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Abstract

This paper considers the �rst order large sample properties of the GEL class of
estimators for models speci�ed by non-smooth indicators. The GEL class includes
a number of estimators recently introduced as alternatives to the e�cient GMM
estimator which may su�er from substantial biases in �nite samples. These include
EL, ET and the CUE. This paper also establishes the validity of tests suggested
in the smooth moment indicators case for over-identifying restrictions and speci�-
cation. In particular, a number of these tests avoid the necessity of providing an
estimator for the Jacobian matrix which may be problematic for the sample sizes
typically encountered in practice.
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1 Introduction

In his monograph on empirical likelihood (EL), [Owen, 2001], Owen pro�ered a list of

challenges that EL had yet to confront, one of which concerned the lack of theoretical

underpinnings for EL when applied to non-smooth estimating equations; see Owen (2001,

section 10.6). This particular issue is addressed through consideration of the generalised

empirical likelihood (GEL) class of estimators [Smith, 1997, 2001]. GEL methods en-

compass a large number of estimators encountered in the literature. Indeed, EL [Qin

and Lawless, 1994, Imbens, 1997], exponential tilting (ET) [Kitamura and Stutzer, 1997,

Imbens et al., 1998] and the continuous updating estimator (CUE) [Hansen et al., 1996],

see Newey and Smith (2004), (NS henceforth), belong to the GEL class. Furthermore,

NS demonstrated that if the moment indicators are continuously di�erentiable the min-

imum discrepancy (MD) estimators of Corcoran (1998) have a dual GEL version when

the discrepancy function belongs to the Cressie and Read (1984) family.

NS proved consistency for GEL without requiring di�erentiable moment indicators

although their proof of asymptotic normality uses their di�erentiability. This assumption

does not hold in a number of important models such as the quantile regression (QR) model

[Koenker and Bassett, 1978], the censored QR model [Powell, 1984, 1986] and asymmetric

least squares [Newey and Powell, 1987]. Di�erentiability is also required for the NS GMM

and GEL asymptotic bias expressions, which account for the large GMM and smaller GEL

biases obtained in some simulation experiments; see, e.g., Newey, Ramalho and Smith

(2005) and Ramalho (2001).

The main objective of this article is to provide a uni�ed �rst order asymptotic theory

for the GEL class of estimators when the moment indicators are not di�erentiable at

the true value of the parameter.1 The assumptions required are precisely those given

by Newey and McFadden (1994) for the two-step GMM (2S-GMM) estimator, i.e., the

regularity conditions for GEL asymptotic normality are no more stringent than those for

1An alternative method would smooth the moment indicators similarly to Horowitz (1992, 1998).
Whang (2003) adapts this procedure for EL but is, however, rather restrictive, only examining the
coverage accuracy of EL con�dence regions rather than bias.
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2S-GMM. A number of disparate results are already available in the literature. Asymp-

totic normality for CUE follows immediately from the results of Pakes and Pollard (1989).

ET asymptotic normality was proved by Christo�ersen et al. (1999). Zhang and Gijbels

(2004) demonstrated the same result for a version of EL for conditional moment indica-

tors with bounded regressor support; Otsu (2007) showed that for QR this assumption

can be dropped and proposed statistics for testing parametric restrictions and speci�-

cation. Chernozhukov and Hong (2003) proved an asymptotic equivalence between the

2S-GMM estimator and GEL objective functions evaluated at the GEL optima.2 Apart

from Pakes and Pollard (1989), the requisite assumptions used in these papers di�er from

those for 2S-GMM asymptotic normality.3

The validity of a battery of GEL-based inference procedures proposed for the smooth

case by Smith (1997, 2000, 2001) and Ramalho and Smith (2004) is also proven, including

tests of overidentifying moment conditions, parametric restrictions and additional mo-

ment conditions. An important advantage of some of these statistics is that estimation

of the asymptotic variance matrix of the GEL estimator is not required; although sev-

eral estimation methods have been proposed, none appears to be particularly reliable in

practice for the non-smooth case.4 GEL methods, of course, share this particular feature

with those based on e�cient GMM. Indeed, Newey and West (1987) proposed GMM

likelihood ratio-like tests when the moment indicators are smooth. These results remain

valid for the non-smooth case, yielding an easily implementable test under heterogeneity

for parametric restrictions in the standard and, thus, just-identi�ed QR framework. To

the best of our knowledge this statistic is new in the QR literature; see, e.g., the recent

monograph Koenker (2005). We also note a close relationship with the QR statistics of

Koenker and Basset (1982) and Weiss (1991).

2Although GEL asymptotic normality was not shown, this result could provide a basis for a proof;
see section 2.2.

3In independent work, Kemp (2005) extends the GEL asymptotic normality result to weakly depen-
dent data.

4Buchinsky (1995) compares estimators based on bootstrap and kernel methods for QR. However,
even though the bootstrap performs well, as yet there is no formal proof that the bootstrap estimator is
consistent in this framework.
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Kitamura (2001) is the exception to a general absence of theoretical results avail-

able for discrimination between asymptotically equivalent tests in a moment condition

setting. Kitamura (2001) proves the large deviation optimality of EL-based tests of over-

identifying moment conditions under assumptions also appropriate for the non-smooth

moment indicator context studied here. Parametric restrictions test performance together

with estimator bias are therefore examined in a set of Monte Carlo experiments. The

results are rather limited since optimisation of the GMM and GEL objective functions

requires procedures which are extremely time consuming. Consequently, we are unable to

rank 2S-GMM and GEL estimators unequivocally in terms of bias. These estimators are,

however, generally less biased than GMM with an identity matrix as metric. Likelihood

ratio statistics seem most e�cacious among all test statistics examined.5

The article is organised as follows. Section 2 describes GMM and GEL and presents

the main results on estimation. Tests for overidentifying conditions, parametric restric-

tions and additional moment conditions are considered in sections 3 and 4. Section 5

presents simulation evidence on the e�cacy of GEL. Finally, section 6 concludes. Proofs

of results in the text are given in the Appendix.

2 GMM and GEL Estimation

Suppose the following moment conditions hold

E [g (z; �0)] = 0 (2.1)

where E[�] denotes expectation taken with respect to the distribution of z, �0 is an

unknown p-vector and g(z; �) a known m-vector of functions with m � p.

Let zi, (i = 1; :::; n) denote a random sample of data observations drawn from the

distribution of z. Also let 
 = E
h
g (z; �0) g (z; �0)

0
i
and 
̂ (�) =

Pn
i=1 gi (�) gi (�)

0 =n.

5Note that while in the just-identi�ed case bootstrap inference can be a reliable alternative to the
procedures discussed here, for over-identi�ed models the implementation of such resampling methods
may not be practical for non-smooth moment indicators since it becomes necessary to solve for GEL in
each bootstrap sample.
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2.1 GMM and GEL

Given �, the sample analog of the population expectationE [g (z; �)] is ĝ (�) =
Pn
i=1 gi(�)=n

where gi (�) = g (zi; �), (i = 1; :::; n). The moment condition (2.1) and uniform conver-

gence of ĝ (�) to E [g (z; �)] under suitable regularity conditions suggests estimation of

�0 by the GMM estimator �̂ obtained by minimisation of the GMM criterion; viz.

�̂GMM = argmin
�2B

ĝ(�)0Ŵ ĝ(�) (2.2)

where Ŵ is p.s.d. and B denotes the parameter space. With smooth indicators, Hansen

(1982) showed that if Ŵ
p! W , W is p.d., then, under some additional regularity condi-

tions, the GMM estimator is consistent and asymptotically normally distributed. More-

over, among the class of GMM estimators de�ned by (2.2) the e�cient GMM estimator

sets W = 
�1. The e�cient 2S-GMM estimator utilises an initial consistent GMM es-

timate ~�GMM for �0, obtained, e.g., by setting Ŵ = Im, and replaces Ŵ in (2.2) by


̂( ~�GMM)
�1.

Let

P̂n(�; �) =
Xn

i=1
(�(�0gi(�))� �0)=n; (2.3)

where � (�) is a concave function on its domain, an open interval V containing zero,

�j (v) = @j� (v) =@�j with �j (0) = �j, (j = 0; 1; :::), and normalised without loss of

generality by setting �1 = �2 = �1. The GEL estimator is then de�ned as

�̂ = argmin
�2B

sup
�2�̂n(�)

P̂n (�; �) ; (2.4)

where �̂n (�) = f� : �0gi (�) 2 V , i = 1; :::; ng; see NS and Smith (1997, 2001). EL and

ET estimators are obtained with �(v) = log(1 � v) and V = (�1; 1) [Qin and Lawless

(1994), Smith (1997)] and �(�) = � exp(v) [Kitamura and Stutzer, 1997, Imbens et al.,

1998, Smith, 1997] whereas CUE �̂CUE = argmin�2B ĝ(�)
0
̂(�)�1ĝ(�) [Pakes and Pollard,

1989, Hansen et al., 1996] is a GEL estimator when �(�) is quadratic [NS, Theorem 2.1,

p.223]. Moreover, MD estimators [Corcoran, 1998] are GEL if the discrepancy function

belongs to the Cressie and Read (1984) family [NS, Theorem 2.2, p.224]. NS and Smith
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(1997, 2001) show that �̂ is �rst order asymptotically equivalent to e�cient GMM when

the moment indicators are smooth.

For non-smooth moment indicators GEL is no longer required to minimize (2.3) but

rather to satisfy

P̂n(�̂; �̂) � inf
�2B

sup
�2�̂n(�)

P̂n (�; �) + op
�
n��

�
where � is non-negative and �̂ = argmax�2�̂n(�̂) P̂n(�̂; �).

6 This de�nition of �̂ is analo-

gous to that of Pakes and Pollard (1989); see also Newey and McFadden (1994, section

7).

2.2 Asymptotic Properties

This sub-section shows that conditions su�cient to ensure consistency and asymptotic

normality for 2S-GMM [Newey and MacFadden, 1994, section 7] are precisely those for

GEL with non-smooth moment indicators.

NS, Theorem 3.1, p.226, reproduced here for ease of reference, gives GEL consistency

without requiring di�erentiability.7

Assumption 2.1 (a) �0 2 B is the unique solution to E[g(z; �] = 0; (b) B is compact;

(c) g(z; �) is continuous at each � 2 B with probability one; (d) E[sup�2B kg(z; �)k
2] <

1 ; (e) 
 is nonsingular; (f) �(v) is twice continuously di�erentiable in a neighbourhood

of zero.

Cf. NS, Assumption 1, p.226. Assumption 2.1 (d) relaxes the boundedness condition in

NS, i.e., E
h
sup�2B kg(z; �)k

�
i
< 1 for some � > 2. Using Lemma 3 of Owen (1990),

Guggenberger and Smith (2005, p.673) show � = 2 permits the proof of Lemma A1 in

NS without further modi�cation.

Theorem 2.1 If Assumption 2.1 is satis�ed, then �̂
p! �0, ĝ(�̂) = Op(n

�1=2) and �̂ =

Op(n
�1=2).

6Theorem 2.1 (consistency) below sets � = 0 whereas Theorem 2.2 (asymptotic normality) requires
� = 1.

7A consistency proof for ET is given in Kitamura and Stutzer (1997) which also does not require
moment indicator di�erentiability.
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Previous studies for non-smooth moment conditions considered the M-estimator class.

Asymptotic normality for M-estimators de�ned in terms of non-smooth objective func-

tions has been discussed inter alia in Daniels (1961), Huber (1967), Pakes and Pollard

(1989), Pollard (1985), Newey and McFadden (1994) and Van der Vaart (1998). All of

these authors present di�erent su�cient conditions to ensure asymptotic normality. As-

ymptotic normality for CUE follows immediately from the results of Pakes and Pollard

(1989). For ET asymptotic normality of �̂ and �̂ was proved by Christo�ersen et al.

(1999) and Zhang and Gijbels (2004) demonstrated the same result for a version of EL

with conditional moment indicators.

The proof for the joint asymptotic normality of �̂ and �̂ stated in Theorem 2.2 below

follows closely that of Pakes and Pollard (1989, Theorem 3.3, p.1040) for CUE. Let

G = @E [g (z; �0)] =@�
0.

Assumption 2.2 (a) �0 2 int(B); (b) g (�) = E [g (z; �)] is di�erentiable at �0; (c)

rank(G) = p; (d) write vn (�) =
p
n [ĝ (�)� g (�)], then for any �n ! 0

sup
k���0k��n

kvn (�)� vn (�0)k
1 +

p
n k� � �0k

p! 0:

Assumption 2.2 (b) substitutes di�erentiability of g (z; �) at �0 by di�erentiability of its

expected value; cf. NS, Assumption 2, p.226. Assumption 2.2 (d) is also used in Pakes

and Pollard (1989, Theorem 3.3, p.1040) and by Newey and McFadden (1994, Theorem

7.2, p.2186) for GMM. Note that

sup
k���0k��n

kvn (�)� vn (�0)k
1 +

p
n k� � �0k

� sup
k���0k��n

kvn (�)� vn (�0)k ;

the right hand side tends to zero in probability if the sequence fvn (�) ; n � 1g is sto-

chastically equicontinuous. Primitive conditions for stochastic equicontinuity in di�erent

set-ups arise from empirical process theory; see, e.g., Pollard (1984), Pakes and Pollard

(1989) and Andrews (1994).

Let � = (G0
�1G)
�1
and P = 
�1 � 
�1G�G0
�1.

Theorem 2.2 Let Assumptions 2.1 and 2.2 hold. Then

p
n

 
�̂ � �0
�̂

!
d! N (0; diag (�; P )) :

[6]



The structure of the proof is as follows. Since a proof of asymptotic normality based on

the GEL �rst order conditions is no longer applicable, the objective function P̂n(�; �)

is approximated by the smooth well-behaved (although infeasible) function L̂n (�; �) =

[�G (� � �0)]
0 � � ĝ (�0)

0 � � 1
2
�0
�; cf. Pakes and Pollard (1989). Using standard ar-

guments based on the �rst order conditions of this problem the estimators ~� and ~� that

solve min�2B sup�2Rm L̂n (�; �) have the limiting normal distribution of Theorem 2.2; see

NS, Theorem 3.2, p.226. Given Assumption 2.2 and using Lemmata A.1-A.3 in the Ap-

pendix the GEL estimators �̂ and �̂ are then shown to be asymptotically equivalent to

~� and ~�.

An alternative proof of Theorem 2.2 could be based on Newey and McFadden (1994,

Theorem 7.2, p.2186). It is immediately apparent from (2.4) that GEL may be cast as an

M-estimation problem by de�ning �̂ (�) = arg sup�2�̂n(�) P̂n(�; �), the existence of which

follows from the implicit function theorem as �(�) is twice di�erentiable. See the proof

of Theorem 2.2, p.238, in NS; cf. Smith (1997, p.507, 2001, section 2.3). Chernozhukov

and Hong (2003) exploit the structure of the �rst order conditions with respect to �,

viz.
Pn
i=1 �1(�̂(�)

0gi(�))gi(�) = 0. Applying the mean value theorem to �1(�̂(�)
0gi(�)),

�ĝ(�) � 
n�̂(�) = 0 where 
n(�) = �Pn
i=1 �2(

��(�)0gi(�))gi(�)gi(�)
0=n and ��(�) lies

between 0 and �̂(�). Since 
n is p.d. w.p.a.1 in a neighbourhood of �0,

�̂(�) = �
n(�)�1ĝ(�): (2.5)

Plugging (2.5) into a second order Taylor expansion of the GEL criterion function P̂n(�̂; �̂)

around � = 0, as �̂
p! 0 by Theorem 2.1, Chernozhukov and Hong (2003) showed that

under some additional regularity conditions P̂n(�̂; �̂) =
1
2
ĝ(�̂)0
�1ĝ(�̂)+op(n

�1), i.e., the

GEL objective function at �̂ and �̂ is asymptotically equivalent to the e�cient GMM

criterion function. Application of Newey and McFadden (1994, Theorem 7.2, p.2186)

provides the asymptotic distribution of the GEL estimator �̂. That for �̂ would follow

directly from (2.5).8

The following example shows the usefulness of Theorem 2.2.

8We are grateful to a referee for noting that these arguments also hold under our assumptions.
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2.3 Example: IV Estimation for QR

Suppose that the �-quantile of y conditional on w is de�ned by Q� (yjw) = w0�� where

Q� (yjw) = inffq : Pfy � qjwg � �g. The linear QR model is then

y = w0�� + �;

where Pf� � 0jwg = �. Given a random sample zi = (yi; wi), (i = 1; :::; n), Koenker

and Basset (1978) showed that the estimator obtained by minimization of the following

program leads to a consistent estimator for ��

Xn

i=1
��(yi � w0i��); (2.6)

where �� (�) is the check function �� (�) = � [� � I(� < 0)] and I(�) denotes an indicator

function. This estimator is consistent since E [sgn� (�)w] = 0, where sgn� (�) = ��I(� <

0) is the �-weight sign function de�ned in Fitzenberger (1997).

If Pf� � 0jwg 6= �, then E [sgn� (�)w] 6= 0 rendering the above estimator inconsis-

tent. Suppose that the m-vector of instruments x is such that Pf� � 0jxg = � implying

the moment conditions E[sgn� (�)x] = 0; cf. Chernozhukov and Hong (2003) and Honore

and Hu (2004). GMM is then based on the sample analogue

Xn

i=1
sgn�(yi � w0i�̂�)xi=n = 0: (2.7)

Here 
 = E[sgn� (�)
2 xx0] = � (1� �)E[xx0]. Newey and McFadden (1994) proved con-

sistency [Theorem 2.6, p.2132] and asymptotic normality [Theorem 7.2, p.2186] for GMM

with non-smooth moment indicators.

The following assumption gives su�cient conditions for consistency of GEL based on

the moment conditions (2.7).

Assumption E.1: (a) � is continuously distributed given x and Pf� � 0jxg = �; (b)

B is compact; (c) E[kxk2] <1; (d) E[xx0] is nonsingular; (e) � (�) is twice continuously

di�erentiable in a neighbourhood of zero.

Theorem E.1: Under Assumption E.1 the GEL estimator based on the moment

condition (2.7) is a consistent estimator for ��.

[8]



For asymptotic normality the following additional assumption is required.

Assumption E.2: (a) �� 2 int(B); (b) the distribution function of � conditional

on x and w is di�erentiable at 0 with derivative f� (0jx;w); (c) E [f� (0jx;w)xw0] is full

column rank.

Theorem E.2: Under Assumptions E.1 and E.2 the limiting distribution of the

GEL estimator for �� based on the moment condition (2.7) is given by

p
n(�̂ � ��)

d! N(0; � (1� �)
�
E [f� (0jx;w)wx0]E[xx0]�1E [f� (0jw; x)xw0]

��1
):

2.4 Asymptotic Variance Matrix Estimation

To apply Theorem 2.2 in practice requires the consistent estimation of 
 and G. Using

a uniform WLLN, by Assumption 2.1, the OPG estimator 
̂ =
Pn
i=1 gi(�̂)gi(�̂)

0=n is

consistent for 
.

Estimation of G is more problematic. Pakes and Pollard (1989) proposed an estimator

ĜPP based on numerical derivatives of the empirical moment indicators. The jth column

of ĜPP is given by ĜPP
j = "�1n

h
ĝ(�̂ + ej"n)� ĝ(�̂)

i
, where ej is the jth unit vector and

"n
p! 0. Other estimators may be derived for speci�c cases, e.g., for the IV QR example,

Powell's (1984) consistent estimator for G is ĜP =
Pn
i=1 1(

���yi � w0i�̂�
��� < ĉn)xiw

0
i=2ĉnn

where ĉn
p! 0 and satis�es the other regularity conditions stated in Powell (1984); see

section 5.1. The Monte-Carlo study of Buchinsky (1995) for QR showed that the per-

formance of kernel-based estimators, e.g., ĜP , depends critically on the choice of kernel

and bandwidth, the latter problem also shared by the numerical derivative estimator.

An important feature of the GEL framework is that a number of test statistics do not

require an estimator of G. See sections 3 and 4.

3 Overidentifying Moment Conditions

This section focuses on tests to gauge the validity of the moment conditions (2.1). The

traditional test statistic proposed by Hansen (1982) has been criticised in the literature

due to its poor �nite sample properties. Consequently a number of authors, including

[9]



Imbens et al. (1998), Kitamura and Stutzer (1997) and Smith (1997, 2000, 2001), have

proposed alternative test statistics based on classical principles. Theorem 3.1 shows that

these statistics are also valid when the moment conditions are non-smooth.

Theorem 3.1 Let 
̂ = 
 + op (1) and Assumptions 2.1, 2.2 hold. Then the likelihood

ratio (LR) statistic

LR = 2nP̂n(�̂; �̂);

the Lagrange multiplier (LM) statistic

LM = n�̂0
̂ �̂;

and the score (S) statistic

S = nĝ(�̂)0
̂�1ĝ(�̂)

are asymptotically equivalent. In particular, LR, LM, S d! �2m�p.

Under Assumption 2.1, the hypotheses of Kitamura (2001, Theorem 2, pp.1664-5) apply.

Therefore, the EL version of LR de�nes a �-optimal test of (2.1). Imposition of a further

regularity condition results in this test being asymptotically e�cient in the Hoe�ding

(1965) sense; see Kitamura (2001, Corollary 1, p.1665).

Implied probabilities may be de�ned in the GEL framework, viz.

p̂i =
�1(�̂

0gi(�̂))Pn
j=1 �1(�̂

0gj(�̂))
; (i = 1; :::; n):

See Brown and Newey (2002) and NS, p.223. Ramalho and Smith (2004) proposed

Pearson-type test statistics for overidentifying moment conditions based on these implied

probabilities, viz.

Pa
n =

Xn

i=1
(np̂i � 1)2

and

Pb
n =

Xn

i=1

(np̂i � 1)2

np̂i
:

Theorem 3.2 shows that Pa
n and Pb

n are asymptotically equivalent to LR, LM and

S.

[10]



Theorem 3.2 If 
̂ = 
 + op (1) and Assumptions 2.1 and 2.2 are satis�ed, then the

Pearson-type statistics Pa
n and Pb

n are asymptotically equivalent to LR, LM and S.

Therefore, Pa
n, Pb

n
d! �2m�p.

Note that none of these statistics requires the estimation of G. Cf. section 2.4.

4 Speci�cation Tests

This section is concerned with the validity, or otherwise, of additional moment restrictions

together with parametric restrictions on �0; viz.

E[q(z; �0)] = 0; r (�0) = 0 (4.1)

where q(z; �) is a known s-vector of moment indicators and r(�) a r-vector of constraints,

r � p. The results given below are easily specialised to the pure additional moments or

parametric restrictions cases.

Model speci�cation tests are typically based on moment conditions of the typeE[q(z; �0)] =

0, e.g., tests of functional form, heteroskedasticity and endogeneity. Such tests were in-

troduced by Newey (1985) and Tauchen (1985) for M-estimators, the latter paper being

particularly notable since non-di�erentiability of q (z; �) at �0 is permitted. Newey and

West (1987) proposed tests for parametric restrictions of the form r (�0) = 0 based on

e�cient GMM estimation in the smooth moment indicator context. A number of authors

have considered GEL-based tests of additional moment and parametric restrictions based

on GEL and its variants. See, e.g., Kitamura and Stutzer (1997) and Smith (1997, 2000,

2001).

Let h(z; �) = (g(z; �)0; q(z; �)0)0, qi(�) = q(zi; �) and hi(�) = h(zi; �), (i = 1; :::; n),

q̂(�) =
Pn
i=1 qi(�)=n and ĥ(�) =

Pn
i=1 hi(�)=n. Also let Q = @E[q(z; �0)]=@�

0, H =

(G0; Q0)0, �(�) = E[h(z; �)h(z; �)0], � = �(�0), R (�) = @r (�) =@�0 and R = R (�0).

De�ne the restricted parameter space Br = f� 2 B : r (�) = 0g.

The following additional assumption is required to establish the distribution of test

statistics under (4.1) and (2.1).
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Assumption 4.1 (a) �0 is the unique solution of E[h(z; �)] = 0, r (�) = 0; (b) q(z; �)

is continuous at each � 2 B with probability one, E[sup�2B kq(z; �)k
2] < 1 ; (c)

q (�) = E [q (z; �)] is di�erentiable at �0, r (�) is twice continuously di�erentiable on B;

(d) rank (R) = r; (e) � is nonsingular; (f) write wn (�) =
p
n(q̂ (�) � q (�)), then for

any �n ! 0;

sup
k���0k��n

kwn (�)� wn (�0)k
1 +

p
n k� � �0k

p! 0:

4.1 GMM Tests

Of particular importance is a LR-type test that does not require the estimation of the

Jacobian matrix H. Although the main focus of this paper concerns GEL methods, The-

orem 4.1 below states that the standard limiting chi-square distributional result for the

LR-type statistic based on an e�cient GMM estimator holds even when the moment con-

ditions are not smooth. This result is presented as it is thought it may be of independent

interest.

Let

Q̂n (�) = ĝ (�)0 
̂�1ĝ (�) ; Q̂r
n (�) = ĥ(�)0�̂�1ĥ(�):

Also let �̂GMM and �̂rGMM denote the e�cient unrestricted and restricted GMM esti-

mators respectively obtained from minimization of Q̂n(�) over B and Q̂r
n(�) over the

restricted parameter space Br.

Theorem 4.1 Suppose Assumptions 2.1, 2.2 and 4.1 hold and �̂ = �+ op (1). Then the

GMM LR statistic

LRGMM = n(Q̂r
n(�̂

r
GMM)� Q̂n(�̂GMM))

d! �2r+s:

Notice that in the exactly identi�ed case Q̂n(�̂GMM) = op (1) and therefore the LR

statistic takes the more familiar OPG form of the LM test discussed, e.g., in Davidson

and MacKinnon (1983). The implementation of this test is then straightforward, the test

statistic being n � SSR, where SSR is the sum of the squared residuals obtained from

a regression of a vector of ones on hi(�̂
r
GMM), (i = 1; :::; n).
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4.2 Example (cont.)

Con�ning attention to parametric restrictions r(�0) = 0 only, the above result has a

rather interesting consequence for QR in the absence of endogeneity. Since the model is

now exactly identi�ed, the QR estimator is asymptotically equivalent to e�cient GMM

with the LR statistic given by

LRGMM = nQ̂n(�̂
r
GMM)

where �̂rGMM is the restricted e�cient GMM estimator. De�ning 
̂ = � (1� �)
Pn
i=1wiw

0
i=n,

LRGMM =
Xn

i=1
w0isgn�(yi � w0i�̂

r
GMM)
̂

�1Xn

i=1
wisgn�(yi � w0i�̂

r
GMM)

has a limiting chi-square distribution with r degrees of freedom. Although this statistic

does not depend directly on G, it does require e�cient estimation under the null hypoth-

esis. Koenker and Bassett (1982) proposed this statistic (as their LM statistic) for the

case of linear restrictions and assuming stochastic independence between the regressors

and the error term. However, LRGMM is still valid if this latter assumption does not

hold; see Assumptions E.1, E.2 and 4.1.

It is instructive to compare asymptotically equivalent quadratic forms for the GMM

LR-type statistic and the standard QR objective function LR-type statistic. For the

GMM LR-type statistic,

LRGMM = nĝ (�0)
0G�1R0

�
RG�1
G�1R0

��1
RG�1ĝ (�0) + op (1) ;

see the Appendix. The QR objective function LR-type statistic is given by

LRQR = 2(
Xn

i=1
��(yi � w0i�̂qr)�

Xn

i=1
��(yi � w0i�̂

r
qr));

where �̂qr and �̂
r
qr denote the QR and the restricted QR estimators respectively. Using

similar arguments to those of Koenker and Basset (1982),

LRQR = nĝ (�0)
0G�1R0

�
RG�1R0

��1
RG�1ĝ (�0) + op (1) :

[13]



Consequently, while LRGMM converges in distribution to a chi-square with r degrees of

freedom, LRQR converges in distribution to
Pr
i=1 �iZ

2
i where Zi, (i = 1; :::; r), are inde-

pendent N(0; 1) and �i, (i = 1; :::; r), are the eigenvalues of (RG
�1R0)

�1
RG�1
G�1R0;

see Johnson and Kotz (1972, ch. 29). Thus, in general, LRGMM and LRQR are not

asymptotically equivalent and the asymptotic distribution of LRQR is non-standard. In

the absence of heterogeneity in the density function at the origin, i.e., f� (0jw) = f" (0),

then G = f� (0)
=� (1� �). In this case, therefore, LRQR can be adjusted to provide a

statistic that has a limiting chi-square distribution with r degrees of freedom; viz.

LRQR
a =

f� (0)

� (1� �)
LRQR

which corresponds to the LR statistic proposed by Koenker and Bassett (1982). Weiss

(1991) proposes several tests for testing parametric hypotheses in the case when the

data is heterogeneous, but does not mention LRGMM . In fact, the statistic LRGMM

and the associated limiting distributional result seem to be new in the QR literature.

Note, however, that in the QR framework the well-known rank test statistic, see, e.g.,

Koenker (1997), does not require the estimation of the asymptotic covariance matrix

either. Application of this test though requires solving the dual problem of (2.6) which is

not implemented in most of the econometric software, S-Plus being a notable exception.

4.3 GEL Tests

The above property of the (e�cient) GMM criterion function is also shared by the GEL

criterion function. Consider the restricted estimator

P̂ r
n(�̂

r; �̂r) � inf
�2Br

sup
�2�̂n(�)

P̂ r
n(�; �) + op(n

�1) (4.2)

where the extended GEL criterion P̂ r
n (�; �) =

Pn
i=1(�(�

0hi(�) � �0))=n, � = (�0;  0)0 is

a (m + s)-vector of auxiliary parameters and �̂n (�) = f� : �0hi (�) 2 V , i = 1; :::; ng.

The auxiliary parameter estimator �̂r = �̂r(�̂r) where �̂r(�) = argmax�2�̂n(�) P̂
r
n(�; �).

De�ne �̂ = (�̂0; 00)0. Let � denote the vector of Lagrange multipliers associated with the

constraint r(�) = 0.
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De�ne the (p+m+ s+ r)� (s+ r) selection matrix S ;� such that S 0 ;�(�0; �0; �0)0 =

( 0; �0)0. Additionally, de�ne the matrix

	 =

0B@ 0 H 0 �R0
H � 0
�R 0 0

1CA :
Given �̂ or �̂r, a consistent estimator 	̂r for 	 is easily constructed from estimators for �,

H using similar approaches to those described above to estimate 
, G with R estimated

by R(�̂) or R(�̂r).

Theorem 4.2 shows that the tests proposed in Smith (1997, 2000, 2001) remain valid

for testing (4.1) when the moment indicators are no longer smooth.

Theorem 4.2 Let 	̂r = 	 + op (1). If Assumptions 2.1, 2.2 and 4.1 hold, then the

likelihood ratio statistic

LRr = 2n(P̂ r
n(�̂

r; �̂r)� P̂n(�̂; �̂));

the Lagrange multiplier statistic

LMr = n(�̂r � �̂)0�̂r(�̂r � �̂)

the Wald statistic

Wr = n( ̂r0; �̂r0)(S 0 ;�(	̂
r)�1S ;�)

�1( ̂r0; �̂r0)0;

and the score statistic

Sr = n
nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!0
S 0 ;�(	̂

r)�1S ;�
nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!

are asymptotically equivalent to LRGMM . Therefore, LRr, LMr, Wr, Sr d! �2r+s.

The implied probabilities associated with the constrained model are

p̂ri =
�1(�̂

r 0hi(�̂
r))Pn

j=1 �1(�̂
r 0hj(�̂r))

; (i = 1; :::; n):

Pearson-type tests for parametric restrictions based on a contrast of constrained and un-

constrained implied probabilities were introduced by Ramalho and Smith (2004). Theo-

rem 4.3 demonstrates their validity in the non-smooth moment set-up.
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Theorem 4.3 If Assumptions 2.1, 2.2 and 4.1 hold, the Pearson-type statistics

Pa
r =

Xn

i=1

(np̂ri � np̂i)
2

np̂i
;

Pb
r =

Xn

i=1

(np̂ri � np̂i)
2

np̂ri
;

Pc
r =

Xn

i=1
(np̂ri � np̂i)

2

are asymptotically equivalent to LRGMM . Therefore, Pa
r , Pb

r , Pc
r

d! �2r+s.

None of the LR-, LM- and the Pearson-type GEL statistics require an estimator of

H. Of course, the di�culty of �nding a reliable estimator of H, required, for example,

in the de�nition of the Wald- and score-type statistics, is replaced by that of solving an

additional complicated optimization problem, possibly with multiple local optima, see

Andrews (1997), Chernozhukov and Hong (2003) and Whang (2003). Nevertheless, well-

known algorithms, e.g., the genetic algorithm, see Dorsey and Mayer (1995), can deal with

multiple local optima. Moreover, if e�cient unconstrained and constrained estimators for

�0, �̂ and �̂
r, are available, computation of these statistics only requires the solution to the

optimization problems �̂ = argmax�2�̂n(�̂) P̂n(�̂; �) and �̂
r = argmax�2�̂n(�̂r) P̂

r
n(�̂

r; �).

E.g., with purely parametric restrictions, the QR estimator of Koenker and Bassett (1978)

is asymptotically equivalent to the GEL estimator and is straightforward to compute in

both unconstrained and constrained scenarios. Moreover, if the former case is just-

identi�ed, �̂ = 0. Consequently, P̂n(�̂; �̂) = 0 and the likelihood ratio statistic reduces to

the simple expression LRr = 2nP̂n(�̂
r; �̂r).

4.4 Example (cont.)

Note that Sr adapted for purely parametric restrictions has exactly the same form as the

LM statistic proposed by Weiss (1991) although they are evaluated at di�erent estima-

tors, Sr at the restricted GEL estimator and Weiss' (1991) LM statistic at the restricted

QR estimator. These estimators, however, are in general not asymptotically equivalent
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although Sr and Weiss' (1991) LM statistic are.9 To gain some insight into this appar-

ently puzzling result consider asymptotic representations of the standardized �rst order

conditions for the QR estimator evaluated at both estimators.

For the restricted QR estimator, stochastic equicontinuity condition and di�erentia-

bility of g(�) imply that

n1=2ĝ(�̂rqr) = R0(RG�1R0)�1RG�1n1=2ĝ(�0) + op (1) :

Hence

RG�1n1=2ĝ(�̂rqr) = RG�1n1=2ĝ(�0) + op(1):

Likewise, for the restricted GEL estimator,

n1=2ĝ(�̂r) = 
G�1R0
�
RG�1
G�1R0

��1
RG�1n1=2ĝ(�0) + op(1)

and

RG�1n1=2ĝ(�̂r) = RG�1n1=2ĝ(�0) + op(1):

Therefore

RG�1n1=2ĝ(�̂r) = RG�1n1=2ĝ(�̂rqr) + op(1):

Even though �̂rqr and �̂
r are not asymptotically equivalent, the standardized �rst order

conditions of the QR estimator evaluated at �̂rqr and �̂
r are asymptotically equivalent

when premultiplied by RG�1.

4.5 Con�dence Regions

To compute a con�dence region for a sub-vector �10 , say, of �0, consisting of p1 elements,

the results of Theorem 4.2 indicate that a 1�� level con�dence region using the LR-type
9The restricted QR estimator has the linear representation

n1=2(�̂rqr � �0) = �(G�1 �G�1R0(RG�1R0)�1RG�1)n1=2ĝ(�0) + op(1)

where gi (�0) = wisgn�(yi�w0i�0), (i = 1; :::; n). The restricted GMM estimator has the representation

n1=2(�̂rGMM � �0) = �(G�1 �G�1
G�1R0(RG�1
G�1R0)�1RG�1)n1=2ĝ(�0) + op(1)

Note that the restricted GEL estimator is asymptotically equivalent to the restricted e�cient GMM
estimator.
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statistic is given by

f�1 : 2n[P̂n(�̂; �̂)� P̂n((�
1; �̂2

�
�1
�
); �(�1; �̂2(�1)))] � �2p1(�)g (4.3)

where �2p1(�) is the 1�� critical value from the chi-square distribution with p1 degrees of

freedom, � = (�1; �2) and �̂2(�1) solves the program min�2 sup�2�̂n(�1;�2) P̂n ((�
1; �2) ; �).

Additionally, the con�dence region (4.3) requires the computation of �̂ and �̂.

In practice this procedure is likely to be extremely cumbersome, requiring a grid-

search over points �1, each of which involves the solution of an optimization prob-

lem. However, a con�dence region for �0 itself is easily computed based on the result

sup�2�̂n(�0) 2nP̂n(�0; �)
d! �2p, which avoids estimation of both parameters and variance

matrices. A 1� � level con�dence region is therefore given by10

f� : 2nP̂n((�; �(�))) � �2p(�)g:

5 Simulation Experiments

This section studies the bias of GMM and GEL estimators and the performance of test

statistics for parametric restrictions in an IV QR model.

5.1 Design

We consider the following design

y = �0 + w�1 + �(x1; x2)("� q"(�));

w = (x1 + x2)=3 + "+ �;

where q" (�) is the conditional �-quantile of ". The scale factor �(x1; x2) allows for the

presence of conditional heteroskedasticity.

The parameter values are (�0; �1) = (0; 0) and x1 � �2(1), x2 � �2(2), � � N(0; 1) are

distributed independently of ". An asymmetric covariate design is chosen since symmetric

designs tend to be somewhat benign in their discriminatory power. We set �(x1; x2) = 1

10We are grateful to a referee for pointing out this possibility.
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and �(x1; x2) =
q
3=14(1+ (x1+x2)=3) to explore the e�ect of conditional heteroskedas-

ticity; note that in both cases E [�2 (x1; x2)] = 1. The distributions for " considered

are N(0; 1), t(3) and �2 (1). The illustrative conditional quantile � = 0:3 is chosen to

avoid conditional median-unbiased GMM and GEL estimators when " is symmetrically

distributed.11

The parameters (�0; �1) are estimated using GMM with the identity matrix as metric,

2S-GMM with GMM as initial consistent estimator, CUE, EL and ET. We also consider

LS, QR, 2SLS and LIML, the two latter estimators being consistent for �1 under condi-

tional homoskedasticity.

To deal with non-smoothness and several local optima of the GMM and GEL objective

functions, we used the MATLAB implementation of a genetic algorithm due to Houck et al.

(1995); see also Dorsey and Mayer (1995). Genetic algorithms are stochastic methods

that direct a search of large regions of the parameter space to areas where the global

optimum is more likely to be.12 GEL requires the evaluation of �̂(�) (2.5) for which,

since �(�) is twice continuously di�erentiable, the Newton method was used.13 Each

11Consider the IV QR model y = w0��+� for the �-quantile of � and assume x is a vector of intruments,
i.e., Pf� � 0jxg = �. The corresponding moment indicators are g(z; �) = x[�� I(y�w0� < 0)]. Denote
the GEL estimator by �̂�. Let �

� = �� and write y� = x0�� + �
�; thus y� = �y + 2x0��. Denote

the GEL estimator by �̂�1�� from the IV QR model y� = w0�1�� + �
� for the (1 � �)-quantile of y

conditional on x. The associated moment indicators are g� (z; �) = x[1 � � � I(y� � w0� < 0)] =

�x [� � I (y � 2w0�� + w0� � 0)]. Hence, �̂� = ��̂�1�� + 2��, i.e., �̂� � �� = �(�̂�1�� � ��). Therefore,
only when � = 0:5 is the GEL estimator median-unbiased. We are grateful to the Joint Editor for this
point.
12An initial population of points is randomly chosen in a prede�ned parameter space. For GMM

and GEL, to speed up computation, 2000 points were selected in the space [�2; 2] � [�2; 2] known to
contain the true parameter values. In applications, a larger parameter space and a bigger population size
would need to be considered. This procedure did not yield global minima as a second run of the genetic
algorithm restricting the parameter space to a neighbourhood of the initial estimates usually obtained
an improvement. Therefore these latter minima were used as the �nal estimates. The second run was
initialized by choosing 1000 points in the space

Q1
i=0 [�0:5 + bi; 0:5 + bi] where (b0; b1) are the initial

estimates. These new estimates initialised the implementation of the MATLAB simplex search algorithm
to ensure local optima were obtained.
13For EL since logarithms do not admit negative arguments the MATLAB code due to Owen, available

at http://www-stat.stanford.edu/~owen/empirical/, was used in which logarithms are replaced by

f (x) =

�
log (x) if x � �

log (�)� 1:5 + 2(x=�)� 0:5(x=�)2 if x < �
:

which has support R. See eq. (12.3), p.235, in Owen (2001).
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experiment is based on 1000 replications with sample size n = 100.14

We also consider LR-, Wald- and score-type statistics for the parametric restriction

�1 = 0; see section 4. Implementation of the latter statistics requires consistent estima-

tion of 
 and G. The estimators considered for 
 are


̂1 =
Xn

i=1
(� � I(yi < �̂0 + �̂1wi))

2xix
0
i=n; 
̂2 =

Xn

i=1
p̂i(� � I(yi < �̂0 + �̂1wi))

2xix
0
i;

where p̂i, (i = 1; :::; n), are the GEL implied probabilities. Estimation of G is more

problematic as it depends of the conditional density function of the error term. First, we

consider Powell's (1984) estimator

Ĝ1 =
Xn

i=1
I(
���yi � �̂0 � �̂1wi

��� < cn))xiw
0
i= (2cnn) ;

where the bandwidth ĉn ! 0 and
p
nĉn ! 0 with ĉn = �(��1(�+hn)���1(��hn)), see

Koenker (2005, p:81); here hn = 0:1+n
�1=3, � is Hogg's (1979) robust scale estimate and

��1(�) is the inverse N(0; 1) distribution function. Secondly, we also used Buchinsky's

(1995) estimator

Ĝ2 =
Xn

i=1
�((yi � �̂0 � �̂1wi)=b̂n))xiw

0
i=(b̂nn);

where �(�) is the N(0; 1) density function and b̂n = (3n=4)�1=5�, the optimal bandwidth

for density function estimation when the true density is normal, see Bowman and Azzalini

(1997, p:31). GEL e�cient versions of these estimators are

Ĝ3 =
Xn

i=1
p̂iI(

���yi � �̂0 � �̂1wi
��� < ĉn))xiw

0
i= (2ĉn) ; Ĝ4 =

Xn

i=1
p̂i�((yi��̂0��̂1wi)=b̂n))xiw0i=b̂n;

see Brown and Newey (2002). Test statistics were computed based on 2S-GMM, CUE,

EL and ET estimators under the alternative hypothesis.15 Wald, and score statistics

are denoted as Wij and Sij, where i and j indicate the estimators employed for 
 and

G respectively. Nominal test size is set as 0:05 and power calculations are based on

size-corrected tests.16

14Computations were extremely time-consuming with an average of 4 and 7 days respectively for each
design on an Intel Core Duo T2500 2.00 GHz and Pentium 4 with 2 Ghz.
15It might be expected that the performance of the tests would be improved if estimation of 
 and

G was performed under the null hypothesis. However, results not reported here indicated that in over-
identi�ed models Wald and score tests displayed little or no power.
16The performance of Wald and score statistics with the variance estimator 
̂ = �(1��)

Xn

i=1
xix

0
i=n
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5.2 Results

5.2.1 Estimator Bias

Tables 1 and 2 about here

Tables 1 and 2 present results on estimator mean bias (MeanB), root mean square

error (RMSE), median bias (MedB) and median absolute error (MAE) under condi-

tional homoskedasticity and heteroskedasticity respectively. Given the possibility of

non-existence of moments we concentrate on robust measures of central tendency and

dispersion.

In general, MedB for �1 estimation deteriorates under heteroskedasticity with 2S-

GMM and GEL dominating in terms of bias and MAE in Table 2; note though that

only GMM- and GEL-based estimators are consistent under heteroskedasticity. In the

homoskedastic case, Table 1 shows that LIML, although inconsistent for �0, is very

competitive not only in terms of bias but also in terms of MAE.17 With symmetric t3 and

asymmetric �21 errors, 2SLS and LIML are dominated by 2S-GMM and EL respectively

in terms of median bias and by 2S-GMM and GEL in respect of MAE with �21 errors.

In Table 2, GMM is more median biased than 2S-GMM and GEL in most cases

apart from CUE and t3 errors. There is no best estimator among the GEL class though

in general EL and ET are less biased than CUE. Note that, in some cases, 2S-GMM

performs better than GEL in terms of median bias; see, e.g., the �21 error results in

Tables 1 and 2.

5.2.2 Test Statistic Performance

Tables 3-8 about here

were very similar to that with 
̂1. For brevity, results for LM and Pearson tests are not presented since
all forms have empirical size considerably in excess of nominal size and have poor size-adjusted power
characteristics. Results are available from the authors upon request.
17Note that, with homoskedastic errors, after reparameterisation of the intercept coe�cient,

2SLS and LIML are �rst order asymptotically e�cient for �1 given the mean-based moment re-

strictions E[" � E["]] = 0 and E[xj(" � E["])] = 0, (j = 1; 2), i.e.,
p
n(�̂2SLS � �0)

d!
N(0; �2"

�
E [wx0]E[xx0]�1E [xw0]

��1
). We are grateful to the Joint Editor for this point.
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Test statistic performance under homoskedasticity is reported in Tables 3 to 5. Wald

tests are generally substantially oversized under N(0; 1) and t3 error schemes, which

accords with Buchinsky (1995) and Koenker (2005, section 3.10) on Wald tests computed

using a kernel-based estimator of G. There is, however, some improvement under �21

errors although these tests are now typically undersized. Overall their power properties

are quite similar and tend to exceed that of other test statistics, often substantially. Score

tests tend to underreject considerably; there is some evidence that e�cient estimation

of 
 and G improves size. Among score tests S11 statistics perform best and display

similar power. The empirical sizes of the GEL versions of LR tests are reasonable with

those of LREL and LRET close to nominal size. Generally LRCUE displays best power

followed by LRET then LREL, their power properties being not dissimilar to those of the

S11 statistics.

Tables 6 to 8 record test statistic performance under heteroskedasticity, with power

generally decreasing relative to that under homoskedasticity. Once again, the Wald

statistics are over-sized withW1� statistics having quite similar and best power properties

over all statistics. The SET2� statistics are reasonably sized with others undersized; the

S11 statistics again have best and similar power characteristics. The empirical size of

LR2S-GMM is closest to nominal size; LRCUE again displays best power quite similar to

that of the S11 statistics.

Overall the LR-type class of tests seems most reliable in terms of size with reasonable

power properties, LRET and LRCUE, although somewhat oversized, being preferable in

homoskedastic and heteroskedastic environments respectively.

6 Conclusions

This paper obtains the �rst order asymptotic theory for GEL estimators when the mo-

ment indicators are non-smooth. The validity of test statistics for overidentifying mo-

ment conditions, parametric restrictions and additional moment conditions previously

suggested for the smooth moment indicator set-up is demonstrated. We also show that
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the Pearson-type tests proposed in Ramalho and Smith (2004) are also valid here. An ad-

vantage of tests based on likelihood ratio, Lagrange multiplier and Pearson-type statistics

is that estimation of the Jacobian matrix G possibly di�cult in practice is not required

although an additional optimization of a non-smooth objective function is needed. When

the parameters are just-identi�ed these tests are extremely easy to implement if an e�-

cient consistent parameter estimator is available, e.g., Koenker and Bassett's (1978) QR

estimator.

The bias of GMM and GEL and test statistic performance are examined in a sim-

ulation study. Results indicate that there is no unequivocal ranking of the di�erent

estimators in the GEL class. Indeed, 2S-GMM outperforms GEL in some cases. How-

ever, 2S-GMM and GEL dominate GMM with identity matrix as metric. Although

Wald statistics dominate in terms of power they are typically considerably oversized.

The most reliable statistics in terms of empirical size and power appear to be members

of the LR class with those based on ET and CUE most suitable for homoskedastic and

heteroskedastic enviroments respectively.

Appendix: Proofs of Results

Throughout the Appendix, C denotes a generic positive constant that may be di�erent

in di�erent uses, and CS, M, and T the Cauchy-Schwarz, Minkowski, and triangle in-

equalities respectively. Also, with probability approaching one is abbreviated as w.p.a.1,

positive semi-de�nite as p.s.d., UWL denotes a uniform weak law of large numbers such

as Lemma 2.4 of Newey and McFadden (1994), and CLT is the Lindeberg-L�evy central

limit theorem. De�ne the norm kxkA = (x0Ax)1=2 with p.s.d. matrix A as metric.

The proof of asymptotic normality is similar to the approach of Pakes and Pollard

(1989) for their Theorem 3.3. We require the following Lemma and Lemmata A2-A3 of

Newey and Smith (2004) which are reproduced below.

Lemma A.1 If Assumption 2.1 holds then for �n = f� : k�k � Cn�1=2g

sup
�2B;�2�n;1�i�n

j�0gi(�)j
p! 0:

[23]



Proof: Write bi = sup�2B kgi(�)k
2. Now E[bi] < 1 for 1 � i � n by Assump-

tion 2.1. Then by Lemma 3 of Owen (1990) max1�i�n bi = op(n
1=2). Hence by CS

max�2B;�2�n;i�n j�0gi(�)j � Cn�1=2op(n
1=2) = op(1).

Lemma A.2 If Assumption 2.1 is satis�ed, �� 2 B, �� p! �0 and ĝ( ��) = Op(n
�1=2), then

�� = argmax�2�̂n( ��) P̂n(
��; �) exists w.p.a.1, �� = Op(n

�1=2) and sup�2�̂n( ��) P̂n(
��; �) � �0+

Op(n
�1).

Lemma A.3 If Assumption 2.1 is satis�ed then



ĝ(�̂)


 = Op(n

�1=2).

The following is Lemma A.1 of Ramalho and Smith (2004) which is proven there. As

stated, Lemma A.1 in Ramalho and Smith (2004) assumes the di�erentiability of g (z; �)

at �0. However, this assumption is not used at any stage of their proof and therefore

their Lemma A.1 is applicable to the context studied here.

Lemma A.4 Let Assumption 2.1 hold. Then np̂i = 1 + op(1) and

n1=2
�
p̂i �

1

n

�
=
1

n
ĝ0i
p
n�̂(1 + op(1)) +Op(n

�3=2)

uniformly, (i = 1; :::; n).

Proof of Theorem 2.2: By T it follows that




g(�̂)


 � 


ĝ(�̂)� ĝ (�0)� g(�̂)



+ 


ĝ(�̂)


+ kĝ (�0)k :

From Theorem 2.1 and Lemma A.3,



ĝ(�̂)


 = Op(n

�1=2) and, by Assumption 2.1 (d) and

CLT,
p
n kĝ(�0)k = Op(1). Now Assumption 2.2 (d) implies that

p
n



ĝ(�̂)� ĝ (�0)� g(�̂)




 � (1 +pn 


�̂ � �0



)op (1) :

Hence,
p
n



g(�̂)


 � (1 +pn 


�̂ � �0




)op (1) +Op (1) :

[24]



Since g (�) is di�erentiable at �0,



g(�̂)


 � C




�̂ � �0



. Thus

p
n



�̂ � �0




 � (1 +pn 


�̂ � �0



)op (1) +Op (1) :

Hence (1� op (1))
p
n



�̂ � �0




 � Op (1) and therefore
p
n



�̂ � �0




 = Op (1).

Next de�ne �̂ = (�̂0; �̂0)0 and �0 = (�00; 0
0)0. We now show that, near its optima,

P̂n (�; �) is well approximated by the function

L̂n (�; �) = [�G (� � �0)]
0�� ĝ (�0)

0 �� 1
2
�0
�:

Indeed, we prove that
���P̂n(�̂; �̂)� L̂n(�̂; �̂)

��� = op (n
�1). A Taylor expansion of P̂n(�̂; �̂)

around � = 0 (with Lagrange remainder) gives

P̂n(�̂; �̂) = ��̂0ĝ(�̂) +
1

2
�̂0(
Xn

i=1
�2( _�

0gi(�̂))gi(�̂)gi(�̂)
0=n)�̂

for some _� on the line segment between �̂ and 0. Therefore, by T,

���P̂n(�̂; �̂)� L̂n(�̂; �̂)
��� � ����(ĝ(�̂)� ĝ (�0)�G(�̂ � �0))

0�̂
���

+
����12 �̂0(Xn

i=1
�2( _�

0gi(�̂))gi(�̂)gi(�̂)
0=n+ 
)�̂

����
By CS, Lemmata A.1-A.2, Assumption 2.1 (d) and UWL

����̂0(Xn

i=1
�2( _�

0gi(�̂))gi(�̂)gi(�̂)
0=n+ 
)�̂

���
�




�̂


2 


Xn

i=1
�2( _�

0gi(�̂))gi(�̂)gi(�̂)
0=n+ 
)





= Op

�
n�1

�
op (1) = op

�
n�1

�
:

Finally,

����(ĝ(�̂)� ĝ (�0)�G(�̂ � �0))
0�̂
��� � 


�(ĝ(�̂)� ĝ (�0)�G(�̂ � �0))




 


�̂


 :
From Assumptions 2.2 (b) and (d), CS and T,




�(ĝ(�̂)� ĝ (�0)�G(�̂ � �0))



 � 


�(ĝ(�̂)� ĝ (�0)� g(�̂)




+ 


G(�̂ � �0)� g(�̂)




(A.1)

� (1 +
p
n



�̂ � �0




)op(n�1=2) + op(



�̂ � �0




) = op(n
�1=2)

[25]



Hence, since �̂ = Op(n
�1=2) by Lemma A.2,

����(ĝ(�̂)� ĝ (�0)�G(�̂ � �0))
0�̂
��� � op

�
n�1

�
:

Therefore,

���P̂n(�̂; �̂)� L̂n(�̂; �̂)
��� = op

�
n�1

�
: (A.2)

Now consider the problem min�2B sup�2Rm L̂n (�; �). Since L̂n (�; �) is concave in �

and B is compact by Assumption 2.1 (b), the �rst order conditions for an interior global

maximum are satis�ed at ~� =
�
~�0; ~�0

�0
, i.e.,

�G0~� = 0;�G
�
~� � �0

�
� ĝ (�0)� 
~� = 0; (A.3)

which may be stacked as  
0

�
p
nĝ (�0)

!
+M

p
n
�
~� � �

�
= 0

where

M = �
 
0 G0

G 


!
:

Solving

p
n
�
~� � �

�
= M�1

 
0p

nĝ (�0)

!

= �
 
�G0
�1

P

!p
nĝ (�0) :

Consequently by CLT
p
n(~� � �0)

d! N(0; diag(�; P )).

The �nal step of the proof requires
p
n(�̂ � ~�) = op (1). First, we prove




g �~��


 =
Op(n

�1=2). By the di�erentiability of g (�) at �0


g �~��


 � 


G �~� � �0
�


+ op(




~� � �0



) = Op(n

�1=2):

Next, by Assumption 2.2 (d)




ĝ �~��


 � 


ĝ �~��� ĝ (�0)� g
�
~�
�


+ kĝ (�0)k+ 


g �~��




� (1 + n1=2



~� � �0




)op(n�1=2) +Op(n
�1=2) = Op(n

�1=2):

[26]



From these results, by the same arguments used above for �̂,
���P̂n( ~�; �̂)� L̂n( ~�; �̂)

��� =
op (n

�1). It then follows that

L̂n(�̂; �̂)� op
�
n�1

�
� P̂n(�̂; �̂) (A.4)

� P̂n( ~�; �̂) + op
�
n�1

�
� L̂n( ~�; �̂) + op

�
n�1

�
:

Thus, L̂n(�̂; �̂) = L̂n( ~�; �̂) + op (n
�1). Hence, since L̂n(�̂; �̂)� L̂n( ~�; �̂) = [�G(�̂ � ~�)]0�̂,

[�G(�̂ � ~�)]0�̂ = op (n
�1). Now �̂ = Op(n

�1=2) so G(�̂ � ~�) = op(n
�1=2). Therefore

p
n(�̂ � ~�) = op (1) since G is full rank by Assumption 2.2 (c). It remains to show that

�̂ � ~� = op(n
�1=2). To show this, notice that L̂n

�
~�; ~�

�
� L̂n(�̂; �̂) and, thus, from eq.

(A.4), L̂n
�
~�; ~�

�
= L̂n( ~�; �̂) + op (n

�1). But, from the �rst order conditions eq. (A.3),

L̂n
�
~�; ~�

�
� L̂n( ~�; �̂) = (�̂� ~�)0
(�̂� ~�)=2, which implies that �̂� ~� = op(n

�1=2).

Proof of Theorem 3.1: Again let �̂ = (�̂0; �̂0)0 and ~� = (~�0; ~�0)0.

First we show that LR d!�2m�p. From (A.2) that

2n
���P̂n(�̂; �̂)� L̂n(�̂; �̂)

��� = op (1) : (A.5)

However, since �̂ � ~� = op(n
�1=2) from the Proof of Theorem 2.2,

2nL̂n(�̂; �̂) = 2nL̂n
�
~�; ~�

�
+ op (1) ; (A.6)

where

L̂n
�
~�; ~�

�
=
h
�G

�
~� � �0

�i0 ~�� ĝ (�0)
0 ~�� 1

2
~�0
~�:

Using the �rst order conditions (A.3)

2nL̂n
�
~�; ~�

�
= n~�0
~�: (A.7)

Now 
P
P
 = 
P
 and
p
n~�

d! N (0; P ) by Theorem 2.2. Therefore, using Theorem

9.2.1 of Rao and Mitra (1971),

n~�0
~�
D! �2m�p: (A.8)

The result for LR follows from (A.5), (A.6) and (A.7).

[27]



The result for the LM statistic follows immediately from (A.8), �̂� ~� = op(n
�1=2) and


̂ = 
 + op (1).

For the score statistic, Assumption 2.2 (d) implies

n1=2



ĝ(�̂)� g(�̂)� ĝ (�0)




 � (1 + n1=2



�̂ � �0




)op (1)
= op (1) :

Consequently

p
nĝ(�̂) =

p
nĝ (�0) +

p
ng(�̂) + op (1) : (A.9)

In addition, since g(�̂) = G(�̂ � �0) + op(n
�1=2) and G(�̂ � ~�) = op(n

�1=2),
p
ng(�̂) =

p
nG

�
~� � �0

�
+op (1). Now, from the �rst order conditions (A.3), �G

�
~� � �0

�
�ĝ (�0)�


~� = 0. Hence,
p
ng(�̂) = �

p
nĝ (�0) �

p
n
~� + op (1). Therefore, substituting into

(A.9),
p
nĝ(�̂) = �

p
n
~�+ op (1) :

Therefore, from and Assumption 2.1 (e),

S = n~�0

̂�1
~�+ op (1)

= n~�0
~�+ op (1)

= LM+ op (1)

because �̂� ~� = op(n
�1=2) and 
̂ = 
+op (1). Hence LR, LM and S are asymptotically

equivalent.

Proof of Theorem 3.2: The proof is identical to Theorem 3.1 of Ramalho and

Smith (2004). Indeed, they showed that

Pa
n = LM+ op (1)

using only Assumption 2.1. Consequently, by Theorem 3.1, the asymptotic distribution

of Pa
n is the same as that given for LM. The proof for Pb

n follows immediately from this

result and Lemma A.4 as does asymptotic equivalence.

[28]



Proof of Theorem 4.1: Proofs for the consistency and asymptotic normality of the

e�cient GMM estimator with non-smooth moment conditions may be found in Pakes

and Pollard (1989) and Newey and McFadden (1994).

Consider the function M̂n (�) = kG(� � �0) + ĝ(�0)k2
�1 . Let

~�GMM = argmin
�2B

M̂n (�) :

The �rst order conditions for this problem are

G0
�1G( ~�GMM � �0) +G0
�1ĝ(�0) = 0: (A.10)

We now show that under Assumptions 2.1 and 2.2

���Q̂n(�̂GMM)�Mn(�̂GMM)
��� = op

�
n�1

�
:

First notice that Q̂n(�̂GMM) � Q̂n(�0). The right hand side is Op(n
�1) since 
̂�1 =


�1 + op (1) and n kĝ(�0)k2
�1
d! �2p. Hence




ĝ(�̂GMM)



 = Op(n

�1=2). Now

Q̂n(�̂GMM) =



ĝ(�̂GMM)




2

�1

+ op
�
n�1

�
= M̂n(�̂GMM) +




ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)



2

�1

+2(ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0))

�1(G(�̂GMM � �0)� ĝ(�0)) + op(n

�1):

Consequently by T

���Q̂n(�̂GMM)� M̂n(�̂GMM)
��� � 


ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)




2

�1

+2
���(ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0))


�1(G(�̂GMM � �0)� ĝ(�0))
���+ op(n

�1):

Moreover, by T and Assumption 2.2 (d),




ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)



 �




ĝ(�̂GMM)� g(�̂GMM)� ĝ(�0)





+



G(�̂GMM � �0)� g(�̂GMM)





� (1 +

p
n



�̂GMM � �0




)op(n�1=2) + op(



�̂GMM � �0




)
= op(n

�1=2)

[29]



since
p
n



�̂GMM � �0




 = Op(1). Hence, by CS,




ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)



2

�1

�



ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)




2 



�1


 = op(n
�1):

Similarly, by T and CS,

���(ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0))

�1(G(�̂GMM � �0)� ĝ(�0))

���
�




ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)



 



�1


 


G(�̂GMM � �0)





+



ĝ(�̂GMM)�G(�̂GMM � �0)� ĝ(�0)




 



�1


 kĝ(�0)k
= op(n

�1=2)Op(n
�1=2) = op(n

�1):

Therefore ���Q̂n(�̂GMM)� M̂n(�̂GMM)
��� = op(n

�1):

Now, from (A.3) and (A.10), ~�GMM� ~� = op(n
�1=2). Therefore, as in the Proof of The-

orem 2.2, g( ~�GMM) = Op(n
�1=2) and ĝ( ~�GMM) = Op(n

�1=2). Hence,
���Q̂n( ~�GMM)� M̂n( ~�GMM)

���
= op(n

�1). Therefore

M̂n(�̂GMM)� op
�
n�1

�
� Q̂n(�̂GMM)

� Q̂n( ~�GMM) + op(n
�1) � M̂n( ~�GMM) + op(n

�1):

Consequently M̂n(�̂GMM) = M̂n( ~�GMM) + op(n
�1). But, from (A.10), M̂n(�̂GMM) �

M̂n( ~�GMM) = (�̂ � ~�)0G0
�1G(�̂ � ~�). Therefore

�̂GMM � ~�GMM = op(n
�1=2):

Newey and McFadden (1994, Theorem 2.6, p.2132) is also valid for the restricted

e�cient GMM estimator �̂rGMM . This follows from Assumption 2.1 because the restricted

parameter space Br is compact. To see this r (�) is continuous in � by Assumption

4.1 (c) and thus Br is closed. Since Br is a subset of the compact set B, Br is also

compact. The hypotheses of Newey and McFadden (1994, Theorem 7.2, p.2186) hold

for �̂rGMM . Assumptions 2.1, 2.2 and 4.1 guarantee that the conditions required for

asymptotic normality are satis�ed apart from �0 2 int(Br). This holds since, if r (�0) = 0,

[30]



the continuously di�erentiability of r (�) in � and rank (R) = r from Assumptions 4.1

(c) and (d) ensure that there is always a neighbourhood of �0 within which the condition

r (�) = 0 holds.

Let M̂ r
n (�) =




H(� � �0) + ĥ(�0)



2
��1

and

~�rGMM = arg min
�2Br

M̂ r
n (�) : (A.11)

As above
���Q̂r

n(�̂
r
GMM)� M̂ r

n(�̂
r
GMM)

��� = op(n
�1),

���Q̂r
n(
~�rGMM)� M̂ r

n(
~�rGMM)

��� = op(n
�1),

M̂ r
n(�̂

r
GMM) = M̂ r

n(
~�rGMM) + op(n

�1) and �̂rGMM � ~�rGMM = op(n
�1=2). Now

LRGMM = n[Q̂r
n(�̂

r
GMM)� M̂ r

n(�̂
r
GMM)]� n[Q̂n(�̂GMM)� M̂n(�̂GMM)]

+n[M̂ r
n(�̂

r
GMM)� M̂ r

n(
~�rGMM)]� n[M̂n(�̂GMM)� M̂n( ~�GMM)]

+n[M̂ r
n(
~�rGMM)� M̂n( ~�GMM)]:

The �rst four terms are all op (1) as noted above. Thus

LRGMM = n[M̂ r
n(
~�rGMM)� M̂n( ~�GMM)] + op (1) : (A.12)

The Lagrangean of the program (A.11) is LGMM(�; �) = M̂ r
n (�) + �

0r (�) where � is an

r-vector of Lagrange mulitpliers. As ~�rGMM = �0 + Op(n
�1=2), the �rst order conditions

associated with LGMM(�; �) together with Assumptions 4.1 (c) and (d) imply that

p
n( ~�rGMM � �0) = �(�r � �rR(R0�rR)�1R0�r)H 0��1ĥ (�0) + op(1):

Denote the (m+ s)�m selection matrix Sg = (Im; 0)
0, so S 0gĥ (�0) = ĝ (�0), S

0
g�Sg = 


and S 0gH = G. Therefore, as
p
n( ~�GMM � �0) = � (G0
�1G)�1G0
�1

p
nĝ (�0) from

(A.10), (A.12) may be written as

LRGMM = nĥ (�0)
0 (P r � SgPS

0
g)ĥ (�0) + op (1) :

The result then follows from Theorem 9.2.1 of Rao and Mitra (1971).

Similarly to � and P , de�ne �r = (H 0��1H)�1 and P r = ��1 � ��1H(�r �

�rR0(R�rR0)�1R�r)H 0��1.

[31]



Lemma A.5 Let Assumptions 2.1, 2.2 and 4.1 hold. Then

p
n

 
�̂r � �0
�̂r

!
d! N

�
0; diag

�
�r � �rR0(R�rR0)�1R�r; P r

��
:

Proof: First we need to show that �̂r is consistent, that ĥ(�̂r) = Op(n
�1=2) and

�̂r = Op(n
�1=2). To do this we verify Assumption 2.1 for h (z; �) rather than g (z; �).

Assumptions 2.1 (a) and (c) hold for h (z; �) by Assumptions 4.1 (a) and (b). Assumption

2.1 (b) holds since Br is compact from the Proof of Theorem 4.1. To prove Assumption

2.1 (d), by Assumption 4.1 (b),

E[sup�2B kh (z; �)k
2] = E[sup�2B(kg (z; �)k

2 + kq (z; �)k2)]

� E[sup�2B kg (z; �)k
2] + E[sup�2B kq (z; �)k

2] <1:

Lastly, Assumption 4.1 (e) guarantees Assumption 2.1 (e) for h(z; �).

Secondly, for asymptotic normality, we verify Assumption 2.2. For Assumption 2.2

(a), �0 2 int(Br) was shown in the Proof of Theorem 4.1. Assumption 2.2 (b) holds by

Assumption 4.1 (c). Assumption 2.2 (c) is immediate for H = (G0; Q0)0. Write sn (�) =
p
n(ĥ (�)�h (�)) where h (�) = E[ĥ (�)]. Hence ksn (�)� s (�0)k2 = kvn (�)� v (�0)k2+

kwn (�)� w (�0)k2. Consequently, by Assumptions 2.2 (d) and 5.1 (f),

sup
k���0k��n

ksn (�)� s (�0)k
1 +

p
n k� � �0k

= sup
k���0k��n

vuut kvn (�)� v (�0)k
1 +

p
n k� � �0k

!2
+

 
kwn (�)� w (�0)k
1 +

p
n k� � �0k

!2

�

vuut sup
k���0k��n

kvn (�)� v (�0)k
1 +

p
n k� � �0k

!2
+

 
sup

k���0k��n

kwn (�)� w (�0)k
1 +

p
n k� � �0k

!2
= op(1):

Then, similarly to L̂n(�; �), de�ne

L̂rn (�; �) = [�H (� � �0)]
0 � � ĥ (�0)

0 � � 1
2
�0
�:

An identical development to that in the Proof of Theorem 2.2 allows a corresponding

result to eq. (A.5)

2n
���P̂ r
n(�̂

r; �̂r)� L̂rn(�̂
r; �̂r)

��� = op (1) ; (A.13)
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cf. eq. (A.2). Denote by ~�r and ~�r the optimizers of

min
�2Br

sup
�2Rm+s

L̂rn (�; �) : (A.14)

The Lagrangean corresponding to the program (A.14) is LGEL(�; �; �) = L̂n (�; �) +

�0r (�) where � is an r-vector of Lagrange multipliers. The �rst order conditions for an

interior global maximum are satis�ed as

�H 0~�r +R( ~�r)0~�r = 0

�H( ~�r � �0)� ĥ (�0)� �~�r = 0

r( ~�r) = 0;

cf. eq. (A.3). By Assumption 4.1 (c) and
p
n



~�r � �0




 = Op (1) as in the Proof of

Theorem 2.2, R( ~�r) = R + Op(n
�1=2) and r( ~�r) = R( ~�r � �0) + op(n

�1=2). Moreover,

since ~�r = Op(n
�1=2), ~�r = Op(n

�1=2) as R has full rank r. Thus

�H 0~�r +R0~�r = op(n
�1=2) (A.15)

�H( ~�r � �0)� ĥ (�0)� �~�r = 0

R( ~�r � �0) = op(n
�1=2):

Hence, ~�r = (R�rR0)�1R�rH 0~�r+op(n
�1=2) and, thus, [�r��rR0(R�rR0)�1R�r]H 0~�r =

op(n
�1=2). Premultiplying by [�r � �rR0(R�rR0)�1R�r]H 0��1 and solving,

p
n( ~�r � �0) = �[�r � �rR0(R�rR0)�1R�r]H 0��1

p
nĥ (�0) + op(1):

(A.16)

Thus,

p
n~�r = �(��1 � ��1H[�r � �rR0(R�rR0)�1R�r]H 0��1)

p
nĥ (�0) + op(1):

(A.17)

Therefore,

p
n

 
~�r � �0
~�r

!
d! N

�
0; diag

�
�r � �rR0(R�rR0)�1R�r; P r

��
:

[33]



An identical argument to that in the �nal part of the Proof of Theorem 2.2 shows that
p
n



�̂r � ~�r




 = Op (1) and
p
n k�̂r � ~�rk = Op (1). Note that

p
n k�̂r � ~�rk = Op (1).

The conclusion of the Lemma then follows directly.

Proof of Theorem 4.2: First, we consider the LR statistic

LRr = 2n[P̂ r
n(�̂

r; �̂r)� P̂n(�̂; �̂)]:

We follow an approach close to that in the Proof of Theorem 5.2 in Smith (2001). Rewrite

LRr = 2n[P̂ r
n(�̂

r; �̂r)� L̂rn(�̂
r; �̂r)]

�2n[P̂n(�̂; �̂)� L̂n(�̂; �̂)]

+2n[L̂rn(�̂
r; �̂r)� L̂n(�̂; �̂)];

L̂rn (�; �) is de�ned in the Proof of Lemma A.5. Now, by eqs. (A.5) and (A.13),

2n[P̂n(�̂; �̂)� L̂n(�̂; �̂)] = op (1) and 2n[P̂
r
n(�̂

r; �̂r)� L̂rn(�̂
r; �̂r)] = op(1). Therefore,

LRr = 2n[L̂rn(�̂
r; �̂r)� L̂n(�̂; �̂)] + op(1): (A.18)

Similarly to (A.6), 2nL̂n(�̂; �̂) = 2nL̂n( ~�; ~�)+op (1), 2nL̂
r
n(�̂

r; �̂r) = 2nL̂rn(
~�r; ~�r)+op (1)

where ~�r and ~�r are the optimisers of min�2Br sup�2Rm+s L̂rn (�; �). From the �rst order

conditions eq. (A.15) and noting that
p
n~�r = �P r

p
nĥ (�0) + op(1),

2nL̂rn
�
~�r; ~�r

�
= n(~�r)0�~�r

= nĥ (�0)
0 P r�P rĥ (�0) + op(1):

Now P
P = P and P r�P r = P r. De�ne the (m+ s)�m selection matrix Sg = (Im; 0)
0.

Hence, S 0gĥ (�0) = ĝ (�0), S
0
g�Sg = 
 and S

0
gH = G. Thus, using eqs. (A.3) and (A.7),

2nL̂n
�
~�; ~�

�
= nĥ (�0)

0 SgPS
0
gĥ (�0). Therefore,

2n[L̂rn(
~�r; ~�r)� L̂n( ~�; ~�)] = nĥ (�0)

0 (P r � SgPS
0
g)ĥ (�0) + op(1):

(A.19)

As PS 0g�P
r = PS 0g and, thus, PS

0
g�(P

r�SgPS 0g) = 0, it is straightforward to show that

�(P r � SgPS
0
g)�(P

r � SgPS
0
g)� = �(P

r � SgPS
0
g)�:

[34]



Additionally,

tr
�
�(P r � SgPS

0
g)
�
= tr (�P r)� tr

�
PS 0g�Sg

�
= tr (�P r)� tr (
P ) = m+ s� p+ r � (m� p) = r + s:

Consequently, by Theorem 9.2.1, p.171, of Rao and Mitra (1971), from eqs. (A.18) and

(A.19),

LRr = nĥ (�0)
0 (P r � SgPS

0
g)ĥ (�0) + op(1)

d! �2r+s:

To prove the result for the LM statistic, recall that
p
n(�̂�~�) = op(1) and

p
n (�̂r � ~�r) =

op (1). Write ~� = (~�
0; ~�0)0 and ~� = 0. Thus, as �̂r = � + op (1),

LMr = n(~�r � ~�)0�(~�r � ~�) + op(1)

= nĥ(�0)
0(P r � SgPS

0
g)�(P

r � SgPS
0
g)ĥ(�0) + op(1)

= nĥ(�0)
0(P r � SgPS

0
g)ĥ(�0) + op(1)

= LRr + op(1):

To show the Wald and the score statistics are asymptotically equivalent to LMr

and LRr we use two steps. First we prove that Wr is asymptotically equivalent to Sr.

Secondly, we demonstrate that Wr is asymptotically equivalent to LRr.

Recall
p
n(�̂r � ~�r) = op (1). Let # = (�

0; �0; �0)0. Since 	̂r = 	+ op (1),

Wr = n( ~ r0; ~�r0)(S 0 ;�	
�1S ;�)

�1( ~ r0; ~�r0)0 + op (1) (A.20)

= n(~#r � ~#)0S ;�(S
0
 ;�	

�1S ;�)
�1S 0 ;�(

~#r � ~#) + op (1) :

However, from eq. (A.15),

�	(~#r � #0) =

0B@ 0

ĥ(�0)
0

1CA+ op(n
�1=2):

Hence,

�	(~#r � ~#) =

0B@ 0

ĥ(�0)
0

1CA+	(~#� #0) + op(n
�1=2):

[35]



Consequently

(~#r � ~#) = �	�1
0B@ 0

ĥ(�0)
0

1CA� (~#� #0) + op(n
�1=2): (A.21)

Write ĥi = hi(�̂), (i = 1; :::; n). Then, by Lemma A.4,

p
n

nX
i=1

p̂ihi(�̂) =
p
nĥ(�̂) + (

nX
i=1

ĥiĝ
0
i=n)

p
n�̂+ op (1)

as ĥ(�̂) = Op(n
�1=2) and

p
n�̂ = Op (1). Now, by UWL,

Pn
i=1 ĥiĝ

0
i=n = �Sg + op (1).

In addition by Assumption 4.1 (f), and similarly to eq. (A.9),
p
nĥ(�̂) =

p
nĥ(�0) +

p
nh(�̂) + op (1). Notice also that, as

p
n(�̂ � ~�) = op(1), h(�̂) = H( ~� � �0) + op(n

�1=2)

and
p
n(�̂� ~�) = op (1). Thus

p
n

nX
i=1

p̂ihi(�̂) =
p
nĥ (�0) +H

p
n
�
~� � �0

�
+ �Sg

p
n~�+ op (1) :

Write ~� = (~�0; 00)0 and ~� = 0. Thus, H 0~� = 0. From the �rst order conditions of the

unrestricted GEL problem, i.e.,
Pn
i=1 p̂igi(�̂) = 0,

S ;�
p
n

nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!
=

p
n

nX
i=1

p̂i

0B@ 0

hi(�̂)

r(�̂)

1CA

=
p
n

0B@ 0

ĥ(�0)
0

1CA+	pn(~#r � #0) + op (1) :

Therefore, by eq. (A.21),

�S 0 ;�	�1S ;�
p
n

nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!
= �S 0 ;�	�1

p
n

0B@ 0

ĥ(�0)
0

1CA� S 0 ;�
p
n(~#� #0) + op (1)

= S 0 ;�
p
n(~#r � ~#) + op (1)

=
p
n

 
~ r

~�r

!
+ op (1) :

Substituting this expression in eq. (A.20)

Wr = n
nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!0
S 0 ;�	

�1S ;�
nX
i=1

p̂i

 
qi(�̂)

r(�̂)

!
+ op (1) (A.22)

= Sr + op (1)
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since 	̂r = 	 + op (1) and, by Lemma A.4 and above,
p
n
Pn
i=1 p̂iqi(�̂) = Op (1) and

p
nr(�̂) = Op (1).

To conclude the proof, note that S 0g
Pn
i=1 p̂ihi(�̂) = 0. Hence, from eq. (A.22),

substituting eqs. (A.21) and (A.22),

Wr = n
Xn

i=1
p̂i(0

0; hi(�̂)
0; r(�̂)0)	�1

Xn

i=1
p̂i(0

0; hi(�̂)
0; r(�̂)0)0 + op (1)

= n(~#r � ~#)0	(~#r � ~#) + op (1) :

Now, since H 0~� = 0 and ~� = 0, from eqs. (A.15) and (A.17),

Wr = nĥ (�0)
0 (P r � SgPS

0
g)ĥ (�0) + op (1)

= LRr + op (1) :

Proof of Theorem 4.3: We examine Pc
r . The results for Pa

r and Pb
r following

directly from Lemma A.4.

Let ĥri = hi(�̂
r), (i = 1; :::; n). By Lemma A.4

np̂ri � np̂i = ĥri
0�̂r (1 + op (1))� ĥi

0�̂ (1 + op (1)) +Op

�
n�1

�
= ĥri

0 (�̂r � �̂) (1 + op (1)) + (ĥ
r
i � ĥi)

0�̂ (1 + op (1)) +Op

�
n�1

�
:

Thus,

Pc
r =

Xn

i=1
(ĥri

0 (�̂r � �̂) (1 + op (1)) + (ĥ
r
i � ĥi)

0�̂ (1 + op (1)) +Op

�
n�1

�
)2

= n (�̂r � �̂)0 (
Xn

i=1
ĥri ĥ

r
i
0=n) (�̂r � �̂) (1 + op (1))

+2n (�̂r � �̂)0 (
Xn

i=1
ĥri (ĥ

r
i � ĥi)

0=n)�̂ (1 + op (1))

+n�̂0(
Xn

i=1
(ĥri � ĥi)(ĥ

r
i � ĥi)

0=n)�̂ (1 + op (1)) +Op

�
n�1

�
;

where the second equality follows from ĥ(�̂r) = Op(n
�1=2), ĥ(�̂) = Op(n

�1=2), �̂r � �̂ =

Op(n
�1=2) and �̂ = Op(n

�1=2).

For the second term, by T and CS,���(�̂r � �̂)0 (
Xn

i=1
ĥri (ĥ

r
i � ĥi)

0=n)�̂
��� � k�̂r � �̂k k�̂k




Xn

i=1
ĥri (ĥ

r
i � ĥi)

0=n





� k�̂r � �̂k k�̂k (
Xn

i=1




ĥri 


2 =n)1=2(Xn

i=1




ĥri � ĥi



2 =n)1=2

= op(n
�1):
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The last equality follows as k�̂r � �̂k = Op(n
�1=2), k�̂k = Op(n

�1=2),
Pn
i=1




ĥri 


2 =n =
Op(1), by UWL and Assumption 2.1, and, de�ning hi0 = hi(�0), (i = 1; :::; n), by T and

M,

Xn

i=1




ĥri � ĥi



2 =n =

Xn

i=1




ĥri � hi0 + hi0 � ĥi



2 =n

�
Xn

i=1
(



ĥri � hi0




+ 


ĥi � hi0



)2=n

� ((
Xn

i=1




ĥri � hi0



2 =n)1=2 + (Xn

i=1




ĥi � hi0



2 =n)1=2)2 = op(1)

by Newey and McFadden (1994, Lemma 4.3, p.2156).

Finally, by CS,

�̂0(
Xn

i=1
(ĥri � ĥi)(ĥ

r
i � ĥi)

0=n)�̂ � k�̂k2 (
Xn

i=1




ĥri � ĥi



2 =n)

= op(n
�1):

Therefore, as
Pn
i=1 ĥ

r
i ĥ

r
i
0=n

p! � by UWL from Assumptions 2.1 and 5.1,

Pc
r = n (�̂r � �̂)0 � (�̂r � �̂) + op(1)

= LMr + op (1)

and the result follows from Theorem 4.2.

Proof of Theorem E.1: To prove this theorem we establish that Assumption E.1

implies Assumption 2.1.

First notice that Assumption E.1 (a) implies E[sgn�(�)x] = 0. Secondly Assumption

2.1 (b) is ensured by Assumption E.1 (b). Thirdly the moment indicator sgn�(y�w0�)x

is continuous at each � 2 B w.p.a.1 and therefore Assumption 2.1 (c) holds. Fourthly

E[sup
�2B

ksgn�(y � w0�)xk2] � E[kxk2 jsgn�(y � w0�)j2]

� (1 + �)2E[kxk2]

which is �nite by Assumption E.1 (c). Consequently Assumption 2.1 (d) is veri�ed.

Fifthly 
 = �(1 � �)E[xx0] which is nonsingular by Assumption E.1 (d). Finally as

[38]



Assumption E.1 (e) is identical to Assumption 2.1 (f) the result is proven from Theorem

2.1.

Proof of Theorem E.2: First the derivative matrix of g(�) = E[sgn�(y � w0�)x]

is given by G = E[f�(0jx;w)xw0] which exists because f� (0jx;w) exists by Assumption

E.2 (a) and is full rank by Assumption E.2 (b). Consequently Assumptions 2.2 (b) and

(c) hold. To prove Assumption 2.2 (d) note that

sup
k���0k��n

p
n kĝ (�)� ĝ (�0)� g (�)k
1 +

p
n k� � �0k

� sup
k���0k��n

p
n kĝ (�)� ĝ (�0)� g (�)k

The right hand side of this expression is op(1) if fĝ (�)� g (�) ; n = 1; 2; :::g is stochasti-

cally equicontinuous where

ĝ (�)� g (�) =
Xn

i=1
(xisgn� (�i � w0i�)� E[x(� � F� (w

0�jx)])=n

where � = � � �� and F� (�jx) is the distribution function of � conditional on x. Let

g� (z; �) = xsgn� (� � w0�)� E[x(� � F� (w
0�jx)]:

Notice that sgn� (� � w0�) and E[x(� � F� (w
0�jx)] are functions of bounded variation

and thus are Euclidean by Lemma 22, p.797, of Nolan and Pollard (1987). Also x is

Euclidean due to the fact that E[x] is �nite and Lemmata II.28 and II.25 of Pollard

(1984). It follows by Lemma 2.14, p.1035, of Pakes and Pollard (1989) that g� (z; �)

is Euclidean with envelope (1 + �) (kxk + kE[x]k). Moreover, this envelope is square

integrable as E[kxk2] is �nite. In addition, by T and the cr inequality

E[kg� (z; �)� g� (z; �0)k2] = E[kxsgn� (� � w0�)� E[x(� � F� (w
0�jx)]� xsgn� (�)k2]

= E[kx [I(� < 0)� I(� < w0�)]� E[x(� � F� (w
0�jx)]k2]

� E[(kx [I(� < 0)� I(� < w0�)]k+ kE[x(� � F� (w
0�jx)]k)2]

� 2(E[kx [I(� < 0)� I(� < w0�)]k2] + kE[x(� � F� (w
0�jx)]k2):

Since E[kxk2] < 1 it follows that the second term of the last expression converges to

zero as � ! 0 by dominated convergence. For the �rst term, notice that by iterated

expectations

E[kx [I(� < 0)� I(� < w0�)]k2] = E[kxk2 j� � 2min[�; F� (w0�jx)] + F� (w
0�jx)j]:

[39]



Again this term goes to zero as � ! 0 by dominated convergence. It follows that

fĝ (�)� g (�) ; n = 1; 2; :::g is stochastically equicontinuous by Pakes and Pollard (1989,

Theorem 2.17). Therefore, the conclusion follows by Theorem 2.2.
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Table 1. Estimator Performance under Homoskedasticity
β0 β1

MeanB RMSE MedB MAE MeanB RMSE MedB MAE
N(0, 1)
LS 0.1501 0.1769 0.146 0.1544 0.3775 0.3811 0.3766 0.3775
QR −0.2454 0.2733 −0.2524 0.2470 0.3691 0.3752 0.3720 0.3691
2SLS 0.5324 0.5578 0.5136 0.5324 −0.0049 0.1367 0.0093 0.1024
LIML 0.5501 0.5767 0.5284 0.5501 −0.0226 0.1459 −0.0057 0.1064
GMM 0.067 0.2921 0.0350 0.2021 −0.1182 0.3908 −0.0327 0.2425
2S-GMM 0.0153 0.1751 0.0030 0.1355 −0.0466 0.2521 0.0004 0.1651
CUE 0.0154 0.1719 −0.0014 0.1319 −0.0309 0.2387 0.0136 0.1590
EL 0.0122 0.1706 −0.0039 0.1317 −0.0384 0.2397 0.0070 0.1594
ET 0.0135 0.1718 −0.0001 0.1328 −0.0379 0.2502 0.0102 0.1642
t3
LS −0.0299 0.1406 −0.0159 0.1079 0.6068 0.6141 0.5973 0.6068
QR −0.4140 0.4481 −0.4038 0.4146 0.5385 0.5468 0.5370 0.5385
2SLS 0.5813 0.6481 0.5325 0.5815 0.0035 0.2236 0.0285 0.1680
LIML 0.6434 0.7479 0.5780 0.6435 −0.0621 0.3896 −0.0044 0.1955
GMM 0.0781 0.3853 0.0281 0.2589 −0.1783 0.5208 −0.0325 0.3258
2S-GMM 0.0227 0.2258 0.0092 0.1689 −0.1049 0.3733 −0.0173 0.2344
CUE 0.0275 0.2250 0.0043 0.1655 −0.0787 0.3493 0.0057 0.2218
EL 0.0259 0.2266 0.0088 0.1659 −0.0902 0.3569 −0.0034 0.2287
ET 0.0226 0.2238 0.0054 0.1649 −0.0766 0.3390 0.0047 0.2199
χ21
LS −0.2231 0.2753 −0.2164 0.2318 0.5341 0.5429 0.5375 0.5341
QR −0.1942 0.2211 −0.1681 0.1942 0.2111 0.2324 0.1955 0.2111
2SLS 0.8506 0.9538 0.794 0.8513 0.0019 0.2044 0.0229 0.1497
LIML 0.9178 1.0315 0.8392 0.9183 −0.0312 0.2222 −0.0080 0.1555
GMM 0.1261 0.418 0.0286 0.2307 −0.0646 0.2797 −0.0134 0.1482
2S-GMM 0.0306 0.1641 −0.0026 0.0886 −0.0053 0.1286 −0.0001 0.0672
CUE 0.0173 0.1333 −0.0075 0.0819 0.0092 0.1002 0.0088 0.0628
EL 0.0211 0.1376 −0.0041 0.0832 0.0034 0.1021 0.0038 0.0627
ET 0.0198 0.1385 −0.0043 0.0827 0.004 0.1095 0.0031 0.0634

[T.1]



Table 2. Estimator Performance under Heteroskedasticity
β0 β1

MeanB RMSE MedB MAE MeanB RMSE MedB MAE
N(0, 1)
LS 0.0780 0.1133 0.0809 0.0947 0.4048 0.4093 0.4061 0.4048
QR −0.1670 0.1954 −0.1616 0.1703 0.3512 0.3566 0.3524 0.3512
2SLS 0.2433 0.2914 0.2319 0.2488 0.2372 0.3034 0.2519 0.2652
LIML 0.2609 0.3406 0.2476 0.2746 0.2189 0.3266 0.2241 0.2595
GMM −0.0080 0.3334 −0.0114 0.1973 −0.0676 0.4385 −0.0185 0.2956
2S-GMM −0.0161 0.1621 −0.0210 0.1161 −0.0479 0.3394 0.0056 0.2278
CUE −0.0143 0.1589 −0.0185 0.1147 −0.0219 0.3146 0.0202 0.2189
EL −0.0150 0.1632 −0.0202 0.1167 −0.0397 0.3256 0.0045 0.2232
ET −0.0199 0.1616 −0.0219 0.1146 −0.0270 0.3134 0.0107 0.2198
t3
LS −0.0691 0.1583 −0.0557 0.1192 0.6045 0.6141 0.5928 0.6045
QR −0.2888 0.3211 −0.2831 0.2892 0.4969 0.5032 0.4927 0.4969
2SLS 0.2510 0.3639 0.2277 0.2868 0.2804 0.4145 0.3094 0.3472
LIML −0.1666 14.4676 0.2843 0.8728 0.6523 12.7328 0.2560 0.8198
GMM −0.0620 0.4067 −0.0335 0.2381 −0.0871 0.5685 −0.0020 0.3807
2S-GMM −0.0309 0.2228 −0.0190 0.1407 −0.0797 0.4161 0.0030 0.2811
CUE −0.0365 0.2317 −0.0223 0.1442 −0.0469 0.4268 0.0271 0.2882
EL −0.0319 0.2298 −0.0206 0.1416 −0.0610 0.4182 0.0164 0.2794
ET −0.0313 0.2251 −0.0178 0.1429 −0.0592 0.4170 0.0126 0.2816
χ21
LS −0.3496 0.4077 −0.3211 0.3507 0.5649 0.5791 0.5581 0.5649
QR −0.2058 0.2428 −0.1720 0.2058 0.2288 0.2536 0.2140 0.2288
2SLS −0.0264 0.4395 −0.0014 0.3367 0.4034 0.4727 0.3971 0.4090
LIML 0.0016 0.7130 0.0529 0.3939 0.3906 0.5512 0.3745 0.4044
GMM −0.1446 0.6097 −0.0044 0.3333 0.0924 0.3622 0.0071 0.2192
2S-GMM −0.0634 0.3550 −0.0046 0.1536 0.0548 0.2555 0.0041 0.1297
CUE −0.0754 0.3494 −0.0084 0.1507 0.0727 0.2386 0.0146 0.1278
EL −0.0768 0.3737 −0.0067 0.1560 0.0674 0.2507 0.0100 0.1291
ET −0.0791 0.3648 −0.0063 0.1549 0.0722 0.2426 0.0116 0.1282

[T.2]



Table 3. Rejection Frequencies: Homoskedastic N(0, 1) Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0330 0.1470 0.3460 0.4920 0.5890
W2S-GMM
11 0.1060 0.2980 0.5700 0.7400 0.8360

W2S-GMM
12 0.0970 0.2830 0.5520 0.7250 0.8280

S2S-GMM11 0.0250 0.2400 0.4470 0.6090 0.7060
S2S-GMM12 0.0220 0.1600 0.3580 0.5140 0.5950
LRCUE 0.0370 0.2340 0.4650 0.6180 0.7170
WCUE
11 0.1120 0.2960 0.5830 0.7360 0.8360

WCUE
12 0.1110 0.3070 0.5910 0.7360 0.8410

SCUE11 0.0250 0.2110 0.4250 0.5890 0.6940
SCUE12 0.0250 0.1700 0.3680 0.5190 0.6250
LREL 0.0530 0.1900 0.4010 0.5490 0.6450
WEL
11 0.1040 0.3030 0.5880 0.7360 0.8400

WEL
12 0.1040 0.2880 0.5740 0.7290 0.8340

WEL
23 0.0830 0.2900 0.5680 0.7120 0.8200

WEL
24 0.0730 0.2990 0.5730 0.7370 0.8280

SEL11 0.0210 0.2360 0.4560 0.6150 0.7100
SEL12 0.0230 0.1660 0.3530 0.4990 0.6080
SEL23 0.0280 0.2100 0.3960 0.5580 0.6690
SEL24 0.0290 0.2130 0.4070 0.5660 0.6730
LRET 0.0460 0.2170 0.4340 0.5900 0.6890
WET
11 0.0890 0.3080 0.6030 0.7690 0.8510

WET
12 0.0750 0.3070 0.6020 0.7610 0.8450

WET
23 0.0580 0.2830 0.5700 0.7350 0.8260

WET
24 0.0720 0.3040 0.5820 0.7470 0.8320

SET11 0.0200 0.2230 0.4540 0.6200 0.7200
SET12 0.0240 0.1820 0.3990 0.5460 0.6540
SET23 0.0320 0.2110 0.4090 0.5910 0.6760
SET24 0.0340 0.2050 0.3930 0.5770 0.6680
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Table 4. Rejection Frequencies: Homoskedastic t3 Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0340 0.1050 0.2310 0.3470 0.4190
W2S-GMM
11 0.1160 0.2220 0.4590 0.6150 0.7120

W2S-GMM
12 0.1050 0.2240 0.4530 0.6130 0.7130

S2S-GMM11 0.0200 0.2080 0.3260 0.4430 0.4970
S2S-GMM12 0.0190 0.1260 0.2360 0.3450 0.4150
LRCUE 0.0450 0.1720 0.3180 0.4500 0.5230
WCUE
11 0.1280 0.2230 0.4430 0.6120 0.7160

WCUE
12 0.1160 0.2450 0.4670 0.6310 0.7260

SCUE11 0.0220 0.1890 0.3250 0.4310 0.4950
SCUE12 0.0280 0.1200 0.2370 0.3330 0.4060
LREL 0.0570 0.1730 0.2960 0.4120 0.4930
WEL
11 0.1240 0.2360 0.4590 0.6080 0.6990

WEL
12 0.1110 0.2450 0.4750 0.6200 0.7130

WEL
23 0.0980 0.2250 0.4530 0.6050 0.6930

WEL
24 0.0900 0.2220 0.4620 0.6190 0.6970

SEL11 0.0180 0.1840 0.3180 0.4230 0.4920
SEL12 0.0210 0.1050 0.2220 0.3220 0.3940
SEL23 0.0300 0.1630 0.2920 0.3860 0.4510
SEL24 0.0290 0.1640 0.3000 0.3940 0.4680
LRET 0.0570 0.1720 0.3020 0.4190 0.5100
WET
11 0.1010 0.2690 0.4910 0.6560 0.7520

WET
12 0.0770 0.2620 0.4920 0.6690 0.7580

WET
23 0.0660 0.2520 0.4730 0.6490 0.7380

WET
24 0.0750 0.2490 0.4830 0.6450 0.7360

SET11 0.0210 0.2040 0.3530 0.4680 0.5480
SET12 0.0220 0.1350 0.2740 0.3890 0.4490
SET23 0.0360 0.1600 0.2950 0.3990 0.4800
SET24 0.0420 0.1420 0.2780 0.3840 0.4550
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Table 5. Rejection Frequencies: Homoskedastic χ21 Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0320 0.6940 0.8220 0.8930 0.9860
W2S-GMM
11 0.0440 0.8700 0.9700 0.9820 0.9880

W2S-GMM
12 0.0290 0.8740 0.9700 0.9810 0.9880

S2S-GMM11 0.0200 0.8110 0.9140 0.9590 0.9640
S2S-GMM12 0.0190 0.7280 0.8590 0.9060 0.9310
LRCUE 0.0370 0.7740 0.8950 0.9460 0.9580
WCUE
11 0.0510 0.8630 0.9740 0.9930 0.9900

WCUE
12 0.0410 0.8750 0.9770 0.9930 0.9920

SCUE11 0.0200 0.7960 0.9140 0.9630 0.9600
SCUE12 0.0200 0.6940 0.8440 0.8980 0.9170
LREL 0.0490 0.7450 0.8730 0.9320 0.9400
WEL
11 0.0440 0.8740 0.9710 0.9830 0.9920

WEL
12 0.0330 0.8810 0.9700 0.9840 0.9920

WEL
23 0.0240 0.8480 0.9590 0.9810 0.9880

WEL
24 0.0250 0.8690 0.9660 0.9800 0.9910

SEL11 0.0170 0.8150 0.9180 0.9590 0.9620
SEL12 0.0200 0.7200 0.8550 0.9060 0.9130
SEL23 0.0260 0.7700 0.8810 0.9190 0.9290
SEL24 0.0260 0.7710 0.8870 0.9220 0.9280
LRET 0.0490 0.7590 0.8810 0.9390 0.9490
WET
11 0.0410 0.8200 0.9710 0.9890 0.9920

WET
12 0.0300 0.8150 0.9720 0.9910 0.9920

WET
23 0.0210 0.7610 0.9590 0.9830 0.9900

WET
24 0.0200 0.8640 0.9680 0.9850 0.9900

SET11 0.0200 0.8240 0.9320 0.9720 0.9760
SET12 0.0180 0.7330 0.8720 0.9140 0.9350
SET23 0.0350 0.7700 0.8870 0.9330 0.9320
SET24 0.0370 0.7660 0.8860 0.9300 0.9350
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Table 6. Rejection Frequencies: Heteroskedastic N(0, 1) Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0470 0.1110 0.2790 0.4270 0.5000
W2S-GMM
11 0.1300 0.1940 0.4260 0.6270 0.7150

W2S-GMM
12 0.1210 0.1850 0.4220 0.6210 0.6980

S2S-GMM11 0.0380 0.1890 0.3680 0.5200 0.6030
S2S-GMM12 0.0220 0.0920 0.2300 0.3740 0.4650
LRCUE 0.0660 0.1520 0.3460 0.5100 0.5940
WCUE
11 0.1280 0.2100 0.4330 0.6290 0.7290

WCUE
12 0.1190 0.1940 0.4170 0.6210 0.7170

SCUE11 0.0360 0.1800 0.3720 0.5160 0.5880
SCUE12 0.0250 0.0930 0.2370 0.3800 0.4750
LREL 0.0800 0.1290 0.2880 0.4430 0.5230
WEL
11 0.1310 0.2000 0.4160 0.6030 0.7040

WEL
12 0.1160 0.1960 0.4080 0.5970 0.7020

WEL
23 0.0940 0.1870 0.3970 0.5780 0.6650

WEL
24 0.0840 0.1870 0.3850 0.5660 0.6610

SEL11 0.0300 0.1750 0.3600 0.5290 0.5950
SEL12 0.0180 0.0940 0.2210 0.3820 0.4610
SEL23 0.0320 0.1400 0.2770 0.4190 0.4720
SEL24 0.0340 0.1530 0.2810 0.4310 0.5100
LRET 0.0790 0.1410 0.3160 0.4730 0.5540
WET
11 0.1210 0.1790 0.3680 0.5660 0.6700

WET
12 0.1060 0.1780 0.3830 0.5890 0.6810

WET
23 0.0830 0.1650 0.3300 0.5340 0.6170

WET
24 0.0890 0.1880 0.3980 0.5900 0.6700

SET11 0.0280 0.1910 0.3810 0.5460 0.6160
SET12 0.0180 0.1120 0.2800 0.4450 0.5240
SET23 0.0440 0.1340 0.2710 0.4160 0.5120
SET24 0.0460 0.1270 0.2600 0.3980 0.4840
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Table 7. Rejection Frequencies: Heteroskedastic t3 Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0410 0.1120 0.2160 0.3090 0.3690
W2S-GMM
11 0.1220 0.1760 0.3530 0.4890 0.6040

W2S-GMM
12 0.1170 0.1700 0.3550 0.4860 0.6000

S2S-GMM11 0.0320 0.1670 0.3120 0.4110 0.4880
S2S-GMM12 0.0230 0.0990 0.1900 0.2810 0.3580
LRCUE 0.0620 0.1520 0.2810 0.3920 0.4520
WCUE
11 0.1540 0.1440 0.3000 0.4630 0.5810

WCUE
12 0.1410 0.1340 0.2950 0.4550 0.5800

SCUE11 0.0360 0.1490 0.2870 0.3850 0.4800
SCUE12 0.0280 0.0910 0.1820 0.2720 0.3440
LREL 0.0700 0.1330 0.2460 0.3370 0.4050
WEL
11 0.1410 0.1680 0.3280 0.4880 0.5870

WEL
12 0.1300 0.1780 0.3550 0.4940 0.5910

WEL
23 0.1040 0.1550 0.3110 0.4530 0.5520

WEL
24 0.0990 0.1520 0.3110 0.4590 0.5640

SEL11 0.0320 0.1650 0.3000 0.4040 0.4830
SEL12 0.0260 0.0960 0.2110 0.2940 0.3680
SEL23 0.0360 0.1200 0.2280 0.3190 0.3810
SEL24 0.0350 0.1250 0.2300 0.3310 0.3960
LRET 0.0690 0.1420 0.2630 0.3690 0.4280
WET
11 0.1320 0.1660 0.3330 0.4920 0.6100

WET
12 0.1120 0.1720 0.3480 0.5000 0.6210

WET
23 0.0890 0.1570 0.3050 0.4430 0.5630

WET
24 0.0970 0.1440 0.3130 0.4460 0.5680

SET11 0.0370 0.1640 0.3110 0.4260 0.5030
SET12 0.0240 0.1120 0.2220 0.3020 0.3800
SET23 0.0440 0.1260 0.2280 0.3260 0.3920
SET24 0.0520 0.1000 0.1950 0.2820 0.3470
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Table 8. Rejection Frequencies: Heteroskedastic χ21 Errors

β1 0.0 0.25 0.50 0.75 1.00

LR2S-GMM 0.0510 0.6420 0.8480 0.8740 0.8980
W2S-GMM
11 0.0840 0.6690 0.9580 0.9660 0.9680

W2S-GMM
12 0.0790 0.6470 0.9530 0.9620 0.9670

S2S-GMM11 0.0340 0.7510 0.9150 0.9290 0.9420
S2S-GMM12 0.0340 0.6140 0.8250 0.8300 0.8540
LRCUE 0.0520 0.7510 0.9190 0.9440 0.9580
WCUE
11 0.0860 0.6510 0.9440 0.9650 0.9770

WCUE
12 0.0790 0.6600 0.9450 0.9630 0.9740

SCUE11 0.0330 0.7320 0.8970 0.9210 0.9350
SCUE12 0.0340 0.5900 0.8180 0.8450 0.8670
LREL 0.0690 0.6910 0.8910 0.9150 0.9340
WEL
11 0.0680 0.7450 0.9550 0.9840 0.9790

WEL
12 0.0620 0.7360 0.9520 0.9780 0.9760

WEL
23 0.0490 0.6790 0.9010 0.9540 0.9660

WEL
24 0.0430 0.6840 0.9070 0.9490 0.9640

SEL11 0.0350 0.7220 0.8900 0.9040 0.9190
SEL12 0.0300 0.6310 0.8210 0.8400 0.8600
SEL23 0.0480 0.6230 0.7930 0.8020 0.8360
SEL24 0.0470 0.6340 0.8100 0.8200 0.8420
LRET 0.0610 0.7170 0.9030 0.9260 0.9490
WET
11 0.0790 0.5440 0.9290 0.9670 0.9730

WET
12 0.0720 0.5650 0.9300 0.9680 0.9750

WET
23 0.0510 0.4400 0.8350 0.9160 0.9390

WET
24 0.0500 0.5800 0.8900 0.9430 0.9510

SET11 0.0310 0.7300 0.9070 0.9270 0.9380
SET12 0.0320 0.6190 0.8290 0.8610 0.8770
SET23 0.0600 0.6430 0.8220 0.8460 0.8600
SET24 0.0600 0.6060 0.7980 0.8190 0.8440

[T.8]
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