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Abstract

We propose a new estimation method for the factor loading matrix in generalized orthogonal

GARCH (GO-GARCH) models. The method is based on the eigenvectors of a suitably defined

sample autocorrelation matrix of squares and cross-products of the process. The method can there-

fore be easily applied to high-dimensional systems, where likelihood-based estimation will run into

computational problems. We provide conditions for consistency of the estimator, and study its ef-

ficiency relative to maximum likelihood estimation using Monte Carlo simulations. The method

is applied to European sector returns, and to the correlation between oil and kerosene returns and

airline stock returns.

1 Introduction

The GO-GARCH model was proposed by van der Weide (2002), as a generalization of the orthogonal

GARCH model of Ding (1994) and Alexander (2001). The starting point of the model is that an ob-

served vector of returns can be expressed as a non-singular linear transformation of latent factors (either

independent or conditionally uncorrelated) that have a GARCH-type conditional variance specification.

A restricted version of the model where only a subset of the latent factors has a time-varying condi-

tional variance has been analyzed recently by Lanne and Saikkonen (2007). This shows that a parsimo-

nious version of the factor GARCH model by, e.g., Diebold and Nerlove (1989) and Engle et al. (1990)

is nested as a special case (where the variance matrix of the idiosyncratic error term will not be of full

rank). The closely related model proposed by Vrontos et al. (2003) is also nested as a special case by

imposing structure on the linear transformation. Recently, Fan et al. (2008) studied a general version of

the model by relaxing the assumption of independent factors to conditionally uncorrelated factors.

Note that one has considerable flexibility in specifying models for the factors. One could in principle

also consider stochastic volatility as an alternative to the GARCH-type models (see e.g. Doz and Renault
∗Corresponding author. Address: Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11,
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(2006)). For surveys on multivariate volatility models we refer to e.g. Bauwens et al. (2006), and

Silvennoinen and Teräsvirta (2008); for an overview on common features, see Urga (2007), and for a

glossary to volatility models, see Bollerslev (2008).

The model is designed to balance generality against ease of estimation. Time-varying variances,

time-varying correlations and (asymmetric) volatility spillovers are accommodated, which denote the

key stylized facts of multivariate financial data. Moreover, the model is closed under linear transforma-

tions (i.e. one does not leave the model when rebalancing ones portfolios) and is closed under temporal

aggregation, which makes the model analytically convenient. (For temporal aggregation results for

multivariate GARCH models, see Hafner (2008).)

van der Weide (2002) proposed a two-step estimation method that requires joint maximum-likelihood

(ML) estimation of parameters that feature both in the linear transformation (between factors and ob-

served data) and in the univariate GARCH specifications for the individual factors. (Not all parameters

of the linear transformation need to be estimated by ML, more than half can be identified from the spec-

tral decomposition of the unconditional variance matrix.) While the method works well, and numerical

optimization of the likelihood function often converges without difficulties for dimensions up to fifteen,

maximum-likelihood can become problematic when the dimension is particularly large and/or when the

model used to specify the likelihood function is considerably misspecified.

This paper puts forward a three-step estimation method that is easy to implement and is numerically

attractive. The first two steps define a method-of-moments (MM) estimator for the linear transformation

that does not require any optimization of an objective function, so that the method is free of numerical

convergence problems regardless of the dimension. We identify the linear transformation by using the

fact that the latent factors are heteroskedastic. All that is assumed is that the factors exhibit persistence in

variance and have finite fourth moments. (Note that the idea of identification through heteroskedasticity

in simultaneous equation models is not new; see e.g. Sentana and Fiorentini (2001) and Rigobon (2003).)

The third and final step involves estimation of the univariate GARCH-type models for each of the

factors. (Models may differ between factors.)

Another alternative estimator has recently been proposed by Boswijk and van der Weide (2006).

While it also involves a three-step approach where the linear transformation is estimated independently

from the univariate GARCH-type models, it is built on a non-linear least-squares (NLS) estimator in the

second step and as such requires numerical optimization. Early findings suggest that the NLS estimator

falls in between ML and the newly proposed MM estimator, both in terms of ease of estimation and

in terms of efficiency (provided that the information from different lags is combined, analgously to the

procedure adopted in this paper; this was not yet considered in Boswijk and van der Weide (2006)).

An obvious application of multivariate GARCH models involves forecasting the conditional vari-

ance matrix for the purpose of optimal portfolio selection, hedging and risk management, and option

pricing. Naturally, the models may also be used to examine patterns in conditional correlations and

volatilities over time. Does volatility in one market spill over to other markets? Are correlations in-

creasing or decreasing, i.e., are markets moving closer together over time, are returns on assets be-

coming more or less sensitive to movements in macro-economic variables such as the interest rate, the
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exchange rate and the price of oil? Do correlations jump up in periods of extreme volatility (such as in

a financial crisis)? In a modest empirical example in this paper we examine the correlation over time

between returns on stock prices of airlines and returns on the price of crude oil and kerosene. The corre-

lation may be considered a proxy for an airline’s dependence on oil (that varies with the fuel-efficiency

of their fleet) and its ability to hedge against movements in the price of oil.

The outline of the paper is as follows. In Section 2, we formulate the GO-GARCH model, and

discuss currently available estimation methods. Section 3 introduces our method-of-moments estimator,

and discusses how information from autocorrelation matrices at different lags may be efficiently com-

bined. In Section 4 we use Monte Carlo simulations to study the efficiency of our estimator relative to

(quasi-) maximum likelihood for different weighting schemes in low-dimensional systems. Section 5

contains two empirical applications to higher-dimensional systems. Section 6 concludes.

2 The GO-GARCH model

2.1 Model and assumptions

Consider an m-vector time series {xt}t≥1, representing a vector of (daily) returns on m different assets.

Letting {Ft}t≥0 denote the filtration generated by {xt}t≥1, we assume that any possibly non-zero con-

ditional mean has been subtracted from xt, so that E(xt|Ft−1) = 0. The GO-GARCH model imposes

a structure on the conditional variance matrix Σt = var(xt|Ft−1) = E(xtx
′
t|Ft−1), implied by:

Assumption 1 The process {xt}t≥1 satisfies the representation

xt = Zyt = ZH
1/2
t εt, (1)

Ht = diag (h1t, . . . , hmt) , (2)

where Z is an m × m non-singular matrix, where {{hit}t≥1, i = 1, . . . ,m} are positive, {Ft−1}-
adapted processes with E(hit) = 1, and where {εt}t≥1 is a vector martingale difference sequence, with

E(εt|Ft−1) = 0 and var(εt|Ft−1) = Im.

The model implies that the observed vector of returns xt can be written as a non-singular transfor-

mation of a latent vector process yt (of the same dimension m), the components yit of which satisfy

E(yit|Ft−1) = 0, var(yit|Ft−1) = hit, cov(yit, yjt|Ft−1) = 0, i 6= j = 1, . . . ,m,

i.e., the components of yt are conditionally uncorrelated. The original formulation of the GO-GARCH

model involved the stronger assumption of independence of the components of yt, but for the methods

presented in the present paper, the conditional uncorrelatedness assumption (proposed by Fan et al.

(2008)) suffices. The assumptions also imply that yt is a covariance-stationary process with mean 0

and unconditional variance E(Ht) = Im. This in turn implies that xt is covariance-stationary with

(conditional) mean zero, conditional variance

Σt = var(xt|Ft−1) = ZHtZ
′, (3)
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and unconditional variance

Σ = var(xt) = ZZ ′. (4)

The conditional variances hit are assumed to follow a GARCH-type structure. One possibility, as

considered by van der Weide (2002), is to assume separate univariate GARCH(1,1) specifications

hit = (1− αi − βi) + αiy
2
i,t−1 + βihi,t−1, αi, βi ≥ 0, αi + βi < 1, (5)

which, under a suitable starting value assumption on hi0, implies independence of the components yit.

Fan et al. (2008) propose a more flexible structure, where hit may depend on yj,t−k, j 6= i, k ≥ 1. A

simple extension of (5) is their extended GARCH(1,1) specification:

hit =

1−
m∑

j=1

αij − βi

+
m∑

j=1

αijy
2
j,t−1 + βihi,t−1, αij , βi ≥ 0,

m∑
j=1

αij + βi < 1. (6)

Intermediate versions, where some of the αij , j 6= i are restricted to zero, can also be considered. It

should be emphasized that Assumption 1, as well as the estimation methods proposed in this paper, also

allow for various other specifications of the conditional variance process, including leverage effects and

models formulated in terms of log-volatilities. The assumption also allows for stochastic volatility, as

long as the projection hit of the latent stochastic volatility process of yit on the observed price history

Ft−1 is correlated with lagged squares y2
i,t−k.

Consider the polar decomposition of Z:

Z = SU, (7)

where S is a positive definite symmetric matrix, and U is an orthogonal matrix. Using (4), it follows that

Σ = S2, so that S is the symmetric square root of Σ, i.e., S = PL1/2P ′, where PLP ′ is the spectral

decomposition of Σ. This implies that part of the matrix Z may be identified from the unconditional

information Σ = var(xt), and the problem of estimatingZ may be reduced to the problem of identifying

the orthogonal matrixU from the conditional information. In other words, defining the (unconditionally)

standardized returns

st = Σ−1/2xt = S−1xt,

we find that st follows a GO-GARCH specification st = Uyt with an orthogonal link matrix U .

Note that van der Weide (2002) and Boswijk and van der Weide (2006) consider, instead of (7), the

singular value decompositionZ = PL1/2U∗, whereU∗ = P ′U is another orthogonal matrix. This leads

to analyzing the standardized principal components s∗t = L−1/2P ′xt, satisfying s∗t = U∗yt. Here we

follow Lanne and Saikkonen (2007) in using the polar decomposition, which circumvents identification

problems that arise when Σ has eigenvalues with a multiplicity. As an extreme example, if Σ = Im,

then S = Im and L = Im, but P may be an arbitrary orthogonal matrix; in such cases the principal

components s∗t would form an arbitrary orthogonal transformation of the observation vector xt, whereas

st = xt. Note also that the O-GARCH model of Alexander (2001) assumes that the standardized

principal components s∗t are independent GARCH processes, which corresponds to a special case of our

model with U∗ = Im (hence s∗t = yt), which in the parametrization considered here requires U = P .
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2.2 Reduced factor models

Lanne and Saikkonen (2007) analyze a special case of the GO-GARCH model with independent com-

ponents, in which only a subset of the components of yt have a time-varying conditional variance. The

motivation for this is that if the number of assets m is large, then it may be reasonable to expect that the

conditional variance matrix Σt can be described by a number r < m of heteroskedastic factors. Indeed,

the model then reduces to a parsimoniously parametrized version of the factor ARCH model of Engle

et al. (1990) and Diebold and Nerlove (1989).

The variance matrix Ht can in this case be expressed as

Ht =

[
H1t 0

0 Im−r

]
, H1t = diag(h1t, . . . , hrt).

Partitioning Z = [Z1 : Z2] and U = [U1 : U2] conformably with Ht, the model implies

Σt = Z1H1tZ
′
1 + Z2Z

′
2 = Σ + Z1(H1t − Ir)Z ′1,

var(st|Ft−1) = U1H1tU
′
1 + U2U

′
2 = Im + U1(H1t − Ir)U ′1.

These representations imply that in the reduced-factor model, the matrix U2 is only identified by the

properties U ′1U2 = 0 and U ′2U2 = Im−r. In other words, U2 and hence Z2 = SU2 are only identified

up to orthogonal transformations of their columns.

In a companion paper (Boswijk and van der Weide (2008)), we propose a testing procedure for

the hypothesis of a reduced-factor model based on the same sample autocorrelation matrix that will be

used in the next section to estimate U . Unless indicated otherwise, in the present paper we assume a

full-factor GO-GARCH model.

2.3 Currently available estimation methods

In this subsection we briefly review the currently available methods for estimating the model implied

by Assumption 1, or specific versions thereof. Although the GO-GARCH model can be considerably

more parsimonious than alternative multivariate GARCH models, for larger m it will become harder to

maximize its likelihood function over the entire parameter space, which has motivated the development

of two-step approximations of maximum likelihood, or alternative methods that are easier to apply in

larger dimensions.

Gaussian maximum likelihood estimation of the model with independent GARCH factors was an-

alyzed by van der Weide (2002). He considered the standardized returns st as observable time series,

which leads to a log-likelihood function of the form

`(θ) = −1
2

n∑
t=1

{
m log (2π) + log |Ht(θ)|+ s′tU(θ1)Ht(θ)−1U(θ1)′st

}
, (8)

where θ = (θ′1, θ
′
2), with θ1 a vector of dimension 1

2m(m − 1) characterizing the m ×m orthogonal

matrix U = U(θ1), and θ2 a 2m-dimensional parameter vector of GARCH parameters. A convenient
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parametrization of U(θ1) as the product of 1
2m(m − 1) rotation matrices, each characterized by one

parameter, is discussed in van der Weide (2002). Note that Ht depends on U via yt−1 = U ′st, so

that Ht = Ht(θ) is characterized by the full parameter vector θ. By applying the general asymptotic

results of Comte and Lieberman (2003) for BEKK models (in which the GO-GARCH model is nested),

conditions for consistency and asymptotic normality of the maximum likelihood estimator are obtained.

In practice st is not observed, and will have to be estimated by ŝt = Σ̂−1/2xt, with Σ̂ the sample

variance matrix n−1
∑n

t=1 xtx
′
t. (If m is large relative to n, one could also consider shrinkage-type

estimators of Σ, see e.g. Ledoit and Wolf (2004)). Therefore, in practice the procedure of van der Weide

(2002) is a two-step approximation of maximum likelihood. If we let θ0 = vech(Σ), then full maximum

likelihood would entail maximizing (8), with st replaced by Σ(θ0)−1/2xt, over (θ′0, θ
′
1, θ
′
2)′. Lanne and

Saikkonen (2007) derive asymptotic properties of such a full maximum likelihood procedure for the

reduced-factor model considered in Section 2.2.

Boswijk and van der Weide (2006) proposed a non-linear least-squares estimator of U , based on the

autocorrelation properties of the matrix-valued process St = sts
′
t − Im. Let B̂ be the minimizer, over

all symmetric matrices, of the least-squares criterion

Q(B) =
1
n

n∑
t=1

tr (St −BSt−1B)2 .

Using the fact that St = UYtU
′, with Yt = yty

′
t − Im, it follows that

Q(B) = n−1
n∑

t=1

tr (Yt −AYt−1A)2 , A = U ′BU.

Boswijk and van der Weide (2006) derive conditions under which the probability limit of Â = U ′B̂U is

a diagonal matrix, which in turn implies that the eigenvector matrix Û of B̂ will be a consistent estimator

of U . This estimator can be embedded in a three-step procedure: first estimate Σ to construct ŝt, then

estimate U based on ŝt, and finally estimate the GARCH parameters based on ŷt = Û ′ŝt.

An alternative estimator of U was proposed by Fan et al. (2008). The starting point of their analysis

is that the conditionally uncorrelated restriction E(yityjt|Ft−1) = 0 is equivalent to E[yityjtI(B)] = 0

for all B ∈ Ft−1, where I(.) is the indicator function. Let ui denote the i-th vector of U , so that

yit = u′ist, let B be a collection of subsets of Rm, and let p be an arbitrary integer. Then the columns of

U should satisfy the (population) criterion

Ψ(U) =
∑

1≤i<j≤m

∑
B∈B

p∑
k=1

∣∣u′iE[sts
′
tI(st−k ∈ B)]uj

∣∣ = 0. (9)

Fan et al. (2008) propose to estimateU by minimizing a sample analog of Ψ(U), and provide a bootstrap

inference procedure for this estimator, and for a test of the conditionally uncorrelatedness hypothesis.

Again, this estimator of U should be preceded by the estimation of Σ and st, and followed by the

estimation of the (extended) GARCH models for ŷt = Û ′ŝt.

All methods considered in this subsection require numerical maximization of a criterion function

over a high-dimensional parameter space. Therefore, as m increases, each of these methods is likely
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to run into numerical problems, such as failure of a Newton-type optimization procedure to converge,

or the possibility of ending up in a local maximum. The estimator proposed in the next section, on the

other hand, only requires the calculation of eigenvalues and eigenvectors of a particular sample moment

matrix, and therefore can be applied to arbitrary dimensions m.

3 Method of moments estimation

3.1 The estimator

The starting point of our method-of-moments estimator is the same as in Boswijk and van der Weide

(2006), i.e., the autocorrelation properties of the (mean-zero) matrix-valued processes St = sts
′
t −

Im and Yt = yty
′
t − Im. For the autocorrelation matrices of these processes to be well-defined (and

consistently estimated by their sample analogs) and to be able to identify U from these, we make the

following assumption.

Assumption 2 The process {yt}t≥1 is strictly stationary and ergodic, and has finite fourth moments

κi = E(y4
it) < ∞, i = 1, . . . ,m. Furthermore, the autocorrelations ρik = corr(y2

it, y
2
i,t−k) and cross-

covariances τ ijk = cov(y2
it, yi,t−kyj,t−k) satisfy, for some integer p,

min
1≤i≤m

max
1≤k≤p

|ρik| > 0, max
1≤k≤p,1≤i<j≤m

|τ ijk| = 0.

The stationarity assumption, as well as the assumptions on the moments, would be implied by inde-

pendent GARCH processes for yit, under suitable parameter restrictions to guarantee a finite kurtosis,

see He and Teräsvirta (1999). Because estimated GARCH parameters in practice do not always satisfy

the finite kurtosis restrictions, this assumption is not without loss of generality. In the next section,

we investigate the sensitivity of our method to deviations from this assumption through Monte Carlo

simulations. The non-zero autocorrelation assumption allows us to identify U from the the first p auto-

correlation coefficients of y2
it. It would be hard to think of processes that do display volatility clustering

but violate this assumption (i.e., with corr(y2
it, y

2
i,t−k) = 0 for all k = 1, . . . , p). Finally, the zero cross-

covariances τ ijk exclude dependence in hit on whether yi,t−k and yj,t−k have the same sign. Although

this may exclude particular asymmetries in volatility, note that the assumption does allow for the ex-

tended GARCH model (6), possibly augmented with yi,t−1 and yj,t−1 (but not their product) to allow

for leverage effects.

Define the autocovariance matrices

Γk(y) = E(YtYt−k), k = 1, 2, . . . (10)

Note that Γk(y) does not contain all separate k-th order (cross-) autocovariances of squares and cross-

products of yt (which would require vectorizing Yt), but is an m×m matrix with elements

Γk(y)ij =
m∑

`=1

cov(yity`t, y`,t−kyj,t−k).
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Therefore, Assumptions 1 and 2 imply, using var(y2
it) = E(y4

it)− E(y2
it)

2 = κi − 1,

Γk(y)ij = cov(y2
it, yi,t−kyj,t−k) =

{
(κi − 1)ρik, j = i,

τ ijk = 0, j 6= i,

or in other words

Γk(y) = diag((κ1 − 1)ρ1k, . . . , (κm − 1)ρmk).

For the corresponding autocorrelation matrix, we thus find

Φk(y) = Γ0(y)−1/2Γk(y)Γ0(y)−1/2 = diag(ρ1k, . . . , ρmk).

For the process st = Uyt, the corresponding autocovariance and autocorrelation matrices satisfy

Γk(s) = E(StSt−k) = E(UYtU
′UYt−kS

′) = UΓk(y)U ′,

and hence

Φk(s) = Γ0(s)−1/2Γk(s)Γ0(s)−1/2 = UΦk(y)U ′.

Because Γk(y) and Φk(y) are diagonal matrices and U is an orthogonal matrix, we find that under

Assumptions 1 and 2, U may be identified by the eigenvectors of either Γk(s) or Φk(s).

Consider the sample analogs of Γk(s) or Φk(s):

Γ̂k(s) =
1
n

n∑
t=k+1

StSt−k =
1
n

n∑
t=k+1

(sts
′
t − Im)(st−ks

′
t−k − Im), (11)

Φ̂k(s) = Γ̂0(s)−1/2Γ̂k(s)Γ̂0(s)−1/2, (12)

where Γ̂0(y)−1/2 is the symmetric square root of Γ̂0(y)−1. We define our estimator Ûk as the matrix

of eigenvectors of the symmetrized version 1
2(Φ̂k(s) + Φ̂k(s)′) of Φ̂k(s). Although in principle one

could also take the eigenvectors of the corresponding symmetric version of Γ̂k(s) as estimator of U ,

preliminary Monte Carlo experiments have indicated that the standardization used to construct Φ̂k(s)

leads to a more efficient estimator.

3.2 Combining information from different lags

Although one could in principle use the estimator Ûk proposed in the previous subsection for one par-

ticular choice of the lag length k, we may obtain a more efficient estimator by combining information

from different lags. This is relevant in particular for daily financial data, where the autocorrelation func-

tion of the squares typically is small but slowly decaying. This implies that the eigenvalues {ρik}mi=1 of

Φk(s) will be close to zero (and and hence close to each other), yielding weakly identified eigenvectors

for fixed k. Provided that the autocorrelation functions {ρik}∞k=1 are sufficiently different, pooling the

information from different Φk(s) matrices will then increase the efficiency of the estimator.

Let p denote the maximal lag length, and let {wk}pk=1 be a set of weights, satisfying wk ≥ 0 and∑p
i=1wk = 1. The information from different lags can be combined in various alternative ways. A
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simple approach would be to average the moment matrices Γ̂k(s) or Φ̂k(s), and calculate the eigenvec-

tors from these averages. Alternatively, one could take the weighted geometric average of Ûk, or the

orthogonal part of the polar decomposition of the weighted arithmetic average. In preliminary Monte

Carlo experiments, it has appeared that each of these possibilities is dominated by the following simple

approach. Consider the inverse Cayley transforms (see Liebeck and Osborne (1991))

Ŝk = (Im − Ûk)(Im + Ûk)−1,

which results in skew-symmetric matrices {Ŝk}pk=1. The average Ŝ =
∑p

k=1wkŜk of such matrices is

also a skew-symmetric matrix. Our pooled estimator is then defined as the Cayley transform of Ŝ, i.e.,

Û = (Im − Ŝ)(Im + Ŝ)−1

=

(
Im −

p∑
k=1

wk(Im − Ûk)(Im + Ûk)−1

)(
Im +

p∑
k=1

wk(Im − Ûk)(Im + Ûk)−1

)−1

. (13)

When averaging (Cayley-transformed) orthogonal matrices, care has to be taken of the ordering and

sign of the columns of Ûk. Because the model can be expressed as st = Uyt =
∑m

i=1 uiyit, with ui

the ith column of U , it follows that U is equivalent to a matrix containing {u1, . . . , um}, in arbitrary

order, and possibly multiplied by −1. We use the following procedure to match an orthogonal matrix U

as closely as possible to another orthogonal matrix V , with columns {vi}mi=1:

• the first column of the matched matrix Ũ is that column uj such that |v′1uj | = max1≤i≤m |v′1ui|;

• for ` = 2, . . . ,m, the `th column of Ũ is that column uj such that |v′`uj | = maxi∈I`
|v′`ui|, where

{ui, i ∈ I`} is the set of remaining columns of U , after the first ` − 1 columns of Ũ have been

determined;

• the sign of each of the columns of Ũ is such that the diagonal elements of this matrix are positive;

• if the resulting matrix has determinant −1, then the column of Ũ that has the smallest absolute

inner product with the corresponding column of V is multiplied by −1.

Using this procedure, we first match Û1 to the identity matrix Im (which means that columns are

rearranged such that the largest elements end up along the diagonal), and then we match Ûk, k =

1, . . . , p, to Û1.

We consider two choices for the weight functions: equal weights wk = 1/p, and weights depending

on the eigenvalues {λ̂ik}mi=1 of 1
2(Φ̂k(s) + Φ̂k(s)′):

wk =
min1≤i<j≤m(λ̂ik − λ̂jk)2∑p

k=1 min1≤i<j≤m(λ̂ik − λ̂jk)2
. (14)

This weight function reflects the fact that the estimator precision of eigenvectors of a matrix estimator

depends on the degree to which the eigenvalues are distinct. For example, when the estimator Σ̂ of a
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positive definite matrix Σ follows a Wishart distribution, then the asymptotic variance of the eigenvec-

tors (corresponding to non-zero eigenvalues) is proportional to
∑

i 6=j λiλj/(λi−λj)2 (Anderson, 1984,

Section 13.5).

The estimator we propose can be summarized as follows.

Summary 1 Starting from an m-vector of daily returns {xt}nt=1, possibly corrected (by least-squares)

for a constant mean and serial correlation, the model is estimated in the following steps:

1. estimate the unconditional variance matrix Σ̂ = n−1
∑n

t=1 xtx
′
t, its spectral decomposition Σ̂ =

PLP ′, and hence its symmetric square root S = PL1/2P ′ and the standardized returns st =

S−1xt = PL−1/2P ′xt;

2. calculate the matrix-valued series St = sts
′
t − Im, its sample autocovariance matrices Γ̂k(s) =

n−1
∑n

t=1 StSt−k, k = 0, . . . , p, and its sample autocorrelation matrices Φ̂k(s), k = 1, . . . , p,

from (12);

3. calculate the spectral decomposition of the symmetrized autocorrelation matrices 1
2(Φ̂k(s) +

Φ̂k(s)′) = ÛkΛ̂kÛ
′
k; from the diagonal elements {λ̂ik}mi=1 of Λ̂k, calculate the weights wk from

(14), match the orthogonal matrices {Ûk}pk=1 to each other using the procedure described in the

previous subsection, and use these to calculate the pooled estimate Û as given in (13);

4. estimate the conditionally uncorrelated components yt by ŷt = Û ′st, and estimate separate

GARCH-type models for the components of yit by quasi-maximum likelihood.

3.3 Consistency

In this subsection we prove consistency of the estimator Û defined in the previous section. We use

the square root d(·, ·) of a symmetric version of the distance measure D(·, ·) for orthogonal matrices

introduced by Fan et al. (2008):

d(U, Û) =
√

1
2

[
D(U, Û) +D(Û , U)

]
,

D(Û , U) = 1− 1
m

m∑
i=1

max
1≤j≤m

∣∣u′iûj

∣∣ .
The motivation for D(·, ·) is the same equivalence of U under permutation and sign change of its

columns as discussed above. The modification d(·, ·) is a distance function that satisfies the proper-

ties of a metric (symmetry, triangle inequality1), provided that an orthogonal matrix is identified by its

equivalence class.

An identification assumption needed for consistency of Û is the following:
1Although we have not been able to prove the triangle inequality, numerically it appears that d(·, ·) satisfies this property;

the original distance D(·, ·) violates this property.

10



Assumption 3 In the model defined by Assumptions 1 and 2,

max
1≤k≤p

min
1≤i<j≤m

∣∣ρik − ρjk

∣∣ > 0.

The assumption excludes the possibility that two squared components y2
it and y2

jt have the same

autocorrelation function for k = 1, . . . , p. The reason for this assumption is that the autocorrelations

are the eigenvalues of the matrix Φk(s), and if this matrix has eigenvalues with a multiplicity, then the

corresponding submatrix of eigenvectors is only identified up to orthogonal transformations. Because

such transformations will typically destroy the property of the true matrix U , that U ′st = yt is a vector

of conditionally uncorrelated components, this would result in an inconsistent estimator Ûk. For the

weighted estimator based on the eigenvalue-based weight function (14), such inconsistent estimates

will automatically get a zero weight, so that Assumption 3 is sufficient for consistency. For the equally-

weighted estimator, however, the assumption needs to be strengthened to

Assumption 4 In the model defined by Assumptions 1 and 2,

min
1≤k≤p,1≤i<j≤m

∣∣ρik − ρjk

∣∣ > 0.

Theorem 1 Consider the estimator (13), with weight function (14). Then, under Assumptions 1–3, and

as n→∞,

d(U, Û) P−→ 0.

Under Assumptions 1–4, the same result applies to the estimator with weight function wk = 1/p.

Proof. From the law of large numbers for stationary ergodic Markov chains, see Jensen and Rahbek

(2007), it follows that under Assumptions 1 and 2, and as n→∞,

Γ̂k(s) P−→ Γk(s), Φ̂k(s) P−→ Φk(s).

If Φk(s) has distinct eigenvalues, this implies d(U, Ûk) P−→ 0. By the continuous mapping theorem, for

these values of k we have

wk =
min1≤i<j≤m(λ̂ik − λ̂jk)2∑p

k=1 min1≤i<j≤m(λ̂ik − λ̂jk)2
P−→

min1≤i<j≤m(ρik − ρjk)2∑p
k=1 min1≤i<j≤m(ρik − ρjk)2

> 0, (15)

whereas those Ûk matrices for which Φk(s) has eigenvalues with a multiplicity will get zero weight.

Under Assumption 3, there is at least one k such that (15) holds, which implies d(U, Û) P−→ 0. For

the equally-weighted estimator, any inconsistent Ûk will get a non-zero weight, so that they need to be

consistent for all k = 1, . . . , p, which requires Assumption 4. �

A next step could be to derive the asymptotic distribution of the estimator, as well as a rate of

convergence. Both would require assuming finite eighth moments of yit, which is likely to be violated

in practical applications, and is therefore not consider here. Alternatively, bootstrap procedures could

be devised to conduct asymptotic inference on Û . We leave this for future work.
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4 Monte Carlo simulations

In this section we study the finite-sample performance of the estimator proposed in this paper for various

choices of lag length and weight function, and we compare its performance to the maximum likelihood

estimator for various sample sizes. We consider a trivariate system (m = 3), with true value of U given

by the product of rotation matrices:

U =


cosφ1 − sinφ1 0

sinφ1 cosφ1 0

0 0 1




cosφ2 0 − sinφ2

0 1 0

sinφ2 0 cosφ2




1 0 0

0 cosφ3 − sinφ3

0 sinφ3 cosφ3

 ,
with φ1 = π/3, φ2 = π/5, and φ3 = π/7. The components of yt are assumed to be independent

Gaussian GARCH(1,1) processes, with two alternative parameter combinations:

• DGP A: (α1, β1) = (0.03, 0.96); (α2, β2) = (0.09, 0.90); (α3, β3) = (0.17, 0.78);

• DGP B: (α1, β1) = (0.05, 0.94); (α2, β2) = (0.15, 0.84); (α3, β3) = (0.25, 0.74).

Under DGP A, all components of yt have finite kurtosis, so that Assumption 2 is satisfied. The

first and second component have the same autocorrelation decay rate α + β = 0.99, but a different

initial autocorrelation ρ1, so that the autocorrelation functions do not cross. The parameters of the third

component have been chosen such that the cumulative autocorrelation
∑∞

k=1 ρk is (almost) the same as

for y1t; the autocorrelation decay is faster for the third component (α + β = 0.95), but ρ1 is larger, so

that the autocorrelation functions of y2
1t and y2

3t cross (around k = 40). We would expect that in such

cases, the eigenvalue-weighted estimator will perform much better than the equally-weighted estimator.

Under DGP B, the second and third component have infinite kurtosis; this DGP is included to

investigate how sensitive the estimator is to deviations from the finite-fourth-moment assumption.

Figure 1 depicts the root mean square distance (RMSD), i.e., the square root of the average of

d(U, Û)2 over 5000 Monte Carlo replications, for the two DGPs discussed above, with T ∈ {800, 1600,

3200, 6400} and p ∈ {1, 5, 10, 25, 50, 100, 200}. The left panels refer to DGP A, the right panels to

DGP B.

Figure 1 about here

The top panels of Figure 1 depict the RMSD as a function of the lag length p, for n = 1600 and

n = 6400. We find that the eigenvalue-weighted estimator always outperforms the equally-weighted

estimator, although the difference is not larger in DGP A, as we would have expected. In all cases there

is a clear gain from combining lags: the minimum achievable average RMSD is about half the distance

for p = 1. For DGP A, the optimal lag length is about p = 50, whereas for DGP A, p = 100 gives

the best results (for n = 1600; for the larger sample size, higher lag orders are preferred). For the

eigenvalue-weighted estimator, we find that over-specifying p does not lead to a loss of information; on

the other hand, the RMSD of the equally-weighted estimator does increase as p increases beyond the

optimal choice.

12



The bottom panels show the RMSD, both of the ML estimator and the two versions of the MM

estimator, as function of the sample size. Here p has been chosen to minimize the distance. We observe

that the MM estimators have a much larger RMSD than the ML estimator. We also observe that the

RMSD of the MM estimator is approximately proportional to n−1/2. (In a bivariate model where U

is characterized by a single angle φ, it can be shown that the average d(U, Û)2 is approximately equal

to half the mean squared error of φ̂.) Most striking is that the estimator in DGP B, which does not

satisfy Assumption 2 because some of its components have infinite kurtosis, has the same qualitative

behaviour as the estimator in DGP A, and in fact has a smaller RMSD. Therefore, although the definition

of the moment matrices Γk(s) and Φk(s) require the existence of fourth moments, we observe that the

estimator is not negatively affected by a departure from this assumption.

The clear superiority of the ML estimator leads to the conclusion that this is the preferred method of

estimation when the dimension of the problem is not too large. One might expect that the ML estimator

will be less robust against departures from the assumption of independent GARCH(1,1) components,

for example in case of extended GARCH or non-Gaussian innovations. Unreported simulation evidence

suggests that although the ML estimator may indeed be negatively affected by such departures, the avail-

able alternative estimators will also perform worse in these cases. While the misspecification reduces

the gap in efficiency between the two estimators, the same ranking of methods applies. What is evident

is that in case of severe misspecification, likelihood maximization will run into convergence problems,

and the same clearly applies when the dimension m of the system increases. Therefore, we recommend

our method-of-moments estimator in cases where numerical problem are experienced.

5 Empirical applications

5.1 European sector indices

In this subsection we analyse empirical GO-GARCH models for Dow Jones STOXX 600 European

stock market (super-)sector indices. From www.stoxx.com, we downloaded daily data, January 1987

through December 2007, on the 15 super-sector indices that were available for this period2, yielding

n = 5420 daily log-returns. These data displayed virtually no autocorrelation, so that they have only

been corrected for a constant mean.

We start by estimating a trivariate model for the sectors Automobiles & Parts (A), Banks (B), and

Oil & Gas (O). The unconditional standard deviations and correlations of these three returns are given

by

σ̂A = 0.0141, σ̂B = 0.0115, σ̂O = 0.0120,

ρ̂A,B = 0.765, ρ̂A,O = 0.531, ρ̂B,O = 0.604.

The method-of-moments estimator with p = 100 lags (denoted ÛMM ), and the maximum likelihood

estimator based on independent Gaussian GARCH(1,1) factors (denoted ÛML) are given by
2Automobiles & Parts; Banks; Basic Recources; Chemicals; Construction and Materials; Financial Services; Food & Bev-

erage; Health Care; Industrial Goods & Services; Insurance; Media; Oil & Gas; Technology; Telecommunications; Utilities.
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ÛMM =


0.973 −0.157 0.172

0.039 0.839 0.543

−0.229 −0.522 0.822

 , ÛML =


0.775 −0.631 0.012

0.563 0.683 −0.465

0.285 0.367 0.885

 ,
with a distance of d(ÛMM , ÛML) = 0.504. The estimated GARCH parameters for the three factors

from both methods are

(α̂1, β̂1)MM = (0.060, 0.926), (α̂1, β̂1)ML = (0.095, 0.881),

(α̂2, β̂2)MM = (0.042, 0.954), (α̂2, β̂2)ML = (0.054, 0.937),

(α̂3, β̂3)MM = (0.072, 0.907), (α̂3, β̂3)ML = (0.033, 0.964).

We observe rather different estimates of both the link matrix U and the GARCH parameters. To investi-

gate the consequences of this, Figure 2 compares the estimated conditional volatilities (on the diagonal),

conditional correlations (above the diagonal) and conditional covariances (below the diagonal) of the

three series, based on both methods.

Figure 2 about here

We observe that, although the parameter estimates based on both methods are rather different, they

seem to agree to a large part on the estimated volatilities and covariances. The estimated correlations

differ more. On average, the series based on ML estimation seem to display more variation than the

corresponding series based on MM estimation (most notably in the correlation between the first two

series).

Next, we estimate a 15-variate GO-GARCH model for all sector indices. Maximum likelihood

estimation, which involves maximization over a parameter space of dimension 1
2m(m−1)+2m = 135,

takes a long time to converge, but eventually a (possibly local) maximum of the likelihood function is

reached. The method of moments estimator (still with p = 100), on the other hand, still can be computed

within a few seconds. The distance between the estimates now is given by d(ÛML, UMM ) = 0.591.

Figure 3 depicts the estimated volatilities, covariances and correlations for the same three series as in

Figure 2, but now based on the 15-variate model.

Figure 3 about here

Again we observe that the estimated volatilies and covariances from both estimation methods are

rather similar, and that the largest differences occur in the conditional correlations. Moreover, compar-

ing the two figures, it appears that moving from the trivariate model to the 15-variate model leads to

smoother behaviour in all estimated volatilities, covariances and correlations, regardless of which esti-

mation method is used. In fact the conditional correlations in the large model seem to display very little

variation around their unconditional mean.

The results so far were based on estimated univariate GARCH(1,1) models for the factors {ŷit}.
It should be noted, however, that the misspecification test of Ling and Li (1997), based on the sample
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autocorrelation function of ŷ′tĤ
−1
t ŷt, rejects the null hypothesis of correct specification, for both estima-

tion methods, and both dimensions (m = 3 and m = 15). Therefore, we have also estimated extended

GARCH specifications for the factors (based on method-of-moments estimation of U ). Although the

Ling and Li (1997) test statistics become substantially smaller, they still lead to a rejection of the null

hypothesis at any reasonable significance level. The corresponding graphs of volatilities, covariances

and correlations are virtually indistinguishable from those given in Figures 2 and 3.

5.2 Fuel prices and transportation stock prices

The empirical application in this subsection will examine the conditional correlations between daily

returns on stock prices from the transportation sector and daily returns on the price of crude oil and

kerosene (jet fuel) in the United States. The stocks included are American Airlines, South-West Airlines,

Boeing and FedEx, which we downloaded from Yahoo Finance: http://finance.yahoo.com. The

price data for crude oil and kerosene denote U.S. Energy Information Administration (EIA) daily energy

spot prices that can be downloaded from EconStats: http://www.econstats.com. The six-variate

sample covers the period between July 19, 2003, and August 12, 2008, yielding n = 3790 daily returns.

We will work with the residuals from a VAR(1) model that corrects for the little autocorrelation present

in the data.

A motivation for looking at these correlations is that they may be revealing of fuel efficiency of

the transportation companies and how well these companies are able to hedge fuel price risk. A reason

why we may expect to see persistent correlation between price movements on a daily scale is that they

reflect simultaneous revision of market expectations concerning the future price of fuel and its impact

on the value of the transportation company. In other words, the level of correlation in a way measures

the market’s assessment of the significance of fuel prices for the present value of the airline, given the

market’s assessment of the (future) fuel efficiency of the airline, the uncertainty in future oil prices, and

the airline’s ability to hedge uncertain fuel prices. The question is, how do airlines compare over time?

The six variables combined yield a total of fifteen correlations between all possible pairs. In what

follows we will focus our attention on the correlations between the return on jet fuel and the returns on

the four stock prices. The unconditional volatilies and correlations are given by

σ̂K = 0.025, σ̂A = 0.039, σ̂S = 0.024, σ̂B = 0.020, σ̂F = 0.020,

ρ̂K,A = −0.172, ρ̂K,S = −0.088, ρ̂K,B = −0.027, ρ̂K,F = −0.062,

where K refers to kerosene, A to American Airlines, S to South-West Airlines, B to Boeing and F

to FedEx. We find that the two airlines exhibit a stronger (negative) correlation with the price of jet

fuel than Boeing and FedEx. American Airlines shows the highest correlation in absolute value (it also

has the highest volatility). Boeing reports the lowest correlation (in absolute value) which may hint

to the fact that it is the only non-transportation company in the list, such that its operational costs and

profitability depends less crucially on the price of kerosene.

We continue by estimating the six-variate model. The maximum-likelihood estimator is based on

independent Gaussian GARCH(1,1) factors. For the method-of-moments estimator we set the number
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of lags at p = 50. Figure 4 plots the four conditional correlations over time. For ease of exposition we

plotted the ML estimates only. (A comparison between MM and ML is shown in the next figure.)

Figure 4 about here

It can be seen that all four correlations show the same pattern over time. Most of the differences

between variables concern the levels. The figure confirms that the two airlines appear to be more cor-

related with changes in the price of jet fuel than FedEx and Boeing (where Boeing is least correlated).

(The separation between the airlines and the non-airlines is most noticeable since 2004.) What stands

out is that American Airlines shows the strongest correlation over the entire period.

When comparing airlines, South-West seems to be less sensitive to movements in the price of jet

fuel. This finding is consistent with the fact that South-West is known to have a long-term and active

program to hedge fuel prices. In short, they buy fuel options when the price of oil is believed to be low

to hedge against potentially high fuel prices years later. These hedges have for example helped South-

West through the Iraq war and hurricane Katrina when oil prices indeed increased significantly. In the

third quarter of 2008 (the end of our sample), South-West recorded its first loss in many years, partly

because the then noticeable drop in oil prices had rendered the fuel hedging strategy of lesser value.

(Also, South-West has a somewhat younger fleet compared to American Airlines, which may benefit

fuel efficiency.)3

The fact that time patterns in correlations are largely the same for the series considered may have

various explanations. Where a variation in fuel efficiency and/or different strategies to hedge fuel prices

may be able to explain the differences in levels, it is thinkable that the co-variation over time may be

attributed to isolated events that apply to all. It is also possible however, that whenever hedging the price

of fuel is proving to be more difficult for one airline, it has also become more difficult for others, which

too may explain why correlations largely move together over time.

Figure 5 compares MM estimates of the conditional correlations to those obtained with ML. Note

that in contrast to the previous example, see Figure 2, the MM-based correlations now display more

variation than their ML-based counterparts.

Figure 5 about here

The two different estimators largely agree on the correlations for the two airlines, but show clear

differences for both Boeing and FedEx. It is possible that MM has not been able to identify selected

factors due to multiplicity in sample eigenvalues; these factor may have been more important for Boeing

and FedEx than for the two airlines. Indeed, inspection of the MM estimates of the link matrix Z and the

GARCH parameters reveals that three factors with very similar GARCH parameters (and hence similar

eigenvalues) have the strongest effect on Boeing and FedEx, and much less on the other returns.

Let us examine more closely the correlations over time for the two airlines. Most noticeable are the

two large drops in correlation between end of 2002 and end of 2003 from −0.1 to around −0.4. After
3See http://en.wikipedia.org/wiki/Southwest Airlines#Hedging fuel for references.
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the first drop late 2002 correlations quickly climbed to previous levels of around −0.1, only to drop

again shortly after, creating a ‘W’ pattern. The most important event that occurred around the time of

these volatile movements in correlation was the Iraq war (also known as the second Gulf war) which

began on March 20, 2003. The invasion of Iraq was indeed a significant event for oil markets because

of Iraq’s large oil reserves, which probably led to an increase in levels of uncertainty concerning future

oil prices. While the Iraq war, as an isolated incident, probably does not change the long-term price of

oil, it will have short-term effects via the updating of expectations by the market.

Next we observe a small spike in correlation towards the end of 2005. If it is not due to noise in

our estimates, this may well reflect the effects of hurricane Katrina that was effective between August

23 and August 30, 2005. Katrina damaged or destroyed a number of oil platforms, caused closure of

some refineries, and caused serious damage to important infrastructure in the Gulf Coast which is an

important oil producing region in/for the United States.

Towards the end of our sample, from 2007 onwards, the correlation steadily declined from around

−0.15 to below −0.50, well below the unconditional mean. The important event that coincides with

this trend in correlation is the financial crisis that started around July, 2007.

Inspired by these findings we conjecture that the conditional correlation, between changes in the

price of jet fuel and changes in the price of airline stocks, are linked to levels of uncertainty concerning

future price levels of oil (and jet fuel). Correlations are high (in absolute value) when uncertainty is high.

A possible rationale for this relationship is that when the market is uncertain about future price levels

of oil, and thus about the operational costs the airline may face, the price of oil will get more weight

when assessing the present value of the airline, compared to factors that exhibit lesser uncertainty. Also,

in times of high uncertainty, the market will more frequently be revising their expectations both about

the price of oil and its effect on the present value of the airline – which too may strengthen correlations

between the two.

Let us also explain how this conjecture is consistent with our empirical findings (the time-variation

in estimated conditional correlations).

The effect of the Iraq war starting March 2003: Towards the start of the war, as plans for the U.S.

led invasion were unfolding, uncertainty concerning the future price of oil was probably increasing,

together with the correlation (in absolute value) between oil and the airlines’ stock prices. During a

short period after the invasion, the perception was that the war would quickly come to an end (‘mission

accomplished’), which may explain why correlations promptly returned to previous levels (shortly after

the first drop). But then the market realized that the end was nowhere in sight, re-introducing increased

levels of uncertainty concerning the price of oil, and correlations dropped again to below −0.4.

The effect of the financial crisis starting July 2007: At the outset of the financial crisis, oil prices

were still climbing. (They reached their peak mid 2008 when the crisis was well under way.) Thus when

the recession in the United States was already looming, the price of oil was still high. Importantly, there

was considerable uncertainty at the time whether the recession would bring down oil prices. Much of

the (new) demand for oil has come from emerging economies such as China, as well as from Europe. It

was uncertain if and how the recession in the United States would carry over to the emerging markets
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and Europe. In case of a “decoupling” the demand for oil would stay strong despite the recession

originating in the United States. In this time of uncertainty, correlations increased in absolute value.

When it then became clear that the recession would be global also oil prices came down, together with

stock prices. We can already see correlations increasing again at the end of our sample. (Our conjecture

is that correlations will have continued climbing in the period that followed our sample.)

6 Concluding remarks

We have put forward a method-of-moments estimator for the factor loading matrix in GO-GARCH

models. The method is based on the eigenvectors of a suitably defined sample autocorrelation matrix

of squares and cross-products of the observed data. This means that estimation does not require any

optimization of an objective function, so that it is free of numerical convergence problems regardless of

the dimension. The parameters from the univariate GARCH-type models can be estimated separately

for each individual factor, given our estimate for the factor loading matrix, which makes the method

particularly easy to implement.

Our method of estimation provides an alternative to the estimator originally proposed by van der

Weide (2002), which jointly estimates parameters that feature both in the factor loading matrix and

the univariate GARCH-type specifications by means of maximum likelihood. ML estimates of the

factor loading matrix thus depend on the choice of GARCH-type models used to specify the likelihood

function.

The ML estimator is found to be considerably more efficient than the MM estimator, particularly

when the likelihood function is consistent with the data generating process. The loss in efficiency is the

price the MM estimator pays for its numerical convenience (no optimization required), and the fact that

no assumptions need to be made concerning the model specification for the individual factors. Interest-

ingly, Monte Carlo simulations suggest that ML is fairly robust to misspecifications in the underlying

model. While model misspecification reduces the gap between MM and ML, the latter tends to remain

the more efficient estimator.

The MM estimator will be a welcome alternative however, whenever ML experiences convergence

difficulties. ML estimation can become problematic when the dimension is particularly large and/or

when the model used to specify the likelihood function is considerably misspecified, while the MM

estimator always works. One could also consider taking the MM estimate as an initial value for ML, in

an effort to resolve any convergence problems4.
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Figure 1: Root mean square distance of MM and ML estimators for various choices of p and n.
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Figure 2: Estimated conditional volatilities, correlations and covariances based on MM and ML esti-

mation, trivariate model. The first row and column refer to Automobiles & Parts, the second row and

column to Banks, and the final row and column to Oil & Gas.

1990 2000

0.01

0.02

0.03

0.04

0.05 vol MM vol ML 

1990 2000

0.2

0.4

0.6

0.8

1.0 corr MM corr ML 

1990 2000

0.2

0.4

0.6

0.8

1.0 corr MM corr ML 

1990 2000

0.0005

0.0010

0.0015
cov MM cov ML 

1990 2000

0.01

0.02

0.03

0.04

0.05
vol MM vol ML 

1990 2000

0.2

0.4

0.6

0.8

1.0 corr MM corr ML 

1990 2000

0.0005

0.0010

0.0015
cov MM cov ML 

1990 2000

0.0005

0.0010

0.0015
cov MM cov ML 

1990 2000

0.01

0.02

0.03

0.04

0.05
vol MM vol ML 

22



Figure 3: Estimated conditional volatilities, correlations and covariances based on MM and ML esti-

mation, 15-variate model. The first row and column refer to Automobiles & Parts, the second row and

column to Banks, and the final row and column to Oil & Gas.
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Figure 4: Estimated conditional correlations between Kerosene returns, and stocks returns of American

Airlines, South-West Airlines, Boeing and FedEx; ML estimation.
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Figure 5: MM and ML estimated conditional correlations between Kerosene returns, and stocks returns

of American Airlines, South-West Airlines, Boeing and FedEx.
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