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Abstract

We investigate the conditional density of the MLE in a simple structural Keynesian model as in

Phillips (2006). The marginal distribution is known to be bimodal and various contending explana-

tions have been o¤ered. We give a clear geometric explanation for the bimodality of the MLE. We

further show that the degree of bimodality depends heavily on the value of an appropriate ancillary

statistic, as well as on the relevance and strength of the instrument in the observed sample. The

relevant conditional distribution is still bimodal and we show that the saddlepoint approximation

captures this conditional distribution and its bimodality extremely well.

JEL: C01, C10, C30
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1 Introduction

Bimodality of the Maximum Likelihood Estimator (MLE) in the structural equation model has attracted

renewed interest recently because of the relations to the weak instrument literature. Originally, Bergstrom

(1962) derived the exact distribution of the MLE, and of the least squares estimator, in a simple Keynesian

structural model consisting of one behavioural equation and one identity. Phillips and Wickens (1978)

showed, and drew attention to the fact that this distribution is bimodal for all parameter values and

sample sizes. Nelson and Startz (1990) also �nd a bimodal distribution for the Two Stage Least Squares

(TSLS) estimator by specializing previous distributional results for TSLS to the case where there is one

instrument that is only weakly correlated with a single right hand side endogenous variable. They argue

that the bimodality is caused by the weakness of the instrument. Maddala and Jeong (1992) challenge

this view and argue that bimodality is caused by a high degree of endogeneity. Woglom (2001) uni�es

both views using results from Marsaglia (1965) to show that the degree of bimodality depends on both the

instrument strength and degree of endogeneity. Forchini (2006) extends these results to more than one

instrument. Using the exact density he gives necessary conditions and explains bimodality through the

interaction between the leading term in the expansion of the density and the noncentrality term. He shows

that not only instrument strength and endogeneity play a role, but also the degree of overidenti�cation.

Phillips (2006) shows that the weaker the instrument, the stronger the bimodality in a model close to

that of Bergstrom. Hillier (2006) considers both TSLS and Limited Information Maximum Likelihood

(LIML) estimators and shows that possible bimodality is an artifact of the parameterization. He shows

that the degree of overidenti�cation a¤ects OLS and TSLS but that LIML remains una¤ected.

In this paper we give an alternative explanation of the bimodality based on the geometric properties

of the model. We show that the sample space consists of two connected regions where the estimator maps

the data to estimates distinctly to the left and distinctly to the right of the parameter value for which

the model degenerates. This does not depend on the parameterization of the model, the weakness of the

instrument, or the degree of endogeneity.

The second contribution of the paper is showing that the degree of bimodality depends on the value of

an ancillary statistic. This depends on the sample actually being observed rather than on the parameters

of the model. For the various reasons sanctioning conditional inference, including information recovery,
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relevance of inference for the sample actually observed, and the conditionality principle we refer to

literature, e.g. Barndor¤-Nielsen and Cox (1994, pp.32-35). Previous results by for instance Bergstrom

(1962), Phillips and Wickens 1978) etc, related to the marginal distributions of the MLE, but we will

show that the value of the ancillary has a signi�cant e¤ect on the distribution of the estimator. We also

give a graphical explanation why particular samples are inherently less informative about the unknown

parameters than others. The ancillary statistics are instructive in identifying the type of samples that

are less informative and bimodality poses a bigger problem, and this is an important reason for reporting

the conditional distribution given the value of the ancillary observed.

A third and major contribution is to derive the saddlepoint approximation for the conditional density.

We show that it captures the bimodality of the distribution perfectly and performs very well even in very

small samples. The fact that the saddlepoint approximation can capture the bimodality of distributions

of estimators is known, also in econometrics, see e.g. Sowell (2007), but has not received much attention.

2 The Model

We use the model as in Phillips (2006) which is a simple Keynesian model, with one structural behavioural

equation and an identity:

yt = �xt + ut; (1)

xt = yt + 
zt: (2)

The model has two endogenous variables, xt and yt; an exogenous variable zt that can be used as

an instrument, and a stochastic disturbance ut assumed to be IIN(0; �2). The constant 
 controls

the relevance of the instrument and is assumed know, as in Phillips (2006): In order to guarantee the

existence of an equilibrium solution, we assume that the parameter � satisi�es � 6= 1 and the parameter

�2 needs to be �nite. The behavioural equation (1) only makes economic sense if the variance of ut is

�nite.We will assume that �2 is known and without loss of generality set it to 1.

The unrestricted reduced-form:

yt = �yzt + vt; (3)

xt = �xzt + wt; (4)
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has 5 parameters: two mean related parameters �y and �x and three variance-related parameters, that

satisfy a number of restrictions. The mean parameters satisfy: �y = 
�= (1� �) ; �x = 
= (1� �)

with the parameter of interest � = �y=�x. The disturbances satisfy: vt = wt = ut= (1� �) and the

contemporaneous covariance matrix is singular: all four entries equal 1= (1� �)2 ; times the variance of

u; but �2 was set equal to 1.

The restricted reduced-form equations become:

yt =
�


1� � zt +
1

1� � ut; (5)

xt =



1� � zt +
1

1� � ut; (6)

An interesting feature of the model is that the unknown parameter, �; enters both the mean and

the variance part of the model. It shares this feature with e.g. the distribution of the AR(1) parameter

estimate, continuous updating GMM, empirical saddlepoint approximations etc.

It is easy to see, by adding the two equations (5) and (6) that the log-likelihood function equals:

L (� j t1; t2) = t1
1
4
(1� �

2)� t2 18 (1� �)
2 +

�n 18

2(1 + �)2szz + n

1

2
log((1� �)2)� n 12 log (8�) ; (7)

where szz = 1
n

Pn
t=1 z

2
t and the statistics t1 and t2 equal:

t1 =
nX
t=1

(xt + yt)zt ; t2 =
nX
t=1

(xt + yt)
2: (8)

The minimal su¢ cient statistic t = (t1; t2)
0 is of dimension two and since there is only one unknown

parameter the model is a Curved Exponential Model (CEM) of dimensions (2,1) (see e.g. Van Garderen

1997). Such models are embedded in Full Exponential Models (FEMs) where the canonical parameter is

a smooth vector function of a lower dimensional parameter. The model has canonical representation

p(x;�) = exp ft0�(�)� �(�)� h(t)g : (9)

where the two dimensional canonical parameter � = (�1; �2)
0 is a smooth vector function of � and equals

�(�) =
1

8

0BB@ 2
(1� �2)

�(1� �)2

1CCA : (10)

The cumulant function � (�) in terms of � equals

� (�) = 1
8n


2(1 + �)2szz +
1
2n log

�
(1� �)2

�
: (11)
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and h(t) ensures that the density integrates to 1 but is otherwise irrelevant and could be absorbed in

the dominating measure. It is the fact that � (�) is curved that renders the model a CEM. Obviously, if


 = 0 the result is a degenerate vertical line along the axis �2 and the model is actually a one dimensional

FEM with complete su¢ cient statistic t2.

The cumulant function in terms of � does not enable us to derive all the moments and cumulants we

need. We need the function in terms of the canonical parameter �: Using the reduction technique by Van

Garderen (1999), however, we can derive the cumulant function of the embedding, 2-dimensional FEM

as a function of � to obtain:

� (�) = � 1
4n
�21
�2
szz � 1

2n log (�2�2) : (12)

For values � on the canonical manifold (10) we have � (� (�)) = � (�) ; but the cumulant function of the

FEM is useful for obtaining various terms, such as moments of t; by simple di¤erentiation with respect

to the canonical parameter, and calculating the statistical curvature of the model. The expectation,

covariance matrix, and 3rd-cumulants are

E [t] =
@� (�)

@�

����
�=�(�)

=

0BB@ 
nszz
(1+�)
(1��)

n 1
(1��)2 (4 + szz


2(1 + �)2)

1CCA � �(�) ; say

V ar [t] =
@2� (�)

@�@�0

����
�=�(�)

= nszz
4

(1� �)4

0BB@ (1� �)2 2
(1� �2)

2
(1� �2) 4(2=szz + (1 + �)
2

2)

1CCA ;

Cum[ti; tj ; tk] =
@3� (�)

@�i@�j@�k

����
�=�(�)

=

: fi; j; kg8>>>>>>>>>><>>>>>>>>>>:

0 : f1; 1; 1g;

nszz
32

(1��)4 : f1; 1; 2g; f1; 2; 1g; f2; 1; 1g

n
szz
128(�+1)
(1��)5 : f1; 2; 2g; f2; 1; 2g; f2; 2; 1g

n
 128(4+3szz(�+1)
2
2

(1��)6 : f2; 2; 2g
etc:

The curved exponential nature of the model leads to a number of interesting insights. First, since

the dimension of the minimal su¢ cient statistic t is larger than the dimension of the parameter, any

mapping from t to an estimate �̂ must lead to loss of information. This information can be recovered

by conditioning on an ancillary statistic. Although no exact ancillary is known to exist in our model,

approximate ancillaries are available to recover the information approximately. In order to do so we

5



need to append the MLE �̂; or another estimator, with an ancillary statistic a such that the mapping

t ! (�̂; a) is one-to-one, and derive the conditional distribution of �̂ given a. The value of a contains

no information on � by itself, since its distribution does not depend on �; but it can contain valuable

information about the accuracy or other aspects of the distribution of the estimator. It should be noted

that ancillary statistics are not unique and alternative approximate ancillaries have been suggested in the

literature. We will consider two ancillary statistics namely Efron and Hinkley�s ancillary which in this

(2,1)-CEM equals the a¢ ne-, or score-ancillary and a signed likelihood ratio statistic based on a test of

the CEM against its full exponential embedding as we explain below.

Second, exponential tilting, which is a statistical way of deriving the saddlepoint approximation is

closely related to exponential families. See e.g. Reid, (1986), or Barndor¤-Nielsen and Cox, (1989,

p105) or Durbin (1980) and Barndor¤-Nielsen (1980) who speci�cally derive saddlepoint expansion and

conditionality resolutions for CEMs. We will derive the saddlepoint approximations for the MLE using

two di¤erent ancillary statistics. In both cases the associated saddlepoint approximation captures the

bimodality perfectly, but the two distributions are quite di¤erent. We con�rm a very high degree of

accuracy of the approximations by extensive simulations.

Third, since the dimension of the minimal su¢ cient statistic is two and �xed for all sample sizes, we

can represent the model graphically and give a graphical explanation for the bimodality, which we will

do next.

3 Geometry and Bimodality

We �st consider the geometry of the model by considering the curved manifolds in the canonical parameter

space and in the sample space. The model renders the two-dimensional parameter � in (10) as a function

of a single parameter �. This vector function is C1and de�nes a smooth manifold �(�) embedded in the

canonical parameter space N . This canonical manifold is illustrated in Figure 1. For negative values of

�; the curve starts at the bottom moving up and approaches the origin horizontally from the right as �

approaches 1 from below. As � increases above 1 the graph moves to the left.

Since � (�) is a smooth manifold in N , we can calculate the embedding curvature if we endow it with
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Figure 1: Canonical parameter space of the embedding FEM, � (�) is the manifold representing the CEM implied

by Keynes� model, �̂FEM is the unrestricted estimate of � = (�1; �2)
0 of the embedding FEM for a typical

realization with t = (�10:5; 69:6)0, �̂1 = �0:2337, �̂2 = 2:151 are the two values that each satisfy the �rst order

conditions, �̂1 gives the global maximum.

a metric and a¢ ne connection as in e.g. Amari (1985) or by using the original de�nition of the statistical

curvature % by Efron (1975). Straightforward calculations (see Appendix A) give the following result.

Proposition 1. The squared Efron curvature equals, for all � 6= 1:

%2� = 2
szz


2

n (2 + szz
2)
3 : (13)

The Efron curvature does not depend on �; which is surprising and an interesting particularity of this

model. It has various implications, including the fact that the Efron-Hinkley (1978) ancillary is much

simpler than usual. The Efron curvature only depends on the strength of the instruments through szz
2

and on the sample size. It converges to zero at the usual rate for both weak and strong instrument
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scenarios, unless the average variation in the instruments increases or decreases with n: Surprisingly, in

both cases the curvatures vanishes faster.

The expectation of t will also change as � changes and this generates a manifold inside the sample

space for t which we denote by �(�) = E� [t] and is called the expectation manifold. It is shown in

Figure 2. The expectation manifold here is smooth everywhere, apart from � = 1 but that point has

been excluded from the model, and furthermore � (�) has a singularity at (�
nszz; 
2nszz)0:

The left branch of the graph, where t1 is negative and t2 is large, corresponds with � close to, but

larger than, 1 and goes down as � increases. As � ! 1 the expectation moves to the limiting point

(�
nszz; 
2nszz)0: This is actually the same limit as for � ! �1 . When � increases from very negative

values the curve, starting at (�
nszz; 
2nszz)0; �rst goes down and then moves up, crossing the vertical

axis when � = �1 and then increases beyond all bounds as � approaches 1 from below. The expectation

of t1 is positive for j�j < 1:

The �gures further give a graphical explanation of the MLE. The �rst order conditions for the MLE

in CEMs are immediate from (9)

@L
@�

= (t� �(�))0 @�
@�

= 0; (14)

where we have made use of the fact that in full exponential models the expectation of the su¢ cient

statistic t can be obtained by di¤erentiating the cumulant function: �(�) = @�
@�

���
�=�(�)

: In order for �̂

to satisfy the �rst order conditions, the di¤erence (t � �(�̂)) needs to be orthogonal to @�(�̂)=@� in

the standard Euclidean sense. The relevant vectors are shown in the two graphs. The gradient to the

canonical manifold evaluated at the MLE; @�(�̂)=@�; is shown in Figure 1 and also in Figure 2 together

with the di¤erence vector (t� �(�̂)) to which it is orthogonal.

Note that as t changes, also �̂ changes, unless t changes along (t��(�̂)): Hence there are straight lines

going through �(�̂) and orthogonal to @�(�̂)=@� which all satisfy the �rst order conditions. Following

Efron (1978) we can think of these points as the inverted MLE. From the graph it is clear that every t

lies on two di¤erent such lines associated with two di¤erent �̂, both satisfying the �rst order condition.

The actual MLE out of these two points is the one that gives the highest likelihood value. See Figure 3

below showing the bimodality in the likeihood function. We will also see algebraically that there are two

solutions and we give an analytical expression for this MLE.
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Figure 2: Sample Space and Expectation Manifold for the minimal su¢ cient statistic.�(�): Expectation mani-

fold. t represents an arbitrary sample point and equals t = (�10:5; 69:6)0 here. �̂1 and �̂2 both satisfy the �rst

order conditions for the MLE, but �̂1 = �0:23 gives the global maximum.

There is a set (with probability content 0) where the likelihood value is the same for both �0s. This is

a vertical line t1 = �
 � n � szz; which is illustrated in Figure 2 as a dashed line. To the right of this line,

observations t are mapped to estimates �̂ smaller than 1, and t�s to the left give rise to ML estimates

larger than 1. The ML estimate will never equal 1 as it would require t2 to be larger than any �nite

bound (�̂ 6= 1 a.s. since the likelihood goes to �1 when � ! 1, either from above or below, for any given

sample). We can combine the geometrical insights with the Gaussian distribution of t1 =
P
(yi + xi) zi
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to investigate the importance of the two modes. The fact that

t1 � N
�

nszz

1 + �

1� � ; nszz
4

(1� �)2

�
; (15)

means, �rst of all, that for a given value of � < 1 it is always possible that t1 is to the right of the critical

line. This is analogues to the result by Phillips (2006) that the distribution is always bimodal. Second,

using (15) it is simple to compute the probability of �̂ being on the wrong side of 1:

Proposition 2. Wrong side of 1 probabilities equal:

P [�̂ > 1 j � < 1] = � (�4
pn szz) (16)

P [�̂ < 1 j � > 1] = 1� � (4
pn szz) (17)

The probabilities of being on the wrong side of 1 only depend on the parameter 
 that controls the

strength of the instrument and on the variation in the instruments as measured by
P
z2i : The term


2nszz is the noncentrality parameter (Phillips, 2006 p.950). Further note that with a typical local

to zero sequence 
n = d=
p
n, as is regularly used in the weak instrument literature (see e.g. Phillips,

2006 p.955 for some references and discussion), this probability depends on the average variation in the

instruments as given by szz and will not decrease as the sample size n increases. It is also interesting

that the probability of being on the wrong side of 1 is independent of �: This holds even for arbitrary

large values of �, since the result is exact.

We will be interested in the conditional distribution of b� given an ancillary a; and (16) is only a
marginal probability. It is clear however, that when this probability is substantial that there must be

values of a for which the conditional probability is also substantial since P [�̂ > 1] =
R
P [�̂ > 1ja]dF (a).

We will show that the probability of being on the wrong side of 1 depends heavily on the value of the

ancillary a actually observed. This obviously holds only for a suitable choice of ancillary statistic. There

is no unique ancillary statistic, however, and it is not even known whether an exact ancillary exists in our

model. Various general proposals have been put forward for statistics that are approximately ancillary

and we should like to choose that statistic that is most informative about the degree of bimodality of the

MLE.
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3.1 Global versus Local Curvature

Following Efron (1978) and Amari (1982) we can think of a foliation of the sample space where �̂ serves

as the coordinate to index the folio, in this case the inverted MLE line, and the ancillary a as the

other coordinate indicating the position of t on the folio. From a statistical point of view we want this

coordinate system to be orthogonal in the sense that the distribution of a should not depend on �: If the

distribution of a depended on �; then we could use a to increase the e¢ ciency of the estimator. If the

distribution of a does not depend on �; then a on its own cannot tell us anything about �; but together

with �̂, could tell us something about the accuracy of the estimator. This is the traditional argument.

We generalize this to the notion where a can tell us something about the extend of bimodality. In this

respect the graphs are informative again.

The dashed vertical line in Figure 3 is de�ned as those points t such that the two local maxima have

the same likelihood value L
�
�̂(1) j t

�
= L

�
�̂(2) j t

�
. For these values of t we cannot decide between

the two values of � on the basis of the likelihood. Both seem equally plausible. Values of t close to

this vertical line will have two local maxima with similar likeihood values and deciding between them is

di¢ cult. In contrast, values t1 well to the left of the expectation manifold are far more plausible for a

positive �; and for large positive t1 we can be much more con�dent that it is a realization from the model

with a negative �: The ancillary should re�ect this and show that for t close to the vertical dashed line,

bimodality is much more important.

The bimodality of the distribution derives from the global geometry of the model. Given the way in

which � (�) curves inside N there will be t0s that are an equal likelihood distance away from �(�(1)) and

�(�(2)) regardless of the local curvature at �(1) and �(2).

The local curvature can also lead to an indeterminacy for the MLE, namely when the observed

information is 0, and the likelihood is locally �at. The observed information can be written as

J� = �@
2L
@�2

=
@�0

@�

@2�

@�@�0
@�

@�
� (t� �(�))0 @

2�

@�2

= i� � (t� �(�))0
@2�

@�2
;

where i� is the expected Fisher information (this follows immediately from the �rst line since the second

term has expectation 0). Holding �̂ constant, we can move t along the inverted MLE line so far that

jJ� j = 0: For these points the MLE is not uniquely de�ned.
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Hence we see that the local and global curvature lead to two di¤erent kinds of non-uniqueness. One

due to the global geometry of the model with a likelihood that is not at all �at, and a second one due to

the local curvature and a likelihood that is locally �at.

4 Saddlepoint Approximation

In order to show the e¤ect and importance of conditioning, we need the conditional density of b� given
an approximate ancillary statistic a. Bergstrom (1962) and Phillips and Wickens (1978) �nd the exact

marginal distribution of the MLE. Finding the conditional distribution involves a number of additional

complications. First, the approximate ancillary statistic a needs to be chosen and subsequently the

distribution needs to be derived. For sensible choices of a that allow us to recover lost information, not

only in the traditional sense but also to tell us something about the extend of the bimodality, we could not

derive exact conditional distributions. Instead, we use approximations. The Edgeworth approximation is

not appropriate because it will lead to a distribution that is essentially uni-modal (multimodality occurs

due to unfortunate oscillations). Saddlepoint approximations can accommodate bimodality, as is known

from the statistical literature, and we will show below that it captures the conditional bimodality in the

current problem extremely well.

The saddlepoint approximation was pioneered by Daniels (1954) based on the steepest decent tech-

nique in asymptotic analysis. A statistical derivation via exponential tilting can be found in Barndor¤-

Nielsen & Cox (1979) and Reid (1988) gives a very clear review of the developments in the statistical

literature including work by Durbin, Sargan, and Phillips. Phillips (1978) approximated the density of the

MLE in the �rst order autoregression and showed that it outperformed the Edgeworth approximation,

although in certain cases with moderate sample sizes and large parameter values performance breaks

down. Durbin (1980a) derived a tilted distribution for exponential families and allowed for non-i.i.d.

data, which he also applied to the AR(1) model Durbin (1980b). Related work also includes Lieberman

(1994 a,b,c) and Larsson (1999).

In Econometrics the technique was pioneered by Phillips and Holly (1979) who derived the approxi-

mate density of the k -class estimator in a simultaneous equations system with two endogenous variables.

The saddlepoint approximation was shown to outperform the Edgeworth expansion, especially in the tails
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where it is well know that the Edgeworth expansion can behave very poorly. Spady (1991) derives saddle-

point approximations for systems of estimating equations and applies this to the least absolute deviation

estimator in a regression context. He shows that the approximation captures the multimodality of the

estimator (four modes in that case) and shows that his 	-transformation measure is the key component

in the explanation of multimodality. It should be noted however, that not only is the criterion function

not smooth, but the disturbance that he uses is itself a mixture of normals and bimodal. In our model

the disturbances are uni-modal. Sowell (2007) provides a saddlepoint approximation for GMM estima-

tors and the statistics for testing the overidenti�cation restrictions. The true distribution of the GMM

estimator can have multiple modes and he shows that the approximation captures this important feature.

For small samples he further shows in a Monte-Carlo study that it often outperforms the bootstrap. See

also Sowell (2009).

We take the simple Keynesian model (1) and derive the saddlepoint approximation, conditional on an

approximate ancillary statistic. Since the model is a CEM the saddlepoint approximation has a simple

likelihood formulation, as was originally noted by Daniels (1958). See also Durbin (1980) and Barndor¤-

Nielsen (1980) who, inspired by results of Fisher, developed his p� formula for the conditional distribution

of the MLE �̂ given an ancillary a. The p� formula is:

p(b�;� p a) � c(a) ���j ��̂; a����1=2 exp[l(�)� l(�̂)]; (18)

where l(�) = l (�; y) is the log likelihood function for � given observations y, and bj = � @2l(�)
@�@�0

���
�=�̂

is

the observed information matrix, which can be expressed either as a function of the su¢ cient statistic

t = t(y) or in terms of (�̂; a) if they are in one-to-one correspondence. The term c(a) is a normalizing

constant such that the right hand side of (18) integrates to 1. A closed form for c(a) is generally not

available but can be computed numerically.

In order to make the formula operational, we need the mapping between the minimal su¢ cient statistc

t(y) and the pair
�
�̂; a

�
, which in the current model is �nite dimensional and can be chosen 1-1 since the

model is a curved exponential model. It is straightforward to �nd an explicit expression for �̂ in terms

of t; and also for the various possible ancillaries a below. No analytical inverses for this mapping are

available however. We cannot explicitly write t in terms of �̂ and a: For given values of �̂ and a, however,

we can easily �nd t by solving a set of two linear equations and this will be exploited in the calculation
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of the saddlepoint approximations.

4.1 The MLE and Ancillaries

The �rst order conditions in (14) give:

L0(b�) = � n

(1� b�) � 12 t1b�
 + 14 t2(1� b�)� 14n szz(1 + b�)
2 = 0: (19)

This is a quadratic equation in �̂ and the likelihood function has two stationary points. Generally, one

of these solutions gives the global maximum, the other is a local maximum. There are exceptional values

for t discussed below where the MLE is not unique, but they have probability 0.1 The global maximum

cannot be determined using the second order derivative

L00(b�) = � n

(1� b�)2 � 2t1
 + t2 + n szz

2

4
(20)

since it is negative for both solutions.

A likelihood function for a typical realization of the process is depicted in Figure 3 and it shows the

local and the global maxima. The realization is the same one that lead to t in Figure 2. This explains

the bimodal likelihood, since t is almost the same likelihood distance away from �
�
�̂1

�
as from �

�
�̂2

�
:

In between �̂1 and �̂2 the (log-) likelihood (7) will go to minus in�nity as �̂ approaches 1: The model is

not de�ned for � = 1 however, and explicitly excludes it.

The root that maximizes the likelihood globally is found by direct comparison of the likelihood values

for the two roots, resulting in the explicit solution:

Proposition 3. The MLE in the simple Keynesian model (1) and (2) is given by:

b� =
t1
 + t2 + sign(t1 + nszz
)

p
4nt2 + 8nt1
 + 4n2
2szz + t21


2 + 2nszzt1
3 + n2s2zz

4

2t1
 + t2 + nszz
2
;

t1 + nszz
 6= 0: (21)

�̂ = 1� 2
p
n= (t2 � 
2n szz) (22)

For t1 + nszz
 = 0; the roots to the �rst order conditions are

�̂ = 1� 2
p
n= (t2 � 
2n szz)

1The two roots �̂1 and �̂2 have Lmax(�̂1) = Lmax(�̂2) when t1 + nszz
 = 0;see proof case i) of Lemma 1, Appendix B,

but this is a line the sample space T and therefore dense in T with probability zero.
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Figure 3: Typical Log-likelihood given a sample of size n = 10 from the model with t = (�10:5; 69:6)0 as before.

The two local maxima are indicated, but only �̂1 is associated with the global maximum for this sample.

and are distinct, but give the same value of the likelihood.

We call the line t1 + nszz
 = 0 the critical set based on the global curvature of the model and is

illustrated in Figure 2 by the dashed vertical line. The MLE is not uniquely de�ned on this line. This

critical set itself has zero probability since t1 is continuously distributed, but we can observe values close

to this line. In a neighbourhood of this critical set, we can have that a small change in the normally

distributed t1 can lead to a discrete and substantial change in the MLE �̂. If t1 changes from the right

to the left of the line, then the MLE will jump from a value larger than 1 to a value smaller than 1.

There is a second critical set where MLE is not uniquely de�ned, consisting of those values of t for

which the observed information j(b�) is singular. The likelihood is locally �at and as a consequence there
is no unique �̂. The values of t in (20) must satisfy the �rst order conditions (t� �(�))0 @�@�

���
�=�̂

and the

t�s therefore lie on the inverted MLE line. Points on this line can be indexed by a giving an invertible

relation between t and (�̂; a) and we can express t =
�
t1(b�; a); t2(b�; a)�0 and the observed information,

as a function of (b�; a) is:

j(b�; a) = �L00(b�; b�; a) = n

(1� b�)2 + 2
 � t1(b�; a) + t2(b�; a) + szz

2

4
; (23)

There are various choices for the ancillary statistic a that could be employed in the formulas above

and this we consider next.
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4.1.1 Ancillary Statistics

In order to �nd the saddlepoint approximation we need a one-to-one transformation between the set of

minimal statistics and the set of parameters and ancillary statistics. In our CEM (2,1) model that means

that we need to �nd only one ancillary statistic to condition the MLE b� on. For a given model it is
not obvious whether or not an exact ancillary statistic is available and even when this is the case it is

still possible to have two (or more) ancillaries that yield di¤erent conditional distributions. Although in

general there are no techniques to prove that exact ancillary statistics exist for a given model, it is still

possible to construct approximate ancillary statistics. Sometimes these approximate ancillary statistics

turn out to be exact, depending on the properties of the model. For our model we use three approximate

ancillary statistics: the Efron-Hinkley (1978) ancillary, the A¢ ne- or score-ancillary of Barndor¤-Nielsen

(1980) and a signed-LR ancillary.

The Jacobian term in the saddlepoint approximation (18) is written as a function of (b�; a); but the
second derivative of the log-likelihood depends on � and (t1; t2) : After substitution of the MLE, the

observed information will depend on �̂ and t and not yet explicitly on a. We can, however, with the

choices of a below which render the relations invertible, write t as a function of �̂ and a : t(b�; a): Using
this functional relation for t; the saddlepoint approximation (18) for our model becomes:

f(b�;� j a) � c(a)[
n

(1� b�)2 + 2
 � t1(b�; a) + t2(b�; a) + szz

2

4
]1=2[

(1� �)2

(1� b�)2 ]n=2 �
� exp[ 18 (b� � �)(
2szz(b� + � + 2) + (b� + � � 2) � t2(b�; a) + 2
(b� + �) � t1(b�; a) ]:

(24)

In practice we need to determine the values t(b�; a) numerically, which is straightforward since for �xed �̂
and a we have two linear equations in t1 and t2: This follows from the fact that all loglikelihood derivatives

for given �̂ are linear in (t� �̂) :

4.1.2 Efron-Hinkley Ancillary

The Efron-Hinkley (1978) statistic was derived based on the (local) geometry of the model as a way to

improve the reporting of the accuracy of the MLE. They showed that the observed information was a
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more accurate measure of the conditional variance than the expected information.

aEH = (1� |̂={̂)=%

= (t� �(�))0 @
2�

@�2
=(%i);

with

i = n
2 + szz


2

(1� �)2

and the Efron curvature % given in Proposition 1 and constant over �, and depending only on 
; szz and

n: This means that the Efron-Hinkley statistic is essentially the ratio of the observed information over

the expected information.The Efron-Hinkley ancillary does not take the global structure of the model

into account, but does change sign when crossing the expectation manifold and hence will distinguish

points close to the critical set t1 = �
 n szz from those that are close to �(�) the expectation manifold.

4.1.3 A¢ ne or Score Ancillary

Barndor¤-Nielsen (1980) proposed an approximate ancillary that, for a �xed value of �̂, is an a¢ ne

function of the minimal su¢ cient statistic. The a¢ ne ancillary a in curved exponential models, using our

notation, is de�ned as:

a = bA0(t� b�); (25)

where b� = �
�
�̂
�
is the expectation of t evaluated at the MLE b�, and A = A (�) is a k � (k � d)

normalizing matrix such that A(�)0(t � �(�)) has identity covariance matrix and mean 0, resulting in a

statistic that is, at least approximately, ancillary in mean and variance. In the current model (k� d) = 1

and the a¢ ne ancillary and Efron and Hinkley�s ancillary coincide.

4.1.4 Signed Likelihood Ratio Ancillary

An alternative interpretation of the a¢ ne ancillary is as a score test of the CEM against the embedding

FEM. Similarly one can use a likelihood ratio statistic for testing the CEM against the FEM. This statistic

will be approximately Chi-squared distributed with (k � d) degrees of freedom. An obvious problem is

however that such a statistic does not distinguish points close to the critical set t1 = �
 n szz; and

points on the other side (outside) of the expectation manifold that are an equal likelihood distance away
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from the restricted likelihood. In order to overcome this we attach a negative sign to observations on

the inside of the expectation manifold and further take the square root of the LR statistic. Such signed

LR statistics have been succesfully used in the literature before and often result in a distribution that is

close to Gaussianity. Our sign, however, is based on the insight developed in Section 2 and is based on

the global geometry of the model.

In order to construct the LR statistic we need to estimate the FEM. This is straightforward using the

cumulant function for the FEM derived earlier, and estimate the unrestricted canonical parameters � in

(10) using the �rst order conditions:

t� @� (�) =@� = t� � (�) = 0;

resulting in the canonical ML estimates:

�̂1 =
n t1

n szz t2 � t21
; �̂2 = �

1

2

n2 szz
n szz t2 � t21

; (26)

and for the maximized likelihood:

Lmax = L (�̂) = �
1

2
n

�
1 + Log (2�) + Log

�
n szz t2 � t21
n2 szz

��
;

from which the signed-LR is given by:

SLR = sign(t) �
r
2(L (�̂)� L

�
�̂
�
)

where sign(t) = 1 if observation t lies inside the expectation manifold and sign (t) = �1 if it lies on the

outside (further away from the critical set, dashed line in Figure 3).

The saddlepoint approximation formula (18) has the same form for this ancillary, but the relation

between (b�; a) and (t1; t2) is di¤erent and the normalizing constant c (a) is also di¤erent.

5 Results

In this section we report the saddlepoint approximations and the results of a simulation study. The study

has three goals. The �rst goal is to study the quality of the saddlepoint approximation. In particular

how well it captures the bimodality in the estimation of � and how it depends on the value of a given
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ancillary, even when these values are large The second goal is to examine the ancillarity properties of

the conditioning statistics used . Since asymptotic theory only establishes approximate ancillarity of the

chosen statistics, there is no guarantee that in small samples, or with weak instruments, the distribution

is still almost invariant to changes in the parameter �. We want to investigate whether the statistics are

approximately ancillary in small samples. Finally, since it is trivial to �nd exact ancillaries that have

nothing to say about the distribution of the MLE, the third goal is to investigate which ancillary is most

useful or informative about the distribution of the MLE.

Below we also investigate and con�rm the ancillarity properties of the statistics used in the conditional

saddlepoint approximations. This avoids discussions about conditioning on statistics that still contain

information about the parameters by themselves and are not ancillary.

In the simulations reported here we consider three di¤erent scenarios with alternative values for the

sample size and for the 
 parameter that controls the strength of the instrument. The average variation

in the instrument szz is kept constant. The values considered are not extremely small, yet highlight the

very substantial di¤erences with asymptotic theory.

Scenario n 
 szz

I 25 0.02 1

II 250 0.02 1

III 25 0.2 1

Table 1: Scenarios used in the simulation study

The values for � were restricted to the interval � 2 [0; 1) since it represents the propensity to consume.

We chose four di¤erent values � = f0, 0.6, 0.95, 0.99g. All simulations were based on 100.000 replications.

5.1 Saddlepoint Approximation j Efron-Hinkley Ancillary

The saddlepoint approximation for the conditional density given the Efron-Hinkley ancillary were exam-

ined for the three di¤erent scenarios and the di¤erent values of �. Figure 4 shows the conditional density
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for the Efron-Hinkley ancillary in Scenario I with n = 25, 
 = 0:02 and � = 0:6: Results for other values

of � and di¤erent scenarios are given in Appendix D, but the qualitative conclusions are the same.

A number of observations are immediate. The distribution is extremely bimodal. There is one mode

at the true value for � = 0:6 and one at 1:4. In the other cases we also found one mode in a neigbourhood

of the true value � and another mode almost symmetrically on the other side of 1; in a neighbourhood

of 1 + (1 � �). The modes are perfectly separated by a region around b� = 1 where the density is zero.
This is explained by the fact that the model is not properly de�ned for � = 1 and the likelihood for any

sample will go to �1 as �̂ goes to 1:

EH = -4.
EH = -1.
EH = 0.09

0.0 0.5 1.0 1.5
0

1

2

3

4

5

Figure 4: Saddlepoint Approximation given Efron-Hinkley ancillary, � = 0:6; n = 25; 
 = 0:02; sZZ = 1

The conditional density is really very di¤erent for di¤erent values of the ancillary. When aEh =

0:09 � amax, which corresponds to observations t falling inside the expectation manifold close to the

critical set t1 = �
 n szz, the bimodality is more extreme than for the aEH values �1 and �4 as-

sociated with observations t on the outside. The second mode around 1:4 increases markedly when

aEH increases. If we express the degree of bimodality as the probability of �̂ being larger than 1; then

Prob
h
�̂ > 1jaEH = 0:09

i
= 0:499 and Prob

h
�̂ > 1jaEH = �4

i
= 0:3. Other values for the probability

of being on the wrong side of 1 are given in Table 2: The di¤erence in bimodality is in line with the

geometrical insight we developed earlier. The big variations in the conditional distributions also shows
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that aEH contains valuable information on the distribution of the MLE, despite having a distribution

that e¤ectively does not depend on � and therefore having no information on � itself. This also means

that the conditional distribution can be very di¤erent from the marginal distribution which averages over

all possible values of the ancillary and ignores the fact that certain con�gurations of the sample are far

more informative than others and observations close the critical set lead to far more bimodality than

negative values of aEH . When the true � is larger than 1; the picture is the other way round and for

large aEH the probability of observing a value much smaller than 1 is close to 0:5.

Conditional: P[�̂ > 1jaEH ] Scen.I Scen.II Scen.III

aEH = �4 0.309 0.062 0.000

aEH = �1 0.445 0.303 0.022

aEH = amax 0.499 0.497 0.495

Marginal: P[�̂ > 1] 0.460 0.376 0.159

Table 2: Probability of �̂ on the wrong side of 1 based on the conditional Saddlepoint approximation given aEH

when true � = 0:6; and the marginal probability based on the exact distribution.

Table 2 was also calculated for other values of �; but it hardly varies with �. Those results are

therefore not reported. We already showed in equation (16) that the marginal probability of observing a

�̂ > 0 was independent of �; and in the previous section we showed that aEH was almost ancillary. That

does not imply however, that the conditional probabilities are also invariant to �.

If we move to Scenario II by increasing the sample size to n = 250; then bimodality decreases. The

probability of obtaining a �̂ > 1 is reduced, both conditionally and unconditionally (from 0:46 to 0:38)

which can also be seen in the graph in Appendix D. For moderate values of aEH the probability reduces

signi�cantly, but for very large ancillary values, the conditional probability is still 0:497. When we move

to Scenario III where the instruments are strong and the sample size is small, the bimodality reduces even

further, but for very large aEH the probability is still 0:495. One would not often observe these very large

values and the conditional distributions will not deviate much from the marginal in most cases. If we do

have an exceptionally large value for aEH , then the di¤erence is all the more spectacular. The crucial
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point is that we can simply calculate and observe aEH from the data and we know which distribution to

use. We do not have to guess or average over all possible values of aEH that might have occurred.

5.2 Saddlepoint Approximation j Signed Likelihood Ratio Ancillary

The e¤ect of conditioning on the signed-LR statistic of testing the CEM (know to be true) versus the

embedding FEM density gives a similar picture as when conditioning on the Efron-Hinkley ancillary with

some minor di¤erences. Of course the maximum values of the signed-LR statistic are di¤erent as is its

distribution, but the conditional probabilities of being on on the wrong side of 1, given the signed-LR

show the same patern. The conditional densities also look very similar and hence we show here the

conditional density of �̂ given similar values of signed-LR as for the Efron-Hinkley, but now for Scenario

III with a small sample size but informative instruments. We see that the conditional distribution is

changing far more with the ancillary than for the other two scenarios. For the smallest value of aSLR

the density is essentially unimodal and for the largest value of aSLR it is almost symmetric around 1.

This again means that the value of the ancillary statistic whould not be ignored when making inference.

Con�dence intervals with a large value of the ancillary and a standard coverage rate of 95% say and based

purely on statistical properties, should consist of two disjoint regions, whereas for small values it should

be a simply connected interval.

SLR = -4.
SLR = -1.
SLR = 0.99

0.98 0.99 1.00 1.01 1.02
0

50

100
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200
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300

Figure 5: Saddlepoint approximation given SLR ancillary , � = 0:99; n = 25; 
 = 0:2; sZZ = 1
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We have chosen � = 0:99 to show that the same strict separation between the two sides of the density

around � and 1+(1��) exists, remarkedly so regardles of how close or how far � is from 1; including the

extreme values 0 and 0:99. This is the case for both the signed LR and the Efron-Hinkley statistic. The

conditional probability P [b� > 1 j aSLR = a] depends on the value of aSLR. Integrating out appropriately
across all possible values of aSLR gives the marginal density and probability that �̂ > 1. We have already

shown that the marginal probability P [b� > 1] does not depend on � and the marginal distribution of

aSLR is also virtually free of �; yet the conditional distribution of �̂ given aSLR (or aEH) does vary

remarkedly with � as the locations of the modes around � and 2� � clearly show.

Conditional: P[�̂ > 1jaSLR] Scen.I Scen.II Scen.III

aSLR =-4 0.333 0.064 0.000

-1 0.445 0.303 0.023

amax 0.499 0.498 0.494

Marginal:P[�̂ > 1] 0.460 0.376 0.159

Table 3: Probability of �̂MLE > 1 based on the conditional Saddlepoint approximation given aSLR for Scenarios

I-III and � = 0:99

Finally, relating to discussions here and in the literature about the cause of the bimodality, note that

because the conditional distributions are bimodal the marginal distribution must also be bimodal and

vice versa.

5.3 Quality of the Saddlepoint Approximation

The quality of the saddlepoint approximations is very good for this simple, but inferentially di¢ cult

Keynesian model. It captures the bimodality and its dependence on the ancillaries perfectly. The accuracy

of the approximation is not easy to assess. There is no closed form expression for the conditional density

f(b�;� j a) and we resort to simulation based methods. These are hindered by the complication that we
compare conditional distributions for di¤erent values of a; including exceptional ones. The number of

relevant observations can be small, especially in the tails of the distributions of the MLE and for extreme
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values of the ancillary. Kernel based densitiy estimates therefore proved troublesome and could not be

used to illustrate the quality of the approximation (the Kernel estimates proving less reliable than the

Saddlepoint approximation). We therefore use a one-sample Kolmogorov-Smirnov test, since there is no

di¢ culty in calculating the saddlepoint approximation, even when the density is very small, which we

can use as null hypothesis. The results are given in Table 4. In none of the cases could the saddlepoint

approximation be rejected at the 5% level and in most cases it was far below the critical value of 1.36

KS stats E¤ron-Hinkley Ancillary Signed LR Ancillary

Scenario � -4 -2 0 amax -4 -2 0 amax

I 0 0.60 0.75 0.57 0.83 0.55 0.61 1.11 1.02

n = 25; 0.6 1.03 0.72 0.72 0.72 0.73 0.88 0.91 0.90

szz = 1; 0.95 0.86 0.60 1.02 0.40 1.21 0.90 0.43 0.88


 = 0:02 0.99 0.67 0.76 0.58 0.85 1.15 0.61 1.08 1.05

II 0 1.11 0.89 0.78 0.85 1.05 0.46 0.73 0.96

n = 250; 0.6 0.49 1.05 0.71 0.83 0.57 0.85 0.97 0.93

szz = 1; 0.95 0.66 0.76 1.10 0.82 0.97 1.01 1.06 0.97


 = 0:02 0.99 0.53 0.89 1.04 0.99 1.20 0.95 0.75 0.51

III 0 0.75 0.89 0.73 0.44 1.05 1.13 0.66 0.94

n = 25; 0.6 1.11 1.20 0.74 0.84 1.15 1.05 0.69 0.92

szz = 1; 0.95 0.98 0.81 1.03 0.75 0.90 0.64 0.93 0.67


 = 0:2 0.99 0.81 1.29 1.08 0.72 1.01 0.99 1.17 1.06

Table 4: Kolmogorov-Smirnov one-sample statistics for testing the null hypothesis that the Saddlepoint density
is the true density.

We have chosen four di¤erent values of the ancillary statistics, namely f�4;�2; 0; amaxg, where amax

is a value just below the theoretical maximum for every ancillary and each of the three scenarios. For

the empirical distribution we had to use observations with values of the ancillary a in a neighbourhood

of the stated values since a is continuously distributed. A small bandwidth of 10�3 was chosen and we

ran the simulation until the required number of observations was achieved.
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5.4 Ancillarity Properties

Exact ancillarity can be proved only by analytical methods and no results are available or could be

obtained for our model.2 Simulations can be used, however, to gather evidence in �nite samples for both

the Efron-Hinkley and the signed-LR statistics. Figure 6 shows the density of the Efron-Hinkley statisic

based on these simulations for Scenario II and four di¤erent values of �; and similarly for the signed-LR

in Scenario II. Ancillarity holds if the densities do not change when the parameter � changes. Figure

6 shows for both the Efron-Hinkley and the signed-LR statistic that the distribution hardly changes as

we vary � from 0 to 0.99. For the empirical CDFs given in the appendix it is even harder to see the

di¤erence.

EH Ancillary

Β = 0
Β = 0.6
Β = 0.95
Β = 0.99
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SLR Ancillary

Β = 0
Β = 0.6
Β = 0.95
Β = 0.99

-4 -3 -2 -1 0
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Figure 6: Empirical Densities of approximate ancillaries for � = f0; 0:6; 0:95; 0:99g.

(a: Left): Efron-Hinkley Ancillary, n = 250; 
 = 0:02 (b: Right): Signed LR Ancillary, n = 25; 
 = 0:02:

A more formal comparison is provided by the Kolmogorov-Smirnov test statistics reported in Table

5, which test the null hypothesis that the distribution of the ancillary statistic is the same for �0 and

�1. The table only reports the upper triangle since the test is symmetric in �0 and �1; and the diagonal

�0 = �1 is trivial (hence no row �0 = 0:99 nor column �0 = 0). The test statistics are well below the

5% critical value of 1.36, e.g. for testing if the distribution of signed-LR when � equals 0 versus 0:99 is

1:002; and in this sense the distributions are not signi�cantly di¤erent for any of the parameter values in
2 It was for instance not possible to show that the model constitutes a group family, which would have implied the

existence of an exact ancillary.
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the relevant range � 2 [0; 1): The Efron-Hinkley has lower values for the Kolmogorov-Smirnov statistics

than the Signed-LR.

Efron-Hinkley

KS statistic �1 = 0:6 0:95 0:99

�0 = 0:0 0.680 0.534 0.626

0:6 � 0.707 0.894

0:95 � � 0.561

Signed-LR

KS statistic 0:6 0:95 0:99

�0 = 0:0 0.863 0.637 1.002

0:6 � 0.745 0.809

0:95 � � 0.805

n = 250; 
 = 0:02; szz = 1 n = 25; 
 = 0:02; szz = 1

Table 5: Kolmogorov-Smirnov two-sample statistics for testing H0 : pdf (aj�0) = pdf(aj�1), based on 100:000

replications: Critical value at 5% level equals 1:36:

Figures 6a and 6b show some further interesting features that are particular to the simple Keynesian

model considered. The signed-LR has been shown in many regular problems to be closely approximated

by a normal distribution, but in our model we see a clear cut-o¤ to the right of 0 (here aSLR = 0:09 and

aEH = 0:31)3 . This cut-o¤ is directly related to the critical set t1 = �
 n szz and is a consequence of the

global curvature of this model as explained above. Using Figure 2 we showed that when t1 crosses this

line, the complementary solution for � to the �rst order condition becomes the global maximum. The

signed-LR and Efron-Hinkley are calculated using this �̂ and cannot be larger than the cut-o¤ values.

Although the cut-o¤ points are independent of �; they change with other variables such as n; 
 or szz,

used to de�ne the three scenarios.

The Efron-Hinkley and signed-LR both appear to have good ancillarity properties, even in very small

samples and with weak instruments for a wide range of parameter values. They are therefore appropri-

ate candidates for conditioning using standard arguments involving relevance of reference distribution,

information recovery etc.. Below we show that, although these statistics have no information on the

parameters by themselves, they do contain valuable information about the distribution of the MLE.
3The fact that the density slopes down, rather than going straight down is a consequence of the kernel estimation method

used.

26



6 Conclusion

We have studied the simple Keynesian structural model à la Phillips (2006) Interest in this model that

was �rst analysed by Bergstrom (1962) was rekindled because of questions concerning the e¤ects of weak

instruments and because of competing explanations for the bimodality of the marginal distribution of

the MLE. This paper has contributed to this discussion �rst by providing a clear geometrical explanation

and secondly by investigating conditional distributions rather than the marginal distribution and to

show the importance of conditioning in this model. The geometrical representation proves instructive in

understanding the ancillaries used. We investigate the well known Efron-Hinkley ancillary, which in this

model equals the score- or a¢ ne ancillary, and a signed square root version of the likelihood ratio test,

with the sign based on the geometry developed here. Both ancillaries are shown to be almost perfectly

ancillary, even in very small samples and with weak instrument considered here. They are also shown

to contain important information about the distribution of the MLE. The degree of bimodality not only

depends on the strength of the instrument as Phillips (2006) has shown, but also depends heavily on the

value of the ancillary statistic. In practice it does not seem to matter which of the two ancillaries is used.

In some of the simulations there seems a slight preference for the Efron-Hinkley statistic, but this is not

a general result. The important point is that the value of the ancillary should be used when making

statements about the precision and properties of the MLE and inference should be carried out via the

conditional distribution given the ancillary, rather than via the marginal distribution.

We have further shown that the saddlepoint approximation is extremely close to the actual conditional

distribution using simulation. The saddlepoint approximation captures the bimodality of the distribution

perfectly. the approximation was so good that it could not be distinguished from the true distribution

and conclude that even in the cases considered here with small sample sizes, weak instruments and with

large or little bimodality, the saddlepoint approximation is excellent.
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7 Appendices

7.1 Appendix A

For one parameter Curved Exponential Models with canonical representation

p(x;�) = exp[t0�(�)� �(�)� h(t)];

with variance matrix

V ar (t) = �� = ��(�) =
@�(�)

@�

����
�=�(�)

;

the Efron Curvature (Efron, 1975) was originally de�ned as:

%� =

�
jM� j
�320(�)

�1=2
;

where:

M� =

0BB@ �20(�) �11(�)

�11(�) �02(�)

1CCA =

0BB@
�
@�
@�

�0
��

�
@�
@�

� �
@�
@�

�0
��

�
@2�
@�2

�
�
@�
@�

�0
��

�
@2�
@�2

� �
@2�
@�2

�0
��

�
@2�
@�2

�
1CCA :

In our model the canonical parameter is given by:

� =

0BB@ �1 (�)

�2 (�)

1CCA =
1

8

0BB@ 2
(1� �2)

�(1� �)2

1CCA ;
and the covariance matrix of the canonical statistic is:

�� = V ar (t) = nszz
4

(1� �)4

0BB@ (1� �)2 2
(1� �2)

2
(1� �2) 4(2=szz + (1 + �)
2

2)

1CCA :
It is easy to see that:

@�

@�
=

0BB@ � 1
2
�

1
4 (1� �)

1CCA ; @2�

@�2
=

0BB@ � 1
2


1
4

1CCA
and M becomes:

M� =

0BB@ n(2+szz

2)

(1��)2
2n(1+szz


2)
(1��)3

2n(1+szz

2)

(1��)3
2n(1+2szz


2)
(1��)4

1CCA ; jM� j =
2n2szz


2

(1� �)6 :

Therefore, in our model E¤ron Curvature equals:

%� =

0@ 2n2szz

2

(1��)6
n3(2+szz
2)3

(1��)6

1A1=2

=

�
2

szz

2

n(2 + szz
2)3

�1=2
:
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7.2 Appendix B

LEMMA 1. The MLE in this model is given by:

b� =
t2 + t1
 + sign(t1 + nszz
)

p
4nt2 + 8nt1
 + 4n2
2szz + t21


2 + 2nszzt1
3 + n2s2zz

4

2t1
 + t2 + nszz
2
;

t1 + nszz
 6= 0:

�̂ = 1� 2
p
n= (t2 � 
2n szz); t1 + nszz
 = 0:

Comment: For t1 + nszz
 6= 0 there is a unique global maximizer and for t1 + nszz
 = 0; their are

two distinct roots to the �rst order conditions are

�̂ = 1� 2
p
n= (t2 � 
2n szz)

Proof. Let b�1 and b�2 be the roots of the �rst order condition for the MLE, equation (19):

b�1 =
t2 + t1
 +

p
4nt2 + 8nt1
 + 4n2
2szz + t21


2 + 2nszzt1
3 + n2s2zz

4

2t1
 + t2 + nszz
2
;

b�2 =
t2 + t1
 �

p
4nt2 + 8nt1
 + 4n2
2szz + t21


2 + 2nszzt1
3 + n2s2zz

4

2t1
 + t2 + nszz
2
; (27)

De�ne the likelihood di¤erence for these two solutions:

�L(t1; t2; szz; 
; n) = L(b�1)� L(b�2); (28)

which, after simpli�cation, can be rewritten as:

�L(t1; t2; szz; 
; n) =
1

2(t2 + 
(2t1 + nszz
)
�

[
(t1 + nszz
)
p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
)) +

n(t2 + 
(2t1 + nszz
)�

Log(

p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
)) + 
(t1 + nszz
)p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
))� 
(t1 + nszz
)

)]: (29)

Since t2; szz; 
 and n > 0 and

t2 + 
(2t1 + nszz
) =
nX
t=1

(xt + yt)
2 + 2


nX
t=1

(xt + yt)zt + 

2

nX
t=1

z2t ;

=
nX
t=1

(xt + yt + 
zt)
2 > 0; (30)

we have three possibilities, depending on the value of (t1 + nszz
):
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(i) t1 + nszz
 = 0, which implies:p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
) + 
(t1 + nszz
)p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
)� 
(t1 + nszz
)

= 1; (31)

and hence that �L(t1; t2; szz; 
; n) = 0; since the numerator and denominator inside the Log function

in (29) are equal. This implies:

L(b�1) = L(b�2) (32)

for the two distinct roots 1� 2
p
n= (t2 � 
2n szz).

(ii) t1 + nszz
 > 0, which implies:p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
) + 
(t1 + nszz
)p

2(t1 + nszz
)2 + 4n(t2 + 
(2t1 + nszz
)� 
(t1 + nszz
)

> 1; (33)

and

�L(t1; t2; szz; 
; n) > 0; (34)

as can be seen from (29). Hence L(b�1) > L(b�2) and b�1 maximizes the likelihood globally.
(iii) t1 + nszz
 < 0 analogous to (ii) but leading to L(b�1) < L(b�2) and b�2 maximizing the likelihood

globally.

The global solution(s) therefore depend on sign(t1 + nszz
) as stated in the Lemma.

7.2.1 The A¢ ne or Score Ancillary

Barndor¤-Nielsen (1980) proposed the following matrix for A in his A¢ ne ancillary:

A =

�
@�

@�

�
?
��1=2: (35)

where � = ( @�@� )
0

?�t(
@�
@� )? is a (k� d)� (k� d) matrix, with (

@�
@� )? denoting a k� (k� d) matrix whose

column-vectors are linearly independent and orthogonal to the column vectors of ( @�@� ) and �t is the

covariance matrix of the minimal su¢ cient statistic t.

In a CEM (2,1) we have in particular:

(
@�

@�
)? =

����1t �� (�@�2
@�

;
@�1
@�

)
0
: (36)

Writing the 1� 2 matrix A
�
�̂
�
= ( bA1; bA2) which is �xed for given �̂; we have:

a = bA1(t1 � b�1) + bA2(t2 � b�2): (37)
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Using this expression and the equation that de�nes the estimate we can get expressions for t1 and t2 in

terms of b� and a:

t1 =
a� 4 bA2n� ab�(2� b�)� bA2szz
2(1� b�2) + (1� b�)2( bA1b�1 + bA2b�2)

(1� b�)( bA1(1� b�) + 2 bA2b�
) : (38)

t2 =
4 bA1n+ bA1szz
2(1� b�2) + 2
b�(1� b�)(a+ bA1b�1 + bA2b�2)

(1� b�)( bA1(1� b�) + 2 bA2b�
) : (39)

Equation (19) remains valid, and since e�; e�2 (or �̂1 and �̂2) and b� can be expressed in terms of t1 and
t2, we can use (26) to get this transformation. The main problem with this approach is that now we have

a system of simultaneous non-linear equations that can be di¢ cult to solve in closed form. Alternatively,

for a given pair (b�; a1) we can �nd an equivalent a¢ ne ancillary and use (38) and (39) to �nd t1 and t2.
We have used this technique to �nd values for t1 and t2 for a given value of a1 and di¤erent values for b�.
With these remarks, the saddlepoint approximation when conditioning on the signed likelihood ratio

ancillary similarly becomes:

f(b�;� j aSLR)e=c(aSLR)[ n

(1� b�)2 + 2t1
 + t2 + szz

2

4
]1=2[

(1� �)2

(1� b�)2 ]n=2
� exp

�
1

8
(b� � �)(
2szz(b� + � + 2) + t2(b� + � � 2) + 2
t1(b� + �)� : (40)

Since we are using again the a¢ ne ancillary to compute t1 and t2 we may think that the conditional

distribution results are also equivalent. But this is only true if there is a one-to-one transformation

between the two ancillaries. In fact, this is not the case.
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7.3 Appendix C : Conditional Saddlepoint Approximations

7.4 Efron-Hinkley statistic
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Figure 7: Saddlepoint Approximation for the MLE Density conditional on the Efron Hinkley Ancillary,n = 25,


 = 0:02; szz = 1; � = 0: (a: Left) 
 = 0:02 and (b: Right) 
 = 0:2
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Figure 8: Saddlepoint Approximation for the MLE Density conditioned on the Efron Hinkley Ancillary, n =

25, 
 = 0:02; szz = 1; � = 0:99: (a: Left) 
 = 0:02 and (b: Right) 
 = 0:2

32



7.5 Signed Likelihood Ratio statistic
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SLR = -1.
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Figure 9: Saddlepoint Approximation for the MLE Density conditioned on the Signed Likelihood Ratio Ancillary,

n = 25, 
 = 0:02; szz = 1; � = 0: (a: Left) 
 = 0:02 and (b: Right) 
 = 0:2
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Figure 10: Saddlepoint Approximation for the MLE Density conditioned on the Signed Likelihood Ratio Ancil-

lary, n = 25, 
 = 0:02; szz = 1; � = 0: (a: Left) 
 = 0:02 and (b: Right) 
 = 0:2
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7.6 Appendix D: Ancillarity Properties

7.6.1 Efron Hinkley Ancillary

Scenario I

EH Ancillary

Β = 0
Β = 0.6
Β = 0.95
Β = 0.99

-4 -3 -2 -1 0
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0.4
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Figure 11: (a: Left), Empirical Density; (b: Right), Cumulative Distribution Efron - Hinkley Ancillary, Sce-

nario I; n = 25; 
 = 0:02; szz = 1, � = f0; 0:6; 0:9; 0:99g

KS statistic � = 0:6 � = 0:95 � = 0:99

� = 0 0.771 0.85 0.597

� = 0:6 � 0.87 0.995

� = 0:95 � � 1.044

Table 6: Kolmogorov-Smirnov statistics for the EH ancillary in Scenario I Critical value at 5% = 1:36; Rep =

100:000
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Scenario III

EH Ancillary

Β = 0
Β = 0.6
Β = 0.95
Β = 0.99
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Figure 12: (a: Left), Empirical Density (b: Right), Cumulative Distribution Efron Hinkley Ancillary Scenari-

oIII: n = 25, 
 = 0:2; szz = 1; � = f0; 0:6; 0:9; 0:99g

KS statistic � = 0:6 � = 0:95 � = 0:99

� = 0 0.546 0.821 0.796

� = 0:6 � 1.04 0.416

� = 0:95 � � 1.111

Table 7: Kolmogorov-Smirnov statistics for the EH ancillary in scenario

III,Rep=100.000; Criticalvalueat5%=1.36
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7.6.2 Signed Likelihood Ratio Ancillary

Scenario II

SLR Ancillary

Β = 0
Β = 0.6
Β = 0.95
Β = 0.99
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Figure 13: (a: Left), Empirical Density (b: Right), Cummulative Distribution Signed LR Ancillary n = 250,


 = 0:02; szz = 1, � = f0; 0:6; 0:9; 0:99g

KS statistic � = 0:6 � = 0:95 � = 0:99

� = 0 1.093 0.561 0.590

� = 0:6 � 1.129 0.899

� = 0:95 � � 0.635

Table 8: Kolmogorov-Smirnov statistics for the SLR ancillary, n = 250, 
 = 0:02; szz = 1 , based on 100:000

replications Critical value at
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