �2"�0��1X0X�)[(1� �2"�
0��1X0X�)�

2
"�

�1
X0X � (1� 2�2"�

0��1X0X�)�
4
"�

�1
X0X��

0��1X0X ]

= (1� �0��OLS)[(1� �0��OLS)�2"��1X0X � (1� 2�
0��OLS)��OLS��

0
OLS];

where now the superindex N refers to the assumed almost normality of just the distur-
bances. For the additional terms that would follow when the disturbances have 3rd and
4th moment di¤erent from the normal we refer to the earlier paper.
In the illustrations to follow we will compare (38) with the variance of the uncondi-

tional limiting distribution given in (32), and both will also be compared with the actual
�nite sample variance obtained from simulating models under the respective frameworks.
These comparisons are made by depicting the respective densities.
Rothenberg (1972) examined the limiting distribution of inconsistent OLS in a linear

regression model with measurement errors. It has been used by Schneeweiss and Sri-
vastava (1994) to analyze in such a model the MSE (mean squared error) of OLS up to
the order of 1=n: By reinterpreting his results Rothenberg obtains also the asymptotic
variance of OLS (his equation 4.7) in a structural equation where for all endogenous
regressors the deterministic part of their reduced form equations is given and �xed.
Hausman (1978, p.1257) and Hahn and Hausman (2003, p.124) used Rothenberg�s re-
sult to express the asymptotic variance of OLS (conditioned on all exogenous regressors)
in the structural equation model for the case k = 1: We will return to their result in
Section 4, where we also specialize to the case k = 1: Our result (38) is directly obtained
for the general (k � 1) linear structural equation model, and by the decomposition (15)
we also avoided an explicit speci�cation of the reduced form and of the variance ma-
trix of the disturbances in the structural equation and the partial reduced form for X;
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as is required when employing Rothenberg�s result. From formula (38) it can be seen
directly that AVarNC (�̂OLS) is a modi�cation of the asymptotic variance �

2
"�

�1
X0X of the

standard consistent OLS case. The only determining factor of this modi�cation is the
parameter regarding the simultaneity �; and then more in particular how � (transformed
by standard asymptotic variance �2"�

�1
X0X) a¤ects the inconsistency ��OLS = �2"�

�1
X0X�;

which (in the innerproduct �0��OLS = �
2
"�
0��1X0X�) is prominent in the modi�cation. Note

that the factor 1 � �0��OLS; also occurring in (32), is equal to plim "0MX"="
0"; where

MX = I �X(X 0X)�1X 0; and is therefore nonnegative and not exceeding 1, thus simul-
taneity mitigates the asymptotic (un)conditional variance of OLS.

4 Actual qualities of the approximations

The relevance and accuracy of our various results will now be investigated numerically.
The actual densities of the various estimators �̂ will be assessed by simulating them
by generating �nite samples from particular DGP�s. These densities will be graphi-
cally compared with their �rst order asymptotic approximations of the generic form
N(��; n�1AV ar(�̂)): To summarize such �ndings it is also useful to consider and com-
pare a one-dimensional measure for the magnitude of the estimation errors. For this
we do not use the (root) MSE because we will consider models for which l = k = 1,
where IV does not have �nite moments. Therefore we will use the median absolute error
MAE(�̂) instead, which can be estimated from the Monte Carlo results, and compared
with the asymptotic MAE, or AMAE(�̂); for the relevant normal limiting distributions.
For a scalar estimator �̂ of � the median absolute error MAE(�̂) is de�ned as

Prfj �̂ � � j� MAE(�̂)g = 0:5: (39)

From a series of R independent Monte Carlo realizations �̂
(r)
(r = 1; :::; R) we estimate

MAE(�̂) by sorting the values j �̂(r)� � j and taking the median value. The natural as-
ymptotic counterpart of the Monte Carlo estimate of MAE(�̂) is the (scalar) asymptotic
version AMAE(�̂); which we de�ne as follows. Let the CDF of the normal approxima-
tion to the distribution of �̂ � � be indicated by ���;��̂(x); where plim �̂ = � +

��: Then,

for m �AMAE(�̂); we have

0:5 = Prfj �̂ � � j� mg = 1� Prfj �̂ � � j> mg
= 1� Prf�̂ � � > mg � Prf�̂ � � < �mg
= Prf�̂ � � < mg � Prf�̂ � � < �mg

a
= ���;��̂

(m)� ���;��̂(�m);

so that we can solve AMAE(�̂) from

���;��̂
(m) = 0:5 + ���;��̂

(�m): (40)

Since m = ��1��;��̂
[0:5 + ���;��̂

(�m)]; we employed the iterative scheme, m0 = 0; mi+1 =

��1��;��̂
[0:5 + ���;��̂

(�mi)] for i = 0; 1; ::: until convergence. When �� = 0 no iteration is

required since AMAE(�̂) = ��10;��̂ (0:75) conforms to the quartile.
We will re-examine here only the basic static model, described in the next sub-

section, that was earlier examined in Kiviet and Niemczyk (2007). In that paper the
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conditional asymptotic approximation has been compared (inappropriately) with sim-
ulation results obtained under Framework U. Here, in the second subsection, we will
supplement these results with simulations under Framework C and asymptotic approx-
imations for the unconditional case, and then appropriate comparisons can be made.
The diagrams presented below are single images from animated versions (available via
http://www.feb.uva.nl/ke/jfk.htm), which allow to inspect the relevant phenomena over
a much larger part of the parameter space. In the �nal subsection we sketch how our
results on inconsistent OLS could be used for inference in practice.

4.1 The basic static IID model

We consider a model with one regressor and one valid and either strong or weak instru-
ment, i.e. k = 1 and l = 1. The two variables x and z, together with the dependent
variable y, are jointly Gaussian IID with zero mean and �nite second moments. For the
data under Framework U we generated them exactly as in the earlier study, where we
used as a base for the parameter space of the simulation design the three parameters:
�x"; �xz and PF or population �t, where PF = SN=(SN+1); with SN (the signal-noise
ratio) given by

SN = �2�2x=�
2
" = �

2
x � 0; (41)

because both �2" and � were standardized and taken equal to unity. This implies that

�x =
p
PF=(1� PF ): (42)

By varying the three parameters j�x"j < 1 (simultaneity); j�xzj < 1 (instrument strength)
and 0 < PF < 1 (model �t), we can examine the whole parameter space of this model,
where � is now scalar and in fact equals �x"�x: The data for "i; xi and zi; where the latter
without loss of generality can be standardized such that �z = 1; can now be generated
by transforming a 3� 1 vector vi � NID(0; I3) as follows:0@ "i

xi
zi

1A =

0@ 1 0 0

�x"�x �x
p
1� �2x" 0

0 �xz=
p
1� �2x"

p
1� �2x" � �2xz=

p
1� �2x"

1A0@ v1;i
v2;i
v3;i

1A : (43)

It is easy to check that this yields the appropriate data (co)variances and correlation
coe¢ cients indeed, with �z" = 0: After calculating yi = xi+ "i one can straightforwardly
obtain �̂IV = �ziyi=�zixi and �̂OLS = �xiyi=�x

2
i in order to compare many independent

replications of these estimators (in fact, we calculated the estimators as appropriate
in models with an intercept, although this was actually zero in the DGP.) with their
(pseudo-)true values � = 1 and �� = 1+�x"=�x respectively. Likewise, one can calculate
ndV ar(�̂IV ) and ndV ar(�̂OLS) to compare these with (22), which here specializes to

AVar(�̂IV ) = �
�2
xz =�

2
x; (44)

and with (32) or (38), which here specialize to

AVarNIDU (�̂OLS) = (1� �2x")=�2x; (45)

or
AVarNC (�̂OLS) = (1� �2x")(1� 2�2x" + 2�4x")=�2x (46)
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respectively. It can be shown that Rothenberg�s formula (as used by Hausman), in which
the conditioning is on the instruments, simpli�es in this model to [1� �2x"(1+2�4zx)]=�2x:
Since 0 < �2xz < 1 and 0 � �2x" < 1 we have

AVar(�̂IV ) > AVar
NID
U (�̂OLS) � AVarNC (�̂OLS): (47)

From the simulations we will investigate how much these systematic asymptotic di¤er-
ences, jointly with the inconsistency of OLS, will a¤ect the accuracy of these estimators
in �nite samples for particular values of �x"; �xz and n; and also how much conditioning
does matter.
When simulating under Framework C, i.e. conditioning on �xi = �x(1��2x")1=2v2;i and

zi = �xz(1� �2x")�1=2v2;i+ (1� �2x"� �2xz)1=2(1� �2x")�1=2v3;i; all Monte Carlo replications
should use the same drawings of �xi and zi, i.e. be based on just one single realization
of the series v2;i and v3;i: However, an arbitrary draw of v2;i would generally give rise to
an atypical �x series, in the sense that the resulting sample mean and sample variance
of x may deviate from the values that they are supposed to have in the population.
For the same reason the sample correlation of zi and �xi would di¤er from �xz; and
hence we would loose full control over the strength of the instrument. Therefore, when
conditioning, although we used just one arbitrary draw of the series v2;i and v3;i; we did
replace v3;i by its residual after regressing on v2;i and an intercept, in order to guarantee a
sample correlation of zero between them. And next, to make sure that sample mean and
variance of both v2;i and v3;i are appropriate too, we standardized them so that they have
zero sample mean and unit sample variance. By stylizing �xi and zi in the simulations
under Framework C, we realize that �x0�x=n + �2"�

2 = �2x and z
0�x=n = �xz�x = �xz;

as required by (18). In this way comparing the results of both frameworks becomes
meaningful.
It is easily seen that the estimation errors (di¤erence between estimate and true value

�) of both OLS and IV are a multiple of �x: Therefore, we do not have to vary �x in
our simulations. We will just consider the case �2x = 10; which implies SN = 10 and
PF = 10=11 = :909: Results for di¤erent values of �x can directly be obtained from
these by rescaling. Hence, we will only have to vary n; �x" and �xz; where the latter
self-evidently has no e¤ects on OLS estimation. In the present model we have to restrict
the grid of values to the circle �2x"+ �

2
xz � 1. We just consider nonnegative values of �x"

and �xz because the e¤ects of changing their sign follow rather simple symmetry rules.

4.2 Comparisons of actual and asymptotic distributions

In the Figures 1 through 4 below general characteristics of the (un)conditional distri-
butions of IV and OLS are analyzed by comparing their MAE�s, both in actual �nite
samples and as approximated by standard �rst-order asymptotics. From (43) it is easily
seen that �̂OLS � � = �xi"i=�x2i and �̂IV � � = �zi"i=�zixi are both multiples of ��1x ;
thus so are their MAE�s. Hence, ratios of MAE�s are invariant with respect to PF (i.e.
to �x); and the only determining factors for the IV results are �x"; �xz and n; and for
OLS just �x" and n: These �gures are based on 10

6 replications in the Monte Carlo sim-
ulations. The Figures 5 through 9 present densities for speci�c DGP�s. There we used
2� 106 replications. The results on the conditional distribution have all been obtained
for the same stylized series of arbitrary v2;i and v3;i series. We also tried a few di¤erent
stylized series, but the results did not di¤er visibly.
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Figure 1: Accuracy of asymptotic approximations for IV
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Figure 1 depicts for di¤erent values of n the accuracy of the asymptotic approxima-
tions for IV, over all compatible positive values of �x" and �xz. We see from the 3D
graphs on log[MAENIDU (�̂IV )=AMAE(�̂IV )] and log[MAE

NID
C (�̂IV )=AMAE(�̂IV )] that for

this model with NID observations the asymptotic approximation seems reasonably accu-
rate when the instrument is not weak, even when the sample size is quite small. But for
small values of �xz; as is well known, the approximation errors by standard asymptotics
are huge and much too pessimistic. However, we also establish here that for the condi-
tional distribution they are less severe when the simultaneity is mild. Note that when
these ratio�s are �1 this means that the asymptotic approximation overstates the actual
MAE�s by a factor exp(1) � 2:7: Hence, we �nd that the asymptotic approximation for
the unconditional distribution is rather unsatisfactory for j�xzj < 0:1; especially when n
is small, irrespective of �x"; whereas only for large �x" the same holds for the conditional
distribution. Note, however, that these graphs show that the actual distribution of IV
when instruments are weak is not as bad as the asymptotic distribution suggests.
Figure 2 presents similar results for OLS. We note a remarkable di¤erence with IV.

Here (for n � 20) the �rst-order asymptotic approximations never break down, because
no weak instrument problem exists. The accuracy varies nonmonotonically with the
degree of simultaneity. For n only 20 the discrepancy does not exceed 2.1% (for the
unconditional distribution) or 3.9% (for the conditional distribution). Asymptotics has
a tendency to understate the accuracy of the unconditional distribution and to overstate
the accuracy under conditioning.
In Figure 3 we focus on the e¤ects on estimator accuracy of conditioning in �nite

samples. In the 3D graphs on IV we note a substantial di¤erence in MAE (especially
for small n) when both �x" and �xz are small, with the unconditional distribution more
tightly centered around the true value of � than the conditional distribution. However,
especially when the sample size is small the conditional distribution is somewhat more
attractive when the instrument is not very weak. The two panels with graphs on OLS
show that conditioning has moderate positive e¤ects on OLS accuracy for intermediate
values of �x" and especially when the sample size is small. The pattern of this phenom-
enon is predicted by the asymptotic approximations, but not without approximation
errors.
Figure 4 provides a general impression of the actual qualities of IV and OLS in �nite

samples in terms of relative MAE. The top panel compares unconditional OLS and IV.
We note that IV performs better than OLS when both �x" and �xz are substantial in
absolute value, i.e. when both simultaneity is serious and the instrument relatively
strong. Of course, the area where OLS performs better diminishes when n increases.
Where the ratio equals 2, IV is exp(2) � 100% or about 7.5 times as accurate as OLS,
whereas where the log-ratio is -3 OLS is exp(3) (i.e. about 20) times as accurate as IV.
We notice that over a substantial area in the parameter space the OLS e¢ ciency gains
over IV are much more impressive than its maximal losses can ever be. OLS seems to
perform worst when j�x"j = j�xzj = 0:5:We did not include similar 3D graphs comparing
conditional OLS and IV, but found that for the smaller sample size the OLS gains over
IV are even more substantial than under conditioning when the instrument is weak,
especially when the simultaneity is moderate. The e¤ects in this respect of conditioning
can directly be observed from the bottom panel of Figure 4 in which the pattern of the
di¤erence between the two relevant log MAE ratios is shown.
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Figure 2: Accuracy of asymptotic approximations for OLS
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Figure 3: E¤ect of conditioning on e¢ ciency for IV and for OLS
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Figure 4: Relative actual estimator e¢ ciency, OLS versus IV, C versus U
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The remaining �gures contain the actual densities of IV and OLS for particular values
of n; �xz and �x" and their �rst-order asymptotic approximation. From these one can see
more subtile di¤erences than by the unidimensional MAE criterion, because they expose
separately any di¤erences in location and in scale, and also deviations from normality
like skewness or bimodality. All these �gures consist of two panels, where each panel
contains densities for the four cases �x" = 0:1; 0:2; 0:4 and 0:6 respectively. Note that
within each of these Figures the scales of the vertical and the horizontal axes are kept
constant, but that these di¤er between most of the Figures.
Figures 5 and 6 present the same cases for n = 50 and n = 200 respectively. In

Figure 5 we see both OLS and IV for a strong instrument where �xz = 0:8: For OLS we
note the inconsistency and also the smaller variance of the conditional distribution and
the great accuracy of the asymptotic approximations. For IV with a strong instrument
the distribution is well centered and the asymptotic approximation is not bad either, but
for serious simultaneity we already note some skewness of the actual distributions which
self-evidently is not a characteristic of the Gaussian approximation. In Figure 6, due
to the larger sample size, the approximations are more accurate of course. Di¤erences
between the conditional and unconditional distributions become apparent only for OLS
when the simultaneity is serious.
Figures 7, 8 and 9 are all about IV. In Figure 7 the instrument is weak, since �xz = 0:2;

but not as weak as in Figure 8, where �xz = 0:02: The upper panels are for n = 50 and
the lower panels (using the same scale) are for n = 200: Hence, any problems in the upper
panels become milder in the lower panels, but we note that they are still massive for
the very weak instrument when n = 200. All these panels show that the unconditional
IV distribution is more attractive than the conditional one, as we already learned from
the MAE �gures. The conditional distribution is more skew, and shows bimodality
when the instrument is very weak and the simultaneity substantial. The asymptotic
approximation is still reasonable when �xz = 0:2; but useless and much too pessimistic
when �xz = 0:02; also when n = 200: Figure 9 examines the very weak instrument case
for larger samples, and shows that even at n = 1000 the approximation is very poor, and
the unconditional distribution is better behaved than the conditional one. At n = 5000
the approximation is reasonable, provided the simultaneity is mild. Though note, that
the IV estimator at n = 5000 varies over a domain which is much wider than that of
OLS at n = 50; which highlights that employing a strong invalid instrument is preferable
to using a valid but weak one.

4.3 Adapted OLS inference for a simple simultaneous equation

Without knowing the degree of simultaneity �x"; it is impossible to provide a measure for
the bias and the variance of OLS. Nevertheless, our approximations to the unconditional
and to the more attractive conditional distributions of inconsistent OLS should allow to
produce an indication of the magnitude of the OLS bias and its standard error under a
range of likely values of �x": Next, it should be feasible to produce a range of con�dence
sets for �, conditional on these �x" values. Their union should in principle provide a
con�dence set for � which is asymptotically exact (but probably conservative) for, say,
�x" 2 [�0:2; 0:6]. This approach has been followed for one empirical data set in Niemczyk
(2009, p.166). In a very small simulation study we will examine here whether such an
approach works in the simple model with k = 1.
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OLS, n = 50
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IV, n = 50; �xz = :8
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Figure 5: OLS and IV (strong) for n = 50
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OLS, n = 200
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IV, n = 200; �xz = :8
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Figure 6: OLS and IV (strong) for n = 200
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IV, n = 50; �xz = :2

0 0.5 1 1.5 2
0

1

2

3

4

ρ
xε

 = 0.1

act­con
act­unc
asy­c+u

0 0.5 1 1.5 2
0

1

2

3

4

ρ
xε

 = 0.2

0 0.5 1 1.5 2
0

1

2

3

4

ρ
xz

 = 0.2ρ
xε

 = 0.4

0 0.5 1 1.5 2
0

1

2

3

4

ρ
xε

 = 0.6
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Figure 7: IV (weak) for n = 50; 200
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IV, n = 50; �xz = :02
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Figure 8: IV (very weak) for n = 50; 200
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IV, n = 1000; �xz = :02
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IV, n = 5000; �xz = :02
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Figure 9: IV (very weak) for n = 1000; 5000
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Applying OLS we obtain �̂OLS anddV ar(�̂OLS) = s2=Pn
i=1 x

2
i ; where s

2 =
Pn

i=1 "̂
2
�{ =(n�

1) with "̂i = y � �̂OLSxi: If all model characteristics were known, one might use in the
model with Gaussian disturbances, while conditioning on �x; the modi�ed though totally
unfeasible estimators8><>:

~�OLS � �̂OLS � �x"�"=�x;

dV arNC (~�OLS) = n�1AVarNC (�̂OLS) � (1� �2x")(1� 2�2x" + 2�4x")�2"=(n�2x): (48)

Exploiting plim s2 = (1� �2x")�2" and plimndV ar(�̂OLS) = (1� �2x")�2"=�2x; we can adapt
these such that they just contain OLS estimates and the parameter �x"; giving8>><>>:

�� � �̂OLS �
h

�2x"
1��2x"

ndV ar(�̂OLS)i1=2 ;
dV arNC (��) � (1� 2�2x" + 2�4x")dV ar(�̂OLS):

(49)

Note that, conditional on making an assumption on the value of �x"; �� is consistent for

� and ndV arNC (��) for AVarNC (��) = AV arNC (�̂OLS); in the same way as standard OLS is
consistent provided the assumption �x" = 0 is correct.

Table 1: Qualities of adapted OLS inference

SNR n �x" Bias(�̂OLS) Bias(��) V ar(��) E
�dV arNC (��)� Cov:Prob:

3 40 .2 .113 .001 .0084 .0076 .929
[-.003] [.0077] [.0084] [.945]

.5 .286 .066 .0065 .0041 .714
[-.003] [.0041] [.0047] [.944]

100 .2 .114 .003 .0033 .0030 .934
[-.001] [.0030] [.0031] [.949]

.5 .288 .070 .0025 .0016 .540
[-.001] [.0016] [.0018] [.947]

10 40 .2 .062 .001 .0025 .0023 .929
[-.001] [.0023] [.0025] [.945]

.5 .157 .036 .0020 .0012 .714
[-.002] [.0012] [.0014] [.944]

100 .2 .063 .002 .0010 .0009 .934
[-.001] [.0009] [.0009] [.949]

.5 .157 .038 .0008 .0005 .540
[-.001] [.0005] [.0005] [.947]
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Table 1 contains some results on �̂OLS and the estimators of (49) based on 100,000
Monte Carlo replications for �2x = 3 and �

2
x = 10; n = 40 and n = 100; and �x" = 0:2 and

�x" = 0:5: In square brackets the corresponding results are presented for the strongly
unfeasible estimators (48). The latter demonstrate again that despite the simultaneity
the asymptotic OLS approximations are very accurate in �nite samples and yield con-
�dence intervals (symmetric around ~� and based on the � = 0:025 critical value of the
normal distribution) with actual coverage probabilities very close to the nominal level.
Asymptotically valid inference based on ��; which is only unfeasible regarding �x"; is
quite accurate for low values of �x"; but especially for higher �x" it clearly requires some

�nite sample corrections. It is obvious that dV arNC (��) of (49) only takes the asymptotic
variance of the �rst term of �� into account, and not of the second one which is random
too for n �nite. Moreover, the bias of �� shows that its present de�nition would bene�t
from some further re�nements. These could be based either on higher-order expansions
or on bootstrapping, or on both. This requires substantial further study, and when
successful, the length of the resulting con�dence intervals (based on an assumed interval
for �x") should be compared with the length of intervals obtained by IV (for a range of
values of �xz), where in case of weak instruments these intervals should be made robust,
see Mikusheva (2010).

5 Conclusions

In this paper we examined the e¤ects of conditioning for rather standard econometric
models and estimators. We analyzed the analytic and numerical e¤ects of conditioning
on �rst-order asymptotic approximations, as well as its consequences in �nite samples by
running appropriately designed Monte Carlo experiments. For many published results
on simulation studies it is not always clear whether or not they have been obtained
by keeping exogenous variables �xed or by redrawing them every replication, whereas
knowing this is crucial when interpreting the results. From our simulations it seems,
that many of the complexities that have been studied recently on the consequences of
weak instruments for the IV distribution, such as bimodality, are simply the result of
conditioning; see, for instance, Hillier (2006) and the references therein. We �nd that
the unconditional IV distribution may be quite well behaved (it is much closer to normal
and less dispersed). Although it is still not very accurately approximated by standard
asymptotic methods, it is most probably much easier to �nd a good approximation for
it, than for the deranged conditional distribution.
Our major �nding is that a consistent estimator does not necessarily outperform an

inconsistent one in �nite samples, and our major contribution is that we provide an
accurate asymptotic approximation to the distribution of inconsistent OLS and show
how this is a¤ected by conditioning. It may be illuminating to highlight the similarities
and di¤erences with results obtained recently in Kiefer and Vogelsang (2005). They con-
sider just one technique, viz. HAC estimation, but examine asymptotic approximations
based on two di¤erent parameter sequences, the standard one which yields consistency
and an alternative one which is inconsistent. Here the inconsistent one yields better
approximations to the actual �nite sample distribution of test statistics incorporating
HAC estimation.
We �nd that the dispersion of both unconditional and conditional IV when the

instrument is weak is such that inconsistent OLS in general establishes a much more
accurate estimator. From our Figures we �nd that for n � 200 less than 100% of the

27



(un)conditional IV estimates of � = 1 in the simulation were (when �xz = :02) in the
interval [0; 2], whereas all OLS estimates were in the much narrower interval [:9; 1:3].
For �xz = :2 this IV interval is [:5; 1:5], underscoring that OLS estimates are often much
and much more accurate than IV estimates. We have also indicated how OLS, which
by its very nature always uses the strongest � though possibly invalid � instruments,
might still be used in practice for inference purposes, when it has been assessed that
some of the available valid instruments are too weak to put one�s trust fully in extremely
ine¢ cient standard IV inference.
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