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Abstract
In practice structural equations are often estimated by least-squares, thus ne-

glecting any simultaneity. This paper reveals why this may often be justi�able
and when. Assuming data stationarity and existence of the �rst four moments of
the disturbances we study the limiting distribution of the ordinary least-squares
(OLS) estimator in a linear simultaneous equations model. In simple static mod-
els we compare the asymptotic e¢ ciency of this inconsistent estimator with that
of consistent simple instrumental variable (IV) estimators and depict cases where
�due to relative weakness of the instruments or mildness of the simultaneity �
the inconsistent estimator is more precise. In addition, we examine by simulation
to what extent these �rst-order asymptotic �ndings are re�ected in �nite sam-
ples, taking into account non-existence of moments of the IV estimator. In all
comparisons we distinguish between conditional and unconditional (asymptotic)
distributions. By dynamic visualization techniques we enable to appreciate any
di¤erences in e¢ ciency over a parameter space of a much higher dimension than
just two, viz. in colored animated image sequences (which are not very e¤ective
in print, but much more so in live-on-screen projection).

�Department of Quantitative Economics, Amsterdam School of Economics, University of Ams-
terdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands; phone +31.20.5254217; email
J.F.Kiviet@UvA.NL and J.Niemczyk@UvA.NL. Animated graphs (4D-diagrams) are available via
http://www.feb.uva.nl/ke/jfk.htm.

yThe corrections concern the following: (a) the formulation and proof of the main result has been
adapted and clari�es now that it produces the conditional asymptotic distribution of inconsistent OLS
in linear models; (b) also the unconditional asymptotic distribution is derived; (c) the illustrations now
compare both conditional and unconditional distributions, both asymptotically and in �nite samples.

1



1 Introduction

Relatively little attention has been paid in the econometric literature to the limiting
distribution of inconsistent estimators. Usually, when developing and rating alternative
estimators, consistency has been considered a minimum requirement. This seems very
reasonable when actual samples are so large that estimation variance is relatively small.
In �nite samples, however, it could well be the case that, when the bias of alternative
consistent and inconsistent estimators is of similar magnitude whereas the inconsistent
one has smaller variance than its consistent rival, the consistent estimator is actually less
precise according to reasonable criteria to be operationalized below. An example where
this occurs is in estimating dynamic panel data models, where so-called fully e¢ cient
GMM estimators may actually have larger mean squared error (MSE) than inconsis-
tent least-squares estimators, see Bun and Kiviet (2006). For a completely speci�ed
data generating process any such di¤erences can easily be assessed from Monte Carlo
experiments, but may only persuade practitioners to use inconsistent but actually more
precise estimators when at the same time techniques are developed to use them accu-
rately for inference purposes. The present study embarks on this by deriving an explicit
characterization of the limiting distribution of an inconsistent estimator and examining
its accuracy for actual behavior in �nite samples.
We focus on least-squares and instrumental variable estimators in a linear structural

equation from a simultaneous system. Goldberger (1964, p.359) considers a very speci�c
case and derives the asymptotic variance of inconsistent OLS. An early �but incomplete
�attempt to obtain the limiting distribution of OLS in a simple speci�c case can be
found in Phillips and Wickens (1978, Question 6.10c). A derivation in a more general
context for an IV estimator that may contain invalid instruments (note that OLS is thus
a special case) can be found in Maasumi and Phillips (1982), see also Hendry (1979,
1982). However, they do not provide an explicit representation, and they focus on the
unconditional limiting distribution in a large dynamic system, whereas we shall obtain
an explicit expression for both the conditional and unconditional limiting distribution
of inconsistent OLS in particular linear models. Such an approach is also followed in
Rothenberg (1972). Our approach di¤ers, because we do not start o¤ from an errors in
variables context, but from a more generic parametrization, which covers all kinds of
contemporaneous and lagged linear dependence of regressors on disturbances. Joseph
and Kiviet (2005) also made an attempt to derive an explicit representation of the limit-
ing distribution of an inconsistent OLS estimator, but we will show here that that result
is incomplete. By developing a useful decomposition of the OLS estimation error and
by applying a rather standard form of the central limit theorem (CLT), we will derive
here a general representation of the limiting distribution of OLS, both unconditional
and conditional on predetermined information, in a linear regression model where the
regressors are stationary and contemporaneously correlated with the disturbance term.
We �nd this distribution to be normal and centered at the pseudo true value (true co-
e¢ cient plus inconsistency) with an asymptotic variance that can simply be expressed
as a correction to the asymptotic variance of a consistent OLS estimator, where this
correction is based on the actual inconsistency and a measure for the simultaneity. It
can easily be shown that in general this asymptotic variance gets smaller (in a matrix
sense) when the simultaneity and thus the inconsistency become more severe. However,
this is not the case for the �rst-order asymptotic approximation to the MSE of OLS.
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We make comparisons with the asymptotic variance of consistent IV implementations in
speci�c simple static simultaneous models. By that we establish areas in the parameter
space where OLS beats IV on the basis of asymptotic MSE. In addition, we examine
the accuracy of these asymptotic approximations in �nite samples via simulation exper-
iments. In order to ease the presentation, absorption and interpretation of our extensive
numerical �ndings they are all put into colored 2D and 3D diagrams. All these diagrams
are in fact single images of animations (3D and 4D diagrams) which, when viewed as a
�lm on a monitor via the web, allow to depict the various most relevant phenomena in
more than three dimensions.
In order to limit the size of this paper we make actual comparisons between OLS

and just identi�ed consistent IV estimation only, i.e. exploiting precisely as many valid
instruments as regressors. This implies that we have to take into account the non-
existence of moments of IV. At a later stage we also plan to examine overidenti�ed
cases and to compare consistent IV and inconsistent IV implementations which exploit
some invalid instruments. Then a recent study by Hall and Inoue (2003) will become
relevant. They examined generalized method of moments estimators in misspeci�ed
models. Loosely formulated they de�ne misspeci�cation as exploiting orthogonality
conditions which are in fact false for any possible parameter value, whereas they exclude
the case where as many orthogonality conditions as parameters are employed. Hence,
they exclude the case of OLS when some of the regressors are in fact invalid instruments,
which is precisely the main focus of the present study.
Our major �nding is that inconsistent OLS often outperforms consistent IV when the

sample size is �nite. For a simple speci�c class of models we �nd that in samples with a
size between 20 and 200 the actual estimation errors of IV are noticeably smaller than
those of OLS only when the degree of simultaneity is substantial and the instruments
are far from weak. However, when instruments are weak OLS always wins, even for a
substantial degree of simultaneity. We also �nd that the �rst-order asymptotic approx-
imations to the estimation errors of OLS (both conditional and unconditional) are very
accurate even in relatively small samples, which is not the case for IV when instruments
are weak, see also Bound et al. (1995). For consistent IV one needs alternative as-
ymptotic sequences when instruments are weak, see for an overview Andrews and Stock
(2007), whereas generally speaking standard �rst-order asymptotic approximations seem
to work very well for OLS, which by its very nature always uses the strongest possible,
though possibly invalid, instruments. Especially when simultaneity is serious, the actual
conditional distribution of OLS is found to be more attractive than its unconditional
counterpart. Hence, its asymptotic distribution derived here, which turns out to be
highly accurate, could and should be used in future research as a tool for producing
inference based on OLS and an assumption on the degree of simultaneity.
The structure of this paper is as follows. In Section 2 we introduce the model and

some of its particulars, especially the standard asymptotic properties of OLS and IV
when the data are stationary. Next in Section 3 we derive the limiting distribution of
OLS when the dependent variable is in fact jointly dependent with some of the regres-
sors. We distinguish between the unconditional limiting distribution, and the e¤ects
of conditioning on predetermined variables. In Section 4 we discuss the measures that
we will use to make comparisons between the performance of di¤erent estimators. We
address the issues that are relevant when using the limiting behavior of an inconsistent
estimator for such a comparison. For representing the actual �nite sample performance
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obtained from Monte Carlo experiments, we develop alternative measures for situations
where IV has no �nite moments and simply calculating the mean squared error from
the simulations would be inappropriate. Next, in Section 5, we present graphical re-
sults for a particular simple class of models. In order to make di¤erent models from
this class comparable over relevant parts of its parameter space, we develop a useful
transformation of this parameter space. Section 6 concludes.

2 Model, estimators and standard asymptotics

We examine method of moments estimators for the single linear structural model

y = X� + "; (1)

where y and " are n�1 vectors, X is a full column rank n�k matrix of regressors, which
may contain exogenous regressors but also endogenous variables (i.e. jointly dependent
with y) and lagged endogenous (i.e. weakly exogenous) variables. The k � 1 vector
� contains the unknown coe¢ cients of this relationship between y and X: These are
the parameters of primary interest. The relationship must be well-speci�ed, because we
assume that the disturbances are white noise (unconditionally), i.e.

E(") = 0;Var(") = �2"In: (2)

While the functional relationship of model (1) is supposed to be adequately speci�ed, we
examine the consequences of misspeci�cation of the chosen set of instrumental variables.
We focus on the speci�c case where all regressors of the full rank matrix X are used as
instruments, i.e. OLS is applied and any simultaneity is neglected.
The OLS estimator of model (1) is

�̂OLS = (X
0X)�1X 0y: (3)

Because we consider here exclusively models with stationary variables, �̂OLS will be con-
sistent and asymptotically e¢ cient only if E(X 0") = 0; and will yield an inconsistent
estimator otherwise. Then, consistent estimators could be obtained by exploiting instru-
mental variables Z for which E(Z 0") = 0: Here we will only consider as a competitor of
OLS the case where Z is a full column rank n� k matrix, which yields the simple (just
identi�ed) IV estimator

�̂IV = (Z
0X)�1Z 0y: (4)

Matrix Z should be such that Z 0X has rank k:
We make standard mild stationarity assumptions yielding

X 0X = Op(n); Z
0Z = Op(n); Z

0X = Op(n); (5)

and we de�ne (for n!1)

�X0X � plimn�1X 0X; �Z0Z � plimn�1Z 0Z; �Z0X � plimn�1Z 0X; (6)

which all are supposed to have full rank. This yields standard results on the limiting
distributions of the estimators, provided that the instruments actually used are valid,
i.e.

n1=2(�̂IV � �)
d! N(0; �2"�

�1
Z0X�Z0Z�

�1
X0Z); if E(Z 0") = 0; (7)
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and
n1=2(�̂OLS � �)

d! N(0; �2"�
�1
X0X); if E(X 0") = 0: (8)

However, when E(X 0") 6= 0; OLS is inconsistent and its limiting distribution will be
di¤erent from (8).
Below, we restrict ourselves to cases where E(Z 0") = 0 whereas E(X 0") may be

non-zero, i.e. the instruments Z are valid and some of the regressors in X may be
contemporaneously correlated with the disturbance term. Although we will examine
cases where some instruments may be weak (then the columns of Z 0X are almost linearly
dependent), in this study we will not consider alternative asymptotic sequences, as in
(approaches referred to in) Staiger and Stock (1997). We �rst want to obtain under
standard regularity conditions the counterpart of (8) when OLS is inconsistent and
compare it with (7) and with actual behavior of the estimators in �nite samples. No
doubt these regularity conditions and the speci�cation of our data generating scheme
can be relaxed in various ways, as is done in for instance Gallant and White (1988).
However, the present strict framework easily yields, after some further specialization of
the regularity assumptions, an explicit and calculable characterization of the limiting
behavior of inconsistent OLS.

3 The asymptotic distribution of inconsistent OLS

We allow for linear contemporaneous dependence of the observations xi on the distur-
bances "i: We use the k � 1 parameter vector � to expresses this dependence, such that
matrix X can be decomposed as

X = �X + "�0; (9)

with
E( �X 0") = 0 and E(X 0") = n�2"�: (10)

Note that this does not exclude cases where X contains lagged endogenous variables.
These could be a part of the component �X and have a corresponding element in �
equal to zero. Only current endogenous regressors will have corresponding elements of
� di¤erent from zero.
Decomposition (9), with properties (10), implies

�X0X = plimn
�1( �X 0 �X + �X 0"�0 + �"0 �X + �"0"�0) = plimn�1 �X 0 �X + �2"��

0:

We de�ne � �X0 �X � plimn�1 �X 0 �X and �nd

� �X0 �X = �X0X � �2"��0: (11)

The probability limit of �̂OLS will be denoted as �
�
OLS; for which we obtain

��OLS � plim �̂OLS = � + ��1X0X plimn
�1X 0" = � + �2"�

�1
X0X�: (12)

This is the so-called pseudo true value of �̂OLS: We may also de�ne

��OLS � ��OLS � � = �2"��1X0X�; (13)
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which is the inconsistency of the OLS estimator.
For obtaining a characterization of the unconditional limiting distribution of incon-

sistent OLS, we will assume that the data are in fact IID (independently and identically
distributed). Hence, for obtaining a result on the unconditional limiting distribution of
inconsistent OLS we have to exclude occurrence of lagged dependent variables. More in
particular, for the transpose of the i-th row (i = 1; :::; n) of X; the k � 1 vector xi; we
will assume that we have

xi � IID(0;�X0X); (14)

where the zero expectation is easily obtained by removing the intercept from the model
(if present) by taking the covariance stationary yi and xi observations in deviation from
their expectation. Then the remaining coe¢ cients are the slopes of the original regres-
sion with nonzero but constant unconditional expectation of the regressors. Clearly,
the IID assumption excludes most time-series applications. Below, for �nding the con-
ditional limiting distribution of inconsistent OLS, the IID assumption is not required,
but for obtaining the unconditional limiting distribution it simpli�es the derivations
considerably.
Like Goldberger (1964, p.359) we rewrite the model as

y = X(��OLS � ��OLS) + " = X��OLS + u; (15)

where u � "�X��OLS: Under assumption (14) we �nd that E(u) = 0;

�2u � E(u2i ) = �
2
"(1� 2��

0
OLS�) +

��
0
OLS�X0X

��OLS
= �2"(1� �2"�0��1X0X�); (16)

and E(uiuj) = 0 for i 6= j: Moreover, E(xiui) = E(xi"i) � E(xix0i)��OLS = �2"� �
�X0X

��OLS = 0; thus E(X 0u) = 0: Hence, in the alternative model speci�cation (15)
OLS will be consistent and the disturbances have a scalar covariance matrix. Therefore,
applying OLS to this model yields the limiting distribution

n1=2(�̂OLS � ��OLS)
d! N(0; �2"(1� �2"�0��1X0X�)�

�1
X0X): (17)

For the OLS residuals û = y �X�̂OLS one easily obtains

plim
1

n
û0û = plim

1

n
("�X��OLS)0("�X��OLS) = �2u: (18)

Thus, standard OLS inference in the regression of y on X makes sense and is in fact
asymptotically valid when the data are IID, but it concerns unconditional (because it
has been built on the stochastic properties of X) inference on the pseudo true value
��OLS = � + �

2
"�

�1
X0X�; and not on �; unless � = 0:

Next we shall re�ne result (17) by focussing on the limiting distribution of �̂OLS
conditional on the predetermined variables �X (which in practice have not all been ob-
served, usually, because they are con�ated with unknown reduced form parameters and
disturbances, but that turns out not to matter), no longer restricting ourselves to (14),
hence serially correlated regressors and lagged dependent explanatory variables are again
allowed. As suggested in Rothenberg (1972), we do not center now at ��OLS; but at

��n;OLS � � + ��n;OLS = � + �2"(
1

n
�X 0 �X + �2"��

0)�1�; (19)
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where plim ��n;OLS = �
�
OLS: Conditioning on �X (and extending (2) to Var(" j �X) = �2"In),

we will derive that n1=2(�̂OLS���n;OLS)
d! N(0; V ); and we establish the variance matrix

V of this zero mean limiting distribution. From this result we �nd ��n;OLS to be a �rst-
order asymptotic approximation to the expectation of �̂OLS in �nite samples, and so is
Vn=n for its variance, provided plimVn = V: First-order approximations to the quantiles
of �̂OLS can straightforwardly be obtained from the corresponding normal distribution.
So, we set out to examine the limiting behavior of

n1=2(�̂OLS � ��n;OLS) = n1=2[(
1

n
X 0X)�1n�1X 0"� ��n;OLS]

= (
1

n
X 0X)�1[n�1=2X 0"� n1=2( 1

n
X 0X)��n;OLS]: (20)

For the terms between square brackets we �nd

n�1=2X 0"� n1=2( 1
n
X 0X)��n;OLS

= n�1=2[ �X 0"+ ("0"� n�2")�] + n1=2�2"� � n1=2(
1

n
X 0X)��n;OLS

= n�1=2[ �X 0"+ ("0"� n�2")�]� n1=2[
1

n
X 0X � ( 1

n
�X 0 �X + �2"��

0)]��n;OLS

= n�1=2[ �X 0"+ ("0"� n�2")�]� n�1=2[ �X 0"�0 + �"0 �X + ("0"� n�2")��0]��n;OLS
= n�1=2[(1� �0��n;OLS)Ik � ���

0
n;OLS] �X

0"+ n�1=2(1� �0��n;OLS)�("0"� n�2")
= n�1=2[A0n"+ an("

0"� n�2")]; (21)

where An is an n� k matrix and an a k � 1 vector, viz.

A0n � [(1� �0��n;OLS)Ik � ���
0
n;OLS]

�X 0;

an � (1� �0��n;OLS)�:
(22)

Denoting the ith row of An as A0n;i we can now write (21) as a scaled sample average of n
mutually uncorrelated zero mean random vectors An;i"i + an("2i � �2") and apply (while
conditioning on �X) the standard CLT, giving

n1=2
�
1

n

nP
i=1

�
An;i"i + an("

2
i � �2")

�� d! N

�
0; lim

1

n

nP
i=1

Var
�
An;i"i + an("

2
i � �2")

��
:

(23)
Since Var[An;i"i+an("2i ��2") j �xi] = �2"An;iA0n;i+�3"�3(An;ia0n+anA0n;i)+�4"(�4�1)ana0n;
where �3 � E("3i =�3") and �4 � E("4i =�4"); we �nd that n1=2(�̂OLS���n;OLS) has a limiting
distribution conditional on �X given by

N

�
0; �2"�

�1
X0X

�
lim

1

n
[A0nAn � �"�3(A0n�a0n + an�0An)] + �2"(�4 � 1)ana0n

�
��1X0X

�
: (24)

For the special case with normal disturbances, and exploiting (11), the conditional as-
ymptotic variance specializes to

�2"�
�1
X0X [(1� �2"�

0��1X0X�)Ik � �2"��
0��1X0X ]� �X0 �X � (25)

[(1� �2"�0��1X0X�)Ik � �2"��1X0X��
0]��1X0X + 2�

4
"(1� �2"�0��1X0X�)

2��1X0X��
0��1X0X

= (1� �2"�0��1X0X�)[(1� �2"�
0��1X0X�)�

2
"�

�1
X0X � (1� 2�2"�

0��1X0X�)�
4
"�

�1
X0X��

0��1X0X ]:
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Note that when � = 0; i.e. when OLS is consistent and e¢ cient, the above formula
yields �2"�

�1
X0X for the asymptotic variance, as it should. Also note that �2"�

0��1X0X�
constitutes the population R2 of the auxiliary regression of " on X; denoting the OLS
estimator of this regression as �̂ = (X 0X)�1X 0"; we �nd

R2";X � plim
�̂
0
X 0X�̂

"0"
= plim

"0X(X 0X)�1X 0"

"0"
= �2"�

0��1X0X�; (26)

which expresses the seriousness of the simultaneity. Substituting (26) and (13), result
(25) implies

AVarNC (�̂OLS) = n
�1(1�R2";X)[(1�R2";X)�2"��1X0X � (1� 2R2";X)��OLS��

0
OLS]; (27)

where the superscript N indicates that we assumed that the �rst four moments of the
disturbances conform to normal and the subscript C indicates that this concerns the
conditional distribution. Of course, 0 < 1 � R2";X � 1: Because ��OLS��

0
OLS is positive

semi-de�nite, we �nd that as a rule, and certainly when R2";X < 0:5; simultaneity has
a mitigating e¤ect on the asymptotic variance of the OLS estimator. This is plausible
because by the pseudo true value also part of the disturbances is explained, and hence
the e¤ective signal-to-noise ratio becomes larger under simultaneity.
For the case with symmetric disturbances (�3 = 0) and excess kurtosis (�4 6= 3) the

asymptotic variance (27) changes to

n�1(1�R2";X)f(1�R2";X)�2"��1X0X � [(4� �4)� (5� �4)R2";X ]��OLS��
0
OLSg: (28)

Assuming that the �rst column of X equals � so that ��1X0X�X0� = e1 = (1; 0; :::; 0)0 is
a unit vector whereas �0e1 = 0, then in case of skewness, the extra contribution to the
variance of the limiting distribution is

n�1�3"�3(1�R2";X)2[e1�0��1X0X + �
�1
X0X�e

0
1]: (29)

Note that �in agreement with established knowledge �the contributions due to �3 6= 0
or �4 6= 3 are nil when � = 0:
Returning now to the unconditional limiting distribution given in (17) and using (26)

we �nd
AVarU(�̂OLS) = n

�1(1�R2";X)�2"��1X0X ; (30)

which holds irrespective of the distribution of the disturbances. By its very nature it
should be larger in a matrix sense than its conditional counterpart.
An expression that can be shown to be similar to (27) can be found in Rothenberg

(1972). However, his formula (4.7), which is employed in Hausman (1978) and Hahn and
Hausman (2003), is more di¢ cult to interpret. It has been obtained from a particular
errors in variables model speci�cation in which no allowance has been made for lagged
dependent regressor variables, whereas ours stems from a much more general (possibly
dynamic) regression speci�cation, which is generic concerning the problem of contempo-
raneous correlation of regressors and disturbances. By the decomposition (9) we avoided
an explicit speci�cation of the variance matrix of the disturbances in a reduced form for
X; as employed by Rothenberg (1972), and then from (25) it is easy to recognize that,
apart from �2"�

�1
X0X ; the only determining factors of the asymptotic variance are the very
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meaningful characteristics: (i) the inconsistency ��OLS = �
�
OLS �� = �2"��1X0X� and (ii) a

measure for the simultaneity R2";X = �
0��OLS: The derivations in Joseph and Kiviet (2005)

yielded the expression n�1[�2"�
�1
X0X +

��OLS
��
0
OLS] for AVar

N
C (�̂OLS): It can be shown that

the di¤erence between this incorrect and the complete formula given above is positive
semi-de�nite. Hence, the area in the parameter space where OLS beats IV on the basis
of their limiting distribution is actually even larger than indicated in that earlier study.
Kiviet and Niemczyk (2007) presented the complete expression for AVarC(�̂OLS); but it
was inadequately indicated1 that it concerned the distribution conditional on �X:

4 Measures for estimator accuracy

We want to use characteristics of the limiting distributions of OLS and IV estimators
in order to express the essentials of their location and spread, so that we can make
useful comparisons, which hopefully will also prove to approximate their relative qualities
in �nite samples reasonably well. Apart from using �rst-order asymptotic theory to
approximate these �nite sample characteristics, in addition we shall use simulation to
assess them. The asymptotic distributions of OLS and IV in the models to be considered
are all normal and have �nite moments.
Let for the generic estimator �̂ of �; with pseudo true value ��; the limiting distrib-

ution be given by
n1=2(�̂ � ��) d! N(0; V ): (31)

Under a complete speci�cation of the data generating processes for both y and the
variables occurring inX and Z;matrices like �X0X and �Z0X and vector � are determined
just by the model parameters. Then all elements of both �� and V depend on the
parameters only. The �rst order asymptotic approximation to the variance of �̂ is given
by

AVar(�̂) � n�1V; (32)

and to its bias by �� � �: Hence, the �rst-order asymptotic approximation to the MSE
(mean squared error) can be de�ned as

AMSE(�̂) � n�1V + (�� � �)(�� � �)0; (33)

which for a consistent estimator simpli�es to n�1V:
The simple IV estimators �̂IV considered in this study do not have �nite moments

in �nite samples and hence their bias E(�̂ � �), their variance Var(�̂); and their MSE,
i.e.

MSE(�̂) � E(�̂ � �)(�̂ � �)0 = Var(�̂) + E(�̂ � �)E(�̂ � �)0; (34)

do not exist. This makes the usual measures of the actual distribution of �̂; calculated
on the basis of Monte Carlo sample moments, unsuitable. Denoting the series of mutu-

ally independent simulated realizations of the estimator by �̂
(1)
; :::; �̂

(R)
; where R is the

number of replications, the habitual Monte Carlo estimator of E(�̂) is the Monte Carlo
sample average

ME(�̂) � R�1
XR

r=1
�̂
(r)
: (35)

1We thank Peter Boswijk for bringing this forward.
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However, ME(�̂) will not converge for R ! 1 if E(�̂) does not exist. Self-evidently,
similar problems arise for the Monte Carlo assessment of the variance, i.e.

MVar(�̂) � 1

R� 1
XR

r=1
(�̂
(r) �ME(�̂))(�̂(r) �ME(�̂))0; (36)

and for the empirical (Monte Carlo) MSE, i.e.

MMSE(�̂) � 1

R

XR

r=1
(�̂
(r) � �)(�̂(r) � �)0; (37)

if the corresponding moments do not exist. Therefore, to �nd expressions for estimator
quality obtained fromMonte Carlo results such that they will always summarize location
and spread in a meaningful way, we will choose measures here which are based directly
on characteristics of the empirical Monte Carlo density or the empirical distribution
function F̂i of the ith element of the vector �̂; such as the median and other quantiles.
For any real argument value x the empirical distribution function of �̂i; obtained

from the Monte Carlo experiments, is de�ned as

F̂i(x) �
1

R

XR

r=1
I(�̂

(r)

i � x); (38)

where I(�) is the Kronecker indicator function. Then the empirical median or sec-
ond quartile is F̂�1i (0:5); and the �rst and third empirical quartiles are F̂�1i (0:25) and

F̂�1i (0:75); respectively. These qth quartiles can easily be obtained after sorting the �̂
(r)

i

in non-decreasing order and then taking (assuming R is a multiple of 100)

F̂�1i (q=4) = 0:5(�̂
(qR=4)

i + �̂
(1+qR=4)

i ); q = 1; 2; 3: (39)

To mimic the RMSE (root mean squared error) criterion, which is
p
�2i + b

2
i ; when �i

and bi are the standard deviation and the bias of �̂i respectively, a similar alterna-
tive empirical measure, not requiring existence of �nite moments, seems the following.
We replace �i by q�0:75[F̂

�1
i (0:75) � F̂�1i (0:25)]=2; for some real number q�0:75; and bi by

F̂�1i (0:5) � �i: We can choose q�0:75 such that in case an estimator is in fact normally
distributed the criterion conforms precisely to RMSE. Indicating the standard normal
distribution function by � this requires q�0:75[�

�1(0:75)���1(0:25)]=2 = 1; which results
in q�0:75 = (0:67499)

�1 = 1:4815: As an alternative to the RMSE we could then useq
(q�0:75)

2[F̂�1i (0:75)� F̂�1i (0:25)]2=4 + [F̂�1i (0:5)� �i]2:

However, we do not necessarily have to use the quartiles. More generally, for any 0:5 <
p < 1; we may de�ne

d(p) � [��1(p)� ��1(1� p)]=2:
Let ��;� be the distribution function of N(�; �2); then

��1�;�(p)� ��1�;�(1� p) = 2�d(p):

Now as an assessment �̂i(p) from an empirical distribution F̂i that should mimic �i (if
this exists), we may use

�̂i(p) �
1

2d(p)
[F̂�1i (p)� F̂�1i (1� p)]: (40)
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This will work perfectly well for any 0:5 < p < 1 if F̂i is in fact normal. We have
experimented with a few values of p; trying Chi-squared (skewed) and Student (fat
tailed) distributions, and found especially p = 0:841345; for which d(p) = 1; to work
well. Therefore, when �nite moments do not exist, instead of RMSE, we will use what
we call the �empirical quantile error distance�, which we de�ne2 as

EQED(�̂i) �
q
[F̂�1i (0:841345)� F̂�1i (1� 0:841345)]2=4 + [F̂�1i (0:5)� �i]2: (41)

Below, we will calculate this for alternative estimators for the same model (and same
parameter values and sample size), including the consistent and asymptotically optimal
estimator, and then depict the logarithm of the ratio (with the asymptotically optimal in
the denominator), so that positive and negative values directly indicate which estimator
has more favorable EQED criterion for particular parameter values. Having smaller
EQED will be interpreted as being more accurate in �nite samples. Hence, negative
values for the log of the ratio will indicate that the asymptotically optimal is actually
less accurate in �nite samples.
To examine the accuracy in �nite samples of the precision criteria obtained from the

limiting distribution we can calculate the log ratio of EQED(�̂i) and the asymptotic root
mean squared error

ARMSE(�̂i) �
p
n�1Vii + (�

�
i � �i)2: (42)

For an estimator with �nite moments we can simply take the log ratio of the Monte
Carlo root mean squared error

MRMSE(�̂i) �
r
1

R

XR

r=1
(�̂
(r)

i � �i)2 (43)

and ARMSE(�̂i).
Note that for an inconsistent estimator, where ��OLS;i 6= �i; the ARMSE criterion

will converge for n ! 1 to j ��OLS;i � �i j6= 0; whereas it will converge to zero for any
consistent estimator. Hence the criterion follows the logic that, since estimator variance
gets smaller in larger samples irrespective of whether the estimator is consistent, the
larger the sample size the more pressing it becomes to have a consistent estimator. On
the other hand, when sample size is moderate, an inconsistent estimator with possibly
a substantial bias in �nite samples but a relatively small variance could well be more
attractive than a consistent estimator, especially when the latter�s distribution has fat
tails, and is not median unbiased with possibly a wide spread. In the models to be
de�ned below, we will �rst examine the log ratios of the ARMSE criterion for OLS and
IV, with IV in the denominator, so that positive values of this ratio indicate parameter
values for which IV is more accurate on the basis of �rst-order asymptotic theory. Next
we will examine whether the �ndings from �rst-order asymptotic theory are vindicated
in �nite samples by simulation experiments.

5 Pictured parametrizations

In this section we specify a class of simple speci�c models that easily allow to parame-
trize the asymptotic characteristics of both OLS and IV. Models from this class will be

2See also Pearson and Tukey (1965), who consider (40) in their equations (6)-(8).
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simulated too in order to assess the actual behavior in �nite samples and to examine
the accuracy of the asymptotic approximations. We restricted our study to cases where
disturbances are normally distributed. In all simulations we use the same set of random
draws for the various disturbance vectors for all grid-points in the parameter space ex-
amined. To further reduce the experimental variance, exploiting the assumed symmetry
of the disturbances, we also made use of the simple variance reduction method of re-
using vectors of normal random numbers by simply changing their sign. The number of
Monte Carlo replications for each parameter combination is 1,000,000 for densities and
50,000 for all grid points in the 3-D pictures. The diagrams presented below are single
images from animated versions3, which allow to inspect the relevant phenomena over a
much larger part of the parameter space.
For the simple static models that we examine below some analytic �nite sample prop-

erties are available; see Woglom (2001) and Hillier (2006) for some recent contributions
and further references. We have not made use of these and employed straightforward
Monte Carlo simulation, which as yet seems the only option for assessing �nite sample
properties for most of the phenomena examined here.

5.1 A basic static IID model

We consider a model with one regressor and one valid and either strong or weak instru-
ment. The two variables x and z, together with the dependent variable y, are jointly
IID with zero mean and �nite second moments. This case may be denoted as

yi = �xi + "i; (44)

xi = �xi + �"i; (45)

where � is scalar now. Data for y; x and z can be obtained by the generating scheme

"i = �"v1i;

�xi = �1v2i;

zi = �2v2i + �3v3i;

where vi = (v1i; v2i; v3i)0 � IID(0,I3): Thus0@ "i
xi
zi

1A = Pvi =

0@ �" 0 0
�"� �1 0
0 �2 �3

1A vi; (46)

giving ("i; xi; zi)0 � IID(0; PP 0):
We will focus on this model just for the case � = 1: This is merely a normalization

and not a restriction, because we can imagine that we started from a model yi =���xi+"i;
with �� 6= 0; and rescaled the explanatory variable such that xi = �xi=��: We can impose
some further normalizations on the 5 parameters of P; because, without loss of generality,
we may take

�" = 1; (47)

�2z = �22 + �
2
3 = 1: (48)

3available via http://www.feb.uva.nl/ke/jfk.htm
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By (47) we normalize all results with respect to �"; and because the IV estimator is
invariant to the scale of the instruments (only the space spanned by z is relevant) we
may impose (48) which will be used to obtain the value

�23 = 1� �22 � 0: (49)

From the above we �nd the following data variances, covariances and related correlations:

�2x = �
2 + �21 �2y = �

2 + 2� + 1 + �21
�x" = � �x" = �=

p
�2 + �21

�z" = 0 �z" = 0

�xz = �1�2 �xz = �1�2=
p
�2 + �21

9>>=>>; (50)

Note that these depend on only 3 remaining free parameters: viz. �; �1 and �2; and so
will the expressions for asymptotic variance (together with �3 and �4; the 3rd and 4th
moments of v1i).
However, instead of designing our results in terms of the three parameters �; �1 and

�2, we prefer another parametrization. We shall use as a base of the design parameter
space for this simple model, the three parameters: �x"; �xz and SN (signal-noise ratio),
where

SN = �2�2x=�
2
" = �

2
x � 0: (51)

This reparametrization is useful because the parameters �x"; �xz and SN have a direct
econometric interpretation, viz. the degree of simultaneity, instrument strength and
model �t, respectively. The population �t of the model might be expressed as PF =
�2�2x=(�

2�2x + �
2
") = SN=(SN + 1): By varying the three parameters j�x"j < 1; j�xzj < 1

and 0 < PF < 1; we can examine the whole parameter space of this model. For given
values of SN = PF=(1� PF ) = �2x and �x" one can obtain � and �1; i.e.

� = �x"�x; (52)

�1 =

����q�2x � �2���� = ����xp1� �2x"��� : (53)

With �xz we can now obtain

�2 = �xz=
���p1� �2x"��� (54)

and, of course,

�3 =

����q1� �22���� = ���p(1� �2x" � �2xz)=(1� �2x")��� ; (55)

so that �2x" + �
2
xz < 1:

In this simple model we have

��OLS � � = �
�2x
= �x"=�x

R2";X =
�2

�2x
= �2x"

�X0X = �
2
x = SN

��1Z0X�Z0Z�
�1
X0Z = �

2
z=�

2
xz = 1=�

2
xz�

2
x = �

2
xz=�

2
x:

9>>>=>>>; (56)

In the simulations of the �nite sample distributions and the evaluations of the �rst-
order asymptotic approximations, we want to distinguish between the unconditional and
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the conditional cases. When conditioning on �X all Monte Carlo replications should use
the same drawing, i.e. just one single realization of the series v2i: However, an arbitrary
draw of v2i might give rise to an atypical �x series, and when one would condition the
distribution of �̂IV on the exogenous Z as well, the actual strength of the instrument
would not be fully under control because the sample correlation between v2i and v3i would
not be precisely zero. Therefore, when conditioning, we replaced v3i by its residuals after
regressing on v2i and an intercept, in order to guarantee a sample correlation of zero.
And to make sure that sample mean and variance of both v2i and v3i are appropriate we
standardized them too. An e¤ect of this is that in the simulations �x0�x=n + �2"�

2 = �2x
and thus ��n;OLS = ��OLS; which makes it easier to notice the major consequences of
conditioning. Another consequence is that the assessment in the Monte Carlo of the
�rst-order approximation to the variance of �̂IV is the same for both the conditional and
unconditional case, as is the case for OLS when � = 0:
So, for the case where all variables are (almost) normally distributed

AVarNC (�̂OLS) = n
�1(1� �2x")(1� 2�2x" + 2�4x")=�2x: (57)

This yields
@AVarNC (�̂OLS)

@�2x"
= �n�1(3� 8�2x" + 6�4x")=�2x;

which is strictly negative, because the polynomial factor between parentheses is strictly
positive. Therefore, the asymptotic variance of OLS decreases when the simultaneity
aggravates, even when R2";X � 0:5 (compare with the �nding below (27)).
Result (57) implies for the �rst-order asymptotic approximation to the mean squared

error under normality of the disturbances the speci�c result

AMSENC (�̂OLS) = [n
�1(1� �2x")(1� 2�2x" + 2�4x") + �2x"]=�2x; (58)

from which we �nd @
@�2x"

AMSENC (�̂OLS) > 0 for n > 3: So, �rst order asymptotic theory
predicts that in all cases of practical interest the reduction in variance due to an increase
in simultaneity will be o¤set by the squared increased inconsistency.
We want to compare expression (58) with the corresponding quantity for IV

AVar(�̂IV ) = 1=(n�
2
x�
2
xz); (59)

which holds for both the unconditional and the conditional distribution. Note that,
unlike AVarC(�̂OLS) and AVarU(�̂OLS); this is invariant with respect to �x": According to
�rst order asymptotic criteria, OLS will be more accurate than IV for all combinations
of parameter values and n satisfying AMSENC (�̂OLS) < AMSE(�̂IV ) = AVar(�̂IV ); i.e. for

�2xz[(1� �2x")(1� 2�2x" + 2�4x") + n�2x"] < 1: (60)

Note that this watershed between IV and OLS as far as AMSE is concerned is invariant
with respect to SN = �2x; and so is the relative (but not the absolute) di¤erence in
AMSE. Self-evidently (60) shows that for �x" = 0 OLS will always be more accurate. It
is also obvious that IV runs into weak instrument problems when �2xz gets close to zero.
When �2xz = 0 the equation is not identi�ed. For IV this implies an exploding variance
but not for OLS, where AMSENC (�̂OLS) is not a¤ected by �

2
xz: So, although obtaining
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meaningful inference on � from it may seem an illusion, �̂OLS has still a well-de�ned
distribution.
Since

�̂OLS � � = 1
�x

Pn
i=1

�
�x"vi1+

p
1��2x"vi2

�
vi1Pn

i=1

�
�x"vi1+

p
1��2x"vi2

�2 ;

�̂IV � � = 1
�x

Pn
i=1(�2vi2+�3vi3)vi1Pn

i=1(�2vi2+�3vi3)
�
�x"vi1+

p
1��2x"vi2

� ;
(61)

the �nite sample distributions of both �̂OLS and �̂IV are determined by SN = �2x in a
very straightforward way. In fact, the shape of the densities is not a¤ected, but only the
scale. This is also the case for the inconsistency, see the �rst formula in (56), and thus
carries over to the asymptotic variances (27) and (59) too. From (61) we can also see
that due to the symmetry of vi; the densities of both �̂OLS and �̂IV are not a¤ected by
the sign of �x" nor by the sign of �xz; so we will examine positive values only.

5.2 Actual �ndings

The actual values of ��OLS and of (the square root of) AMSE
N(�̂OLS) and AVar(�̂IV )

could be calculated and tabulated now for various values of n; SN; �x" and �xz and then
(to �nd out how accurate these �rst-order asymptotic approximations are) be compared
with simulation estimates for the expectation (or median) and the standard error (or
interquartile range). We have chosen, however, for a visual and more informative repre-
sentation of these phenomena by focussing both on density functions and on graphs of
ratios of the performance measures mentioned in section 4. We will portray these over
the relevant parameter space. From the foregoing it is clear that varying SN = �2x will
have a rather straightforward and relatively neutral e¤ect, so we focus much more on
the e¤ects of �x"; �xz and n:
In Figure 5.1 densities are presented, both for OLS and for IV, for the conditional

and the unconditional distribution, both for the actual empirical distribution and for its
asymptotic approximation, as indicated in the legend below.

Legend for Figures 5.1 and 5.2

line type: density of:

� � � OLS, actual, conditional
� � � OLS, asymptotic, conditional
���� OLS, actual, unconditional
� � � OLS, asymptotic, unconditional
� � � � � IV, actual, conditional
� � � � IV, actual, unconditional
+ + + IV, asymptotic, both conditional and unconditional
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For the asymptotic approximations we take

�̂OLS
a� N(��OLS; n�1AVarNC (�̂OLS));

�̂OLS
a� N(��OLS; n�1AVarU(�̂OLS));

�̂IV
a� N(�; n�1AVar(�̂IV )):

(62)

In the simulations we took vi � IIN(0; I3). From the results we may expect to get quick
insights into issues as the following. For which combinations of the design parameter
values are the actual densities of �̂OLS and �̂IV close (regarding mean/median, spread,
symmetry, unimodality, tail behavior) to their respective normal approximations (62)?
Is there a qualitative di¤erence between the accuracy of the OLS and the IV asymp-
totic approximations? What are the e¤ects of conditioning? Do these densities clearly
disclose where IV seems to perform better (or worse) than OLS? Hence, we focus on
the correspondences and di¤erences in shape, location and spread of the four pairs of
asymptotic and empirical distributions.
Figure 5.1 consists of six panels of 2 � 2 diagrams each. Every panel has a �xed

value of n and of �xz; the latter is shown in the middle of each panel. The three left-
hand panels are for n = 50 and the three right-hand panels for n = 200: The three
rows of panels are for di¤erent values of �xz: From top to bottom we distinguish a
relatively strong instrument (�xz = 0:8); a much weaker one (�xz = 0:2) and a very weak
instrument (�xz = 0:02): Hence, in these three rows of panels the OLS results do not
change, as they do not depend on �xz: However, the scale on both the horizontal and
vertical axes di¤ers, so their appearance does di¤er. The four diagrams in each panel
concern very mild simultaneity (�x" = 0:1); slightly stronger simultaneity (�x" = 0:2)
and the bottom two diagrams show more severe simultaneity for �x" = 0:4 and �x" = 0:6
respectively. These all ful�ll the requirement �2xz � 1 � �2x": Note that when �x" = 0:6
and �xz = 0:8 instrument zi is a multiple of �xi (�3 = 0); according to (55), and cannot
possibly be made stronger. Each panel contains the seven densities for SN = �2x = 10,
implying population �t PF = 10=11 = 0:909; which value has just a straightforward
multiplicative e¤ect and does not a¤ect the qualitative di¤erences between the densities.
From Figure 5.1 we �nd that for a relatively strong instrument the three densities

depicted for IV are extremely close to each other, even for n = 50, irrespective of
the severity of simultaneity. Obviously, when the instrument is much weaker all three
densities become much �atter, but when the instrument is really weak we note a serious
discrepancy between the unconditional and conditional actual distribution, where the
latter is much more erratic and shows bimodality for the smaller sample size. As has been
established in the literature before, the standard asymptotic approximation is clearly
inaccurate for a very weak instrument, and is in fact much too pessimistic regarding
the spread of the actual distribution. This is seen more clearly in Figure 5.2, where
the two panels of the third row of Figure 5.1 for the very weak instrument are depicted
again, but now on a di¤erent scale, without the OLS densities. Note that conditional
IV tends to be bimodal, especially for smaller sample size and more severe simultaneity.
With respect to OLS Figure 5.1 shows that even for the smaller sample size the two
asymptotic approximations are very accurate for their respective �nite sample densities,
which both are almost similar for mild simultaneity, but clearly demonstrate for more
severe simultaneity the smaller variance of the conditional distribution. The latter occurs
for both sample sizes examined. It is evident that, in case of substantial simultaneity, IV
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can be more attractive than OLS when the instrument is relatively strong, especially for
the larger sample size. However, it is much less obvious when the sample size is small and
simultaneity very mild, even for a strong instrument. That OLS may on average have
smaller estimation errors than IV when the instrument is weak is also clearly exposed,
especially when the simultaneity is mild. Because the bias of OLS is relatively small in
comparison to the increased spread of IV, this seems to be the case much more generally.
For which particular parameter value combinations OLS beats IV indeed can be learned
from the diagrams in Figure 5.3.
To examine more closely for which parameter values the performance measures de-

veloped in section 4 show a positive (negative) di¤erence between the precision of OLS
and IV in �nite samples, we produce here 3D graphs (and 4D graphs on the web) of

log[EQEDNC (�̂OLS)=EQED
N
C (�̂IV )]; (63)

for �xed values of SN and n over the (�x"; �xz) plane. This log-ratio (63) is positive
when IV performs better (yellow/amber surface) and negative (light/dark blue surface)
when OLS is more precise. The four panels in Figure 5.3 correspond to n = 20; 50,
100 and 200 respectively. We took again SN = 10; but ratio (63) is invariant with
respect to this value, due to (61). These graphs have been obtained from simulating the
conditional distributions of �̂IV and �̂OLS: They illustrate that IV performs better when
both �x" and �xz are large in absolute value, i.e. when both simultaneity is severe and
the instrument relatively strong. The (blue) area where OLS performs better diminishes
when n increases. Where the ratio equals 2, IV is exp(2)� 100% or about 7.5 times as
accurate as OLS, whereas where the log-ratio is less than -3 OLS is more than exp(3)
(i.e. about 20) times as accurate as IV. We notice that over a substantial area in the
parameter space (which obeys �2x" + �

2
xz < 1) the OLS e¢ ciency gains over IV are much

more impressive than its potential losses can ever be.
A measure for the weakness of an instrument is the �rst-stage population F value

(see, for instance, Staiger and Stock, 1997), which in this model is

F � n�
2
x � �2x(1� �2xz)
�2x(1� �2xz)

= n
�2xz

1� �2xz
: (64)

Instrument weakness is associated with small values of F; say F � 10: The latter implies
here �2xz � 10=(n+ 10) or j�xzj � 0:58 (for n = 20) and j�xzj � 0:3 (for n = 100). From
Figure 5.3 we see that this criterion lacks the in�uence of �x" in order to be useful to
identify all the cases where IV performs better/worse than OLS.
Figure 5.4 examines for conditional OLS the quality of the asymptotic approximation

to represent the actual empirical OLS distribution. Because OLS has �nite moments,
we simply use the RMSE criterion. The 3D graphs represent

log[ARMSENC (�̂OLS)=MRMSE
N
C (�̂OLS)]; (65)

hence positive values indicate pessimism of the asymptotic approximation (actual RMSE
smaller than �rst-order asymptotic approximation) and negative values optimism. Self-
evidently �xz has no e¤ect, neither has SN = �2x; but �x" has. We �nd that the asymp-
totic approximation of MSE developed in this study may be slightly pessimistic, but is
especially accurate when the simultaneity is serious. Even in a very small samples the
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over assessment by the asymptotic approximation of the actual RMSE is usually below
10%.
The above model can easily be generalized, for instance by including another, possibly

serially correlated or a lagged-dependent, explanatory variable for yi; as we did in Kiviet
and Niemczyk (2007), although not yet taking conditioning properly into account. This
will be examined in future research. Note that when �xi is serially correlated the IID
assumption does no longer hold, and the asymptotic approximation to the unconditional
distribution of OLS does not apply.

6 Conclusions

Econometrics developed as a �eld separate from statistics, mainly because it focusses
on the statistical analysis of observational non-experimental data, whereas standard
statistics generally analyzes data that have been obtained from appropriately designed
experiments. This option is often not open in economics, where data are usually not ran-
dom samples from a well-de�ned population. Unlike data obtained from experiments,
most variables may be jointly dependent. As a consequence the structural relation-
ships become part of a simultaneous system, and their explanatory variables may be
contemporaneously correlated with the equation�s disturbance term. In that situation
the least-squares estimator exhibits bias, not just in �nite samples. In simultaneous
equations of stationary variables least-squares estimators are inconsistent. Hence, even
asymptotically (in in�nitely large samples) this estimator produces systematic estima-
tion errors. For that reason its actual distribution has received relatively little attention
in the literature, mainly because in an identi�ed (partial-) simultaneous system alterna-
tive consistent method of moments estimators are available. However, in �nite samples
these instrumental variable estimators have systematic estimation errors too, and may
even have no �nite moments. The fact that they can be very ine¢ cient (even in large
samples) has been highlighted recently in the literature on weak instruments; see Du-
four (2003) for an overview. In extreme cases these method of moment estimators are
no longer consistent either, whereas in less extreme cases, they may still have reasonable
location properties, while showing an unfavorable spread.
In this paper we provide further evidence on the behavior of inconsistent least-squares

and consistent just identi�ed instrumental variable estimators. This evidence enables
us to monitor the trade-o¤ options between: (i) the systematic but generally bounded
dislocation of the least-squares estimator, and (ii) the vulnerability of the instrumental
variable estimator regarding both its location and its scale (we avoid here addressing
these as mean and variance, because just identi�ed instrumental variable estimators
have no �nite moments). To achieve this we �rst derive the limiting distribution of the
least-squares estimator when applied to a simultaneous equation. We consider both the
unconditional distribution and the e¤ects of conditioning on predetermined information
in static models. We are not aware of any published study that provides an explicit
representation for this conditional asymptotic distribution in terms of its inconsistency
and the degree of simultaneity as given in Kiviet and Niemczyk (2007). Analyzing it in a
particular simple class of models shows that simultaneity usually has a mitigating e¤ect
on the asymptotic variance of OLS, and comparing it with results from Monte Carlo
experiments shows that even in very small samples the derived conditional asymptotic
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variance of least-squares provides a very accurate approximation to the actual variance.
The asymptotic distribution of IV is often very informative on its behavior in �nite
samples, but not in cases of weak instruments due to poor identi�cation. This is natural,
because under weak instruments the standard asymptotic results do not apply.
From the limiting distribution of OLS we straightforwardly obtain a �rst-order as-

ymptotic approximation to its MSE, which we can compare with its counterpart for
instrumental variables. We do so over all feasible parameter values of the simple class
of models examined. We �nd that under moderate simultaneity or for moderately weak
instruments in samples of a limited size least-squares can perform much better, even
substantially so, than instrumental variables. On the other hand, when both simultane-
ity and instrument strength are extreme, IV estimation is only marginally more (or on
a root mean squared error criterion in moderately large samples roughly about twice
as) precise than least-squares, although IV is uniformly superior when the sample is
really large. These general predictions from �rst-order asymptotic theory are vindicated
in simulation experiments of actual samples of sizes in the range from 20 till 200. To
make such comparisons we need an equivalent to the root mean squared error, which is
still meaningful when moments do not exist. Therefore we developed what we call the
empirical quantile error distance, which proves to work adequately.
In practice, very often least-squares estimators are being used in situations where,

according to common text-book knowledge, more sophisticated method of moments
estimators seem to be called for. Some of the results in this paper can be used to
rehabilitate the least-squares estimator for use in linear simultaneous models. However,
we should warn that the present study does not provide yet proper accurate inference
methods (estimated standard errors, tests, con�dence sets) that can be applied to least
squares when it is inconsistent. This is on the agenda for future research, that should
focus also on methods to modify least-squares, in order to render it consistent, and
examining its e¤ects on the resulting e¢ ciency.
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Figure 5.1: Actual/asymptotic (un)conditional densities of �̂OLS and �̂IV in basic
static model; SN = 10; n = 50 (�rst two columns), 200 (last two columns);
�xz = 0:8; 0:2; 0:02; �x" = 0:1; 0:2; 0:4; 0:6
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Figure 5.2: Actual/asymptotic (un)conditional densities of �̂IV in basic static
model; SN = 10; n = 50 (top four diagrams); 200 (bottom four diagrams);
�xz = 0:02; �x" = 0:1; 0:2; 0:4; 0:6

22



0.2 0.4 0.6 0.8

0

0.5

­8
­6
­4
­2

0
2

ρ
xz

n = 20

ρxε

0.2 0.4 0.6 0.8

0

0.5

­8
­6
­4
­2

0
2

ρ
xz

n = 50

ρxε

0.2 0.4 0.6 0.8

0

0.5

­8
­6
­4
­2

0
2

ρ
xz

n = 100

ρxε

0.2 0.4 0.6 0.8

0

0.5

­8
­6
­4
­2

0
2

ρ
xz

n = 200

ρxε

Figure 5.3: Static model, log[EQEDNC (�̂OLS)=EQED
N
C (�̂IV )]:
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N
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