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Abstract

Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006),

Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed nor-

mal, implying hypothesis test statistics with an asymptotic χ2 null distribution. The asymptotic

distribution of the multicointegration parameter estimator so far has been characterised by a Brow-

nian motion functional, which has been conjectured to have a mixed normal distribution, based on

simulations. The present paper proves this conjecture.

1 Introduction

The notion of multicointegration was introduced by Granger (1986) and Granger and Lee (1990). Al-

though originally developed for processes integrated of order 1 (I(1)), it has subsequently become clear

that the phenomenon occurs naturally in I(2) cointegrated vector autoregressive (VAR) models, see Jo-

hansen (1992) and Engsted and Johansen (1999). With {Xt}t≥1 a p-vector time series process, the I(2)

VAR model of order k is expressed as

∆2Xt = αβ′Xt−1 + Γ∆Xt−1 +
k−2∑
j=1

Ψj∆2Xt−j + εt, (1)

ᾱ⊥α
′
⊥Γβ⊥β̄

′
⊥ = α1β

′
1, (2)

where {εt}t≥1 is assumed to be an independent and identically distributed (i.i.d.) N(0,Ω) sequence,

and where α and β are p× r matrices (0 ≤ r < p), α1 and β1 are p× s matrices (0 ≤ s < p− r), and

Γ, {Ψj}k−2
j=1 and Ω are p× p matrices, with Ω positive definite.1 The model can be extended to include

deterministic components such as a constant and trend, see Rahbek et al. (1999), without qualitatively

affecting the results to follow.
∗Helpful comments from Søren Johansen, Paolo Paruolo and Anders Rahbek are gratefully acknowledged.
†Address for correspondence: Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, NL-

1018 WB Amsterdam, The Netherlands. E-mail: h.p.boswijk@uva.nl.
1For an n ×m matrix A of rank m < n, A⊥ denotes an n × (n −m) matrix of rank n −m satisfying A′⊥A = 0; and

Ā = A(A′A)−1, so that Ā′A = Im.

1

mailto:h.p.boswijk@uva.nl


Paruolo and Rahbek (1999) show that the I(2) restriction (2) implies

Γ = αδβ′2 + ζ1β
′ + ζ2β

′
1,

where δ = ᾱ′Γβ̄2, β2 = (β, β1)⊥, ζ1 = Γβ̄ and ζ2 = Γβ̄1. Therefore, the model (1) under this

restriction becomes

∆2Xt = α(β′Xt−1 + δβ′2∆Xt−1) + ζ1β
′∆Xt−1 + ζ2β

′
1∆Xt−1 +

k−2∑
j=1

Ψj∆2Xt−j + εt. (3)

In this model, (β, β1)′Xt are I(1) linear combinations of the I(2) process Xt, and β′Xt further cointe-

grates with the I(1) process β′2∆Xt to the I(0) linear combination

β′Xt + δβ′2∆Xt = (β + β2δ
′∆)′Xt. (4)

This phenomenon is known as multicointegration, and also as polynomial cointegration, because the

right-hand-side expression in (4) is first-order vector lag polynomial operating onXt. Various alternative

parametrisations of the I(2) model have been proposed in the literature, see Johansen (1997), Boswijk

(2000) and Mosconi and Paruolo (2009). However, they do not affect inference on the multicointegration

parameter δ, which is the subject of this paper.

Asymptotic likelihood-based inference on the parameters of (3) was studied by Johansen (1997,

2006), Boswijk (2000) and Paruolo (2000). They showed that under suitable identifying restrictions, the

asymptotic distributions of the maximum likelihood estimators β̂ and β̂1 are scale mixtures of normals,

where the random scaling matrix is the distributional limit of the inverse observed information matrix.

This implies that likelihood ratio test statistics for smooth hypotheses on β and β1 have an asymptotic χ2

null distribution, at least under particular conditions on the hypotheses, derived by Boswijk (2000) and

Johansen (2006). The asymptotic distribution of the multicointegration parameter estimator δ̂, however,

at first sight does not appear to be mixed normal. It can be written as the distribution of the sum of two

mixed normal random variables, but there is no common conditioning set such that both are condition-

ally normally distributed, which complicates deriving a valid inference procedure for δ. Yet, as noted

by Paruolo (1995) and Johansen (2006), Monte Carlo simulations of the Brownian motion functionals

that characterise the asymptotic distribution of δ strongly suggest that δ̂ is in fact asymptotically mixed

normal. The present paper provides a proof of this conjecture, implying that likelihood-based inference

on multicointegration can be conducted using χ2 critical values.

The outline of the remainder of this paper is as follows. The next section summarises the asymptotic

distributions of β̂, β̂1 and δ̂, as obtained by Johansen (1997, 2006) and Paruolo (2000) (and in a mixture

of their notation). In Section 3 the main result is stated and proved. The final section discusses some

extensions. An appendix contains proofs of some auxiliary lemmas.
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2 Asymptotic results

The starting point of the asymptotic analysis is the multivariate invariance principle: as n→∞,

n−1/2

bunc∑
t=1

εt
L−→W (u), u ∈ [0, 1],

where W is a p-vector Brownian motion with variance matrix Ω. The i.i.d. normality of {εt}t≥1 is

sufficient, but not necessary for this result to hold. From W , define

W1 = (α′Ω−1α)−1α′Ω−1W,

W2 =
[
ᾱ′1 − ᾱ′1Ωα2(α′2Ωα2)−1α′2

]
W,

with α2 = (α, α1)⊥. These are two independent vector Brownian motions, of dimensions r and s, and

with variance matrices denoted Ω1 and Ω2, respectively. Furthermore, (W1,W2) is independent of the

(p− r − s)-vector Brownian motion W3 = α′2W .

Johansen (2006) shows that

n−1/2

(
β′2∆Xbunc

β′1∆Xbunc

)
L−→

(
H0(u)

H1(u)

)
=

(
A03W3(u)

A12W2(u) +A13W3(u)

)
, u ∈ [0, 1],

where A03, A12 and A13 are conformable matrices, depending on the parameters, with A03 and A12

non-singular. Define

H∗(u) =


H0(u)

H1(u)

H2(u)

 =


H0(u)

H1(u)∫ u
0 H0(s)ds

 , u ∈ [0, 1],

as well as

H∗∗ =
∫ 1

0
H∗(u)H∗(u)′du, Hij =

∫ 1

0
Hi(u)Hj(u)′du, i, j = 0, 1, 2. (5)

Let ψ′ = (α′Ω−1α)−1α′Ω−1Γ; it can be shown that ψ′β̄2 = ᾱ′Γβ̄2 = δ. Johansen (2006, Theorem

4) and Paruolo (2000, Theorems 4.1 and 4.2) prove the following results for the maximum likelihood

estimators2 β̂, β̂1 and ψ̂ based on a sample {Xt}nt=1, with starting values {X1−k, . . . , X0}:
nβ̄
′
2(ψ̂ − ψ)

nβ̄
′
1(β̂ − β)

n2β̄
′
2(β̂ − β)

nβ̄
′
2(β̂1 − β)

 L−→


B∞0

B∞1

B∞2

C∞

 , (6)

where

B∞ =


B∞0

B∞1

B∞2

 = H−1
∗∗

∫ 1

0
H∗dW

′
1, C∞ = H−1

00

∫ 1

0
H0dW

′
2. (7)

2The cointegration parameters have been identified by c′β = Ir and c′1β1 = Is, where c and c1 are known conformable

matrices. The results given here are for c = β̄ and c1 = β̄1, from which the results for general (c, c1) can be derived.
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Because W1 is independent of (W2,W3), and H∗ is defined from (W2,W3), it follows that W1 is

independent of H∗. Similarly, W2 is independent of W3 and hence H0. This implies

B∞|H∗ ∼ N(Ω1 ⊗H−1
∗∗ ), C∞|H0 ∼ N(Ω2 ⊗H−1

00 ). (8)

Thus both B∞ and C∞ have a conditionally normal and hence mixed normal distribution, but with a

different conditioning set. Therefore, (B∞, C∞) is not jointly normal conditional on the same informa-

tion: the distribution of B∞|H0 is not normal, and C∞|H∗ has a degenerate distribution. This lack of

joint mixed normality was analysed in more detail by Boswijk (2000).

The conditional variances in (8) are estimated consistently by the estimated variance matrix based

on the inverse observed information matrix, in the sense that

v̂ar


nβ̄
′
2(ψ̂ − ψ)

nβ̄
′
1(β̂ − β)

n2β̄
′
2(β̂ − β)

nβ̄
′
2(β̂1 − β)

 L−→

(
Ω1 ⊗H−1

∗∗ 0

0 Ω2 ⊗H−1
00

)
.

Letting θ denote the full vector of cointegration parameters, this means that likelihood ratio or Wald test

statistics for smooth hypotheses H0 : g(θ) = 0 have an asymptotic χ2 null distribution, at least if for

some suitable sequence of norming matrices Dn,

D−1
n [g(θ̂)− g(θ)] L−→

(
GB vecB∞

GC vecC∞

)
, (9)

with GB and GC matrices of full row rank. Thus the components of D−1
n [g(θ̂) − g(θ)] should be

asymptotically linear in either B∞ or C∞, but not both. See Boswijk (2000) and Johansen (2006) for a

further discussion of this sufficient, but possibly not necessary condition for mixed normal inference.

The asymptotic distribution of the estimated multicointegration parameter δ̂ = ψ̂
′
β̂2 is obtained

from (6), together with nβ′1(β̂2−β̄2) = −n(β̂1−β1)′β̄2+op(1), which yields (Paruolo, 2000, Theorem

4.2)

n(δ̂ − δ)′ L−→ B∞0 − C∞A, (10)

withA = β̄
′
1ψ. Its estimated variance matrix, based on the inverse observed information matrix, satisfies

v̂ar
[
n(δ̂ − δ)′

]
L−→ Ω1 ⊗ (H−1

∗∗ )00 + (A′Ω2A)⊗H−1
00 =: VB + VC . (11)

This implies that hypotheses on δ do not satisfy (9), unless the restriction A = β̄
′
1ψ = 0 is satisfied; in

all other cases, the asymptotic distribution of δ̂ is characterised by the sum of two random variables that

are marginally, but not jointly mixed normal. As noted by Paruolo (1995) and Johansen (2006), however,

Monte Carlo simulation of (10)–(11) suggest that inference on δ is asymptotically mixed normal even if

A 6= 0. In the next section, this result will be proved.
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3 Mixed normality

This section studies asymptotic inference on the multicointegration parameter δ, based on the limit in

distribution of the standardised estimator, as implied by (10)–(11):

v̂ar
(
δ̂
′)−1/2

vec(δ̂ − δ)′ L−→ [VB + VC ]−1/2 [vecB∞0 + vec(C∞A)] =: Z. (12)

When δ is a scalar parameter, Z may be interpreted as the limit in distribution of the t-statistic of δ̂.

More generally, a Wald or likelihood ratio test statistic for a simple hypothesis on δ will converge in

distribution, under the null hypothesis, to Z ′Z.

In order to prove the main result, we first need some auxiliary lemmas, proved in the appendix. The

first lemma provides a convenient expression for (H−1
∗∗ )00.

Lemma 1 Let H∗∗ and Hij , i, j = 0, 1, 2, be as defined in (5), and define

Hij|k = Hij −HikH
−1
kk Hkj , i, j, k = 0, 1, 2,

Hij|kl = Hij − (Hik, Hil)

(
Hkk Hkl

Hlk Hll

)−1(
Hkj

Hlj

)
, i, j, k, l = 0, 1, 2.

Then

(H−1
∗∗ )00 = H−1

00|2 +H−1
00|2H01|2H

−1
11|02H10|2H

−1
00|2. (13)

Note that a simpler expression for (H−1
∗∗ )00 is H−1

00|12, but the expression in Lemma 1 is more con-

venient for our purposes. In particular, using the fact that H1 = A12W2 + A13W3, and H0 and H2 are

defined from W3, the lemma implies that W2 appears in (H−1
∗∗ )00 and hence VB in the linear functional

H01|2, and in the quadratic functional H11|02. The next lemma characterises conditions for conditional

independence between stochastic integrals and such functionals of a vector Brownian motion.

A function or kernelK on [0, 1]2 is said to be symmetric ifK(s, u) = K(u, s) for all (u, s) ∈ [0, 1]2,

and positive semi-definite if
∫ 1
0

∫ 1
0 K(u, s)g(u)g(s)duds ≥ 0 for all continuous functions g on [0, 1].

Lemma 2 LetW be a vector Brownian motion on a probability space (Ω,F ,P), independent of G ⊂ F .

Let X and Y be G-measurable vector processes satisfying E
(∫ 1

0 (XX ′ + Y Y ′)du
)
< ∞, and let

K be a positive semi-definite G-measurable kernel on [0, 1]2. Then, conditionally on G,
∫ 1
0 XdW

′ is

independent of
∫ 1
0 YW

′du and
∫ 1
0

∫ 1
0 K(u, s)dW (u)dW (s)′ if and only if, with probability one,∫ 1

0

(∫ u

0
X(s)ds

)
Y (u)′du = 0,

∫ 1

0
K(u, s)X(u)du = 0, s ∈ [0, 1].

We are now in a position to prove the main result.

Theorem 1 Let B∞0 , C
∞, VB, VC and Z be as defined in (7), (11) and (12). Then we have(
B∞0

C∞A

)∣∣∣∣∣ (VB, VC) ∼ N

((
0

0

)
,

(
VB 0

0 VC

))
, (14)

so that inference on δ is asymptotically mixed normal, i.e.,

Z |(VB, VC) ∼ N(0, Ir(p−r−s)). (15)
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Proof. Define

ZB = V
−1/2
B vecB∞0 , ZC = V

−1/2
C vec(C∞A).

From (8), it directly follows that ZB|H∗ ∼ N(0, Iq) and ZC |H0 ∼ N(0, Iq), where q = r(p − r −
s). Note that conditioning on a process X in fact means conditioning on the σ-field generated by

{X(u)}u∈[0,1]. We will use the notation X ≡ Y if both processes or random variables generate the

same σ-field, and X ⊂ Y if the σ-field generated by X is contained in the σ-field generated by Y .

The resultZB|H∗ ∼ N(0, Iq) implies thatZB is independent ofH∗, and hence also of (ZC , VB, H0)

⊂ (H0,W1) ≡ H∗, so that

ZB|(ZC , VB, H0) ∼ N(0, Iq). (16)

We will show that conditionally on H0, ZC is independent of VB . This implies ZC |(VB, H0) ∼
N(0, Iq), and together with (16), this implies(

ZB

ZC

)∣∣∣∣∣ (VB, H0) ∼ N

((
0

0

)
,

(
Iq 0

0 Iq

))
.

Because this conditional distribution of (ZB, ZC) does not depend on (VB, H0), the same jointN(0, I2q)

distribution applies conditionally on (VB, VC) ⊂ (VB, H0). This directly implies (14) and (15).

Recall thatZC = vec
(
H
−1/2
00

∫ 1
0 H0dW

′
2A(A′Ω2A)−1/2

)
and VB = Ω1⊗(H−1

∗∗ )00, where (H−1
∗∗ )00

is given by (13). This means that, conditionally on H0, ZC is independent of VB if
∫ 1
0 H0dW

′
2 is in-

dependent of H01|2 and H11|02; the other ingredients of (H−1
∗∗ )00 are fixed conditional on H0. Using

H1 = A12W2 +A13W3 for fixed matrices A12 and A13, with |A12| 6= 0, it follows that

H01|2 =
∫ 1

0
(H0 −H02H

−1
22 H2)H ′1du

=
∫ 1

0
H0|2H

′
1du

=
∫ 1

0
H0|2W

′
2duA

′
12 +

∫ 1

0
H0|2W

′
3duA

′
13,

where H0|2(u) = H0(u)−H02H
−1
22 H2(u). By Lemma 2, this implies that

∫ 1
0 H0dW

′
2 is conditionally

independent of H01|2, because∫ 1

0

(∫ u

0
H0ds

)
H0|2(u)′du =

∫ 1

0
H2(u)H0|2(u)′du = 0.

Next, let H3 = (H ′0, H
′
2)′ and H33 =

∫ 1
0 H3H

′
3du, so that

H11|02 =
∫ 1

0
H1H

′
1du−

∫ 1

0
H1H

′
3duH

−1
33

∫ 1

0
H3H

′
1du

= A12

(∫ 1

0
W2W

′
2du−

∫ 1

0
W2H

′
3duH

−1
33

∫ 1

0
H3W

′
2du

)
A′12,
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where the final equality follows from H1 = A12W2 + A13W3 = A12W2 + A13A
−1
03 H0. From this, we

find

A−1
12 H11|02A

′−1
12 =

∫ 1

0

(∫ u

0
dW2

)(∫ u

0
dW2

)′
du

−
∫ 1

0

(∫ u

0
dW2

)
H ′3duH

−1
33

∫ 1

0
H3

(∫ u

0
dW2

)′
du

=
∫ 1

0

∫ 1

0
K(u, s)dW2(u)dW2(s),

where

K(u, s) = 1− u ∨ s− H̃3(u)′H−1
33 H̃3(s),

with H̃i(u) =
∫ 1
u Hids, i = 0, 1, 2, 3. Applying again Lemma 2, we find that conditionally on H0,∫ 1

0 H0dW
′
2 is independent of H11|02, because∫ 1

0
K(u, s)H0(u)du =

∫ 1

s

(∫ u

0
H0dt

)
du−

∫ 1

0

(∫ u

0
H0dt

)
H3(u)′duH−1

33 H̃3(s)

= H̃2(s)−
∫ 1

0
H2H3(u)′duH−1

33 H̃3(s)

= 0.

The final equality follows from H2 = (Is, 0)H3, and hence H̃2 = (Is, 0)H̃3. Thus we have shown that∫ 1
0 H0dW

′
2 is independent of both H01|2 and H11|02, and hence of VB . �

4 Discussion

Theorem 1 states that the maximum likelihood estimator of the multicointegration parameter δ has an

asymptotically mixed normal distribution. This means that a likelihood ratio or Wald test statistic of

a simple hypothesis H0 : δ = δ0 will have an asymptotic χ2
r(p−r−s) null distribution, arising as the

distribution of Z ′Z. More generally, it is not hard to prove that test statistics of smooth hypotheses

H0 : g(δ) = 0, with g a continuously differentiable function with derivative G(δ) of full row rank, will

have an asymptotic χ2 null distribution.

A further extension is to consider hypotheses on β, β1 and δ together. For example, Mosconi and

Paruolo (2009) consider possibly over-identifying restrictions of the form (β′, δ)′ = h(φ), where h is

a linear function of a parameter vector φ. Extending Johansen’s (2006) Theorem 5.1, we may obtain

conditions on h such that the restricted log-likelihood is locally asymptotically quadratic. As indicated

by Johansen (2006), these conditions entail that φ can be partitioned as (φ1, φ2), with nφ̂1 and n2φ̂2

converging in distribution to linear functions of (B∞0 , B
∞
1 , C

∞) and B∞2 , respectively. Theorem 1 can

be extended to show that (B∞0 , B
∞
1 , C

∞) is jointly mixed normal, but not independent of B∞2 and its

conditional variance Ω1 ⊗
(
H−1
∗∗
)
22

. This implies that hypotheses that only restrict B0 = β̄
0′
2 (ψ − ψ0),

B1 = β̄
0′
1 β and C = β̄

0′
2 β1, but leaveB2 = β̄

0′
2 β unrestricted (where θ0 denotes the true value of θ), can

be tested based on asymptotically χ2 likelihood ratio statistics. In other words, hypotheses that involve

β and δ only allow for mixed normal inference if they do not restrict B2.
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Appendix

Proof of Lemma 1. We use the following well-known result for partitioned inverses:(
A11 A12

A21 A22

)−1

=

 A−1
11|2 −A−1

11|2A12A
−1
22

−A−1
22 A21A

−1
11|2 A−1

22 +A−1
22 A21A

−1
11|2A12A

−1
22

 , (17)

where A11|2 = A11 −A12A
−1
22 A21, and where A11, A22 and A11|2 are assumed to be non-singular. It is

convenient to define a re-ordered version of H∗∗:

H†† =


H11

(
H10 H12

)
(
H01

H21

) (
H00 H02

H20 H22

)  ,

so that (H−1
∗∗ )00 is identical to the middle diagonal block ofH−1

†† . Applying (17) toH†† withA11 = H11

(and the implied choice for A12 and A22), leads to

(H−1
∗∗ )00 =

( H00 H02

H20 H22

)−1


00

+

( H00 H02

H20 H22

)−1(
H01

H21

)
H−1

11|02

(
H10 H12

)( H00 H02

H20 H22

)−1


00

.

Next, applying (17) again to(
H00 H02

H20 H22

)−1

=

 H−1
00|2 −H−1

00|2H02H
−1
22

−H−1
22 H20H

−1
00|2 H−1

22 +H−1
22 H20H

−1
00|2H02H

−1
22

 ,

yields

(H−1
∗∗ )00 = H−1

00|2

+H−1
00|2

(
I −H02H

−1
22

)( H01

H21

)
H−1

11|02

(
H10 H12

)( I

−H−1
22 H20

)
H−1

00|2

= H−1
00|2 +H−1

00|2H01|2H
−1
11|02H10|2H

−1
00|2,

which is the required result. �

Proof of Lemma 2. First, note that integration by parts yields∫ 1

0
Y (u)W (u)′du =

∫ 1

0
Y (u)

(∫ u

0
dW (s)′

)
du =

∫ 1

0
Ỹ (u)dW (u)′,

where Ỹ (u) =
∫ 1
u Y (s)ds. Next, for a positive definite K, Mercer’s theorem, see Tanaka (1996), states

that

K(u, s) =
∞∑
i=1

λifi(u)fi(s),

8



where {λi}i≥1 and {fi}i≥1 are the eigenvalues3 and orthonormal eigenfunctions of K, solving the

integral equation ∫ 1

0
K(u, s)f(u)du = λf(s).

This implies that ∫ 1

0

∫ 1

0
KdWdW ′ =

∞∑
i=1

λi

(∫ 1

0
fidW

)(∫ 1

0
fidW

)′
.

The basic properties of the Itô integral imply
∫ 1
0 XdW

′∫ 1
0 Ỹ dW

′∫ 1
0 fidW

′


∣∣∣∣∣∣∣∣G ∼ N




0

0

0

 ,

∫ 1

0


XX ′ XỸ ′ Xf ′i

Ỹ X ′ Ỹ Ỹ ′ Ỹ f ′i

fiX
′ fiỸ

′ fif
′
i

 du

 .

Therefore
∫ 1
0 XdW

′ is conditionally independent of
∫ 1
0 YW

′du and
∫ 1
0 fidW

′ if and only if∫ 1

0
X(u)Ỹ (u)du =

∫ 1

0

(∫ u

0
X(s)ds

)
Y ′du = 0, (18)

(the first equality follows from integration by parts), and∫ 1

0
X(u)fi(u)du = 0. (19)

This in turn implies that
∫ 1
0 XdW

′ is conditionally independent of
∫ 1
0 YW

′du and
∫ 1
0

∫ 1
0 KdWdW ′ if

and only if both (18) holds and (19) holds for all eigenfunctions fi corresponding tot non-zero eigenval-

ues. The latter condition is equivalent to∫ 1

0
K(u, s)X(u)du =

∞∑
i=1

λifi(s)
∫ 1

0
fi(u)X(u)du = 0, s ∈ [0, 1].

Hence the components of X are eigenfunctions of K corresponding to zero eigenvalues. �
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