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Abstract

We construct an upper bound on the limiting distributions of the identi�ca-

tion robust GMM statistics for testing hypotheses that are speci�ed on subsets of

the parameters. The upper bound corresponds to the limiting distribution that

results when the unrestricted parameters are well identi�ed. It therefore leads

to more powerful tests than those that result from using projection arguments

on tests on all the parameters. The upper bound only applies when the unre-

stricted parameters are estimated using the continuous updating estimator. The

critical values that result from the upper bound lead to conservative tests when

the unrestricted parameters are not well-identi�ed.
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1 Introduction

Many economic models can be cast into the framework of the generalized method of

moments (GMM) of Hansen (1982). This facilitates statistical inference in these models

because we can use the extensive set of econometric tools available for GMM, see e.g.

Newey and McFadden (1994). GMM is particularly appealing for structural economic

models under rational expectations. Over the last decade or so, a number of studies

have shown that the assumption of identi�cation of the parameters in such models may

be too strong, and that when it fails, conventional inference procedures break down,

see e.g. Stock et: al: (2002). In forward-looking models, such as the new Keynesian

Phillips curve (a popular model of in�ation dynamics), Mavroeidis (2004, 2005) showed

that identi�cation problems are pervasive. Another example where identi�cation might

fail is in models of unemployment, where identi�cation problems plague the estimation

of wage equations, see e.g., Bean (1994) and Malcomson and Mavroeidis (2006).

Fortunately, statistics for testing hypotheses on the parameters in GMM have been

developed whose limiting distributions do not require the identi�cation assumption of

a full rank value of the expected Jacobian of the moment conditions with respect to the

parameters, see Stock and Wright (2000) and Kleibergen (2005). These statistics yield

more reliable inference than the traditional statistics since they do not become size-

distorted when the Jacobian is relatively close to being of reduced rank. However, the

robustness of these statistics to failure of identi�cation of the parameters has only been

established for the case when we test the full parameter vector. This is an important

limitation in their use because researchers are often interested in hypotheses on subsets

(or functions) of the parameters. For the limiting distributions of the statistics to

remain valid in such cases, one has to impose the identifying assumption of a full rank

value of the Jacobian with respect to the parameters that are left unrestricted under the

null. Even though this condition is milder than the identi�cation of the full parameter

vector, it can often be too strong, as it is, for example, when testing hypotheses on

the coe¢ cients of exogenous regressors in a model with endogenous regressors, or on

the coe¢ cients of forcing variables in forward-looking rational expectations models, see

Mavroeidis (2006). Hence, it is important to assess whether the existing methods are

reliable even when some of the identi�cation assumptions on the untested parameters

fail to hold.

The outline of the paper is as follows. In the second section, we discuss GMM. The

following section discusses the behavior of the power function of the tests at distant

values of the hypothesized parameter. Simulations are reported in section 4, and further
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extensions are discussed in the conclusions. Proofs are given in the appendix at the

end.

Throughout the paper we use the notation: Im is the m � m identity matrix,

PA = A(A0A)�1A0 for a full rank n �m matrix A and MA = In � PA: Furthermore,

�
p!�stands for convergence in probability, � d!�for convergence in distribution, �

a

��
indicates that the limiting distribution of the statistic on the left-hand side of the �

a

��
sign is bounded by the distribution of the random variable on the right-hand side, E

is the expectation operator.

2 GMM

We consider the estimation of a p-dimensional parameter vector � whose parameter

region � is a subset of the Rp: There is a unique value of �; �0; for which the kf � 1
dimensional moment equation

E(ft(�0)) = 0; t = 1; : : : ; T; (1)

holds. The kf � 1 dimensional vector function ft(�) is a continuous di¤erentiable

function of data and parameters. Let fT (�) =
PT

t=1 ft (�) and

Vff (�) = lim
T!1

var
�
T�1=2fT (�)

�
: (2)

The objective function for the continuous updating estimator (CUE) of Hansen et: al:

(1996) is

ST (�) = T�1fT (�)
0 V̂ff (�)

�1 fT (�) (3)

where V̂ff (�) is an estimator of Vff (�).

We make the following high level assumptions, which are a slight extension of those

in Kleibergen (2005, Assumption 1):

Assumption 1 The derivative of ft (�)

qi;t (�) =
@ft(�)
@�i

; i = 1; :::; p; (4)

is such that the large sample behavior of �ft (�) = ft (�) � E(ft (�)) and �qt (�) =
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�
�q1;t (�)

0 :::�qp;t (�)
0�0 : k� � 1; with �qi;t (�) = qi;t (�)�E(qi;t (�)) and k� = kf � p; satis�es

 T (�) � 1p
T

PT
t=1

 
�ft(�)

�qt(�)

!
d!
 
 f (�)

 �(�)

!
(5)

where  (�) =
� f (�)
 �(�)

�
is a (kf + k�)� 1 dimensional Normal distributed random process

with mean zero and positive semi-de�nite (kf + k�)� (kf + k�) dimensional covariance

matrix

V (�) =

 
Vff (�) Vf� (�)

V�f (�) V�� (�)

!
(6)

with V�f (�) = Vf� (�)
0 =

�
V�f;1 (�)

0 : : : V�f;p (�)
0�0 ; V�� (�) = V��;ij (�) ; i; j = 1; : : : ; p

and Vff (�) ; V�f;i (�) ; V��;ij (�) are kf �kf dimensional matrices for i; j = 1; : : : ; p; and

V (�) = limT!1 var

"
1p
T

 
fT (�)

vec [qT (�)]

!#
(7)

with qT (�) = @fT (�) =@�
0 =
PT

t=1 (q1;t (�) :::qp;t (�)) :

To estimate the covariance matrix, we use the covariance matrix estimator V̂ (�)

which consists of V̂ff (�) : kf�kf ; V̂�f (�) : k��kf and V̂�� (�) : k��k�:We assume that
the covariance matrix estimator is a consistent one and, because we use the derivative of

the CUE objective function, we also make an assumption with respect to the derivative

of the covariance matrix estimator.

Assumption 2 V̂ff (�0)
p! Vff (�0) and @vec

h
V̂ff (�0)

i
=@�

p! @vec [Vff (�0)] =@�:

We use an estimator of the unconditional expectation of the Jacobian, J(�) =

E(limT!1
1
T
qT (�)) which is independent of the average moment vector fT (�0) under

H0 : � = �0:
D̂T (�0) = [q1;T (�0)� V̂�f;1(�0)V̂ff (�0)

�1 fT (�0) : : :

qp;T (�0)� V̂�f;p(�0)V̂ff (�0)
�1 fT (�0)];

(8)

where V̂�f;i (�) are kf � kf dimensional estimators of the covariance matrices V�f;i (�) ;

i = 1; : : : ; p; V̂�f (�) =
�
V̂�f;1 (�)

0 : : : V̂�f;p (�)
0
�0
:

Since @ST (�)
@�

= 2sT (�) ; sT (�) = D̂T (�)
0 V̂ff (�)

�1 fT (�) ; we obtain a Lagrange

multiplier (LM) statistic that is based on the objective function of the CUE from:

KLMT (�) :=
1
T
sT (�)

0 IT (�)�1 sT (�) ; (9)
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where IT (�) = D̂T (�)
0 V̂ff (�)

�1 D̂T (�). Using the KLM statistic and the S-statistic

from Stock and Wright (2000), which is equal to the CUE objective function (3), we

can also de�ne an over-identi�cation statistic:

JKLMT (�) := ST (�)�KLMT (�) : (10)

Theorem 1 Under Assumptions 1, 2 and H0 : � = �0; the limiting distributions of the

S, KLM and JKLM statistics are such that

ST (�0)
d! �2 (kf )

KLMT (�0)
d! �2 (p)

JKLMT (�0)
d! �2 (kf � p)

(11)

and the limiting distributions of KLMT (�0) and JKLMT (�0) are independent.

Proof. See Kleibergen (2005).

The minimal value of the CUE objective function is attained at the CUE, e�; so
KLMT (e�) = 0 since it equals a quadratic form of the derivative of the CUE objective

function. Theorem 1 shows that the convergence of the S, KLM and JKLM statistics

towards their limiting distributions is uniform since it holds for all possible values of

J(�): The limiting distribution of the CUE objective function evaluated at the CUE is

therefore bounded by the limiting distribution of the JKLM statistic under H0 : � = �0:

Theorem 2 a. When Assumptions 1 and 2 hold, fT (�) is a linear function of � and
V (�) has a Kronecker product form then

e� = argmin� JKLMT (�) (12)

so

ST (e�) = JKLMT (e�) � JKLMT (�0) and ST (e�) a

� �2 (kf � p) : (13)

b. When Assumptions 1 and 2 hold and the expected value of the derivative V̂ff (�)�
1
2 D̂T (�)

is such that

E( 1p
T
V̂ff (�)

� 1
2 D̂T (�)) = QT (�)C; (14)

where C is a non-negative diagonal p� p matrix and QT (�) : kf � p and QT (�)
0QT (�)

is �nite and non-zero, then the limiting distribution of ST (e�) is bounded from above as

ST (e�) a

� �2 (kf � p) ; (15)
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and from below by the limiting distribution that applies for zero values of C:

Proof. see the Appendix.

Theorem 2a states that both the S-statistic and the JKLM-statistic have their

global minimum at the CUE such that, since the minimum of the JKLM statistic

is always less than or equal to its value at �0; its limiting distribution is bounded

by the limiting distribution at �0 which is a �2(kf � p) distribution. The conditions

under which this strict dominance property, since JKLMT (�0) � JKLMT (e�); holds
apply to moment equations that are linear in the parameters and have a Kronecker

product form covariance matrix. Examples of models that satisfy these conditions are

the linear instrumental variables regression model and the linear factor model, see e:g:

Lintner (1965) and Fama and MacBeth (1973), both in case of homoscedastic errors.

For these models, the S-statistic evaluated at the CUE results as the smallest root of

a characteristic polynomial which can be used as an alternative manner to prove the

stochastic dominance property, see Kleibergen (2007).

The strict dominance property in Theorem 2a is proven using the derivative of the

JKLM statistic. For linear moment equation models with a Kronecker product form

covariance matrix, the structure of this derivative is such that it can only be equal to

zero when the FOC of the S-statistic holds. Hence, the strict dominance property re-

sults. The derivative of the JKLM statistic for more general moment equation models

is still equal to zero when the FOC of the S-statistic holds but it can not be proven that

it is not equal to zero at other points as well. Hence, it is unclear if the strict dominance

property extends towards more general moment equation models. Theorem 2b shows

that an important consequence of the strict dominance property, the stochastic domi-

nance of limT!1 ST (e�) by a �2(kf � p) distributed random variable, extends towards

moment equations that are continuous di¤erentiable with respect to � and for which

the expected value of the derivative can be factorized into a part which depends on �

and a part which does not depend on �: An example of the latter part for the case that

p = 1; where E(Vff (�)�
1
2 D̂T (�)) =

p
T
h
Vff (�)

� 1
2J(�)� V�f (�)Vff (�)

�1J(��)(� � �0)
i
;

with �� a value of � on the line segment between �0 and �; is C =
p
T and QT (�) =

Vff (�)
� 1
2

h
Vff (�)

� 1
2J(�)� V�f (�)Vff (�)

�1J(��)(� � �0)
i
: Another choice of C is a value

that is equal to the square root of the eigenvalues of the concentration matrix. The

proof of Theorem 2b uses a �xed value of C while the sample size goes in�nity and

therefore uses weak instrument asymptotics, see Staiger and Stock (1997) and Stock

and Wright (2000).

The stochastic dominance of ST (e�) in Theorem 2b is proven using the derivative of
6



the limiting distribution function of the S-statistic evaluated at the CUE with respect to

C: Because this derivative is non-positive, the value of the limiting distribution function

of the S-statistic for a speci�c value of C is bounded between the values that result from

the limiting distributions for zero and in�nite values of C: The limiting distribution

of the S-statistic converges to a �2(kf � p) distribution when � is well identi�ed, so

J(�) has a full rank value, see Kleibergen (2005), and the limiting distribution of the

S-statistic is therefore bounded from above by the �2(kf � p) distribution and from

below by the limiting distribution that applies for a zero value of C.

The objective function evaluated at the CUE equals the J-statistic of Hansen (1982),

which tests for misspeci�cation, when evaluated at the CUE. Thus Theorem 2 shows

that the �2 (kf � p) distribution bounds the limiting distribution of the J-statistic when

we use the CUE to compute it.

2.1 Subset tests

Instead of conducting tests on the full parameter vector �; we often want to test just

some of the parameters. We can use the above statistics for such purposes as well. For

example, if � = (�0
... �0)0; with � : p� � 1 and � : p� � 1; p = p� + p�; we can test a

hypothesis that is speci�ed on � only, H�0 : � = �0; in which case � becomes a nuisance

parameter. We estimate � using the CUE under H�0; e�(�0):
Theorem 3 Let e� (�0) = argmin� ST (�; �0). When Assumptions 1, 2 and H�0 : � =
�0 holds and the expected value of the derivative V̂ff (�)

� 1
2 D̂�;T (�); where

D̂T (�; �) = (D̂�;T (�; �)
... D̂�;T (�; �)); (16)

with D̂�;T (�; �) : kf � p� and D̂�;T (�; �) : kf � p�; is such that

E( 1p
T
V̂ff (�)

� 1
2 D̂�;T (�)) = QT (�)C; (17)

where C is a non-negative diagonal p��p� matrix and QT (�) : kf�p� and QT (�)
0QT (�)

is �nite and non-zero, the limiting distribution of ST (e�(�0); �0) is bounded from above
as

ST (e�(�0); �0) a

� �2 (kf � p�) ; (18)

and from below by the limiting distribution that applies for zero values of C:
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Proof. If ~ST (�) = ST (�; �0) ; Theorem 2b shows that ~ST (e�) a

� �2 (kf � p�) and

since ~ST (e�) = ST (e�(�0); �0) ; the result follows. The same argument applies to the
lower bound.

Theorem 3 implies that the maximum probability over all nuisance parameters of

rejecting H�0 using ST (e�(�0); �0) with an (1� �)� 100% signi�cance level is equal to

(1 � �) � 100%: This rejection probability is achieved when � is well identi�ed and
implies that ST (e�(�0); �0) is a size correct test in large samples. Theorem 4 shows

that the size-correctness of the subset S-statistic extends to subset KLM and JKLM

statistics.

Theorem 4 When the Assumptions from Theorem 3 and H�0 : � = �0 hold, then the

limiting distributions of KLMT (e� (�0) ; �0) and JKLMT (e� (�0) ; �0) are bounded from
above as

KLMT (e� (�0) ; �0) a

� �2 (p�)

JKLMT (e� (�0) ; �0) a

� �2 (kf � p)
(19)

and from below by the limiting distributions that hold for a zero value of C: The

upper bounding �2 (p�) and �2 (kf � p) random variables for KLMT (e� (�0) ; �0) and
JKLMT (e� (�0) ; �0) are stochastic independent as well as the lower bounding random
variables.

Proof. see the Appendix.

The strict dominance that we used to proof Theorem 2a can not be used to proof

Theorem 4 even for linear moment equation models with Kronecker product form

covariance matrices. The proof of Theorem 4 therefore follows a similar argument as

the proof of Theorem 2b.

The bounding argument of the KLM and JKLM statistic further extends to sta-

tistics that are functions of them like, for example, the GMM extension of the MLR

statistic of Moreira (2003), which was proposed in Kleibergen (2005).

Theorem 5 When the Assumptions from Theorem 3 and H�0 : � = �0 hold, the con-

ditional limiting distribution of the GMM extension of the MLR statistic:

GMM-MLRT (e� (�0) ; �0) := 1
2
[ST (e� (�0) ; �0)� rk(e� (�0) ; �0)+q

(ST (e� (�0) ; �0) + rk(e� (�0) ; �0))2 � 4JKLMT (e� (�0) ; �0) rk(e� (�0) ; �0)�
(20)
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with rk(�0) a statistic that tests the hypothesis of a lower rank value of J(�0); Hr :rank(J(�0)) =

p�1; and is a function of D̂T (�0) and the (generalized) inverse of V̂��:f (�0) = V̂��(�0)�
V̂�f (�0)V̂ff (�0)

�1V̂f�(�0); given rk(e� (�0) ; �0) is bounded by
1

/2

�
'K + 'J � rk(e� (�0) ; �0) +q('K + 'J + rk(e� (�0) ; �0))2 � 4'Jrk(e� (�0) ; �0)� ;

(21)

where 'K and 'J are independent �
2(p�) and �2(kf � p) distributed random variables.

Proof. The proof of Theorem 4 shows that D̂�;T (e� (�0) ; �0) is conditional on
(e� (�0) ; D̂�;T (e� (�0) ; �0)) independent of fT (e� (�0) ; �0) and therefore of ST (e� (�0) ; �0)
and JKLMT (e� (�0) ; �0) : Since D̂�;T (e� (�0) ; �0) can only be computed using the real-
ized values of (e� (�0) ; D̂�;T (e� (�0) ; �0)); the conditional independence extends to un-
conditional independence since D̂�;T (e� (�0) ; �0) is not involved in the construction of
(e� (�0) ; D̂�;T (e� (�0) ; �0)): Hence, rk(e� (�0) ; �0) is independent of ST (e� (�0) ; �0) and
JKLMT (e� (�0) ; �0) : Given rk(e� (�0) ; �0); the GMM-MLR statistic is just a function
of the KLM and JKLM statistics. The derivative of the GMM-MLR statistic with

respect to both the KLM and JKLM statistics is positive so the bounding properties

of the limiting distributions of these statistics imply the bounding property of the

conditional limiting distribution of the GMM-MLR statistic.

The bounding results on the (conditional) limiting distributions of the subset S,

KLM, JKLM and GMM-MLR statistics imply that we do not need to make any iden-

tifying assumption on the unrestricted parameters since the (conditional) limiting dis-

tributions that we would obtain when the unrestricted parameters are well identi�ed

provide upper bounds on the (conditional) limiting distributions in general. Hence,

we have established that the aforementioned subset tests are correctly sized in large

samples without making any assumptions about identi�cation of the parameters of the

model.

2.2 Nonlinear restrictions

The bounding results of the previous section extend to general nonlinear restrictions

of the kind studied, for instance, by Newey and West (1987). Let h : � 7! Rr be a
continuous di¤erentiable function with r � p; and p is the number of parameters in �.

We are interested in testing the hypothesis

H0 : h (�) = 0; against H1 : h (�) 6= 0: (22)
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Let e�T = argmin� fST (�) : h (�) = 0g denote the minimizer of ST (�) subject to the
restrictions implied by the null hypothesis. Then, we have the following result.

Corollary 1. Under the Assumptions from Theorem 3 and when H0 : h (�) = 0,

ST

�e�T� �a �2 (kf � p+ r) :

KLMT

�e�T� �a �2 (r)

JKLMT

�e�T� �a �2 (kf � p) :

(23)

Proof. First, reparametrize � into (�; �) = g (�) := [g1 (�) ; h (�)] such that

g�1 (�; �) exists. Then, the restrictions become equivalent to � = 0 and the result

follows from Theorem 3, 4 and 5.

Corollary 1 further extends to the GMM-MLR statistic as well but we left it out

for reasons of brevity.

2.3 Projection-based testing

Projection-based tests do not reject the null hypothesis H�0 : � = �0 with (1 � �) �
100% signi�cance when there are values of �0 such that a statistic that tests the joint

hypothesis H��0 : � = �0; � = �0 is less than the (1��)�100% critical value that results
from the limiting distribution of the joint test. When the limiting distribution of the

statistic that is used to conduct the joint test does not depend on nuisance parameters,

the maximal value of the rejection probability over all possible values of the nuisance

parameters is less than (1��)�100% so the projection based tests control the rejection
probability but are conservative, see Dufour and Taamouti (2005a,2005b).

Theorem 6 When the Assumptions from Theorem 3 and H�0 : � = �0 hold, a non-

signi�cant value of the subset S, KLM, JKLM and GMM-MLR statistics for testing

H�0 : � = �0 implies that the projection-based counterpart of the involved statistic is

also non-signi�cant.

Proof. Since ST (�0) = ST (e� (�0) ; �0); if ST (�0) is less than the (1 � �) � 100%
critical value of a �2(kf�p�) distribution, ST (e� (�0) ; �0) is less than the (1��)�100%
critical of a �2(kf ) distribution. The same argument applies to the KLM, JKLM and

GMM-MLR statistics as well with the appropriate (conditional) limiting distribution.
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Theorem 6 implies that the subset statistics are more powerful than the projection

based statistics and therefore lead to (on average) a smaller con�dence set.

The results on the limiting distributions for the di¤erent subset statistics show that

we can allow for general values of the Jacobian J(�0) while using the same (conditional)

critical values as under the assumption of a full rank value of J(�): To determine any

additional e¤ects on the statistical inference of the rank value of J(�0); we analyze the

power of the subset statistics at distant values of the hypothesized parameter.

3 Behavior at distant values

The parameters of the moment equations of many economic models are such that they

can be cast into a generalized polar coordinate speci�cation so

�i = hi(�i); � = r'; (24)

with hi : R! R invertible, � = (�1 : : : �p)0 : p� 1; r : 1� 1; r 2 R+; ' : p� 1; '0' � 1.
For example:

� Linear IV regression model: ft(�) = ((yt �Xt�)
 Zt) : � = r':

� Consumption capital asset pricing model, see Hansen and Singleton (1982):

ft(�; �) =

  
�

�
ct+1
ct

��
(�l +Rt+1)� �l

!

 Zt

!
: (25)

The discount factor is given by � (2 R+) and � is the risk aversion coe¢ cient.
The vector Rt is a l � 1 vector of asset returns at time t; Ct is consumption at
time t and �l is a l � 1 vector of ones. The vector Zt contains the instruments.
We can now specify � such that�

�1
�2

�
=
�
log(�)
�

�
;
�
�1
�2

�
=
�
r'1
r'2

�
; (26)

which implies that the moment equations become:

ft(r; ') =
�
(�+Rt+1) exp

h
r('1 + '2 log

�
ct+1
ct

�i

 Zt

�
: (27)
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� Panel autoregressive model of order one with exogenous variables and Arellano-
Bond moment equations, see Arellano and Bond (1991):

ft(�; �) = (�yt � ��yt�1 ��Xt�)
 Zt : � = r'1; � = r'2; (28)

where Xt consists of exogenous variables and Zt contains the instruments.

The polar coordinate speci�cation implies that the value of the subset statistics at

distant values is the same for all parameters.

Theorem 7 When �i = hi(r'i) with hi : R ! R; invertible, r : 1 � 1; r 2 R+;
' = ('1 : : : 'p)

0 : p� 1; '0' � 1; it holds that

lim�0!1 ST (e� (�0) ; �0) = limr0!1 ST (h(r0e' (r0)));
lim�0!1KLMT (e� (�0) ; �0) = limr0!1KLMT (h(r0e' (r0)));
lim�0!1 JKLMT (e� (�0) ; �0) = limr0!1 JKLMT (h(r0e' (r0)));
lim�0!1GMM-MLRT (e� (�0) ; �0) = limr0!1GMM-MLRT (h(r0e' (r0)));

(29)

with (�0
... �0) = h(r') = (h1(r'1) : : : hp(r'p))

0:

Proof. see the Appendix.

Theorem 7 implies that, since the subset statistics for di¤erent parameters of inter-

est are all the same at distant values, the power of the subset tests at distant values is

completely governed by the least identi�ed parameter. Hence, if for those parameters

that are well identi�ed the subset statistics will be non-signi�cant at a distant value if

one of the other parameters is only weakly identi�ed. The value of the subset statistics

at such distant values can therefore be interpreted as an identi�cation statistic. This

property can be revealed in full when the moment equations are linear in which case

the value of the subset S-statistic at a distant value corresponds with a statistic that

tests for the identi�cation of any of the parameters.

Theorem 8 If ft(�; �) is linear in � and �;

ft(�; �) = ft +
��

�
�

�0 
 Ikf

�
qt = ft + r

�
'0 
 Ikf

�
qt; (30)
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where ft : k � 1 is non-zero and does not depend on the parameters, it holds that

lim�0!1 ST (e� (�0) ; �0) =
min'; '0'=1 vec [qT']

0
h�
'0 
 Ikf

�
V̂��
�
'
 Ikf

�i�1
vec [qT']

min
 vec
h
qT
�
1



�i0 h��
1



�0 
 Ikf

�
V̂��

��
1



�0 
 Ikf

�i�1
vec
h
qT
�
1



�i
;

(31)

where V̂�� is an estimate of V�� and qT = qT (�) since it does not depend on �:

Proof. see the Appendix.

The expression of the S-statistic for large values of �0 provided in Theorem (8)

corresponds with a rank statistic that tests for a reduced rank value of the Jacobian

J(�): This holds since any k � p matrix A can be speci�ed as

A =
Pp

i=1 ai�ib
0
i; (32)

with ai : k� 1; bi : p� 1; �i : 1� 1; i = 1; : : : ; p; and a0iai � 1; a0iaj � 0; i 6= j; b0ibi � 1;
b0ibj � 0; i 6= j:Hence, ' is identical to that bi for which �

2
i a
0
i

h
(bi

0 
 Ik) V̂�� (bi 
 Ik)
i0�1

ai

is minimal. The reduced rank statistic with which the S-statistic for large values of �0
corresponds di¤ers slightly from the reduced rank statistics of Cragg and Donald (1997)

and Kleibergen and Paap (2006). The rank statistic of Cragg and Donald (1997),

CD(q) = minQ02�(p) T
�1(qT (�; �)� q0)

0V̂ �1
�� (qT (�; �)� q0); (33)

with q0 = vec(Q0); Q0 : k�p and �(p) is the space of k�p matrices with rank less than
or equal to p; is identical to the S-statistic at large values of �0 when we would replace

V̂ �1
�� = ((b1 : : : bp)
 Ik)

h
((b1 : : : bp)
 Ik)

0 V̂�� ((b1 : : : bp)
 Ik)
i�1 �

(b1 : : : bp)
0 
 Ik

�
by

((b1 : : : bp)
 Ik)
h�
(0 : : : 0 bi 0 : : : 0)

0 
 Ik
�
V̂�� ((0 : : : 0 bi 0 : : : 0)
 Ik)

i�1 �
(b1 : : : bp)

0 
 Ik
�

where we used the decomposition from (32). This implies that the covariance matrix

which we invert for the S-statistic is typically larger than the one used for the Cragg-

Donald (1997) rank statistic so the value of the S-statistic will typically be smaller

than the value of the Cragg and Donald (1997) rank statistic. An important and nice

feature of the rank statistic that results from the S-statistic compared to the one of

Cragg and Donald (1997) is that it results from the (numerical) optimization over p�1
parameters while the Cragg and Donald (1997) statistic results from optimizing over

(k + 1)p � 1 parameters. Hence, there is a large numerical advantage in usage of the
rank statistic that is implied by the S-statistic.

13



The expression of the S-statistic at distant values shows a manner of extending

the concentration parameter, see e:g: Phillips (1983) and Rothenberg (1984), from the

homoscedastic linear instrumental variables regression model towards GMM. In the

homoscedastic linear IV regression model, it holds that the Anderson-Rubin Statis-

tic, see Anderson and Rubin (1949), of which the S-statistic is the extension towards

GMM, equals the �rst stage F -statistic when p = 1 and � is large. The concentration

parameter is equal to the �rst stage F -statistic when all statistics are replaced by their

expectation. Hence, a suitable expression for the concentration parameter in GMM

would be:

CONPAR-GMM =

min'; '0'=1 vec [J(�)']
0 [('0 
 Ik)V�� ('
 Ik)]

�1 vec [J(�)'] :
(34)

For the other statistics, it is also possible to �nd the expressions when the moment

equations are linear and the tested parameter is large. Since these expressions lack a

straightforward interpretation, we deferred from constructing these expressions.

4 Simulation results on size and power

We conduct three sets of simulation experiments to investigate the size and power of

the di¤erent test statistics analyzed in the previous section.

4.1 Linear IV model

The �rst experiment is based on a prototypical IV regression model with two endoge-

nous variables, which is identical to the one studied by Kleibergen (2006). The model

is given by

y = X� +W
 + "

X = Z�X + VX

W = Z�W + VW

where y;X;W;Z are T�1; T�1; T�1; T�k respectively, vec
�
"
...VX

...VW

�
� N (0;�
 IT ) ;

� is 3�3, �; 
 are scalars and �X ;�Z are k � 1. In the simulations, we set T = 500;

 = 1; k = 20 and � = I3. The latter is assumption is used in order to abstract

from endogeneity and make the problem exactly symmetric, as explained in Kleiber-

14



gen (2006). Z is drawn from a multivariate standard normal distribution and kept

�xed in repeated samples. The quality of the instruments is governed by the 2�2
concentration matrix �0�: In this speci�c example, � = (Z 0Z)1=2

�
�X

... �W

�
; and

we set all elements of the k� 2 matrix � to zero except for �11 and �22: These govern
the quality of the instruments for estimating � and 
 respectively. Each experiment is

carried out with 2500 replications.

The null hypothesis is H0 : � = 0; each for all statistics except W2S, 
 is set

at the restricted CUE, e
CUE. The tests statistics that we simulate are S, KLM,

JKLM, CJKLM (a combination of the KLM and JKLM), and two Wald statistics:

W uses e
CUE. and W2S uses 2-step GMM to estimate 
: The GMM estimators

uses the White (1980) Heteroskedasticity Consistent covariance estimator of Vff and

Vf�: bVff = 1
T

P
t

�
ft � �f

� �
ft � �f

�0
; ft = Zt (yt �Xt� �Wt
), �f = 1

T

P
ft andbVf� = 1

T

P�
ft � �f

�
(qt � �q)0 ; qt � @ft

@�0 =

 
�ZtXt

�ZtWt

!
; �q = 1

T

P
qt.

The results are reported in �gure 1. We observe that the results look essentially

identical to the results reported by Kleibergen (2006, Panel 2) and partly reproduced

in Figure 2 above. This shows that the conclusions concerning the conservativeness of

the S,KLM and JKLM subset tests and their power against distant alternatives extends

from the IV to the linear GMM setting.

This experiment was based on iid data. We next turn to a situation with dependent

observations. For this purpose, we look at a prototypical dynamic stochastic general

equilibrium (DSGE) model of the kind that is typically used in macroeconomics.

4.2 DSGE model

A prototypical DSGE model of monetary policy looks like, see Woodford (2003):

�t = �Et�t+1 + �xt (35)

yt = Etyt+1 � � (rt � Et�t+1) + gt (36)

rt = �rt�1 + (1� �) (�Et�t+i + 
Etxt+j) + "r;t (37)

xt = yt � zt

where Et denotes the expectation conditional on information up to time t, �t; yt; rt; xt
denote in�ation, output, nominal interest rates and output gap, respectively, and zt

15



Figure 1: Power curves in the linear IV model, computed using White�s covarinace
estimator. 5% signi�cance level.
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and gt represent technology and taste processes, while "t;t is a monetary policy shock.

This model was recently used by Clarida, Galí, and Gertler (2000) and Lubik and

Schorfheide (2004) to study the postwar monetary policy history of the US.

The parameters of the model can be estimated by full- or limited-information meth-

ods. Here, we focus on the single-estimation GMM approach that is based on replacing

expectations with realizations and using lags of the variables as instruments. This is

the method used in seminal papers by Galí and Gertler (1999) for the new Keyne-

sian Phillips curve (35) and by Clarida, Galí, and Gertler (2000) for the Taylor rule

(37). Both equation have two parameters and two endogenous variables, so they are

well-suited for our simulation experiments on subset tests.

The simplest model to simulate is the Taylor rule (37) with � = i = j = 0: This is

simply an IV regression model but with dependent data.

4.2.1 Taylor rule

To keep the model simple and symmetric, we assume that �t and xt follow AR(1)

processes

�t = ���t�1 + v�;t (38)

xt = �xxt�1 + vx;t (39)

The version of equation (37) with � = i = j = 0 is the original Taylor (1993) rule:

rt = ��t + 
xt + "r;t: (40)

The strength of the identi�cation of � and 
 is governed by �� and �x respectively. In

particular, the signal-noise ratio (concentration) in the autoregressions (38) and (39)

is

�ii = T
�2i

1� �2i
; i = �; x

so

�i =
�iip
T +�2ii

; i = �; x

The innovations are simulated from independent Gaussian white noise processes

with unit variance, and the sample size is set to 1000. Equation (40) is estimated

by GMM using 10 lags of �t and xt as instruments, so that k = 20 as in the previ-

ous experiment. Apart from serial dependence, the other di¤erence from the previous

17



experiment is that the we use the Newey-West (1987) heteroskedasticity and autocor-

relation consistent estimator of Vff and Vf�:

The power curves for various instrument qualities are reported in �gure 2. The

power curve look remarkably similar to the linear IV model, and show that the conclu-

sions extend to the case of dependent data and the use of a HAC covariance estimator.

(Note that we have renormalized the � to make it�s range comparable to the range of

� in �gures 1 and 1),

4.2.2 New Keynesian Phillips curve

Equation (35) is a model of in�ation with sticky prices based on Calvo (1983). Assume

the unobservable exogenous processes zt and gt follow

zt = �zzt�1 + "z;t

gt = �zgt�1 + "g;t

This is a standard assumption (see, e.g., Lubik and Schorfheide 2004). It can be shown

(see Woodford, 2003) that the determinate solution for xt must satisfy:

xt = axzzt + axggt + axr"r;t

for some constants axz, axg and axr Hence, the law of motion for �t is determined by

solving the model (35) forward by repeated substitution:

�t = �
1X
j=0

�jEt (xt+j)

=
�axz
1� ��z

zt +
�axg
1� ��g

gt + �axr"r;t

The limited information approach estimates the following equation by GMM using

the moment conditions Et�1ut = 0:

�t = �xt + ��t+1 + ut (41)

ut = �� (�t+1 � Et�t+1) :

The endogenous regressors are xt and �t+1 and the instruments are lags of xt and

�t. The key di¤erence from the Taylor rule is that the error term ut exhibits serial

correlation, which is typical of forward-looking Euler equation models. Thus, the use
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Figure 2: Power curves for the Taylor rule, computed using the Newey-West covariance
estimator. 5% signi�cance level.
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of a HAC covariance estimator is imperative.

As it may be anticipated, the identi�ability of � and � depends on �z and �g.

In particular, the model is partially identi�ed when �z = 0; or �g = 0; or �z = �g:

Measuring the quality of the instruments is possible, using a generalization of the

concentration matrix for non-iid data, but the resulting expression is not analytically

tractable. Moreover, in order to simulate data from equations (35) through (37) we

need to specify all the remaining parameters � ; �; �; 
 and the covariance matrix of the

innovations "z;t; "g;t and "r;t. Thus, instead of trying to set the parameters in order to

control the degree of identi�cation, we take them from the literature. In particular,

we set them to the posterior means reported by Lubik and Schorfeide (2004, table

3).estimated using quarterly US data from 1982 to 1997. The estimated values of �z
and �g are 0.85 and 0.83 respectively.

1

The null hypothesis for the subset test is chosen as follows. A key parameter in the

Calvo model is the probability a price remains �xed, �; which is linked to � and � by:

� =
(1� �) (1� ��)

�
:

So, we consider tests of H0 : � = 1=2, which is a nonlinear restriction on the parameters

�; �. The instruments include four lags of �t and xt; i.e., k = 8:

The results are reported in Figure 3. We report power curves both for the case

�z = 0:85; �g = 0:83 (left panel) and for the case �z = 0:1; �g = 0:05 (right panel)

in which both � and � are nearly unidenti�ed. The identi�cation-robust tests have

virtually no power, and are even conservative over some region of the parameter space.

In contrast, the two Wald statistics are dramatically over-sized. These results are

remarkable, in view of the fact that the parameters have been set to their estimated

values. The pictures look extremely similar if, instead of the estimates of Lubik and

Schorfheide (2004), we used the estimates reported by Clarida, Galí, and Gertler (2000),

so the latter results are omitted. Notice also that the tests are conservative in the case

when the model is partially identi�ed (left panel), as well as in the case in which both

parameters are weakly identi�ed (right panel), in accordance to the theory.

1Clarida, Galí, and Gertler (2000) set �z = �g = 0:9 in their simulations. When we use these values
instead, the results are virtually identical.
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Figure 3: Power curves for tests of the null hypothesis � = 1=2 in the Calvo model,
computed using a Newey-West covariance estimator and 5% signi�cance level. The
data are simulated from the DSGE model in Lubik and Schorfheide (2004). In the left
panel: �z = 0:85; �g = 0:83; in the right panel: �z = 0:1; �g = 0:05

5 Conclusions

The above analysis shows that the upper bounds on the (conditional) limiting distri-

butions of the subset statistics extend from the linear IV regression model to GMM.

Hence, the conservativeness of the subset tests extends from linear IV to GMM. The

lower bound on the (conditional) limiting distribution of the subset statistics in the

linear IV regression model is of lesser importance. The power at distant values of the

parameter of interest is, however, of importance and we will extend this result from

the linear IV regression model towards GMM in future work.

Since the parameters on the included exogenous variables can be partialled out

analytically in the linear IV regression model, the results on the subset statistics in

linear IV regression models are only important for testing the structural parameters in

models with more than one included endogenous variable and for testing the parame-

ters of the included exogenous variables. Since many linear IV regression models used

in applied work only have one included endogenous variable, the results on the subset

statistics are not relevant for all empirical studies that use the linear IV regression

model. However, in GMM it is typically not possible to partial out any of the para-

meters so the results of the proposed research are of importance for almost all models
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that are estimated by GMM. They therefore provide a solution to a long-standing

problem of inference in models in which any identi�cation assumptions are usually too

strong. An important class of such models are dynamic stochastic general equilibrium

(DSGE) models, e.g., the New Keynesian monetary policy models described in Wood-

ford (2003). These models are currently at the center stage of empirical macroeconomic

research, especially with regards to monetary policy, see Galí and Gertler (1999), Clar-

ida, Galí, and Gertler (2000), Lubik and Schorfheide (2004), Christiano, Eichenbaum,

and Evans (2005). Empirical macroeconomists and central bank sta¤ use such models

to study macroeconomic �uctuations, to o¤er policy recommendations and to forecast

indicators of economic activity. Unlike other rational expectations models to which

identi�cation-robust methods have recently been applied, for instance, the stochastic

discount factor model in Stock and Wright (2000) and Kleibergen (2005), the current

generation of DSGE models are su¢ ciently rich to match several aspects of the data.

Thus these models present a more natural application of the proposed methods, and,

as a result, this paper provides an important methodological contribution to applied

macroeconomic research.
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Appendix

Lemma 1. For a : k � 1; A : k � 1; � : 1� 1; it holds that

a0
�
@PA
@�

�
a = 2a0MA

@A
@�
(A0A)�1A0a:

Proof. We specify @PA
@�
as

@PA
@�
= @A

@�
(A0A)�1A0 + A

h
@(A0A)�1

@�

i
A0 + A(A0A)�1

�
@A
@�

�0
= @A

@�
(A0A)�1A0 � A(A0A)�1

�
@A
@�

�0
A(A0A)�1A0 � A(A0A)�1A0

�
@A
@�

�
(A0A)�1A0+

A(A0A)�1
�
@A
@�

�0
= MA

�
@A
@�

�
(A0A)�1A0 + A(A0A)�1

�
@A
@�

�0
MA

from which the result follows.

Lemma 2. When V̂ff (�)�1 = V̂ff (�)
� 1
2
0V̂ff (�)

� 1
2 ; � : 1� 1; it holds that

@V̂ff (�)
� 1
2

@�
= �V̂ff (�)�

1
2 V̂�f (�)V̂ff (�)

�1:

Proof. Because V̂ff (�)�1 = V̂ff (�)
� 1
2
0V̂ff (�)

� 1
2 ; V̂ff (�)

� 1
2 V̂ff (�)V̂ff (�)

� 1
2
0 = Ikf and

�@V̂ff (�)� 1
2

@�

�
V̂ff (�)V̂ff (�)

� 1
2
0 + V̂ff (�)

� 1
2

�@V̂ff (�)
@�

�
V̂ff (�)

� 1
2
0 + V̂ff (�)

� 1
2 V̂ff (�)

�@V̂ff (�)� 1
2

@�

�0
= 0;

such that @V̂ff (�)
� 1
2

@�
= �V̂ff (�)�

1
2 V̂�f (�)V̂ff (�)

�1 since @V̂ff (�)

@�
= V̂�f (�) + V̂�f (�)

0:

Proof of Theorem 2 a : The minimal value of ST (�) is attained at e� so sT �e�� =
1
2
@ST (e�)
@�0 = 0: BecauseKLMT (�) is a quadratic form of sT (�) and sT

�e�� = 0; @KLMT (e�)
@�0 =

0 and since ST (�) = KLMT (�) + JKLMT (�) also
@JKLMT (e�)

@�0 = 0: To show that the

JKLM statistic indeed has a global minimum at e�; we construct its derivative. For
expository purposes we use that p = 1 and introduce

f �T (�) =
1p
T
V̂ff (�)

� 1
2fT (�) and D̂�

T (�) =
1p
T
V̂ff (�)

� 1
2 D̂T (�);

where, because of Lemma 2, @f
�
T (�)

@�0 = D̂�
T (�) and ST (�) = f �T (�)

0f �T (�); JKLMT (�) =
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f �T (�)
0MD̂�

T (�)
f �T (�); sT (�) = D̂�

T (�)
0f �T (�): Using Lemma 1, we can obtain that:

@JKLMT (�)
@�0 = 2f �T (�)

0MD̂�
T (�)

@f�T (�)
@�0 � f �T (�)

0
�
@PD̂�

T
(�)

@�

�
f �T (�)

= �2f �T (�)0MD̂�
T (�)

@D̂�
T (�)

@�0 (D̂
�
T (�)

0D̂�
T (�))

�1D̂�
T (�)

0f �T (�)

= �2f �T (�)0MD̂�
T (�)

@D̂�
T (�)

@�0 (D̂
�
T (�)

0D̂�
T (�))

�1sT (�)

since MD̂�
T (�)

@f�T (�)
@�0 = MD̂�

T (�)
D̂�
T (�) = 0; and which shows that the derivative of the

JKLM statistic equals the derivative of the S-statistic multiplied by

�f �T (�)0MD̂�
T (�)

@D̂�
T (�)

@�0 (D̂
�
T (�)

0D̂�
T (�))

�1:

To determine if the JKLM statistic has local maxima/minima that do not coincide with

those of the S-statistic, we study whether the FOC for the JKLM statistic can hold

for other points of � than those at which the FOC holds for the S-statistic. Thus we

check if the factor by which the derivative of the S-statistic is multiplied to obtain the

derivative of the JKLM statistic can be equal to zero. For this we need the speci�cation

of the derivative of D̂�
T (�) with respect to � :

@D̂�
T (�)

@�
= V̂ff (�)

� 1
2

h
�V̂�f (�)V̂ff (�)�1D̂T (�) +

@qT (�)
@�

�
V̂ @q
@�
f (�)V̂ff (�)

�1fT (�)� V̂��(�)V̂ff (�)
�1fT (�) + V̂�f (�)V̂ff (�)

�1h
V̂�f (�) + V̂�f (�)

0
i
V̂ff (�)

�1fT (�)� V̂�f (�)V̂ff (�)
�1qT (�)

i
= V̂ff (�)

� 1
2

h
�2V̂�f (�)V̂ff (�)�1D̂T (�) +

@qT (�)
@�

�

V̂ @q
@�
f (�)V̂ff (�)

�1fT (�)� (V̂��(�)� V̂�f (�)V̂ff (�)
�1V̂�f (�)

0)V̂ff (�)
�1fT (�)

i
;

where we used Lemma 2 to obtain @
@�
V̂ff (�)

� 1
2 and @V̂�f (�)

@�
= V̂ @q

@�
f (�) + V̂��(�) with

V̂ @q
@�
f (�) an estimator of the covariance between

@qT (�)
@�

and fT (�):

When fT (�) is a linear function of � and V̂ (�) has a Kronecker product form such

that V̂�f (�) = aV̂ff (�) and V̂��(�) = bV̂ff (�) with a and b scalars (b > 0); the above

speci�cation of @D̂
�
T (�)

@�
implies that

MD�
T (�)

@D̂�
T (�)

@�
= MD�

T (�)
V̂ff (�)

� 1
2 (V̂��(�)� V̂�f (�)V̂ff (�)

�1V̂�f (�)
0)V̂ff (�)

�1fT (�)

= cMD�
T (�)

V̂ff (�)
� 1
2fT (�)
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since, because of the Kronecker product form of V̂ (�);

MD�
T (�)

V̂ff (�)
� 1
2 V̂�f (�)V̂ff (�)

�1D̂T (�) = aMD�
T (�)

V̂ff (�)
� 1
2 D̂T (�) = 0;

and, because of the linearity of fT (�);
@qT (�)
@�

= 0 and V̂ @q
@�
f (�) = 0: The scalar c is such

that c = b� a2; with c > 0 since

V̂��(�)� V̂�f (�)V̂ff (�)
�1V̂�f (�)

0 = (b� a2)V̂ff (�)

is a positive de�nite covariance matrix, and implies that

f �T (�)
0MD̂�

T (�)
@D̂�

T (�)

@�0 = cf �T (�)
0MD̂�

T (�)
f �T (�) > 0:

Hence, since (D̂�
T (�)

0D̂�
T (�))

�1 is larger than zero as well, the derivative of the JKLM

statistic is only equal to zero when the derivative of the S-statistic is equal to zero so

the FOCs of the S and JKLM statistic coincide as well as their values when the FOC

holds. Hence both the S and JKLM statistic have their minimal values at the CUE in

case of linear moment equations and a Kronecker product form covariance matrix.

Proof of Theorem 2 b : For expository purposes, we use that p = 1: Using the mean
value theorem we can specify f �T (�) (de�ned in the proof of Theorem 2a) as

f �T (�) = f �T (�0) + D̂�
T (
��)(� � �0);

where �� lies on the line segment between � and �0: Hence,

E(f �T (�)) = E(D̂�
T (
��))(� � �0)

which can be used to denote f �T (�) as

f �T (�) = E(f �T (�)) +
�f �T (�);

with �f �T (�) = f �T (�0) +
�D�
T (
��)(�� �0); �D�

T (�) = D̂�
T (�)�E(D̂�

T (�)): Our assumption on

the expected value of the derivative D̂�
T (�) is such that

E(D̂�
T (�)) = cQT (�);

where c is a �nite non-negative scalar and QT (�) : kf � 1 and c primarily re�ects the
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length of E(D̂�
T (�)) such that QT (�) has a �nite non-zero length. An example is:

E(D̂�
T (�)) =

p
T
h
Vff (�)

� 1
2J(�)� V�f (�)Vff (�)

�1J(��)(� � �0)
i
;

and

c =
p
T ; QT (�) = Vff (�)

� 1
2

h
Vff (�)

� 1
2J(�)� V�f (�)Vff (�)

�1J(��)(� � �0)
i
:

We analyze the sensitivity of the S-statistic for a �xed value of c while T goes to in�nity

which is identical to a weak instrument setting which uses a �xed value of
p
TJ(�); see

Staiger and Stock (1997) and Stock and Wright (2000).

At the CUE, the S-statistic coincides with the JKLM statistic

ST (e�) = 1
T
f �T (
e�)0MD̂�

T (
e�)f �T (e�) = JKLMT (e�)

and we evaluate the sensitivity of the JKLM statistic at the CUE with respect to an

increase in c:

Because of Assumption 1, the conditional limiting distribution ofMD̂�
T (
e�)f �T (e�) given

(e�; D̂�
T (
e�)) is a (degenerate) normal distribution:

MD̂�
T (
e�)f �T (e�)j(e�; D̂�

T (
e�))!

d
N(cMD̂�

T (
e�)QT (��)(e� � �0);MD̂�

T (
e�));

where the deviation of D̂�
T (
e�) from its mean does not appear in the mean of the above

expression since the covariance between D̂�
T (
e�) and f �T (

e�) is equal to zero. Given

(e�; D̂�
T (
e�)); JKLMT (e�) is therefore in large samples a realization of a non-central

�2(kf�p) distribution, since the rank ofMD̂�
T (
e�) is kf�p; with non-centrality parameter2

c2(e�� �0)0QT (��)
0MD̂�

T (
e�)QT (��)(e�� �0): The conditional non-central �2(kf � p) limiting

distribution of JKLMT (e�) is a restricted one since e� = argmin� f �T (�)0f �T (�); so e� re-
sults in the minimal value of f �T (�)

0f �T (�) where f
�
T (�)

0f �T (�) has for each value of � a

(non-) central �2 limiting distribution, which implies that the non-central �2(kf � p)

2De�ning D̂�
T (
e�)? : kf � (kf � p); D̂�

T (
e�)0?D̂�

T (
e�) � 0; the conditional dis-

tribution of (D̂�
T (
e�)0?D̂�

T (
e�)?)� 1

2 D̂�
T (
e�)0?f�T (e�) given (e�; D̂�

T (
e�)) is normal with mean

c(D̂�
T (
e�)0?D̂�

T (
e�)?)� 1

2 D̂�
T (
e�)0?QT (��)(e� � �0) and covariance matrix Ikf�p so the conditional dis-

tribution of the quadratic form of (D̂�
T (
e�)0?D̂�

T (
e�)?)� 1

2 D̂�
T (
e�)0?f�T (e�) is a non-central �2 with kf � p

degrees of freedom and non-centrality parameter c2(e� � �0)
0QT (��)

0MD̂�
T (
e�)QT (��)(e� � �0): This

quadratic form is identical to the quadratic form of f�T (e�) with respect to MD̂�
T (
e�) which equals

JKLMT (e�):
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distribution has a restricted support. The latter results since (e�; D̂�
T (
e�); f�T (e�)) all result

from the minimization of f �T (�)
0f �T (�):

To analyze the sensitivity of the JKLM statistic evaluated at the CUE with respect

to c; we construct its derivative with respect to c: Since c is a parameter of the data

generating process, the derivative of the CUE with respect to c consists of the sum

of the partial derivatives of the three di¤erent random elements of which JKLMT (e�)
consists: f �T (e�); D̂�

T (
e�) and e� :

1
2
dJKLMT (e�)

dc
= 1

2
@JKLMT (e�)
@f�T (

e�)0 df�T (
e�)

dc
+ 1

2
@JKLMT (e�)
@D̂�

T (
e�)0 dD̂�

T (
e�)

dc
+ 1

2
@JKLMT (e�)

@e�0 de�
dc

= 1
2
@JKLMT (e�)
@fT (e�)0 dfT (e�)

dc

which holds since @JKLMT (e�)
@e� = 0 as shown in the proof of Theorem 2a, and

@JKLMT (e�)
@D̂�

T (
e�)0 = �2f �T (e�)0D̂�

T (
e�)(D̂�

T (
e�)0D̂�

T (
e�))�1f �T (e�)0MD̂�

T (
e�) = 0;

since f �T (e�)0D̂�
T (
e�) = 0: The derivative shows that, for small changes in c; the change

of JKLMT (e�) that results from the change in c is implied by the change in f �T (e�) that
is caused by the change in c: Thus the derivative of the limiting distribution function

of JKLMT (e�) with respect to c solely results from the derivative with respect to c of

the conditional limiting distribution function of JKLMT (e�) given (e�; D̂�
T (
e�)) which is

a (restricted) non-central �2 distribution:

d
dc
Pr[JKLMT (e�) � x] =RR h

d
dc
Pr[JKLMT (e�) � xje� = y; D̂�

T (
e�) = D]

i
pe�;D̂�

T (
e�)(y;D)dydD:

When c increases, the non-centrality parameter of the non-central �2 limiting distribu-

tion of JKLMT (e�) given (e�; D̂�
T (
e�)) increases. Non-central �2 distribution are bounded

from above by non-central �2 distributions with a larger non-centrality parameter and

the same degrees of freedom parameter.3 The change of c therefore results in a condi-

tional non-central �2 distribution that bounds the original conditional non-central �2

distribution from above so the derivative with respect to c of the conditional limiting

3This property can be shown by using that a non-central �2 distribution is a Poisson mixture of
central �2 distributions. Central �2 distributions are increasing in the degrees of freedom parameter,
see Ghosh (1973), which property can be used jointly with the Poisson mixing property to show that
non-central �2 distributions are bounded from above by non-central �2 distributions with a larger
degrees of non-centrality parameter and the same degrees of freedom parameter.
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distribution function of JKLMT (e�) given (e�; D̂�
T (
e�)) is negative:

d
dc
Pr[JKLMT (e�) � xje� = y; D̂�

T (
e�) = D] � 0:

Since the sign of the derivative with respect to c of the limiting distribution function

of JKLMT (e�) solely results from the sign of the derivative with respect to c of the

conditional limiting distribution of JKLMT (e�) given (e�; D̂�
T (
e�)); the derivative with

respect to c of the marginal limiting distribution of JKLMT (e�) is also negative
d
dc
Pr[JKLMT (e�) � x] � 0:

Thus the limiting distribution of JKLMT (e�) is bounded from above by the limiting

distribution that results from a larger value of c and from below by the value that

results from a smaller value. The limiting distribution of the JKLM-statistic for any

value of c is therefore bounded from above by the limiting distribution that results for

an in�nite value of c which is the �2(kf � p) distribution:

ST (e�) = JKLMT (e�) a

� �2 (kf � p)

and from below by the limiting distribution that results for a zero value of c:

The above proof results from a local argument which can be applied since the deriv-

ative of the JKLM statistic with respect to e� and D�
T (
e�) is zero. The local argument

therefore allows us to keep (e�;D�
T (
e�)) �xed when we analyze the derivative of the lim-

iting distribution function of the JKLM statistic with respect to c: For large changes

of c; there are obviously e¤ects on e� and D�
T (
e�): The conditional non-central �2 distri-

bution of JKLMT (e�) given (e�; D̂�
T (
e�)) is therefore identical to a central �2 distribution

when c is large since the non-centrality parameter of the conditional non-central �2

distribution gets close to zero for large values of c: To show this, we determine the

order of (e� � �0)
0QT (��)

0MD̂�
T (
e�)QT (��)(e� � �0) as a function of c which can be obtained

by decomposing the FOC of the S-statistic using the mean value expansion of f �T (e�):
D̂�
T (
e�)0f �T (e�) = 0 ,

D̂�
T (
e�)0 hcQT (��)(e� � �0) + �fT (e�)i = 0 ,

c2QT (e�)0QT (��)(e� � �0) + c �D�
T (
e�)0QT (��)(e� � �0) + cQT (e�)0 �fT (e�) + �D�

T (
e�)0 �fT (e�) = 0 ,

�0 � 1
c

h
QT (e�)0QT (��)

i�1 h
QT (e�)0 �fT (e�) + �D�

T (
e�)0QT (��)(e� � �0) +

1
c
�D�
T (
e�)0 �fT (e�)i = e�
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which shows that e�� �0 is proportional to 1
c
for large values of c: Similarly, using mean

value expansions of 1
c
D̂T (e�) and Q(��) :

1
c
D̂T (e�) = QT (e�) + 1

c
�DT (e�)

= QT (�0) +
�@QT (��)

@�

�
(e� � �0) +

1
c
�DT (e�)

QT (��) = QT (�0) +
�@QT ( _�)

@�

�
(�� � �0)

where �� and _� are on the line segments between e� and �0 and �� and �0 resp., we can
show that 1

c
D̂T (e�)�Q(�0) andQ(��)�Q(�0) are proportional to 1

c
as well for large values

of c since e� � �0 and �� � �0 are proportional to 1
c
: This implies that the convergence

behavior of QT (��)
0MD̂�

T (
e�)QT (��) towards zero is proportional to 1

c
such that the overall

convergence behavior of

(e� � �0)
0QT (��)

0MD̂�
T (
e�)QT (��)(e� � �0)

towards zero is proportional to 1
c3
for large values of c:

When we incorporate the convergence behavior of e�; QT (��) and D̂�
T (
e�); the (un-

conditional) convergence behavior of the non-centrality parameter of the conditional

distribution of JKLMT (e�) given (e�; D̂�
T (
e�));

c2(e� � �0)
0QT (��)

0MD̂�
T (
e�)QT (��)(e� � �0);

is proportional to 1
c
for large values of c: Hence, it converges to zero when c gets large

and the limiting distribution of the JKLM statistic converges from below to the limiting

distribution of the JKLM statistic that applies to in�nite values of c which is a central

�2(kf � p) distribution.

Proof of Theorem 4. When � = (�0
... �0)0; we can specify D̂T (�) as

D̂T (�; �) = (D̂�;T (�; �)
... D̂�;T (�; �));

with D̂�;T (�; �) : kf � p� and D̂�;T (�; �) : kf � p�: Since

D̂�;T (e�(�0); �0)0V̂ff (e�(�0); �0)�1fT (e�(�0); �0) = 0;
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we can specify KLMT (e�(�0); �0) as
KLMT (e�(�0); �0) = 1

T

h
V̂ff (e�(�0); �0)� 1

2fT (e�(�0); �0)i0
P
M"

V̂ff (e�(�0);�0)� 1
2 D̂�;T (e�(�0);�0)

#V̂ff (e�(�0);�0)� 1
2 D̂�;T (e�(�0);�0)h

V̂ff (e�(�0); �0)� 1
2fT (e�(�0); �0)i :

For expository purposes, we now, with some misuse of notation, de�ne f �T (e�); D̂�
T (
e�);

Ĝ�T (
e�) as

f �T (
e�) = 1p

T
V̂ff (e�(�0); �0)� 1

2fT (e�(�0); �0)
D̂�
T (
e�) = 1p

T
V̂ff (e�(�0); �0)� 1

2 D̂�;T (e�(�0); �0)
Ĝ�T (

e�) = 1p
T
V̂ff (e�(�0); �0)� 1

2 D̂�;T (e�(�0); �0);
and e� = e�(�0): It follows from the proof of Theorem 2b and Assumption 1 that

vec
�
MD̂�

T (
e�)
�
f �T (
e�) ... Ĝ�T (e�)�� j(e�; D̂�

T (
e�))!

d
N(vec

�
MD̂�

T (
e�)E

��
f �T (
e�) ... Ĝ�T (e�)� j(e�; D̂�

T (
e�)�� ;

diag(MD̂�
T (
e�); (Ip� 
MD̂�

T (
e�))V��:f (e�)(Ip� 
MD̂�

T (
e�)));

where diag(A;B) =
�
A
0
0
B

�
and V��:f (e�) results from speci�ng V��(�; �) and V�f (�; �)

as

V�f (�; �) =

 
V�f (�; �)

V�f (�; �)

!
and V��(�; �) =

 
V��(�; �) V��(�; �)

V��(�; �) V��(�; �)

!
;

with V�f (�; �) : kfp� � kf ; V�f (�; �) : kfp� � kf ; V��(�; �) : kfp� � kfp�; V��(�; �) =

V��(�; �)
0 : kfp� � kfp� and V��(�; �) : kfp� � kfp� such that

V��:f (e�) = V��(e�(�0); �0)� V�f (e�(�0); �0)Vff (e�(�0); �0)�1V�f (e�(�0); �0)0:
The diagonal covariance matrix of the conditional distribution of MD̂�

T (
e�)f �T (e�) and

MD̂�
T (
e�)Ĝ�T (e�) given (D̂�

T (
e�);e�) shows that MD̂�

T (
e�)f �T (e�) and MD̂�

T (
e�)Ĝ�T (e�) are condi-

tional on (D̂�
T (
e�);e�) independent from one another. The (conditional) independence

of MD̂�
T (
e�)f �T (e�) and MD̂�

T (
e�)Ĝ�T (e�) given (D̂�

T (
e�);e�) uses the same independence result

as the one which is used to obtain the (conditional) limiting distributions of the KLM

and MLR statistics.
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Since

vec(Ĝ�T (
e�)) = �

Ip� 
 V̂ff (e�(�0); �0)� 1
2

� h
vec( @

@�0fT (e�(�0); �0))�
V̂�f (e�(�0); �0)V̂ff (e�(�0); �0)� 1

2fT (e�(�0); �0)i ;
can only be constructed given the realized values of (D̂�

T (
e�);e�) and is not involved in

obtaining fT (e�(�0); �0); D̂�
T (fT (e�(�0); �0) and e�(�0); which all result from minimizing

ST (�; �0) with respect to �; the conditional independence between MD̂�
T (
e�)f �T (e�) and

MD̂�
T (
e�)Ĝ�T (e�) extends to marginal independence.

Because of this independence,

KLMT (e�(�0); �0) = f �T (
e�)0PM

D̂�
T
(e�)Ĝ�T (e�)f �T (e�);

and
JKLMT (e�(�0); �0) = f �T (

e�)0MM
D̂�
T
(e�)Ĝ�T (e�)f �T (e�);

have given (D̂�
T (
e�);e�) non-central �2(p�) and �2(kf � p) limiting distributions with

non-centrality parameters

E(f �T (
e�))0PM

D̂�
T
(e�)E(Ĝ�T (e�))E(f �T (e�)) and E(f �T (e�))0MM

D̂�
T
(e�)E(Ĝ�T (e�))E(f �T (e�)):

Since PM
D̂�
T
(e�)Ĝ�T (e�)MM

D̂�
T
(e�)Ĝ�T (e�) = 0 and MD̂�

T (
e�)f �T (e�) and MD̂�

T (
e�)Ĝ�T (e�) are indepen-

dent, KLMT (e�(�0); �0) and JKLMT (e�(�0); �0) converge to independently distributed
random variables.

When p� = 1; we can conduct a similar mean value expansion of E(f �T (e�)) as in the
proof of Theorem 2b to specify E(f �T (e�)) as E(f �T (e�)) = cQT (�(�0))(e�(�0)��0); where
�(�0) is on the line segment between e�(�0) and �0; and show that the conditional

limiting distributions of KLMT (e�(�0); �0) and JKLMT (e�(�0); �0) given (D̂�
T (
e�);e�)

are bounded by those that result for a larger value of c: To show this, we use that the

derivative of KLMT (e�(�0); �0) with respect to c can be speci�ed as
1
2
dKLMT (e�(�0);�0)

dc
= 1

2
@KLMT (e�(�0);�0)

@f�T (
e�)0 df�T (

e�)
dc

+ 1
2
@KLMT (e�(�0);�0)

@D̂�
T (
e�)0 dD̂�

T (
e�)

dc
+

1
2
@KLMT (e�(�0);�0)

@G�T (
e�)0 dG�T (

e�)
dc

+ 1
2
@KLMT (e�(�0);�0)

@e�0 de�
dc

= 1
2
@KLMT (e�(�0);�0)

@f�T (
e�)0 df�T (

e�)
dc
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since @KLMT (e�(�0);�0)
@D̂�

T (
e�)0 = 0; @KLMT (e�(�0);�0)

@e�0 = 0 and G�T (e�) is conditional on (D̂�
T (
e�);e�)

independent of f �T (e�) so dG�T (
e�)

dc
= 0: The same argument as in Theorem 2b, that the

e¤ect of a small change in c on the limiting distribution of the KLM statistic solely re-

sults from the change of the conditional limiting distribution ofKLMT (e�(�0); �0) given
(D̂�

T (
e�);e�); therefore applies. Because an increase in c leads to an increase of the non-

centrality parameter of the conditional non-central �2 distribution ofKLMT (e�(�0); �0)
given (D̂�

T (
e�);e�); we obtain that

d
dc
Pr[KLMT (e�(�0); �0) � xje� = y; D̂�

T (
e�) = D] � 0

such that
d
dc
Pr[KLMT (e�(�0); �0) � x] =RRR h

d
dc
Pr[KLMT (e�(�0); �0) � xje� = y; D̂�

T (
e�) = D]

i
pĜ�T (e�)(Gje� = y; D̂�

T (
e�) = D)pe�;D̂�

T (
e�)(y;D)dydDdG � 0:

This shows that the limiting distribution of KLMT (e�(�0); �0) lies between the limiting
distributions that result from zero and in�nite values of c so

KLMT (e�(�0); �0) a

� �2 (p�) :

In an identical manner, it can be shown for JKLMT (e�(�0); �0) that
JKLMT (e�(�0); �0) a

� �2 (k � p� � p�)

and the lower bound results from a zero value of c: Because of the independence of

the limiting distributions of KLMT (e�(�0); �0) and JKLMT (e�(�0); �0); the bounding
distributions are independent as well.

Proof of Theorem 7: If �� and '� are the elements of � and ' that correspond with
� such that �0 = h�(��0); �� = r'� and �� and '� contain the elements of � and

' that correspond with �; �� = r'�; � = h�(��); it holds that � going to in�nity is

identical to �� going to in�nity. The speci�cation of � is such that � = r' so �� = r'�:

We can therefore specify � such that

� = r' = r'�

�
'

'�

�
= ��

�
'

'�

�
:

Since the speci�cation of � is invariant, maximizing over �� for a given value of ��
results in an identical value as maximizing over

�'a
'�

�
for a given value of ��: When ��
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goes to in�nity, it implies that r goes to in�nity as well since '� is bounded. The same

value of the statistics therefore results when we maximize over ' for a value of r that

goes to in�nity instead of maximizing over
�'a
'�

�
for a value of �� that goes to in�nity.

Since the speci�cation using r and ' is the same for every element of (�; �); it implies

that the value of the statistics for testing for a distant value of any of the parameters

are the same.

Proof of Theorem 8: If ft(�; �) is linear in � and �;

ft(�; �) = f1t +

��
�

�

�0

 Ikf

�
qt = f1t + r

�
'0 
 Ikf

�
qt;

and we can specify the moment equation and covariance estimators as

fT (�; �) = f1T + r
�
'0 
 Ikf

�
qT

V̂ff (�; �) = r2
�
'0 
 Ikf

�
V̂��
�
'0 
 Ikf

�
+ r

h�
'0 
 Ikf

�
V̂�f1 + V̂�f1

�
'
 Ikf

�i
+ V̂f1f1 ;

where f1T =
PT

t=1 f1t; qT =
PT

t=1 qt and V̂�� : kfp � kfp; V̂�f1 : kfp � kf ; V̂f1f1 :

kf � kf are estimators of V�� = limT!1 var(qT ); V�f1 = limT!1 cov(qT ; f1T ); Vf1f1 =

limT!1 var(f1T ); so when r goes to in�nity, which is equivalent with �0 going to

in�nity:

lim
�0!1

ST (e� (�0) ; �0) = min
'; '0'=1

��
'0 
 Ikf

�
qt
�0 h�

'
 Ikf
�0
V̂��
�
'0 
 Ikf

�
qt

i�1 ��
'0 
 Ikf
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