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Abstract

An approximation to order T�2 is obtained for the bias of the full vector of least-
squares estimates in general stable but not necessarily stationary ARX(1) models with
normal disturbances. This yields generalizations, allowing for various forms of initial
conditions, of Kendall�s and White�s classic results for stationary AR(1) models. The
accuracy of various alternative approximations is examined and compared by simulation
for particular parametrizations of AR(1) and ARX(1) models. The results show that often
the second-order approximation is considerably better than its �rst order counterpart and
hence opens perspectives for improved bias correction. However, we also �nd that order
T�2 approximations are more vulnerable in the near unit root case than the much simpler
order T�1 approximations.

1. Introduction and framework

The statistical literature concerned with the use of asymptotics for approximating statistical
phenomena is vast. The overview by Pierce and Peters (1992) is one of a number of important
contributions and while this article and many others focus on the use of higher-order asymp-
totics to improve inference, there is also considerable interest in their application to analysing
the bias of ML estimators; see, for example, Cox and Snell (1968) and Copas (1988), who
discuss a general method for approximating the ML estimation bias to the order of T�1; where
T is the sample size, using an asymptotic expansion of the score function (see also Firth�s
contribution to the discussion in Pierce and Peters, 1992). While Firth (1993), on noting
that bias corrected ML estimators are, quite generally, second-order e¢ cient, shows that in
regular parametric problems this �rst-order term is removed by a suitable modi�cation of the
score function, Kass (1992) commented that when the �rst-order asymptotic approximation
to a density is poor but not horrible, the higher-order approximation usually mops up most of
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the error. One purpose of this paper is to examine this type of phenomenon in the context of
bias approximation in autoregressive models by comparing the �rst-order and the second-order
approximations in a number of cases.
The use of asymptotic expansions in approximating the moments of estimators in stable

autoregressive models has a relatively long history. The early work focused on the least-squares
estimator of the serial correlation coe¢ cient in the simplest autoregressive Gaussian process.
See, for example, Bartlett (1946), who found a �rst-order variance approximation, and Hurwicz
(1950), who obtained moment approximations for the case T = 3. Later White (1960) and
Shenton and Johnson (1965) found higher-order approximations in terms of powers of T for
the �rst two moments in the AR(1) model. For the case of an AR(1) model with an intercept,
Kendall (1954) and Marriott and Pope (1954) gave an approximation to the bias of the least-
squares estimator of the lagged-dependent variable coe¢ cient to the order of T�1. Higher-order
approximations to the bias in the vector of the least-squares coe¢ cient estimator in normal
autoregressive models with or without an intercept or with any further exogenous explanatory
variables were obtained by us in a very early version of this paper1, but remained unpublished
because until recently we couldn�t prove the general validity of these approximations. In Kiviet
and Phillips (2009), however, which focuses on improved variance estimation in autoregressive
models, we provide a general proof in which the order in a power of T is established of the
remainder term in any higher-order expansion yielding an approximation to �rst or higher-
order moments of a linear least-squares estimator. The proof only requires assumptions on the
existence of particular data moments and the di¤erentiability of the non-linear function of the
data moments which identi�es and establishes the least-squares estimator. These assumptions
are rather mild and will hold in the dynamic regression model to be examined here.
Research on the accuracy of the approximations published thus far has shown that the

higher-order results of White are very accurate and also that Kendall�s �rst-order approxima-
tion is often surprisingly good. For evidence on these points, see Sawa (1978) and Nankervis and
Savin (1988). Their exact results both con�rm the severity of the bias problem and demonstrate
the quality of some of the approximations. In the context of the AR(1) model with intercept,
Monte Carlo results by Orcutt and Winokur (1969) provide both additional evidence on these
matters and an illustration of how bias correction based on Kendall�s approximation can be
e¤ective in not only reducing bias but in lowering the mean-squared error (MSE) as well. This
latter point has been noted too by Rudebusch (1993), who uses Kendall�s approximation and
an approximation for higher-order AR models in bias corrected estimators when investigating
whether real GNP is trend-stationary or di¤erence-stationary. The �rst-order estimation bias
in higher-order autoregressive processes has been examined by Shaman and Stine (1988), and
in multivariate autoregressive processes by Tjøstheim and Paulsen (1983) and by Nicholls and
Pope (1988). Naturally, the accuracy of asymptotic approximations is limited and depends on
the order of the approximation, the actual size of the sample, but usually also on the model
parameters and design, and on initial conditions. If the accuracy of a �rst-order approximation
falls short for a speci�c case, then it seems recommended to examine a higher-order approx-
imation, although considerable analytic problems may be incurred. Evans and Savin (1981)
demonstrate the e¤ectiveness of particular higher-order results in the AR(1) model without
intercept.
For multi-parameter static simultaneous equations models the seminal paper of Nagar

(1959) provided approximations to the moments of consistent k-class estimators. In particular
they include a bias approximation to the order of T�1. The results were later con�rmed by
Kadane (1971) using the approach of small disturbance asymptotics. Mikhail (1972) suggested
that the �rst-order approximation to the bias may be inaccurate in some cases and he ex-

1This paper (same title) was presented at the Econometric Society World Conference 1995 held in Tokyo.
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tended Nagar�s approximation to the order T�2: Hadri and Phillips (1999) showed that the
higher-order approximation often yields a considerable improvement.
More recently, a number of papers have examined the small sample bias of the ordinary

least-squares (OLS) estimator in single dynamic regression models. Of particular relevance for
the current work are the papers by Grubb and Symons (1987), who derived �under normality
of the disturbances �the bias to the order T�1 for the lagged dependent variable coe¢ cient
estimator in a stable �rst-order dynamic regression model with �xed regressors, and that of
Kiviet and Phillips (1993) � henceforth KP �who gave the T�1 approximation of the full
coe¢ cient vector as well as the small disturbance asymptotic counterpart. KP (1994) give
extensions of these results to higher-order dynamic models, Kiviet et al. (1995) to systems of
seemingly unrelated regressions, and Iglesias and Phillips (2006) to QML estimation of autore-
gressive models with ARCH disturbances. Recently, the e¤ects of non-normal disturbances
on asymptotic approximations to the bias of the lagged dependent variable coe¢ cient in re-
gression models has been examined. Bao and Ullah (2007) �nd that the bias to order T�1

is only a¤ected by the skewness, while the fact that the bias to order T�2 is also a¤ected by
the kurtosis has been derived in Bao (2007). Though, this latter study does not examine the
actual accuracy in �nite samples of this higher-order approximation.
A general �nding in the above mentioned studies is that O(T�1) bias approximations can be

most helpful in constructing bias corrected estimators, but they do not always work well. This
is particularly so in �rst-order dynamic models when the autoregressive coe¢ cient approaches
unity, the so-called unit root case. This is in agreement with Kendall (1954, p.404) who
remarked for his �rst-order approximation in the simple AR(1) model with intercept that it
seemed of doubtful validity for an autoregressive parameter value close to unity; the numerical
results for that model in Nankervis and Savin (1988) corroborate this suspicion, especially for
really small sample sizes. It may thus be of interest to derive and to verify the accuracy by
simulation of higher-order approximations (similar to those of White, Mikhail and Bao) for the
full coe¢ cient vector of general though stable dynamic regression models. Higher-order bias
approximations in case the lagged dependent variable coe¢ cient is equal to unity have been
derived already in KP (2005) and proved to be highly accurate.
In this paper we focus on the stable �rst-order dynamic regression model with normally

distributed disturbances and expressions are obtained for the bias of the least-squares coe¢ cient
estimators to the order of T�2 by extending Nagar�s approach. Attention is paid to models
with either a �xed or random start-up. So, the focus of interest is the bias of the OLS estimator
of all the regression coe¢ cients in the model

y = �y�1 +X� + u; (1.1)

where y = (y1; :::; yT )0 is a T � 1 vector of observations on a dependent variable, y�1 is the y
vector lagged one period, i.e. y�1 = (y0; :::; yT�1)0; X is a full column-rank T � K matrix of
observations on K �xed or strongly exogenous regressors with K � 1 coe¢ cient vector �, and
u is a T � 1 vector of independent disturbances with zero mean and constant variance. We
shall not only examine the �xed start-up case �as in KP (1993, 1994) �but also the more
general case where y0 may be random. We shall �nd it convenient to rewrite (1.1) as

y = Z�+ u; (1.2)

where �0 = (�; �0) and Z = (y�1; X): The OLS estimator of � is

�̂ = (Z 0Z)�1Z 0y = �+ (Z 0Z)�1Z 0u; (1.3)

so that the bias of �̂ is given by

B� = E(�̂� �) = E[(Z 0Z)�1Z 0u]: (1.4)
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Below, higher-order approximations up to O(T�2) are derived for B� by expanding the right-
hand side of (1.3). All proofs are presented in Appendices. The �rst Appendix A contains a
Lemma with frequently employed results on expectations of certain products of quadratic forms
in vectors of independent normal random variables. The bias approximation for the general
case is presented in Section 2. Then in Section 3 we specialize this result for an AR(1) model
without or with an intercept, and compare our results with those already given in the literature.
In Section 4 we use empirical data to present numerical results for general autoregressive
distributed lag models of the ARX(1) type, and in the �nal Section 5 we summarize the
conclusions.

2. Second-order bias approximation

The starting point for our analysis is the following:

Assumption 1: In the �rst-order dynamic regression model y = �y�1 + X� + u, where the
scalar � and the K � 1 vector � are unknown coe¢ cients, we have: (i) stability, i.e. j�j < 1;
(ii) the matrix Z = (y�1; X) is such that Z 0Z = Op(T ); (iii) the T � (K + 1) matrix Z
has rank(Z) = K + 1 with probability one; (iv) the regressors in X are strongly exogenous;
(v) the disturbances follow u � N(0; �2IT ), with 0 < � < 1; (vi) the start-up value has
y0 � N(�y0; !2�2), with 0 � ! <1; (vii) y0 and u are mutually independent.

Note that ! = 0 represents the �xed start-up case, and for ! > 0 the start-up is random; if
! = (1� �2)�1=2 then yt has constant variance conditional on X: At the end of this section we
shall demonstrate that our results are still applicable when relaxing item (ii) of this assumption
and allowing for non-stationary regressors.
In what follows we shall condition on the observed matrix X. In order to distinguish the

�xed and stochastic elements of the lagged dependent explanatory variable y�1; we de�ne the
T � 1 vector �y��1 and the (T + 1)� (T + 1) diagonal matrix 
 as

�y��1 =

0BBBB@
�y0
x01�
�
�

x0T�1�

1CCCCA and 
 =

0BBBB@
! 0 � � 0
0 1 �
� � �
� � 0
0 � � 0 1

1CCCCA ; (2.1)

where (x1; :::; xT ) = X 0: We also de�ne the (T + 1)� 1 random vector

v = (u0; u
0) = (u0; :::; uT )

0 � N(0; �2IT+1); (2.2)

and introduce the T � T matrix

� =

0BBBBBB@
1 0 � � � 0
�� 1 �
0 �� 1 �
� � � � �
� � � � 0
0 � � 0 �� 1

1CCCCCCA with ��1 =

0BBBBBB@
1 0 � � � 0
� 1 � �
�2 � 1 � �
� � � � � �
� � � � 0

�T�1 � � �2 � 1

1CCCCCCA : (2.3)

Employing (2.1) through (2.3) we �nd from (1.1) that we may write

�y�1 = �y
�
�1 + (IT ; 0)
v;
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where !u0 = y0 � �y0: Premultiplying by ��1 yields

y�1 = �
�1�y��1 + �

�1(IT ; 0)
v = �y�1 +Gv; (2.4)

where we introduced the T � 1 vector

�y�1 = E(y�1) = �
�1�y��1; (2.5)

and the T � (T + 1) matrix
G = ��1(IT ; 0)
: (2.6)

The vector �y�1 denotes the deterministic part of y�1 (taken to be the mathematical expectation
conditional on X): The second term of (2.4), Gv; is the remaining stochastic part of y�1; which
has mean zero.
If we write �Z for the deterministic part of Z; then

�Z = E(Z) = (�y�1; X); (2.7)

while the zero-mean stochastic part of Z can now be expressed as

~Z = Z � �Z = (Gv;O) = Gve01; (2.8)

where G is given in (2.6) and ei denotes the K + 1 element unit vector with ith component
unity. The decomposition Z = �Z + ~Z will be used extensively below.
In the earlier KP papers, where we focused on the �xed start-up case, we had

~Z = Cue01; (2.9)

with C the T � T matrix

C =

0BBBBBB@
0 0 � � � 0
1 0 � �
� 1 0 � �
� � � � � �
� � � � 0

�T�2 � � � 1 0

1CCCCCCA = ��1L; where L =

0BBBBBB@
0 0 � � � 0
1 0 � �
0 1 0 � �
� � � � � �
� � � � 0
0 � � 0 1 0

1CCCCCCA : (2.10)

It is obvious that the present more general setup, where ~Z is given by (2.8), simpli�es to (2.9)
when we take ! = 0: We get for ! = 0

G = ��1(IT ; 0)
 = �
�1(0; L) = (0; C); (2.11)

which yields Gv = (0; C)v = Cu in the �xed start-up case. Obviously, the �xed part �Z of Z is
una¤ected by allowing for a random start-up (except that the expected value �y0 instead of y0
is put in the top-left position).
Before we proceed, we derive a simple result which is valid for any value of ! and allows

some simpli�cation of the expressions to be evaluated below, viz.:

G(0; IT )
0 = ��1(IT ; 0)
(0; IT )

0 = ��1L = C: (2.12)

Upon de�ning now the (K + 1)� (K + 1) matrix D as

D = Z 0Z (2.13)
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and exploiting the results given above, we �nd that the deterministic part of D is

�D = E(D) = E( �Z +Gve01)
0( �Z +Gve01) =

�Z 0 �Z + �2 tr(GG0)e1e
0
1: (2.14)

In order to keep the expressions in the results to follow as compact as possible we introduce
some further simplifying notation. We use the matrix Q to denote the (K+1)�(K+1) matrix
( �D)�1; and q1 denotes the �rst column of Q; whereas q1 has �rst element q11; hence:

Q = ( �D)�1; q1 = ( �D)
�1e1; q11 = e

0
1(
�D)�1e1: (2.15)

The following result is proved in Appendix B.

Theorem 1: Under Assumption 1, which according to KP (2009, Appendix A) guarantees the
order of the approximation error, the bias B� of the least-squares estimator �̂ in (1.3) can be
approximated by B�(T�2); where B� = B�(T�2) + o(T�2); with B�(T�2) =

��2[tr(Q �Z 0C �Z)q1 +Q �Z 0C �Zq1]
+�4f[�2q11 tr (GG0C) + 2q11 tr(Q �Z 0GG0C �Z) + 2q11 tr(Q �Z 0GG0C 0 �Z)

�2q11 tr(Q �Z 0GG0 �ZQ �Z 0C �Z)� q11 tr(Q �Z 0C �Z) tr(Q �Z 0GG0 �Z) + 4q01 �Z 0GG0C �Zq1
+2q01

�Z 0GG0C 0 �Zq1 � 4q01 �Z 0GG0 �ZQ �Z 0C �Zq1 � 2q01 �Z 0GG0 �ZQ �Z 0C 0 �Zq1
�q01 �Z 0GG �Zq1 tr(Q �Z 0C �Z)� 2q01 �Z 0C �Zq1 tr(Q �Z 0GG0 �Z)]q1

�[q11 tr(Q �Z 0GG0 �Z) + q01 �Z 0GG �Zq1]Q �Z 0C �Zq1
�2[q11 tr(Q �Z 0C �Z) + q01 �Z 0C �Zq1]Q �Z 0GG0 �Zq1
+2q11Q �Z

0[GG0C + CGG0 +GG0C 0] �Zq1

�2q11Q �Z 0GG0 �ZQ �Z 0[C + C 0] �Zq1 � 2q11Q �Z 0C �ZQ �Z 0GG0 �Zq1g
+�6f[8q211 tr (GG0GG0C)� 2q211 tr (GG0GG0) tr(Q �Z 0C �Z)� 4q211 tr (GG0C) tr(Q �Z 0GG0 �Z)

�12q11(q01 �Z 0GG0 �Zq1) tr (GG0C)� 8q11(q01 �Z 0C �Zq1) tr (GG0GG0)]q1
�2q211 tr (GG0GG0)Q �Z 0C �Zq1 � 8q211 tr (GG0C)Q �Z 0GG0 �Zq1g

��8[12q311 tr (GG0C) tr (GG0GG0) q1]:

Compared with B�(T�1); the bias to order T�1 derived in KP (1993, Theorem 7) and also
given in (B.10), we see that the approximation to order T�2 is far more complex.
When interest centers on one of the coe¢ cients of �; the required bias approximation can

be obtained on noting that �i = e0i�; i = 1; :::; K + 1: In particular � = e01� and E(�̂ � �) =
e01E(�̂ � �): Writing B�(T�2) = e01B�(T�2) for the bias approximation of �̂; we may deduce
the following result.

Corollary 1: Under Assumption 1, the bias B� of the least-squares estimator �̂ in (1.1)
can be approximated by B�(T�2); where B� = B�(T�2) + o(T�2); with B�(T�2) =

��2[q11 tr(Q �Z 0C �Z) + q01 �Z 0C �Zq1]
+�4[�2q211 tr (GG0C) + 2q211 tr(Q �Z 0GG0C �Z) + 2q211 tr(Q �Z 0GG0C 0 �Z)

�2q211 tr(Q �Z 0GG0 �ZQ �Z 0C �Z)� q211 tr(Q �Z 0C �Z) tr(Q �Z 0GG0 �Z)
+6q11q

0
1
�Z 0GG0(C + C 0) �Zq1 � 6q11q01 �Z 0GG0 �ZQ �Z 0C �Zq1

�6q11q01 �Z 0GG0 �ZQ �Z 0C 0 �Zq1 � 3q11q01 �Z 0GG �Zq1 tr(Q �Z 0C �Z)
�3q11q01 �Z 0C �Zq1 tr(Q �Z 0GG0 �Z)� 3q01 �Z 0GG �Zq1q01 �Z 0C �Zq1]

+�6[8q311 tr (GG
0GG0C)� 2q311 tr (GG0GG0) tr(Q �Z 0C �Z)� 4q311 tr (GG0C) tr(Q �Z 0GG0 �Z)

�20q211q01 �Z 0GG0 �Zq1 tr (GG0C)� 10q211q01 �Z 0C �Zq1 tr (GG0GG0)]
��8[12q411 tr (GG0C) tr (GG0GG0)]:
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Again only three terms of this formula constitute the bias approximation to the order of T�1;
viz.

B�(T
�1) = ��2[q11 tr(Q �Z 0C �Z) + q01 �Z 0C �Zq1]� 2�4q211 tr (GG0C) : (2.16)

Due to the way in which we present the various terms in the bias approximations given above,
one could easily get the impression that they also establish small disturbance approximations.
That is not the case, since all elements of Q depend on �. However, small disturbance asymp-
totic results can be readily obtained. From (2.14) and (2.15) we have

Q = [ �Z 0 �Z + �2 tr(GG0)e1e
0
1]
�1: (2.17)

It is easily veri�ed that this can be expressed equivalently as

Q = ( �Z 0 �Z)�1 � �2 tr(GG0)

1 + �2 tr(GG0)e01( �Z
0 �Z)e1

( �Z 0 �Z)�1e1e
0
1( �Z

0 �Z)�1: (2.18)

Introducing the notation

P = ( �Z 0 �Z)�1; p1 = Pe1; p11 = e
0
1p1; A = tr(GG

0)p1p
0
1; a = tr(GG

0)p11; (2.19)

Q can also be written as

Q = P � �2

1 + �2a
A = P � (�2 � �4a+ �6a2 � �8a3 + :::)A: (2.20)

Substituting (2.20) in the above approximation yields small disturbance approximations. Since
P = O(T�1); A = O(T�1) and a = O(1) all terms in the expansion (2.20) are of order T�1.
This implies that all terms in the large sample approximations presented above contain terms
of low up to in�nitely high order in �. Correspondingly, a �nite order small-� approximation
will omit terms that cannot be neglected from a large-T perspective. Therefore, we do not
expect it to be fruitful to further pursue small disturbance asymptotic results in the context
of stable dynamic models. Also note, that in the simplest case, where K = 0 and �y0 = 0, and
hence �Z = 0, the small disturbance approximation is not de�ned. This is also the case when
K > 0 and � = 0:
Before we analyse in the next sections the usefulness of the approximation in Theorem 1,

we want to discuss the restrictiveness of Assumption 1. The examination of any di¤erences of
the present result with similar results but derived under alternative or weaker conditions, such
as non-stable dynamic relationships with � = 1 or � > 1, models with higher-order dynamics
or which include weakly exogenous regressors and may have non-normal disturbance terms is
deferred to future research. It is easy to show, however, that the e¤ects of relaxing (ii), i.e.
the inclusion of non-stationary regressors which involve deterministic or stochastic trends, are
quite straightforward. Assume that for i = 1; :::; K + 1 the series of real positive constants di
is given, such that (K + 1)� (K + 1) diagonal matrix � = diag(�i) can be constructed which
for �i = T

�di yields Z� = Z� such that Z 0�Z� = Op(T ): Now �
�1(�̂ � �) = (Z 0�Z�)�1Z 0�u and

E[(Z 0�Z�)
�1Z 0�u] can be approximated to the order ofO(T

�2) by the formula of Theorem 1, upon
making the required substitutions. Note, however, that �̂�� = (Z 0Z)�1Z 0u = �(Z 0�Z�)�1Z 0�u;
so in order to �nd the bias in �̂ we have to premultiply by �: This leads to the following result.

Corollary 2: The formula of Theorem 1 also applies when Z contains non-stationary re-
gressors, but then the ith element of B� is approximated by terms of order O(T�1�di) and
O(T�2�di) respectively, with remainder term o(T�2�di); where the values di � 0 are as given
above.

Note that in the presence of non-stationary regressors the approximation indicated by B�(T�2)
still has a remainder term of o(T�2) but for particular elements it may be smaller. Hence, item
(ii) of Assumption 1 refers actually to a worst case situation, and relaxing it does not weaken
our results.
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3. Bias approximations for AR(1) models

In this section, we shall examine and compare the accuracy of our approximations of order
T�1 and order T�2 in various simple AR(1) models. We consider the bias of the least-squares
estimator for data that have been generated by a �rst-order Markov process, both for the
case where the data have known mean and for the AR(1) model with unknown mean. In
the latter case the least-squares estimator is obtained from a regression where an intercept
term has been included. We compare the results of our formulas with estimates of the true
bias obtained from extensive simulation experiments and also with the results obtained by the
approximation formulae that have been derived and published in the past for some special
members of this simple class of �rst-order autoregressive models. Some of these classic bias
approximations pertain to the AR(1) model with a �xed initial value of the process so that
the series is not strictly stationary; others have been derived on the basis of a random initial
value with a variance such that the series is sometimes covariance-stationary and sometimes
not. Our framework encompasses all these di¤erent situations.
In the various results below we shall a¢ x a superscript F to expressions referring to the

bias in models with a �xed start-up (! = 0). So, the random start-up is the default case, and
then the results involve some choice for !. We (also) put the letter M in the superscript when
the start-up value is such that the process is mean-stationary, and replace this by S if the
process is covariance stationary too, which can only occur in the random start-up case. For
clarity we also add the superscript label NC for results that pertain to the least-squares bias in
the AR(1) model with no constant term (which is equivalent to the model with known mean),
and C for the model with an intercept. The model with no intercept will be investigated �rst,
followed by the model with an intercept.

3.1. The AR(1) model without intercept

In this model the expectation of �̂ exists for T > 3, see Evans and Savin (1981, p.767). White
(1961) presents the �rst extensive analysis of �rst- and higher-order approximations of the
expectation and the variance of coe¢ cient estimators in the AR(1) model with no intercept.
Although he considers the case where the initial value of the series may be either �xed or
random, he also excludes this initial value from the least-squares estimation procedure. This
is irrelevant, of course, when y0 = 0, but otherwise it is not. White obtains his results by
integrating term wise an expansion of a complicated integrand and this yields a power series in
�, which he then reduces to a power series in T�1. For the model with zero �xed start-up (i.e.
y0 = 0, ! = 0, K = 0) White (1961, pp.87-89) �nds (note that j�j < 1) the small-� asymptotic
approximation:

W FM;NC
� (�5) =

�2(T � 2)
(T � 1)(T + 1)�+

12

(T + 1)(T + 3)(T + 5)
�3

+
18(T + 8)

(T + 3)(T + 5)(T + 7)(T + 9)
�5; (3.1)

where BFM;NC� = W FM;NC
� (�5) + o(�5): Since �2(T�2)

(T�1)(T+1) = �2T�1 + 4T�2 + O(T�3) and
supposing that (3.1) is accurate to order T�2; White (1996, formula 9) derives a result from
(3.1) which implies

W FM;NC
� (T�2) = �2�

T
+ 4

�

T 2
; (3.2)

where BFM;NC� = W FM;NC
� (T�2)+o(T�2): Shenton and Johnson (1965) examine the zero-mean

AR(1) model also and focus exclusively on the �xed start-up case. They distinguish explicitly
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between approximations in ascending powers of � and in descending powers of T respectively
and present results which are accurate to even higher orders of approximation than White�s.
They obtain (see their formula 18a for T > 6) the ninth-order small-� approximation

SJFM;NC� (�9) =
�2(T � 2)
(T + 1)[2]

�+
12

(T + 5)[3]
�3 +

18(T + 8)

(T + 9)[4]
�5

+
24(T + 12)[2]

(T + 13)[5]
�7 +

30(T + 16)[3]

(T + 17)[6]
�9; (3.3)

where x[n] = x(x � 2):::(x � 2n + 2) and BFM;NC� = SJFM;NC� (�9) + o(�9): Their separately
derived large-T result (formula 21a) generalizes (3.3). It says

SJFM;NC� (T�6) = �2�
T
+ 4

�

T 2
� 2 �

T 3
1� 8�2 + 4�4

(1� �2)2
+ 4

�

T 4
1� 30�2 + 12�4 � 4�6

(1� �2)3

�2 �
T 5
1� 352�2 � 204�4 � 64�6 + 16�8

(1� �2)4

+4
�

T 6
1� 995�2 � 2780�4 � 1240�6 + 80�8 � 16�10

(1� �2)5
; (3.4)

where B� = SJ
FM;NC
� (T�6) + o(T�6):

Specializing our results of Corollary 1 for this particular case (�y0 = 0; ! = 0; K = 0); where
the matrix �Z simpli�es to a vector of zero elements and the matrix �D to the scalar �2 tr(C 0C);
we �nd

BFM;NC� (T�1) = �2 tr(CC
0C)

[tr(C 0C)]2
(3.5)

and

BFM;NC� (T�2) = �2 tr(CC
0C)

[tr(C 0C)]2
+ 8

tr(CC 0CC 0C)

[tr(C 0C)]3
� 12tr(CC

0C) tr(C 0CC 0C)

[tr(C 0C)]4
: (3.6)

Note that it is not possible to compare (3.5) and (3.6) directly with the corresponding terms
in (3.3) or (3.4), because our results are not explicit in powers of T�1 or �: In fact, (3.5) also
contains terms of order o(T�1) and similarly, we could remove o(T�2) terms from (3.6). This
is called "�ltering" below, and involves exploiting the basic results collected in Appendix C.
Upon doing so for the case involving arbitrary values of �y0 and !; we �nd for model (1.1) with
K = 0 (see Appendix D for the proof):

Theorem 2: Under the conditions (i), (v), (vi) and (vii) of Assumption 1, the bias BNC�
of the OLS estimator �̂; obtained from a sample (t = 1; :::; T ) of the AR(1) model with
no intercept yt = �yt�1 + "t; can be approximated by the expression KPNC� (T�2); where
BNC� = KPNC� (T�2) + o(T�2); with

KPNC� (T�2) = �2�
T
+ 2

�

T 2

�
2 +

�y20
�2
+ !2

�
:

From this result we note that the order T�1 bias is not at all a¤ected by the nature (stochastic
or not) and the (expected) value (or variance) of the initial observation y0. That the order T�1

result is rather robust is also illustrated by the fact that Marriott and Pope (1954) already found
the bias approximation �2�=T for an estimator of the �rst-order serial correlation coe¢ cient
(which di¤ers slightly from our estimator �̂) in the Markov scheme or stationary zero-mean
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AR(1) process. Note that for �y0 = 0 and ! = 0 Theorem 2 re-establishes White�s speci�c
second-order result (3.2).
We shall now make some numerical comparisons between the various approximations given

above. Table 1 contains results on the bias of �̂ in the zero start-up mean-stationary AR(1)
model estimated without intercept. We present a Monte Carlo estimate of the true bias. All
Monte Carlo estimates presented in this study have been obtained from 500,000 simulation
experiments and therefore their accuracy will be such that we simply label them as "true
bias". Our estimates of BFM;NC� conform to three decimal places with corresponding values
published in Tsui and Ali (1992, 1994) and in the study by Vinod and Shenton (1996), who
calculate the exact bias for this speci�c case by Gaussian quadrature methods (and therefore
constitute approximations to the true bias too). We see that the two O(T�1) approximations
�2�=T and (3.5) are very close to each other for the smaller � values, especially for larger T
values. For high values of � they show a substantial di¤erence, even at T = 50. As a rule, both
O(T�1) approximations overstate the severity of the (negative) bias, except for � close to the
unit circle. In this area White�s simple formula still overstates the bias (by at least 15%), and
our formula understates it (by 15% or less). Hence, White�s simple formula is often reasonable,
but the more involved order T�1 formula (3.5) seems slightly better. A similar relationship is
not found for the two O(T�2) approximations. On the whole, White�s O(T�2) approximation
(3.2) is remarkably good, but less so close to the unit circle. In the model with sample size
T = 10 it overstates the bias for � > 0:5, whereas this happens for � > 0:8 in the T = 50 case.
The un�ltered second-order approximation (3.6) is less accurate, especially so close to the unit
root, where it substantially overstates the actual bias and is even worse than White�s �rst-order
formula. Hence, we �nd that for the near unit root case the o(T�2) terms that have not been
removed from BFM;NC� (T�2) do more harm than good. Furthermore, Table 1 shows that the
higher-order large-T Shenton and Johnson formulas give very poor results for large values of �.
Only when � and T are both small do the extra terms in the SJ formulas sometimes lead to an
improved approximation. This deterioration of the higher-order results may seem surprising
but it is less so when one considers the detrimental e¤ects for the near unit root case of the
(1 � �) terms in the denominators of the higher-order terms of (3.4). It is striking, however,
how accurate the ninth-order small-� approximation (3.3) is over the whole range of � and T
values examined here. Evans and Savin (1981, p.770) have already noted the high precision of
White�s �fth-order formula (3.1). Here we re-establish the impressive accuracy of the small-�
approximation, which is found to be superior especially when � is not at all small, viz. when �
is close to one. This phenomenon can be explained following similar arguments as used below
(2.20) when small disturbance approximations were disquali�ed for dynamic models. Formula
(3.2) has been obtained from (3.1) and obviously the O(�) approximation implicit in (3.1)
is accurate also to order O(T�1) and even to order O(T�2), because the T�1 and T�2 terms
happen to be of order O(�). For the reverse, however, we immediately observe that the O(T�1)
approximation is not accurate to O(�), and nor is the O(T�2) approximation. Even for the
O(T�6) approximation (3.4) we �nd after collecting all terms of order � that it involves:

�

�
� 2
T
+
4

T 2

��
1 +

1

T 2
+
1

T 4

�
6= �2� T � 2

(T � 1)(T + 1)

= �

�
� 2
T
+
4

T 2

��
1 +

1

T 2
+
1

T 4
+ :::

�
:

The above shows that it requires a large-T approximation of in�nitely large order to obtain a
small-� approximation which is correct to �rst-order in �. Hence, in this very special model,
where small disturbance asymptotics is not even de�ned, large sample asymptotics does not
seem very well suited either, because a large-T approximation of �nite order omits terms of
order �, which may be substantial when T is moderate and � not small.
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We shall now consider the mean-stationary AR(1) model with random start-up and no
intercept. Because White always excludes the initial value from the least-squares estimation
formula, his results with �xed start-up y0 = 0 can also be interpreted as having a sample size
of T � 1 and a random start-up with �y0 = 0 and ! = 1: So replacing his T with T +1 we �nd,
upon removing terms of smaller order than T�2, from his formula (9)

WM;NC
� (T�2) = �2 �

T + 1
+ 4

�

(T + 1)2
= �2�

T
+ 6

�

T 2
+ o(T�2); (! = 1) (3.7)

where BM;NC� = WM;NC
� (T�2) + o(T�2): This conforms indeed to the approximation formula

obtained from the general Theorem 2 for �y0 = 0 and ! = 1:
From Theorem 2 it is also simply found that the bias in the strongly stationary case, where

�y0 = 0 and !2 = (1� �2)�1; is

KP S;NC� (T�2) =
�2�
T

+
2�

T 2

�
2 +

1

1� �2
�
: (3.8)

Unlike (3.4) and (3.7), we see that now also the order T�2 term may be problematic for � values
close to unity. White analyzed the strongly stationary case too. In order to avoid confusion
when citing his results, we shall again replace his T with T +1 for models where y0 6= 0, and so
translate his bias approximations in terms of our framework. Thus, White (1961, p.90) yields

W S;NC
� (�5) = �2 T � 1

(T + 2)[2]
�+ 2

T 2 + 10T � 13
(T + 6)[4]

�3

+4
T 4 + 28T 3 + 180T 2 + 37T + 24

(T + 10)[6]
�5; (3.9)

where BS;NC� = W S;NC
� (�5) + o(�5): Note that in (3.9) the term of order � does contain all

O(T�1) contributions, but not all those of order O(T�2); as was the case in (3.1). Now all
coe¢ cients of the power series in � involve contributions of order O(T�2) and an in�nite power
series in � is required in order to achieve accuracy of order O(T�2): White (1961, formula 11)
reduces the terms of (3.9) to a large-T approximation, and then conjectures

W S;NC
� (T�2) =

�2�
T + 1

+
2�

(T + 1)2
+

2�

(T + 1)2
�
1 + �2 + �4 + :::

�
:

From this we deduce

W S;NC
� (T�2) =

�2�
T

+
4�

T 2
+
2�

T 2
1

1� �2
+ o(T�2)

=
�2�
T

+
2�

T 2

�
2 +

1

1� �2
�
+ o(T�2); (3.10)

which is in agreement indeed with our (3.8).
Table 2 contains numerical results for the random start-up strongly stationary model with

known mean (no intercept). Upon comparing our simulated BS;NC� values, which correspond
to 3 decimal places with Sawa�s (1978) exact results, with those of Table 1, we note that
the bias in the random start-up model is less serious, especially so for large � values and
for smaller sample sizes. The simple �2�=T approximation, which is the same as for the
�xed start-up case (where it already involved an overstatement of the actual bias), is not very
accurate now, especially when T is small. Our un�ltered O(T�1) formula BS;NC� (T�1), which
is obtained by substituting K = 0; �y0 = 0 and ! = (1� �2)�1=2 in (2.16), is now much better,
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although it is extremely poor for the near unit root case. The same quality di¤erence is found
for the two O(T�2) approximations. The un�ltered second-order approximation BS;NC� (T�2)
is better than KP S;NC� (T�2) given in (3.8), which does not contain any o(T�2) terms. The
latter is extremely bad for � close to unity (as already predicted); then it is even worse than
the �rst-order approximations. The un�ltered second-order approximation, however, behaves
quite satisfactorily, even close to the unit circle, where it is much better in this model than
the small-� approximation (3.9). The latter is only better when � is really small, but for �
close to unity it becomes obvious that in this model any �nite order small-� approximation
has an approximation error of order O(T�2). It appears that our un�ltered approximation
BS;NC� (T�2) is to be preferred here, because its approximation errors are o(T�2) whereas its
accuracy with respect to powers of � does not seem to be bad either.
Hence, from Tables 1 and 2 we �nd mixed evidence on the superiority of a second-order

large-T approximation over its �rst-order component. Even in the simplest AR(1) model the
bias does not depend exclusively on T , but also on � (and possibly �y0 and !). We established
that the accuracy of the large-T approximation may seriously deteriorate in a particular area
of the parameter space of � when an extra term of the power series with respect to T�1 is
taken into account.
We did not perform calculations for cases where the process is not mean-stationary, i.e.

�y0 6= 0, nor for non covariance-stationary cases with random start-up, i.e. ! 6= 0 and !2 6=
(1 � �2)�1: For these, the �ltered T�1 and T�2 approximations are given by Theorem 2, and
un�ltered approximations follow directly from Corollary 1. Since for these settings the order
T�2 term of KPNC� (T�2) does not have a factor (1 � �) in its denominator, we expect that
the �ltered approximation of Theorem 2 behaves reasonably well here. White (1961, p.92)
presents an approximation of order O(�) for the special case ! = 0 and y0 = �y0 = c�; viz.

WNC
� (�) =

�2�
T + 2 + c2

; (3.11)

where BNC� = WNC
� (�) + o(�): This result can be rewritten as

WNC
� (�) =

�2�
T

�
1 +

1

T

�
2 +

�y20
�2

���1
=
�2�
T

+
2�

T 2

�
2 +

�y20
�2

�
+ o(T�2)

and from Theorem 2 we �nd that this precisely yields the O(T�2) approximation of the bias
in �̂:

3.2. The AR(1) model with an intercept

Turning now to the only slightly more general AR(1) model with unknown mean, we �nd that
the older literature provided only very few results, viz. the order T�1 approximation for �̂ given
by Marriott and Pope (1954, p.394) and by Kendall (1954, p.404), apparently in the strongly
stationary model. Strictly speaking, they did not examine the bias in the regression estimator
but in various estimators of the serial correlation coe¢ cient. As they mention, however, this
bias is equivalent to the least-squares bias to the order of T�1. They �nd

MP S;C� (T�1) = �1 + 3�
T

; (3.12)

where BS;C� = MP S;C� (T�1) + o(T�1): This result has been con�rmed by several authors, see
for example Maekawa (1983). The �rst-order bias in the estimator for the intercept in the
strongly stationary model has been obtained by Tanaka (1983, p.1226). He presents

T S;C� (T�1) =
�

T

1 + 3�

1� � ; (3.13)
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where BS;C� = T S;C� (T�1) + o(T�1):
It is obvious that Theorem 1 provides approximations to order T�2 for any random or �xed

start-up parametrization of this model (K = 1) upon substitution of X = (1; :::; 1)0 and the
appropriate values of �0 = (�; �); �; ! and �y0: By introducing

y�t =
1

�

�
yt �

�

1� �

�
; t = 0; 1; :::; T (3.14)

it is easy to see that the general AR(1) model with intercept can be rewritten as

y�t = �y
�
t�1 + �

� +
1

�
"t; where �� = (�; ��)0 with �� � 0:

Clearly the distribution of �̂� = (�̂; �̂
�
)0 and thus its bias (approximation) are determined by

the actual values of �; ! and the mean of the transformed start-up value

�y�0 =
1

�

�
�y0 �

�

1� �

�
(3.15)

only. Hence, this implies invariance of �̂� with respect to �; � and �y0 in the mean-stationary
case, where �yt = �=(1� �) and �y�t = 0 for t = 0; :::; T:
Focusing on the transformed mean-stationary case (3.14), and specializing the result of

Theorem 1 for � = 1; � = 0; �y0 = 0 and �Z = (0; �); where � is a column of unit elements, we
�nd that Q is a diagonal matrix now, so that �Zq1 = 0 and e02q1 = 0: Therefore all terms of
e02B

M;C
�� (T�2) vanish and we �nd that the least-squares estimator of �� is unbiased to the order

of T�2 in the mean-stationary AR(1) model with unknown intercept, i.e. BM;C�� (T�2) = 0: From
this we can show that the approximations (3.12) and (3.13) match, even in the mean-stationary
model, for the following reasons. Note that

�̂
�
=
1

T

TP
t=1

y�t � �̂
1

T

TP
t=1

y�t�1 =
1

�
�̂ � 1� �̂

1� �
�

�
=
�̂ � �
�

� �̂� �
1� �

�

�
; (3.16)

from which it is easy to derive

BM;C� = �E(�̂
�
)� �

1� �B
M;C
� = � �

1� �B
M;C
� + o(T�2): (3.17)

In the mean-stationary case, the bias approximation formula for �̂ simpli�es considerably as
well. This is due again to �Zq1 = 0; but also to q11 = [tr(GG0)]�1; q22 = T�1 and �ZQ �Z 0 = T�1��0:
From Corollary 1 we obtain

BM;C� (T�2) = �T�1[tr(GG0)]�1�0C�� 2[tr(GG0)]�2 tr(GG0C)
+T�1[tr(GG0)]�2[2�0GG0C�+ 2�0GG0C 0�� 3T�1�0GG0��0C�]
�T�1[tr(GG0)]�3[2�0C� tr(GG0GG0) + 4�0GG0� tr(GG0C)]
+8[tr(GG0)]�3 tr(GG0GG0C)� 12[tr(GG0)]�4 tr(GG0C) tr(GG0GG0);(3.18)

which for ! = 0 yields the counterpart of (3.6) for the model with unknown intercept. From
Corollary 1 we can also obtain for the general AR(1) model with unknown intercept a com-
prehensive result as in Theorem 2, from which all o(T�2) contributions have been removed by
exploiting the basic results collected in Appendix C. It is given below (see Appendix E for the
proof).

Theorem 3: Under Assumption 1, the bias BC� of the OLS estimator �̂; obtained from a
sample (t = 1; :::; T ) of the AR(1) model yt = � + �yt�1 + "t; can be approximated by the
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expression KPC� (T
�2); where BC� = KP

C
� (T

�2) + o(T�2); with

KPC� (T
�2) = �1 + 3�

T
� 1� 3�+ 9�

2

T 2(1� �) +
1 + 3�

T 2

"
1

�2

�
�y0 �

�

1� �

�2
+ !2

#
:

From this result, which is in agreement with formula (8) from Bao (2007), we directly obtain
the special result for the mean-stationary model with �xed start-up

KP FM;C� (T�2) = �1 + 3�
T

� 1� 3�+ 9�
2

T 2(1� �) ; (3.19)

where BFM;C� = KP FM;C� (T�2)+o(T�2): In the random start-up model we �nd for the strongly
stationary case

KP S;C� (T�2) = �1 + 3�
T

� �

T 2(1� �)

�
9�� 3� 2

1 + �

�
; (3.20)

where BS;C� = KP S;C� (T�2) + o(T�2): Note that from these and (3.17) �ltered second-order
approximations for the bias in the intercept readily follow.
From the second-order terms of all the approximations for BC� given above (and even for

the �rst-order terms of BM;C� ), it seems obvious that the factor (1� �) will again lead to poor
approximations when � is close to unity. Note that randomness of the initial value and an
expectation of the initial value that deviates from the mean-stationarity value both produce a
positive contribution (if � > �0:33) to the order T�2 term of the bias. Hence, the bias, which
is generally negative for positive �, is expected to be smaller when �y0 6= �=(1 � �) and also
when the start-up value is random (as we already found in the model with no intercept). That
among mean-stationary processes those with a �xed start-up have a slightly more serious bias
than those with a covariance-stationary random start-up is also suggested by the di¤erence in
distribution function established in Evans and Savin (1984, p.1265). The order T�1 bias which
follows from Theorem 3 re-establishes the classic result by Marriott and Pope and by Kendall
for the strongly stationary case, but it shows that this approximation is much more general
and is valid irrespective of the values of !; �y0; � and �; only the second-order bias is found to
be a¤ected by ! and by [�y0 � �=(1� �)]=�:
In Tables 3 and 4 we present numerical results for the mean-stationary AR(1) model with

unknown intercept for the �xed start-up case and the strongly stationary random start-up
case respectively, and choose � = 0. Above we established that in those cases the estimator
of the intercept is unbiased to order T�2 and indeed, the actual bias of the intercept found
(but not tabulated) was extremely close to zero over the whole range of � and T values
(note that this would not necessarily have been the case for �y0 6= �=(1 � �) or � 6= 0): We
notice that the bias in �̂ is substantially bigger than in the model with no intercept, and
ranges from about 10% (at T = 50) to 40% and above (at T = 10) of the actual value of
�. As predicted by the approximations, the bias is slightly more serious in the �xed start-up
model. From Table 3, which contains results on the �xed start-up model, we �nd that the
�ltered order T�1 approximation, i.e. the classic �(1+ 3�)=T result of (3.10), understates the
actual bias, especially when the bias is really serious (this is contrary to our �nding in the
known intercept model, where White�s �rst-order approximation produces overstatements).
Again, the un�ltered T�1 approximation gives smaller values than its �ltered counterpart,
and hence it performs rather poorly here, especially for large � values. The two alternative
order T�2 approximations usually produce an overstatement of the actual bias though they
are quite accurate when � is rather small and T is not too small. However, as expected, the
�ltered approximation is very bad for � close to unity, whereas the un�ltered version behaves
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appropriately over the whole range, although for the very small sample size the simple order
T�1 approximation is to be preferred for large � values.
From Table 4 we see that the classic �rst-order result is exceptionally good in the strongly

stationary random start-up model. Especially for � close to unity, it is much better than the
un�ltered order T�1 approximation and even better than the �ltered second-order approxi-
mation. From the two second order approximations the un�ltered one has to be preferred.
Filtering of the second-order approximation again ruins the accuracy close to the unit root.
Note, however, that for � close to one the strongly stationary AR(1) model can be expected to
show odd behaviour (and does not approach the standard unit root with drift process) since
�! 1 involves here an in�nitely large value for the variance of all elements of the process.

4. Bias approximations for ARX(1) models

In this section we examine the actual bias and the quality of our approximations in models of
more practical interest. We consider two types of stylized ARX(1) models and start with the
trend-stationary model

yt = �yt�1 + �1 + �2t+ �"t; (4.1)

where "t � i:i:d:N(0; 1); t = 1; :::; T: For this model one can derive

�yt = �
�
1 + �

�
2t;

with ��1 = �y0 =
�1����2
1�� and ��2 =

�2
1�� :

(4.2)

We shall examine this model for a range of � values in two di¤erent settings, viz. for (A)
��1 = 0; �

�
2 = 0; y0 = 0; � = 1 and for (B) �

�
1 = 4:64; �

�
2 = 0:04; y0 = 4:76; � = 0:05: In the �rst

setting the data generating process conforms to that of Tables 1 and 3; only the estimation
equation di¤ers. The second setting mimics some of the empirical �ndings for US real GNP
for the annual time-series from 1908 on. Model (4.1) is certainly not a perfect speci�cation for
this data, but some of its characteristics are nevertheless reasonably well captured, especially
when the parameter values are � = 0:9; �1 = 0:5; �2 = 0:004; � = 0:05 with initial observation
y0 = 4:76: So, by varying

�; �2 = (1� �)��2; �1 = ��1 + �(��2 � ��1); (4.3)

we can now examine the bias of least-squares estimators in a family of �rst-order trend-
stationary models with common deterministic trend pattern (4.2). Note that due to the
presence of this linear trend in model (4.1), it does not satisfy Assumption 1; nevertheless
we can exploit Theorem 1 under the interpretation given by Corollary 2. The present frame-
work, where j�j < 1, does not permit a similar analysis of di¤erence-stationarity for �rst-order
integrated processes; the bias of least-squares estimators in such models has been examined in
KP (2001).
In setting (A) we obviously have �y�1 = 0, so �Z = (0; X); hence, the matrix Q is block-

diagonal and therefore �Zq1 = 0 = e0iq1 for i = 2; 3: From this it follows that BCT� = o(T�2)
and so for setting (A) we will only examine BCT� : Note that we use the superscript label CT
to indicate that the present �rst-order autoregressive model includes both a constant and a
linear trend. Table 5 presents the results on BCT� for both settings (A) and (B). With respect
to �̂ these two settings give almost similar results. We �nd that for high values of � and very
small values of T the bias is extremely high. For � < 0:9 the second-order approximation is
strikingly accurate, and much better than the �rst-order approximation. For values of � closer
to one, the second-order approximation understates the actual bias, but much less so than the
�rst-order formula, even at sample size T = 50. For this type of model, which is often used to
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analyse the alternatives of trend-stationarity and di¤erence-stationarity, high values of � are
usually very relevant. We see that standard asymptotic inference may then be misleading and
some form of bias correction seems most appropriate. However, from the simulation results it is
obvious, that a bias correction to merely �rst-order will yield estimates that are still defective.
Table 6 shows the results for the estimators of the other coe¢ cients in model (4.1) under

setting (B). There is a severe positive bias in the estimate of the intercept, especially when � is
large, and again the second-order approximation is substantially better. The same holds for the
estimate of the linear trend coe¢ cient. Note that the �rst- and second-order approximations
for �̂2 are actually accurate to a higher-order here, due to Corollary 2, and so is �̂:
Next we turn to a di¤erent type of model and make use of a data set analyzed and published

in Davidson and MacKinnon (1985). They use the ARX(1) speci�cation to regress the natural
logarithm of housing starts (hs) on its �rst lag and on the �rst lag of the natural logarithm of
gross national expenditure in 1971$ (y), the �rst lag of real interest rates (RR) and a constant.
These are Canadian quarterly data and the length of the series is 113. Although we know
that the ARX(1) model probably involves a misspeci�cation for these data, see Kiviet and
Dufour (1995), we can perfectly well use them and the ARX(1) speci�cation here merely for
illustrative purposes. This is because we shall again use the empirical data only to obtain
a realistic matrix X and start-up value y0; and to make a relevant choice for the coe¢ cient
values. In line with (4.2), we use now stylized values for the long-run multipliers of the two
exogenous regressors and for the standard deviation of the disturbances. Over the period
1956(1) to 1982(4) ordinary least-squares yields:

hs = 0:610hs�1 + 2:48 + 0:183y�1 � 0:041RR�1 (4.4)

(0:070) (0:538) (0:055) (0:009)

Hence, the long-run multipliers with respect to y and RR are 0.55 and -0.08 respectively, and
in the longrun relationship the intercept is 5.34. The estimate of � in (4.4) amounts to 0.142.
These results prompt us to examine the true and the approximated bias of the least-squares

coe¢ cient estimator in the data generating process:

hst = �hst�1 + 5(1� �) + 0:5(1� �)yt�1 � 0:1(1� �)RRt�1 + 0:15"t
with "t � i:i:d:N(0; 1); t = 1; :::; T:

(4.5)

We do this for a range of values for � and T . Tables 7 and 8 present the results, which again
indicate both the need for and the accuracy of asymptotic expansion methods to assess the
�nite sample bias in empirical ARX models when the sample size is moderate or small.
For this data generating process again very substantial relative magnitudes of the bias are

found in a very small sample of T = 10. Even when � < 0:8, bias values are found that are
several times larger than the actual coe¢ cient value. Also for larger samples and � close to the
unit circle, the least-squares estimate of � shows a very substantial bias. We have to conclude
that the standard type of analysis in such a model (where � is such that R2 is about 0.85)
is almost useless. In the T = 50 case the relative bias is found to be moderate for � < 0:7.
Only when at least 100 observations are used is reliance on consistency vindicated for the
least-squares estimator provided that � is not too close to the unit circle.
From the Tables 7 and 8 we also see that even in the T = 10 case alternative but least-

squares based methods can be developed and employed to get improved estimators of the
unknown parameter values. For � < 0:9, the B�(T�2) approximation works extremely well and
provides a substantial improvement over the �rst-order approximation. It seems worthwhile
to develop and examine bias correction procedures in which the approximation formula is
evaluated on the basis of the original least-squares estimator which, eventually in an iterative
procedure, is then used in an attempt to remove the bias while maintaining or even improving
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the e¢ ciency (MSE) of the resulting estimator. When T is large (� 100) and � substantial
(around 0.8) then the relative bias may still be rather large (in the present model for the �2
estimate and for the intercept this bias is above 10%), while the T�2 approximation is extremely
accurate (except close to the unit circle) and much better than the T�1 approximation. So,
even in ARX(1) models of moderately large sample size, the B�(T�2) based approximation
procedures can be used at least to signal possible bias problems. When minor, such information
may supplement any other (test) evidence on the adequacy of both the model speci�cation
and the inference procedures used. When substantial, then �nite sample bias problems are
diagnosed, and the application of some bias correction procedure seems advisable.

5. Conclusions

After considerable analytic e¤orts we have obtained an expression that includes theO(T�1) and
the O(T�2) terms of the bias in the full vector of least-squares estimators of the coe¢ cients of
a stable ARX(1) model with independent and identically distributed normal disturbances and
any given (normal) distribution of the initial start-up value. This estimator coincides with the
(under standard regularity assumptions consistent but biased) maximum likelihood estimator
conditional on the initial value of the dependent variable. In the ARX(1) class of regression
models the regressor matrix includes an arbitrary number of strongly exogenous explanatory
variables in addition to one weakly exogenous regressor: the one period lagged dependent
variable. For very special cases, viz. those with no exogenous regressors or with just a constant
term, approximations for the bias (mainly of �rst-order) were obtained some decades ago. Most
of these earlier results are explicit in powers of T�1, whereas our approximations, because of
their generality, are in more compound terms and the dependence of the order of magnitude
of the various terms on powers of T is implicit. As a consequence our O(T�1) approximation
also includes elements of terms that are actually o(T�1), and our O(T�2) approximation, in
its most general form given here in Theorem 1, contains elements of terms that are actually
o(T�2). These o(T�2) elements are, of course, not necessarily negligible when evaluated for
�nite T . Therefore, evaluation of our approximations in the just mentioned very special models
yields results that are di¤erent from those provided by the earlier approximations. Only in
special cases can all smaller order contributions be removed. By doing so, we have been able
to re-establish and extend some classic results. Notably in Theorem 3, we produced an explicit
second-order bias approximation for any variant of the normal AR(1) model with unknown
intercept.
In a number of numerical experiments we �nd that the �nite sample bias of least-squares

estimators in ARX(1) models may be very substantial, especially when either or both the
sample size is small and the dynamic adjustment process captured by the model is slow. In
general, the second-order bias approximation is found to be very accurate in ARX(1) models,
and it is also found to yield an, often very substantial, improvement over the �rst-order ap-
proximation. In the more speci�c types of models which contain no arbitrary regressor vectors,
but only an intercept with either a known or unknown intercept value, the picture is di¤erent.
We came across some pathological cases, where higher-order approximations are found to be
more vulnerable in the neighbourhood of the non-stationarity region of the parameter space
(� close to unity) than �rst-order approximations are. This is especially true of the �ltered
approximations, from which any smaller order contributions have been removed, but which
then have terms involving (1 � �) factors in the denominator, giving unstable results for �
close to one. For some of these models expansions in powers of � are available, and these are
then to be preferred to expansions in powers of T�1.
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Appendices

A. Auxiliary results on expectations involving quadratic forms

In Appendix B we shall present a proof of Theorem 1. The analysis is extensive and involves
numerous evaluations of expectations of products up to four quadratic forms in normal vari-
ables. We commence by stating in this appendix some essential basic results used repeatedly
in the subsequent analysis.

Lemma 1: Let A1; A2 and A3 be a symmetric T � T matrices and B an arbitrary T � T
matrix. Let the T � 1 random vector " be such that " � N(0; �2IT ), then the following results
hold:

E("0A1")("
0B") = �4[tr(A1) tr(B) + 2 tr(A1B)]; (A.1)

E["0A1"� �2 tr(A1)]("0B") = 2�4 tr(A1B); (A.2)

E(""0B""0) = E("0B")""0 = �4[tr(B)IT +B +B
0]; (A.3)

E["0A1"� �2 tr(A1)]""0 = 2�4A1; (A.4)

E("0A1")("
0A2")("

0B") = �6[tr(A1) tr(A2) tr(B) + 2 tr(A1) tr(A2B)

+2 tr(A2) tr(A1B) + 2 tr(B) tr(A1A2) + 4 tr(A1A2B) + 4 tr(A2A1B)]; (A.5)

E["0A1"� �2 tr(A1)]("0A2")("0B") = �6[2 tr(A2) tr(A1B) + 2 tr(B) tr(A1A2)
+4 tr(A1A2B) + 4 tr(A2A1B)]; (A.6)

E["0A1"� �2 tr(A1)]2"0B1" = �6[2 tr(B) tr(A1A1) + 8 tr(A1A1B)]; (A.7)

E(""0A1""
0B""0) = E("0A1")("

0B")""0 = �6[tr(A1) tr(B)IT + tr(A1)(B +B
0)

+2 tr(B)A1 + 2 tr(A1B)IT + 2(A1B +BA1 + A1B
0 +B0A1)]; (A.8)

E["0A1"� �2 tr(A1)]""0B""0 = E["0A1"� �2 tr(A1)]("0B")""0 =
�6[2 tr(B)A1 + 2 tr(A1B)IT + 2(A1B +BA1 + A1B

0 +B0A1)]; (A.9)

E["0A1"� �2 tr(A1)]2""0 = �6[2 tr(A1A1)IT + 8A1A1]; (A.10)

E("0B")
Q3
j=1("

0Aj") = �
8ftr(A1) tr(A2) tr(A3) tr(B)

+2[tr(A1) tr(A2) tr(A3B) + tr(A1) tr(A3) tr(A2B) + tr(A1) tr(B) tr(A2A3)

+ tr(A2) tr(A3) tr(A1B) + tr(A2) tr(B) tr(A1A3) + tr(A3) tr(B) tr(A1A2)]

+4[tr(A1) tr(A2A3B) + tr(A1) tr(A3A2B) + tr(A2) tr(A1A3B) + tr(A2) tr(A3A1B)

+ tr(A3) tr(A1A2B) + tr(A3) tr(A2A1B) + 2 tr(B) tr(A1A2A3)]

+4[tr(A1A2) tr(A3B) + tr(A1A3) tr(A2B) + tr(A1B) tr(A2A3)]

+8[tr(A1A2A3B) + tr(A3A1A2B) + tr(A1A3A2B) + tr(A3A2A1B)

+ tr(A2A1A3B) + tr(A2A3A1B)]g; (A.11)

E["0A1"� �2 tr(A1)]3"0B" = �8[8 tr(A1A1A1) tr(B) + 12 tr(A1A1) tr(A1B)

+48 tr(A1A1A1B)]: (A.12)
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Proof of Lemma 1: It is well-known that E"0B" = �2 tr(B): In Magnus (1978) the results
(A.1), (A.5) and (A.11) are proved for a symmetric matrix B: Our slightly more general
results easily follow upon using that "0B" = "0[1

2
(B + B0)]" = "0A0"; where A0 = 1

2
(B + B0) is

symmetric. Now result (A.1) is easily proved since tr(A0) = tr(B) and tr(A1A0) = tr(A1B);
due to the symmetry of A1: Results (A.5) and (A.11) follow in a similar manner.
Result (A.3) is found as follows. Note that the (i; j)-component of ""0 is "i"j; which can be

written as a symmetric quadratic form in the T � T matrix J; de�ned as:

"i"j = "
0ei"

0ej = "
0eie

0
j" = "

0[
1

2
eie

0
j +

1

2
eje

0
i]" = "

0J":

Hence, the (i; j)-component of E("0B")""0 can be expressed as E("0B")"0J"; and applying result
(A.1), we �nd that this is equal to �4[tr(J) tr(B)+ 2 tr(JB)]; which simpli�es to �4[tr(B)�ij +
e0i(B + B

0)ej]; where �ij = 1 for i = j and �ij = 0 otherwise. Now (A.3) directly follows.
Similarly, upon using (A.5), we �nd that the (i; j)-component of E("0A1")("0B")""0 can be
expressed as E("0A1")("0B")"0J" = �6[tr(A1) tr(B)�ij + tr(A1)e

0
i(B + B

0)ej + 2 tr(A1B)�ij +
2 tr(B)e0iA1ej + 2e

0
i(A1B + BA1 + A1B

0 + B0A1)ej]; which yields (A.8). Result (A.4) follows
from (A.3) and the symmetry of A1; (A.6) and (A.7) follow from (A.5) and (A.1), and so on.

B. Proof of Theorem 1

We proceed by applying a Nagar type expansion to the estimation error

�̂� � = (Z 0Z)�1Z 0u: (B.1)

First we note that on putting, according to (2.7) and (2.8), Z = �Z+ ~Z; we �nd forD; introduced
in (2.13):

D = Z 0Z = ( �Z + ~Z)0( �Z + ~Z) = �Z 0 �Z + �Z 0 ~Z + ~Z 0 �Z + ~Z 0 ~Z: (B.2)

Now E(Z 0Z) = �D = �Z 0 �Z + E( ~Z 0 ~Z); since E( �Z 0 ~Z) = O; and so

Z 0Z = �D + �Z 0 ~Z + ~Z 0 �Z + ~Z 0 ~Z � E( ~Z 0 ~Z)
= fIK+1 + ( �Z 0 ~Z + ~Z 0 �Z)( �D)�1 + [ ~Z 0 ~Z � E( ~Z 0 ~Z)]( �D)�1g �D: (B.3)

Hence,

(Z 0Z)�1 = ( �D)�1fIK+1 + ( �Z 0 ~Z + ~Z 0 �Z)( �D)�1 + [ ~Z 0 ~Z � E( ~Z 0 ~Z)]( �D)�1g�1; (B.4)

where the stochastic terms ( �Z 0 ~Z + ~Z 0 �Z)( �D)�1 and [ ~Z 0 ~Z � E( ~Z 0 ~Z)]( �D)�1 both are Op(T�1=2):
The inverse of the form (I+A)�1 withA = Op(T�1=2)may be expanded in (I�A+A2�A3+::::);
whereby successive terms are of decreasing order in probability. The required expansion retains
terms up to Op(T�3=2) and these terms, premultiplied by ( �D)�1 = O(T�1); are then combined
in (B.1), the estimation error, with those of

Z 0u = �Z 0u+ ~Z 0u: (B.5)

Here both terms on the right-hand side are Op(T 1=2): In this way a Nagar expansion is obtained
which includes terms up to Op(T�2): The required bias approximation to the order of T�2 is
then found by summing the expected values of all the retained terms.
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Proceeding in this way, and upon using from now on the notation introduced in (2.15), we
�nd for (Z 0Z)�1 the expression

QfIK+1 � ( �Z 0 ~Z + ~Z 0 �Z)Q� [ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
+( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q+ ( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
+[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q+ [ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
�( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q

�( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
�( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q

�[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q

�( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
�[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q
�[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q

�[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Qg+ op(T�5=2): (B.6)

Since we have �fteen terms here, multiplication by the two terms of (B.5) will yield thirty
terms, but �fteen of them involve products of an odd number of zero-mean normal random
variables, and such products have a zero expected value. Ignoring those terms, we seek to
evaluate the expectation below. The terms of interest establish E(Z 0Z)�1Z 0u; and they are:

EfQ ~Z 0u�Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u�Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u
+Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u+Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u
+Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u+Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u
�Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u

�Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u
�Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u

�Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u

�Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u
�Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u
�Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u

�Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0ug+ o(T�2): (B.7)

To �nd the bias approximation to order T�2 requires the evaluation of the �fteen separate
terms of (B.7). We indicate these below as (i) through (xv), and shall evaluate each in turn
using, where necessary, the results of Lemma 1 which is proved in Appendix A. To do this, we
make substitutions that follow from Section 2, viz.:

u = (0; IT )v; ~Z = Gve
0
1; G = �

�1(IT ; 0)
; G(0; IT )
0 = C;

which lead to
~Z 0u = e1v

0G0(0; IT )v = e1v
0Hv;

~Z 0 �Z = e1v
0G0 �Z;

~Z 0 ~Z � E( ~Z 0 ~Z) = [v0G0Gv � �2] tr(G0G)e1e01:
(B.8)

Here we have introduced the shorthand notation

H = G0(0; IT ), with (B.9)

tr(H) = tr[(0; IT )
0G] = tr[G(0; IT )

0] = tr(C) = 0;
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because C has diagonal elements zero, see (2.10).
The �rst three terms of (B.7) yield the bias approximation to order T�1 which was evaluated

by KP (1993, p.69) for the �xed start-up case (! = 0):We now obtain, using v � N(0; �2IT+1)
and the results of Lemma 1:

EQ ~Z 0u = EQe1v
0Hv = tr(C)q1 = 0; (i)

EQ( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u = EQ( �Z 0Gve01 + e1v
0G0 �Z)Q �Z 0(0; IT )v (ii)

= EQ �Z 0Gve01Q �Z
0(0; IT )v + EQe1v

0G0 �ZQ �Z 0(0; IT )v)

= EQ �Z 0Gvv0(0; IT )
0 �Zq1 + �

2 tr[Q �Z 0(0; IT )G
0 �Z]q1

= �2Q �Z 0G(0; IT )
0 �Zq1 + �

2 tr[Q �Z 0C 0 �Z]q1

= �2Q �Z 0C �Zq1 + �
2 tr(Q �Z 0C �Z)q1;

EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u = EQ[v0G0Gv � �2 tr(G0G)]e1e01Qe1v0G0(0; IT )v (iii)

= q11E[v
0G0Gv � �2 tr(G0G)]v0G0(0; IT )vq1

= 2�4q11 tr[G
0GG0(0; IT )]q1

= 2�4q11 tr(GG
0C)q1:

In (i) we made use of (B.9). Note that (i) and (ii) yield in fact the same results as in the
�xed start-up case, whereas the expectation for (iii) is di¤erent. It has been obtained by using
(A.2).
From (i), (ii) and (iii) we �nd

B�(T
�1) = �2[Q �Z 0C �Zq1 + tr(Q �Z

0C �Z)q1 � 2�2q11 tr(GG0C)q1]: (B.10)

In order to derive the order T�2 bias the next term of interest is:

EQ( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u (iv)

= EQ( �Z 0Gve01 + e1v
0G0 �Z)Q( �Z 0Gve01 + e1v

0G0 �Z)Qe01Hv

= EQ �Z 0Gve01Q
�Z 0Gve01Qe

0
1Hv + EQ

�Z 0Gve01Qe1v
0G0 �ZQe01Hv

+EQe1v
0G0 �ZQ �Z 0Gve01Qe

0
1Hv + EQe1v

0G0 �ZQe1v
0G0 �ZQe01Hv

= q11Q �Z
0GE(v0Hv)vv0G0 �Zq1 + q11Q �Z

0GE(v0Hv)vv0G0 �Zq1

+q11E(v
0G0 �ZQ �Z 0Gv)(v0Hv)q1 + E(v

0G0 �Zq1q
0
1
�Z 0Gv)(v0Hv)q1

= 2�4[q11Q �Z
0(GG0C 0 + CGG0) �Zq1 + q11 tr(Q �Z

0GG0C 0 �Z)q1 + (q
0
1
�Z 0GG0C 0 �Zq1)q1];

This result is obtained by substitution of (B.8) and (B.9), followed by rearrangements that
simply involve transposing scalar factors in such a way that the resulting expressions are of a
format whose expectation has already been obtained in Lemma 1 of Appendix A; in (iv) we
used (A.1) and (A.3).
Now the remaining terms will be listed and evaluated (neglecting for the moment their

sign) in similar fashion2.

EQ( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u = 2�4[q11Q �Z 0GG0C �Zq1 + (q01 �Z 0GG0C �Zq1)q1]; (v)

EQ[ ~Z 0 ~Z�E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u = 2�4[(q01
�Z 0GG0C �Zq1)q1+ q11 tr(Q �Z

0GG0C �Z)q1]; (vi)

2We omitted a detailed derivation for the remaining terms, which follow upon using the same principles.
However, full proofs can be obtained from the authors on request.
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EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u = 8�6q211 tr(GG0GG0C)q1; (vii)

EQ( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u (viii)

= �4[2(q01 �Z
0GG0 �Zq1)Q �Z

0C �Zq1 + 2(q
0
1
�Z 0C �Zq1)Q �Z

0GG0 �Zq1

+2q11 tr(Q �Z
0C �Z)Q �Z 0GG0 �Zq1 + 4q11Q �Z

0GG0 �ZQ �Z 0C 0 �Zq1

+2q11Q �Z
0C �ZQ �Z 0GG0 �Zq1 + 2q11Q �Z

0GG0 �ZQ �Z 0C �Zq1

+q11 tr(Q �Z
0GG0 �Z)Q �Z 0C �Zq1 + (q

0
1
�Z 0GG0 �Zq1) tr(Q �Z

0C �Z)q1

+2(q01 �Z
0C �Zq1) tr(Q �Z

0GG0 �Z)q1 + 4(q
0
1
�Z 0GG0 �ZQ �Z 0C 0 �Zq1)q1

+q11 tr(Q �Z
0C �Z) tr(Q �Z 0GG0 �Z)q1 + 2q11 tr(Q �Z

0GG0 �ZQ �Z 0C 0 �Z)q1];

EQ( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u (ix)

= �6f4q211 tr(GG0C)Q �Z 0GG0 �Zq1 + 2q211 tr(GG0C) tr(Q �Z 0GG0 �Z)q1
+4q211Q

�Z 0(GG0GG0C 0 +GG0C 0GG0 +GG0CGG0 + CGG0GG0) �Zq1

+4q211 tr(Q �Z
0GG0CGG0 �Z)q1 + 4q

2
11 tr(Q �Z

0CGG0GG0 �Z)q1

+2q11(q
0
1
�Z 0GG0 �Zq1) tr(GG

0C)q1

+4q11[q
0
1
�Z 0(GG0CGG0 + CGG0GG0) �Zq1]q1g;

EQ( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u (x)

= �6f4q211 tr(GG0C)Q �Z 0GG0 �Zq1 + 4q11(q01 �Z 0GG0 �Zq1) tr(GG0C)q1
+4q211Q

�Z 0(GG0GG0C 0 +GG0C 0GG0 +GG0CGG0 + CGG0GG0) �Zq1

+8q11[q
0
1
�Z 0(GG0CGG0 + CGG0GG0) �Zq1]q1g;

EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q( �Z 0 ~Z + ~Z 0 �Z)Q ~Z 0u (xi)

= �6f6q11(q01 �Z 0GG0 �Zq1) tr(GG0C)q1
+12q11[q

0
1
�Z 0(GG0CGG0 + CGG0GG0) �Zq1]q1

+2q211 tr(GG
0C) tr(Q �Z 0GG0 �Z)q1

+4q211 tr(Q
�Z 0CGG0GG0 �Z)q1 + 4q

2
11 tr(Q

�Z 0GG0CGG0 �Z)q1g;

EQ( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u (xii)

= �6[2q211 tr(G
0GG0G)Q �Z 0C �Zq1 + 8q

2
11Q

�Z 0GG0GG0C �Zq1

+2q11(q
0
1
�Z 0C �Zq1) tr(G

0GG0G)q1 + 8q11(q
0
1
�Z 0GG0GG0C �Zq1)q1];

EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q �Z 0u (xiii)

= �6q11[4(q
0
1
�Z 0C �Zq1) tr(G

0GG0G) + 16(q01
�Z 0GG0GG0C �Zq1)]q1;

EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q( �Z 0 ~Z + ~Z 0 �Z)Q �Z 0u (xiv)

= �6[2q11(q
0
1
�Z 0C �Zq1) tr(G

0GG0G) + 8q11(q
0
1
�Z 0GG0GG0C �Zq1)

+2q211 tr(G
0GG0G) tr(Q �Z 0C �Z) + 8q211 tr(Q

�Z 0GG0GG0C �Z)]q1;

EQ[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z � E( ~Z 0 ~Z)]Q ~Z 0u (xv)

= �8q311[12 tr(GG
0C) tr(G0GG0G) + 48 tr(GG0GG0GG0C)]q1;
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Now gathering the terms from (i) to (xv), taking their sign into account, starting with those
explicitly involving �2 (note that Q also involves �2 implicitly), and next those in �4; �6 and �8

respectively, and upon removing the terms that are o(T�2); yields Theorem 1. Contributions
that are O(T�3); and hence do not belong to an O(T�2) approximation, stem for example from
the second term in square brackets of (xv), which is O(T ); and hence, because q11 and q1 are
O(T�1); can be omitted; the second term in square brackets of (xiv) is another example. That
the aggregate of all individual o(T�2) contributions which have been left out of the O(T�2)
approximation is still o(T�2) follows from the general proof given in KP (2009, Appendix A).

C. Auxiliary results on the order of frequently occurring expressions

Here we state a number of separate results, which are proved by summing numerous - mainly
geometric - series and then omitting terms of relatively small order. In Appendix D these
results are used to prove Theorems 2 and 3.

tr(C 0C) = T

�
1

1� �2
�
�
�

1

1� �2
�2
+ o(1); (C.1)

tr(CC 0C) = T�

�
1

1� �2
�2
� 2�

�
1

1� �2
�3
+ o(1); (C.2)

tr(C 0CC 0C) = T
�
�2 + 1

�� 1

1� �2
�3
+ o(T ); (C.3)

tr(C 0CC 0CC) = T�
�
�2 + 2

�� 1

1� �2
�4
+ o(T ): (C.4)

From () we have G = (!F;C); with F 0 =
�
1; �; �2; :::; �T�1

�
; for which we have

F 0F =

�
1

1� �2
�
+ o(1); (C.5)

tr(GG0) = !2F 0F + tr(C 0C)

= T

�
1

1� �2
�
+ !2

�
1

1� �2
�
�
�

1

1� �2
�2
+ o(1); (C.6)

F 0CF = �

�
1

1� �2
�2
+ o(1); (C.7)

tr(GG0C) = !2F 0CF + tr(CC 0C)

= T

�
1

1� �2
�2
+ !2�

�
1

1� �2
�2
� 2�

�
1

1� �2
�3
+ o(1); (C.8)

F 0CC 0F = �2
�

1

1� �2
�3
+ o(1); (C.9)

tr(GG0GG0) = !4(F 0F )2 + 2!2F 0CC 0F + tr(C 0CC 0C) = tr(C 0CC 0C) + o(T ); (C.10)

tr(GG0GG0C) = !4(F 0F )F 0CF + !2F 0CC 0CF + !2F 0CCC 0F + tr(C 0CC 0CC)

= tr(C 0CC 0CC) + o(T ): (C.11)
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For regressions with an intercept the results below are relevant, where � is a T � 1 vector
with all elements equal to unity.

F 0� =
1

1� � + o(1); (C.12)

�0C� = T

�
1

1� �

�
�
�

1

1� �

�2
+ o(1); (C.13)

F 0C 0� =

�
1

1� �

�2
+ o(1); (C.14)

F 0C� =
�

1 + �

�
1

1� �

�2
+ o(1); (C.15)

F 0CC 0� =
�

1 + �

�
1

1� �

�3
+ o(1); (C.16)

�0GG0� = �0
�
!2FF 0 + CC 0

�
� = !2 (F 0�)

2
+ �0CC 0� = �0CC 0�+ o(T )

= T

�
1

1� �

�2
+ o(1); (C.17)

�0GG0C� = �0
�
!2FF 0C + CC 0C

�
� = �0CC 0C�+ o(T ) = T

�
1

1� �

�3
+ o(1); (C.18)

�0GG0C 0� = �0CC 0C 0�+ o(T ) = T

�
1

1� �

�3
+ o(1): (C.19)

D. Proof of Theorem 2

We evaluate the formula of Corollary 1 for the case K = 0; i.e. �Z = �y0F; with F 0 =�
1; �; �2; :::; �T�1

�
: It follows from (), (C.5) and (C.6) that in this case

�D = �y20FF
0 + �2 tr(GG0) =

�
!2�2 + �y20

�
FF 0 + �2 tr(GG0)

= �2

"
T

�
1

1� �2
�
+
�
!2 + �y20=�

2
�� 1

1� �2
�
�
�

1

1� �2
�2#

+ o(1): (D.1)

Hence,

( �D)�1 = Q = q1 = q11

= ��2
�
1� �2

�
T�1 � ��2

��
1� �2

� �
!2 + �y20=�

2
�
� 1
�
T�2 + o(T�2): (D.2)

Now, upon using (D.2) and various results given in Appendix C, we evaluate the nineteen
terms of the approximation formula of Corollary 1, as far as they contain O(T�1) and O(T�2)
elements. We obtain

�2q11 tr(Q �Z
0C �Z) = �2q211�y

2
0F

0CF = (y0=�)
2 �T�2 + o(T�2); (i)

�2q01 �Z
0C �Zq1 = �

2q211�y
2
0F

0CF = (y0=�)
2 �T�2 + o(T�2); (ii)

�4q211 tr(GG
0C) = �T�1 � �

�
!2 + 2 (y0=�)

2�T�2 + o(T�2); (iii)

�6q311 tr(GG
0GG0C) = �

2 + �2

1� �2
T�2 + o(T�2); (xiv)

�8q411 tr(GG
0C) tr(GG0GG0) = �

1 + �2

1� �2
T�2 + o(T�2): (xix)

All other terms are found to be o(T�2): Collecting the above terms (and taking into account
their sign and integer coe¢ cient) we obtain the results of Theorem 2.
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E. Proof of Theorem 3

Now we evaluate all the O(T�1) and O(T�2) elements in the nineteen terms of the approxima-
tion formula presented in Corollary 1 for the case whereK = 1 andX = �: Given the invariance
results found above (3.15), we may restrict ourselves to the special case where � = 0 and � = 1
when we take y�0 � N(�y�0; !2) for the start-up value. From the bias approximation for this par-
ticular case, we can �nd the result for the untransformed general model by simply substituting
�y�0 = [�y0 � �= (1� �)] =�:
Note that now �Z = (�y�0F; �): For simplicities sake we �rst consider the special case where

! = 0 (�xed start-up). Then the 2� 2 matrix �D is

�D = Q�1 =

�
�y�20 F

0F + tr(C 0C) �y�0F
0�

�y�0F
0� T

�
: (E.1)

Hence, when using (C.1), (C.5) and (C.12), we obtain for the elements of Q

q11 =
�
�y�20 F

0F + tr(C 0C)� �y�20 (F 0�)2=T
��1

=
�
1� �2

�
T�1 +

�
1� �y�20

�
1� �2

��
T�2 + o(T�2); (E.2)

q12 = ��y�0 (1 + �)T�2 + o(T�2); (E.3)

q22 = T
�1 + o(T�2): (E.4)

We now evaluate the terms of the Corollary, and �nd

q11 tr(Q �Z
0C �Z) = q211�y

�2
0 F

0CF + �y�0q11q12 (F
0C�+ �0CF ) + q11q22�

0C� (i)

= (1 + �)T�1 �
�
�y�20 + �=(1� �)

�
T�2 + o(T�2);

q01 �Z
0C �Zq1 = q

2
11�y

2
0F

0CF + o(T�2) = ��y�20 T
�2 + o(T�2); (ii)

q211 tr(GG
0C) = �T�1 � 2��y�20 T�2 + o(T�2); (iii)

q211 tr(Q �Z
0CC 0C �Z) = q211q22�

0CC 0C�+ o(T�2) = (1 + �)2 =(1� �)T�2 + o(T�2); (iv)

q211 tr(Q �Z
0CC 0C 0 �Z) = (1 + �)2 =(1� �)T�2 + o(T�2); (v)

q211 tr(Q
�Z 0CC 0 �ZQ �Z 0C �Z) = q211q

2
22(�

0CC 0�)(�0C�)+o(T�2) = (1 + �)2 =(1��)T�2+o(T�2); (vi)
q211 tr(Q �Z

0C �Z) tr(Q �Z 0CC 0 �Z) = (1 + �)2 =(1� �)T�2 + o(T�2); (vii)

the terms (viii) through (xiii) are o(T�2);

q311 tr(CC
0CC 0C) = �

2 + �2

1� �2
T�2 + o(T�2); (xiv)

q311 tr(CC
0CC 0) tr(Q �Z 0C �Z) =

1 + �2

1� �2
T�2 + o(T�2); (xv)

q311 tr(CC
0C) tr(Q �Z 0CC 0 �Z) = �

1 + �

1� �2
T�2 + o(T�2); (xvi)

the terms (xvii) and (xviii) are o(T�2);

q411 tr(CC
0C) tr(CC 0CC 0) = �

1 + �2

1� �2
T�2 + o(T�2): (xix)
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Collecting the terms (whilst taking into account their sign and integer coe¢ cient) and making
the substitution for �y�0 we obtain

KP F� (T
�2) = � (1 + 3�)T�1 � 1� 3�+ 9�

2

1� � T�2 + (1 + 3�)

�
�y0
�
� �

� (1� �)

�2
T�2: (E.5)

Hence, for the AR(1) model with an intercept and arbitrary �xed start-up �y0; the bias BF� of
the least-squares estimator � can be approximated by (E.5), where BF� = KP

F
� (T

�2)+o(T�2):

From this it is easy to obtain the second-order bias of �̂ in the random start-up model
where y0 � N(�y0; !2�2) is independent of (u1; :::; uT ) : It is obvious that in that model the bias
conditional on y0 is

Eu(�̂ j y0)�� = � (1 + 3�)T�1�
1� 3�+ 9�2

1� � T�2+(1 + 3�)

�
y0
�
� �

� (1� �)

�2
T�2+o(T�2):

Hence, for the unconditional bias we �nd the approximation KP�(T�2) of the theorem.
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Table 1. Bias in the AR(1) model with no intercept and �xed zero start-up

� W �
� (T

�1) B��(T
�1) W �

� (T
�2) B��(T

�2) SJ��(T
�3) SJ��(T

�6) W �
� (�

9) B��
(-2�/T ) (3.5) (3.7) (3.6) (3.4) (3.4) (3.3)

T = 10
.0 -.0000 -.0000 .0000 .0000 .0000 .0000 .0000 -.0002

.1 -.0200 -.0197 -.0160 -.0154 -.0162 -.0162 -.0162 -.0164

.2 -.0400 -.0395 -.0320 -.0307 -.0323 -.0323 -.0323 -.0325

.3 -.0600 -.0591 -.0480 -.0458 -.0482 -.0484 -.0483 -.0486

.4 -.0800 -.0785 -.0640 -.0608 -.0638 -.0647 -.0642 -.0645

.5 -.1000 -.0976 -.0800 -.0756 -.0787 -.0820 -.0799 -.0803

.6 -.1200 -.1159 -.0960 -.0906 -.0920 -.1060 -.0952 -.0956

.7 -.1400 -.1320 -.1120 -.1079 -.1015 -.1834 -.1098 -.1102

.8 -.1600 -.1426 -.1280 -.1336 -.0974 -.9939 -.1233 -.1233

.9 -.1800 -.1404 -.1440 -.1731 -.0016 -42.1584 -.1347 -.1333

.99 -.1980 -.1216 -.1584 -.2035 +14.8333 -5957894 -.1419 -.1374

T = 25
.0 -.0000 -.0000 .0000 .0000 .0000 .0000 .0000 -.0002

.1 -.0080 -.0080 -.0074 -.0073 -.0074 -.0074 -.0074 -.0076

.2 -.0160 -.0160 -.0147 -.0146 -.0147 -.0147 -.0147 -.0150

.3 -.0240 -.0239 -.0221 -.0219 -.0221 -.0221 -.0221 -.0224

.4 -.0320 -.0319 -.0294 -.0292 -.0294 -.0294 -.0294 -.0297

.5 -.0400 -.0399 -.0368 -.0365 -.0367 -.0368 -.0368 -.0371

.6 -.0480 -.0478 -.0442 -.0436 -.0439 -.0441 -.0440 -.0443

.7 -.0560 -.0556 -.0515 -.0507 -.0508 -.0514 -.0512 -.0515

.8 -.0640 -.0630 -.0589 -.0575 -.0569 -.0608 -.0582 -.0584

.9 -.0720 -.0677 -.0662 -.0671 -.0571 -.2118 -.0650 -.0642

.99 -.0792 -.0548 -.0729 -.0897 +.8866 -23971 -.0705 -.0649

T = 50
.0 -.0000 -.0000 .0000 .0000 .0000 .0000 .0000 .0002

.1 -.0040 -.0040 -.0038 -.0038 -.0038 -.0038 -.0038 -.0040

.2 -.0080 -.0080 -.0077 -.0077 -.0077 -.0077 -.0077 -.0078

.3 -.0120 -.0120 -.0115 -.0115 -.0115 -.0115 -.0115 -.0117

.4 -.0160 -.0160 -.0154 -.0153 -.0154 -.0154 -.0154 -.0155

.5 -.0200 -.0200 -.0192 -.0192 -.0192 -.0192 -.0192 -.0193

.6 -.0240 -.0240 -.0230 -.0230 -.0230 -.0230 -.0230 -.0231

.7 -.0280 -.0280 -.0269 -.0268 -.0268 -.0268 -.0268 -.0270

.8 -.0320 -.0319 -.0307 -.0305 -.0305 -.0306 -.0306 -.0307

.9 -.0360 -.0355 -.0346 -.0340 -.0334 -.0360 -.0343 -.0342

.99 -.0396 -.0298 -.0380 -.0458 +.0819 -363.895 -.0376 -.0347

� for all entries the superscript label is "FM,NC", because ! = 0; y0 = 0; K = 0
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Table 2. Bias in the AR(1) model with no intercept and random strongly stationary start-up

� W �
� (T

�1) B��(T
�1) KP ��(T

�2) B��(T
�2) W �

� (�
5) B��

(-2�/T ) (2.16) (3.8) (Corollary 1) (3.9)

T = 10
.0 -.0000 -.0000 .0000 .0000 .0000 -.0004

.1 -.0200 -.0180 -.0140 -.0144 -.0150 -.0154

.2 -.0400 -.0358 -.0278 -.0287 -.0299 -.0303

.3 -.0600 -.0534 -.0414 -.0428 -.0446 -.0451

.4 -.0800 -.0705 -.0545 -.0566 -.0589 -.0594

.5 -.1000 -.0867 -.0667 -.0700 -.0725 -.0733

.6 -.1200 -.1013 -.0772 -.0830 -.0852 -.0861

.7 -.1400 -.1126 -.0845 -.0960 -.0963 -.0973

.8 -.1600 -.1161 -.0836 -.1124 -.1052 -.1049

.9 -.1800 -.0968 -.0493 -.1360 -.1111 -.1033

.99 -.1980 -.0168 -.8366 -.0461 -.1128 -.0555

T = 25
.0 -.0000 -.0000 .0000 .0000 .0000 -.0002

.1 -.0080 -.0077 -.0070 -.0071 -.0071 -.0073

.2 -.0160 -.0153 -.0141 -.0141 -.0142 -.0144

.3 -.0240 -.0229 -.0210 -.0211 -.0212 -.0215

.4 -.0320 -.0305 -.0279 -.0280 -.0282 -.0285

.5 -.0400 -.0379 -.0347 -.0349 -.0350 -.0353

.6 -.0480 -.0450 -.0412 -.0415 -.0416 -.0420

.7 -.0560 -.0516 -.0471 -.0476 -.0479 -.0482

.8 -.0640 -.0569 -.0518 -.0530 -.0537 -.0534

.9 -.0720 -.0569 -.0511 -.0579 -.0588 -.0556

.99 -.0792 -.0163 -.0863 -.0395 -.0625 -.0353

T = 50
.0 -.0000 -.0000 .0000 .0000 .0000 .0002

.1 -.0040 -.0039 -.0038 -.0038 -.0038 -.0039

.2 -.0080 -.0078 -.0075 -.0075 -.0075 -.0076

.3 -.0120 -.0117 -.0113 -.0113 -.0113 -.0114

.4 -.0160 -.0156 -.0150 -.0150 -.0150 -.0151

.5 -.0200 -.0195 -.0187 -.0187 -.0187 -.0188

.6 -.0240 -.0232 -.0223 -.0223 -.0223 -.0225

.7 -.0280 -.0269 -.0258 -.0258 -.0259 -.0260

.8 -.0320 -.0302 -.0289 -.0291 -.0293 -.0293

.9 -.0360 -.0322 -.0308 -.0313 -.0325 -.0315

.99 -.0396 -.0144 +.0018 -.0290 -.0352 -.0227

� for all entries the superscript label is "S,NC", because !2 = 1=(1� �2); �y0 = 0; K = 0
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Table 3. Bias in the mean-stationary AR(1) model with unknown intercept and �xed start-up

� MP S;C� (T�1) B��(T
�1) KP ��(T

�2) B��(T
�2) B��

(3.12) (2.16) (3.19) (3.18)

T = 10
.0 -.1000 -.1000 -.1100 -.1102 -.1111

.1 -.1300 -.1285 -.1388 -.1377 -.1386

.2 -.1600 -.1567 -.1695 -.1665 -.1670

.3 -.1900 -.1843 -.2030 -.1973 -.1964

.4 -.2200 -.2110 -.2407 -.2307 -.2272

.5 -.2500 -.2361 -.2850 -.2680 -.2598

.6 -.2800 -.2584 -.3410 -.3117 -.2944

.7 -.3100 -.2750 -.4203 -.3658 -.3312

.8 -.3400 -.2799 -.5580 -.4345 -.3689

.9 -.3700 -.2636 -.9290 -.5065 -.4015

.99 -.3970 -.2242 -7.2479 -.5291 -.4135

T = 25
.0 -.0400 -.0400 .0416 .0416 -.0419

.1 -.0520 -.0518 -.0534 -.0533 -.0536

.2 -.0640 -.0636 -.0655 -.0653 -.0656

.3 -.0760 -.0752 -.0781 -.0777 -.0779

.4 -.0880 -.0868 -.0913 -.0906 -.0906

.5 -.1000 -.0982 -.1056 -.1043 -.1040

.6 -.1120 -.1092 -.1218 -.1193 -.1185

.7 -.1240 -.1195 -.1417 -.1367 -.1347

.8 -.1360 -.1279 -.1709 -.1593 -.1541

.9 -.1480 -.1281 -.2374 -.1960 -.1785

.99 -.1588 -.0978 -1.2549 -.2286 -.1938

T = 50
.0 -.0200 -.0200 .0204 .0204 .0206

.1 -.0260 -.0260 -.0264 -.0263 -.0265

.2 -.0320 -.0319 -.0324 -.0324 -.0325

.3 -.0380 -.0378 -.0385 -.0385 -.0386

.4 -.0440 -.0437 -.0448 -.0447 -.0449

.5 -.0500 -.0496 -.0514 -.0512 -.0513

.6 -.0560 -.0554 -.0584 -.0581 -.0581

.7 -.0620 -.0610 -.0664 -.0657 -.0656

.8 -.0680 -.0662 -.0767 -.0750 -.0746

.9 -.0740 -.0695 -.0964 -.0896 -.0874

.99 -.0794 -.0529 -.3534 -.1182 -.1032

� for all entries the superscript label is "FM,C", because ! = 0; �y0 = �1=(1� �); K = 1
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Table 4. Bias in the strongly stationary AR(1) model with unknown intercept

� MP ��(T
�1) B��(T

�1) KP ��(T
�2) B��(T

�2) B��
(3.12) (2.16) (3.20) (3.18)

T = 10
.0 -.1000 -.0900 .1000 .0990 -.1003

.1 -.1300 -.1158 -.1236 -.1243 -.1257

.2 -.1600 -.1408 -.1487 -.1506 -.1518

.3 -.1900 -.1648 -.1755 -.1781 -.1786

.4 -.2200 -.1871 -.2050 -.2072 -.2063

.5 -.2500 -.2076 -.2383 -.2385 -.2352

.6 -.2800 -.2215 -.2785 -.2727 -.2654

.7 -.3100 -.2275 -.3321 -.3110 -.2975

.8 -.3400 -.2157 -.4191 -.3524 -.3322

.9 -.3700 -.1630 -.6395 -.3680 -.3702

.99 -.3970 -.0255 -4.2580 -.0952 -.4085

T = 25
.0 -.0400 -.0384 -.0400 -.0399 -.0401

.1 -.0520 -.0497 -.0510 -.0512 -.0514

.2 -.0640 -.0609 -.0622 -.0627 -.0629

.3 -.0760 -.0720 -.0737 -.0744 -.0746

.4 -.0880 -.0827 -.0856 -.0866 -.0866

.5 -.1000 -.0931 -.0981 -.0992 -.0991

.6 -.1120 -.1026 -.1118 -.1127 -.1122

.7 -.1240 -.1105 -.1275 -.1275 -.1264

.8 -.1360 -.1145 -.1487 -.1448 -.1426

.9 -.1480 -.1047 -.1911 -.1663 -.1628

.99 -.1588 -.0252 -.7766 -.0853 -.1884

T = 50
.0 -.0200 -.0196 -.0200 -.0200 -.0201

.1 -.0260 -.0254 -.0257 -.0258 -.0260

.2 -.0320 -.0312 -.0315 -.0317 -.0318

.3 -.0380 -.0370 -.0374 -.0376 -.0378

.4 -.0440 -.0427 -.0434 -.0437 -.0438

.5 -.0500 -.0483 -.0495 -.0499 -.0500

.6 -.0560 -.0537 -.0559 -.0564 -.0564

.7 -.0620 -.0586 -.0629 -.0634 -.0633

.8 -.0680 -.0626 -.0712 -.0713 -.0711

.9 -.0740 -.0626 -.0848 -.0819 -.0813

.99 -.0794 -.0227 -.2338 -.0670 -.0984

� for all entries the superscript label is "S,C", because !2 = 1=(1� �2); �y0 = �1=(1� �); K = 1
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Table 5. Bias of �̂ in the �xed start-up trend-stationary ARX(1) model (4.1)

(A): ��1 = 0; �
�
2 = 0; y0 = 0; � = 1 (B): ��1 = 4:64; �

�
2 = 0:04; y0 = 4:76; � = 0:05

� B��(T
�1) B��(T

�2) B�� B��(T
�1) B��(T

�2) B��
T = 10

.0 -.1778 -.2112 -.2171 -.1232 -.1371 -.1386

.1 -.2103 -.2492 -.2552 -.1500 -.1678 -.1699

.2 -.2410 -.2891 -.2948 -.1772 -.2022 -.2049

.3 -.2693 -.3313 -.3359 -.2050 -.2412 -.2447

.4 -.2940 -.3759 -.3790 -.2331 -.2865 -.2909

.5 -.3136 -.4229 -.4242 -.2609 -.3397 -.3455

.6 -.3257 -.4720 -.4719 -.2866 -.4024 -.4100

.7 -.3266 -.5222 -.5229 -.3048 -.4749 -.4838

.8 -.3109 -.5711 -.5792 -.3040 -.5510 -.5631

.9 -.2717 -.6036 -.6455 -.2712 -.6012 -.6433

.99 -.2147 -.5794 -.7220 -.2147 -.5794 -.7220

T = 25
.0 -.0767 -.0826 -.0832 -.0636 -.0672 -.0674

.1 -.0915 -.0988 -.0995 -.0764 -.0809 -.0812

.2 -.1061 -.1155 -.1163 -.0893 -.0954 -.0957

.3 -.1203 -.1330 -.1338 -.1021 -.1108 -.1112

.4 -.1339 -.1514 -.1523 -.1149 -.1275 -.1280

.5 -.1465 -.1712 -.1722 -.1275 -.1461 -.1469

.6 -.1575 -.1927 -.1941 -.1397 -.1677 -.1691

.7 -.1653 -.2168 -.2192 -.1504 -.1940 -.1967

.8 -.1662 -.2436 -.2491 -.1570 -.2269 -.2334

.9 -.1498 -.2702 -.2878 -.1478 -.2648 -.2829

.99 -.0981 -.2599 -.3441 -.0981 -.2599 -.3441

T = 50
.0 -.0392 -.0407 -.0410 -.0353 -.0365 -.0367

.1 -.0469 -.0488 -.0491 -.0424 -.0438 -.0440

.2 -.0546 -.0571 -.0573 -.0494 -.0514 -.0516

.3 -.0621 -.0656 -.0658 -.0564 -.0591 -.0593

.4 -.0695 -.0744 -.0747 -.0634 -.0673 -.0675

.5 -.0767 -.0837 -.0840 -.0702 -.0760 -.0762

.6 -.0835 -.0938 -.0942 -.0769 -.0856 -.0860

.7 -.0894 -.1051 -.1059 -.0831 -.0968 -.0975

.8 -.0932 -.1187 -.1206 -.0881 -.1111 -.1130

.9 -.0899 -.1360 -.1421 -.0876 -.1316 -.1378

.99 -.0546 -.1383 -.1810 -.0546 -.1383 -.1810

� for all entries the superscript label is "F,CT", because ! = 0; K = 2
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Table 6. Bias of the estimators �̂1and �̂2 in the �xed start-up trend-stationary ARX(1) model
(4.1) in setting (B)

� �1 B��1(T
�1) B��1(T

�2) B��1 �2 B��2(T
�1) B��2(T

�2) B��2
T = 10

.0 4.64 .5724 .6373 .6445 .040 .0042 .0046 .0046

.1 4.18 .6972 .7811 .7911 .036 .0051 .0056 .0056

.2 3.72 .8249 .9420 .9550 .032 .0059 .0066 .0066

.3 3.26 .9553 1.1256 1.1420 .028 .0067 .0077 .0077

.4 2.80 1.0877 1.3390 1.3603 .024 .0074 .0089 .0089

.5 2.34 1.2197 1.5906 1.6188 .020 .0081 .0103 .0103

.6 1.88 1.3430 1.8882 1.9251 .016 .0086 .0119 .0119

.7 1.42 1.4322 2.2336 2.2772 .012 .0089 .0138 .0139

.8 .96 1.4323 2.5974 2.6564 .008 .0090 .0162 .0165

.9 .50 1.2803 2.8391 3.0388 .004 .0087 .0193 .0207

.99 .086 1.0137 2.7353 3.4087 .0004 .0083 .0225 .0281

T = 25
.0 4.64 .2938 .3102 .3114 .040 .0025 .0026 .0026

.1 4.18 .3532 .3741 .3754 .036 .0030 .0031 .0031

.2 3.72 .4128 .4411 .4427 .032 .0035 .0037 .0037

.3 3.26 .4725 .5126 .5145 .028 .0039 .0043 .0043

.4 2.80 .5321 .5905 .5929 .024 .0044 .0049 .0049

.5 2.34 .5911 .6777 .6813 .020 .0049 .0055 .0056

.6 1.88 .6483 .7793 .7857 .016 .0053 .0063 .0063

.7 1.42 .6999 .9034 .9166 .012 .0056 .0072 .0073

.8 .96 .7329 1.0606 1.0917 .008 .0057 .0083 .0085

.9 .50 .6942 1.2445 1.3307 .004 .0053 .0095 .0101

.99 .086 .4629 1.2268 1.6244 .0004 .0038 .0101 .0134

T = 50
.0 4.64 .1629 .1682 .1690 .040 .0014 .0014 .0015

.1 4.18 .1955 .2021 .2030 .036 .0017 .0017 .0017

.2 3.72 .2279 .2369 .2378 .032 .0020 .0020 .0020

.3 3.26 .2603 .2729 .2738 .028 .0022 .0023 .0023

.4 2.80 .2924 .3106 .3116 .024 .0025 .0027 .0027

.5 2.34 .3243 .3510 .3522 .020 .0028 .0030 .0030

.6 1.88 .3554 .3957 .3975 .016 .0030 .0034 .0034

.7 1.42 .3848 .4482 .4517 .012 .0033 .0038 .0038

.8 .96 .4090 .5160 .5248 .008 .0034 .0043 .0044

.9 .50 .4090 .6147 .6442 .004 .0034 .0050 .0053

.99 .086 .2575 .6526 .8542 .0004 .0021 .0054 .0071

� for all entries the superscript label is "F,CT", because ! = 0; K = 2
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Table 7. Bias of the estimators �̂ and �̂1 in the ARX(1) model with empirical X matrix
generated according to (4.5) obtained from (B.10) and Theorem 1

� B�(T
�1) B�(T

�2) B� �1 B�1(T
�1) B�1(T

�2) B�1
T = 10

.0 -.0481 -.0508 -.0506 5.00 1.6353 1.7640 1.7444

.1 -.0612 -.0651 -.1650 4.50 2.2634 2.4588 2.4404

.2 -.0773 -.0833 -.1831 4.00 3.1096 3.4217 3.4033

.3 -.0978 -.1076 -.1072 3.50 4.2696 4.7911 4.7669

.4 -.1248 -.1413 -.1404 3.00 5.8890 6.7939 6.7437

.5 -.1606 -.1895 -.1873 2.50 8.1361 9.7545 9.6278

.6 -.2039 -.2574 -.2523 2.00 10.9377 13.9306 13.6150

.7 -.2420 -.3439 -.3348 1.50 13.2999 18.9668 18.2095

.8 -.2560 -.4342 -.4345 1.00 13.3310 22.3798 21.8124

.9 -.2424 -.5214 -.5887 .50 9.7240 20.6552 21.7824

.99 -.2030 -.5535 -.7752 .05 2.9278 7.9424 10.5093

T = 25
.0 -.0442 -.0460 -.0460 5.00 .9590 1.0187 1.0224

.1 -.0528 -.0554 -.0555 4.50 1.2298 1.3177 1.3235

.2 -.0622 -.0661 -.0662 4.00 1.5602 1.6940 1.7040

.3 -.0725 -.0786 -.0789 3.50 1.9711 2.1809 2.1995

.4 -.0844 -.0938 -.0945 3.00 2.4942 2.8340 2.8707

.5 -.0982 -.1134 -.1150 2.50 3.1725 3.7464 3.8231

.6 -.1146 -.1402 -.1437 2.00 4.0588 5.0752 5.2429

.7 -.1348 -.1792 -.1868 1.50 5.2195 7.0766 7.4404

.8 -.1588 -.2360 -.2509 1.00 6.6076 9.9393 10.5882

.9 -.1609 -.2970 -.3238 .50 6.4982 11.9107 12.6925

.99 -.1156 -.3056 -.4017 .05 1.9237 5.0368 6.2212

T = 50
.0 -.0291 -.0298 -.0297 5.00 .2453 .2530 .2553

.1 -.0338 -.0347 -.0347 4.50 .2942 .3048 .3072

.2 -.0384 -.0398 -.0397 4.00 .3469 .3621 .3647

.3 -.0430 -.0449 -.0449 3.50 .4047 .4269 .4299

.4 -.0476 -.0503 -.0503 3.00 .4691 .5020 .5058

.5 -.0521 -.0560 -.0560 2.50 .5416 .5918 .5975

.6 -.0565 -.0623 -.0626 2.00 .6246 .7043 .7144

.7 -.0610 -.0701 -.0710 1.50 .7276 .8611 .8834

.8 -.0664 -.0821 -.0847 1.00 .8927 1.1455 1.2090

.9 -.0728 -.1070 -.1177 .50 1.2831 1.9216 2.1767

.99 -.0540 -.1377 -.1903 .05 .8587 2.1762 2.9227

T = 100
.0 -.0180 -.0183 -.0182 5.00 .0965 .0982 .0978

.1 -.0206 -.0210 -.0209 4.50 .1100 .1122 .1117

.2 -.0231 -.0236 -.0235 4.00 .1225 .1256 .1250

.3 -.0255 -.0262 -.0261 3.50 .1342 .1382 .1377

.4 -.0278 -.0288 -.0287 3.00 .1448 .1503 .1498

.5 -.0301 -.0314 -.0313 2.50 .1546 .1622 .1618

.6 -.0323 -.0342 -.0341 2.00 .1642 .1750 .1748

.7 -.0345 -.0374 -.0374 1.50 .1758 .1924 .1927

.8 -.0369 -.0417 -.0420 1.00 .1976 .2277 .2303

.9 -.0391 -.0497 -.0515 .50 .2711 .3546 .3739

.99 -.0314 -.0727 -.0939 .05 .3994 .9242 1.198935



Table 8. Bias of the estimators �̂2 and �̂3 in the ARX(1) model with empirical X matrix
generated according to (4.5) obtained from (B.10) and Theorem 1

� �2 B��2(T
�1) B��2(T

�2) B��2 �3 B��3(T
�1) B��3(T

�2) B��3
T = 10

.0 .50 -.1230 -.1338 -.1319 -.10 -.0090 -.0096 -.0094

.1 .45 -.1760 -.1926 -.1909 -.09 -.0114 -.0123 -.0121

.2 .40 -.2491 -.2758 -.2742 -.08 -.0143 -.0157 -.0154

.3 .35 -.3509 -.3961 -.3939 -.07 -.0180 -.0199 -.0197

.4 .30 -.4949 -.5738 -.5694 -.06 -.0226 -.0255 -.0251

.5 .25 -.6965 -.8384 -.8273 -.05 -.0280 -.0327 -.0320

.6 .20 -.9498 -1.2124 -1.1840 -.04 -.0324 -.0401 -.0392

.7 .15 -1.1632 -1.6493 -1.5883 -.03 -.0302 -.0428 -.0418

.8 .10 -1.1545 -1.9327 -1.8700 -.02 -.0177 -.0314 -.0331

.9 .05 -.7849 -1.6575 -1.7026 -.01 -.0019 -.0058 -.0116

.99 .01 -.0919 -.2461 -.2773 -.00 +.0010 +.0024 +.0014

T = 25
.0 .50 -.0555 -.0599 -.0603 -.10 -.0064 -.0067 -.0067

.1 .45 -.0753 -.0818 -.0824 -.09 -.0075 -.0080 -.0079

.2 .40 -.1006 -.1107 -.1116 -.08 -.0086 -.0093 -.0093

.3 .35 -.1335 -.1495 -.1511 -.07 -.0097 -.0106 -.0106

.4 .30 -.1769 -.2032 -.2064 -.06 -.0108 -.0120 -.0121

.5 .25 -.2350 -.2801 -.2866 -.05 -.0115 -.0132 -.0133

.6 .20 -.3128 -.3943 -.4086 -.04 -.0113 -.0136 -.0138

.7 .15 -.4167 -.5686 -.5994 -.03 -.0088 -.0115 -.0118

.8 .10 -.5420 -.8178 -.8714 -.02 -.0021 -.0037 -.0043

.9 .05 -.5284 -.9659 -1.0202 -.01 +.0054 +.0090 +.0072

.99 .01 -.0801 -.2065 -.2281 -.00 +.0010 +.0026 +.0024

T = 50
.0 .50 +.0045 +.0044 +.0041 -.10 -.0039 -.0040 -.0039

.1 .45 +.0043 +.0041 +.0038 -.09 -.0045 -.0046 -.0046

.2 .40 +.0036 +.0033 +.0030 -.08 -.0050 -.0053 -.0052

.3 .35 +.0023 +.0019 +.0015 -.07 -.0056 -.0059 -.0058

.4 .30 +.0002 -.0005 -.0009 -.06 -.0060 -.0064 -.0064

.5 .25 -.0029 -.0041 -.0046 -.05 -.0063 -.0068 -.0068

.6 .20 -.0072 -.0095 -.0103 -.04 -.0062 -.0069 -.0069

.7 .15 -.0137 -.0183 -.0198 -.03 -.0054 -.0064 -.0065

.8 .10 -.0262 -.0365 -.0405 -.02 -.0039 -.0051 -.0053

.9 .05 -.0603 -.0924 -.1081 -.01 -.0036 -.0045 -.0048

.99 .01 -.0326 -.0819 -.1044 -.00 -.0009 -.0021 -.0017

T = 100
.0 .50 .0083 .0084 .0084 -.10 -.0017 -.0018 -.0018

.1 .45 .0095 .0097 .0097 -.09 -.0019 -.0020 -.0020

.2 .40 .0108 .0110 .0110 -.08 -.0021 -.0021 -.0021

.3 .35 .0120 .0123 .0122 -.07 -.0022 -.0023 -.0023

.4 .30 .0132 .0136 .0136 -.06 -.0023 -.0023 -.0023

.5 .25 .0144 .0149 .0149 -.05 -.0022 -.0023 -.0023

.6 .20 .0155 .0163 .0163 -.04 -.0021 -.0022 -.0022

.7 .15 .0165 .0176 .0176 -.03 -.0018 -.0020 -.0020

.8 .10 .0165 .0182 .0182 -.02 -.0014 -.0016 -.0016

.9 .05 .0112 .0132 .0129 -.01 -.0010 -.0012 -.0012

.99 .01 -.0087 -.0200 -.0262 -.00 -.0001 -.0003 -.000336


