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Abstract

The Bartlett correction is derived for testing hypotheses about the autoregressive parameter ρ
in the stable: (i) AR(1) model; (ii) AR(1) model with intercept; (iii) AR(1) model with intercept
and linear trend. The correction is found explicitly as a function of ρ. In the models with deter-
ministic terms, the correction factor is asymmetric in ρ. Furthermore, the Bartlett correction is
monotonically increasing in ρ and tends to infinity when ρ approaches the stability boundary of
+1. Simulation results indicate that the Bartlett corrections are useful in controlling the size of
the LR statistic in small samples, although these corrections are not the ultimate panacea.

Keywords: Autoregressive models, Bartlett correction, small-sample properties, likelihood ratio
statistic
JEL classification: C13; C22.

∗The author wants to thank a Co-Editor for encouraging remarks and two referees for critical comments, which have
lead to a complete revision of this paper. A third referee is appreciated for drawing attention to the impact of the initial
observation. Furthermore, helpful comments of Peter Boswijk, participants of the ESEM 2004 meeting (Madrid, Spain)
and the UvA-Econometrics seminar (Amsterdam, The Netherlands) are gratefully acknowledged.

1



1 INTRODUCTION

Several decades ago, Lawley (1956) has shown in the i.i.d. setup that the finite-sample distribution

of a Bartlett (1937) corrected likelihood ratio (LR) test statistic is closer to the χ2-distribution than

the original LR statistic; see Cribari-Neto and Cordeiro (1996) for an econometric oriented review.

Recently, Bartlett-type corrections in unstable autoregressive models have attracted much attention,

see inter alias Bravo (1999), Nielsen (1997), Larsson (1998) and Johansen (2004), although Jensen

and Wood (1997) have shown that the usual conditions for a Bartlett correction are not fulfilled in the

unstable first-order autoregressive –AR(1)– model.

In this paper, we analyze the stable AR(1) model, which without deterministic terms was also

considered by Taniguchi (1988, 1991), Omtzigt (2003) and Lagos and Morettin (2004). However, in

contrast to earlier work, we also consider the AR(1) model with intercept (and linear trend). Antic-

ipating the results, we can say that the correction factor in models with deterministic components is

considerably different from the factor obtained in the pure AR(1) model.

Although a number of exact inference techniques are available for the AR(1) model, see inter

alias Andrews (1993) and Kiviet and Dufour (1997), these methods are based on numerical (Monte

Carlo) procedures that only give limited analytical insight into the structure of the finite-sample prob-

lems. Furthermore, analytical techniques like Edgeworth expansions, see e.g. Phillips (1977), or

saddlepoint approximations often lead to very complicated formulas, which are difficult to interpret.

Suppose that the likelihood function, whose logarithm will be denoted by L , depends upon p+ 1
population parameters θ1, ..., θ p, θ p+1. In our case, θ1, ..., θ p will denote the nuisance parameters

like the error variance, intercept and trend coefficient, while θ p+1 is the parameter of interest namely

the first-order autocorrelation coefficient ρ. For testing the null hypothesis H0 : ρ = ρ0, the LR

statistic can be written as 2(L(p+1) − L(p)), where L(k) denotes the result of maximizing L with
respect to θ1, ..., θ k and substituting true values under the null for the remaining parameters. Under

some continuity assumptions on the likelihood and its derivatives, together with the assumption that

the second-order derivatives of L with respect to the parameters are of order T (the sample size),

Lawley (1956) has shown that under H0 the expectation of the LR statistic may be written as

E[LR] = 1+ ξ p+1 − ξ p + O(T−2),
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where

ξ k =
k

r,s,t,u=1
λrsλtu{14λrstu − (λrst)u + (λrt)su} −

k

r,s,t,u,v,w=1
λrsλtuλvw{16λrtvλsuw

+ 1
4λrtuλsvw − λrtv (λsw)u − λrtu(λsw)v + (λrt)v(λsw)u + (λrt)u(λsw)v}, (1)

with

Lrs = ∂2L/∂θr∂θ s, Lrst = ∂3L/∂θr∂θ s∂θ t , etc.,

λrs = E[Lrs], λrst = E[Lrst ], etc.,

(λrs)t = ∂λrs/∂θ t , (λrst)u = ∂λrst/∂θu, etc.,

(λrs)tu = ∂2λrs/∂θ t∂θu,

and [λrs] is the inverse matrix of [λrs].

In the class of stationary Gaussian autoregressive moving average models, Taniguchi (1988) has

shown that the LR test is the only Bartlett correctable test among the LR, Wald, modified Wald and

Lagrange multiplier test , i.e.

P[LR∗ ≤ x] = P[χ21 ≤ x]+ o(T−1), (2)

where LR∗ = LR/(1 + ξ p+1 − ξ p) denotes the Bartlett corrected LR statistic. Since all Bartlett
corrections are calculated according to the general formula shown in (1) and the dynamics in our

models are of the autoregressive type, the higher-order result stated in (2) should also apply to our

Bartlett corrected LR statistics.

The paper is organized as follows. In sections 2-5, the Bartlett corrections are derived in the

AR(1) models with and without intercept and linear trend. Section 6 presents some simulation results

to shed some light on the small-sample properties of the Bartlett-corrected tests, while Section 7

concludes.

A word on notation. Throughout this paper, the symbol 1= will indicate that we have kept terms
of order T−1, i.e. if the stochastic expansion is of the form V = V0 + T−1V1 + T−2V2 + ..., then
V 1= V0 + T−1V1, where Vi ∈ Op(1) are random variables. Furthermore, we use to indicate

summation over t = 1, ..., T .
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2 THE AR(1) MODEL

First, consider the asymptotic stationary, mean zero, Gaussian AR(1) model

yt = ρyt−1 + εt , t = 1, ..., T, |ρ| < 1. (3)

Inference is made conditional on the starting value y0, so that ρ can be efficiently estimated by OLS.

The LR statistic for testing H0 : ρ = ρ0 against H1 : ρ /= ρ0 in this model is equal to

LR = −T log(1− r2yε), (4)

where

ryε ≡ yt−1εt

y2t−1 ε2t

denotes the sample correlation coefficient between yt−1 and εt assuming zero means; see for instance

formula (4) of Nielsen (1997). Note that (yt/σ) is an AR(1) process with (εt/σ) as innovations and

starting value (y0/σ). Therefore, ryε (and hence the LR statistic and its Bartlett correction) is scale

invariant. The Bartlett correction in the pure AR(1) model is stated in Theorem 1.

Theorem 1 In the stable Gaussian AR(1) model, given in (3), the expectation of the likelihood ratio

test for the null hypothesis ρ = ρ0 has the expansion

E[LR] 1= 1− 1
6T
− 1
3T

= 1− 1
2T
. (5)

Proof of Theorem 1. We have to determine ξ 1 and ξ 2 in formula (1) for (θ1, θ2) = (σ 2, ρ). Since all
the λ’s in the pure AR(1) model are a subset of the λ’s in the AR(1) model with intercept and trend,

the λ’s are only shown in the proof of Theorem 3. Since the index of ρ changes in the various models

(for this particular model it is 2), the subindex of this parameter is replaced by ρ. The following λ’s

are non-zero: λ11, λρρ, λ111, λ(1ρρ), λ1111, λ(11ρρ). Here, the subindex (1ρρ) means all permutations

of (1ρρ), so that λ(1ρρ) ∈ {λ1ρρ, λρ1ρ, λρρ1}. Carrying out the summation shown in (1) for k = 2 and
k = 1 gives ξ 2 = −1/(6T ) and ξ 1 = 1/(3T ), which completes the proof. ¤

Somewhat surprisingly, the Bartlett correction turns out to be independent of the AR(1) parameter

ρ. Furthermore, the factor is always smaller than 1. Hence, the Bartlett correction predicts that the
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uncorrected LR statistic tends to underreject a correct null hypothesis, i.e. its rejection probability

tends to be lower than the nominal level.

Note that the result in (5) is different from Taniguchi (1988), which does not treat σ 2 as a nuisance

parameter. In fact, if σ 2 is assumed to be known, we have λρρ = −(1−ρ2)−1T and λρρρ = λρρρρ = 0,
so that formula (1) for k = 1 reduces to

ξ 1 = (λρρ)ρρ{λρρ}2 − 2
{(λρρ)ρ}2
{λρρ}3 = − 2

T
.

This leads to a Bartlett factor of 1 − 2/T (= 1 + ξ 1 − ξ 0), which is the correction term reported in
Taniguchi (1988, p. 504).

3 AR(1) MODELWITH INTERCEPT

In this section, the AR(1) process is (asymptotically) stationary around a non-zero mean. Consider

the AR(1) model with an intercept

(yt − µ) = ρ(yt−1 − µ)+ εt , εt ∼ NID(0, σ 2), |ρ| < 1. (6)

As before, inference is conditional on the starting value y0. To obtain an expression for the LR statistic

under H0, first, demean the series {yt−1} and {εt}. From Andrews (1993, Appendix A), it follows that
ỹt−1 ≡ yt−1 − T−1 yt−1 and ε̃t ≡ εt − T−1 εt are invariant with respect to the value of µ.

Analogously to (4), the LR statistic is given by

LRc = −T log(1− (rcyε)2),

where

rcyε ≡
ỹt−1ε̃t

ỹ2t−1 ε̃2t

denotes the sample correlation coefficient between yt−1 and εt in deviations from their means. Since

rcyε is location and scale invariant, the Bartlett correction shown in Theorem 2 does not depend on

(µ, σ 2).

Theorem 2 In the stable Gaussian AR(1) model with intercept, given in (6), the expectation of the

likelihood ratio test for the null hypothesis ρ = ρ0 has the expansion

E[LRc] 1= 1+ 7+ 5ρ
3(1− ρ)T −

11
6T

= 1+ 1+ 7ρ
2(1− ρ)T . (7)
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Proof of Theorem 2. In this setup, we have (θ1, θ2, θ3) = (σ 2, µ, ρ). The following λ’s are non-
zero: λ11,λ22, λρρ , λ111, λ(122), λ(1ρρ), λ(22ρ), λ1111, λ(1122), λ(11ρρ), λ(122ρ), λ(22ρρ); see Theorem 3

for their values. As before, a subindex between parentheses means all permutations of that subindex.

Carrying out the summation shown in (1) for k = 3 and k = 2 gives ξ 3 = (7+ 5ρ)/(3(1− ρ)T ) and
ξ 2 = 11/(6T ). Calculating 1+ ξ 3 − ξ 2 completes the proof. ¤

This Bartlett correction agrees with the factor calculated by Van Giersbergen (2004, Theorem 2),

where the expectation is determined in a more laborious but direct way. Contrary to the case when

there is no intercept, i.e. formula (5), we now see that the factor depends on the AR(1) parameter ρ.

For ρ > −1/3, the Bartlett correction in the model with intercept is larger than the Bartlett correction
in the model without intercept. Furthermore, the factor is increasing in ρ and hence it is asymmetric

with respect to the origin; it even has an asymptote for ρ ↑ 1.

4 AR(1) MODELWITH INTERCEPT AND TREND

Consider the AR(1) model with intercept and linear trend

(yt − µ− βt) = ρ(yt−1 − µ− β(t − 1))+ εt , εt ∼ NID(0, σ 2), |ρ| < 1. (8)

Inference is again conditional on the starting value y0. To obtain the LR statistic, first regress yt−1 on

(1, t) and εt on (1, t). From Andrews (1993, Appendix A), it follows that both sets of residuals are

invariant with respect to the value of (µ, β) and therefore also the LR statistic. The LR statistic is

given by

LRτ = −T log(1− (r τyε)2),

where r τyε denotes the sample correlation coefficient between yt−1 and εt in deviation from a constant

and trend. Theorem 3 gives an expression for the Bartlett factor in the AR(1) model with intercept

and trend.

Theorem 3 In the stable Gaussian AR(1) model with intercept and linear trend, given in (8), the

expectation of the likelihood ratio test for the null hypothesis ρ = ρ0 has the expansion

E[LRτ ] 1= 1+ 47+ 25ρ
6(1− ρ)T −

13
3T

= 1+ 7+ 17ρ
2(1− ρ)T .
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Proof of Theorem 3. First, divide the linear trend by T , so that the second-order derivatives are of

order T as required by Lawley (1956). This can be done without loss of generality since the test

statistic is invariant to this transformation. The log-likelihood (conditional on y0) is given by

L ∝ −T
2
log(σ 2)− 1

2σ 2
(yt − µ− β(t/T )− ρ(yt−1 − µ− β(t − 1)/T ))2 . (9)

This log-likelihood has the advantage that we may assume that yt is a zero-mean process (asymp-

totically), i.e. we may assume (µ, β) = (0, 0) when evaluating the expectations of the derivatives.
Although the test statistic is invariant w.r.t. (µ , β), this fact cannot be exploited in the Lawley pro-

cedure applied to the log-likelihood associated with the model yt = ρyt−1 + µ̈ + β̈t + εt , i.e. we
then explicitly have to use yt ≈ µ̈/(1 − ρ) + β̈/(1 − ρ)(t/T ) + t−1

i=0 ρiεt−i . So for convenience

and to save space, we prefer to use the log-likelihood as formulated in (9). In model (8), we have

(θ1, θ2, θ3, θ4) = (σ 2, µ, β, ρ). All derivatives up to the fourth order were determined using Mathe-
matica 5.0 (see Wolfram (1991)). Due to the invariance and formula (9), we may assume µ = β = 0,
so that yt = t−1

i=0 ρ
iεt−i + ρt y0. Conditional on y0, we have

E[ yt ] = ρt y0 = ρ 1− ρ
T

1− ρ y0 = O(1).

Analogously, we find

E[ yt−1] = O(1), E[ (t/T )yt ] = O(1) and E[ (t/T )yt−1] = O(1).

Furthermore,

E[ y2t ] = E[ T
t=1(

t−1
i=0 ρ

iεt−i + ρt y0)2] = T
t=1(

t−1
i=0 ρ

2iσ 2 + ρ2t y20)

= T
t=1(

1− ρ2t
1− ρ2 σ

2 + ρ2t y20)

= σ 2
(1− ρ2)T − ρ2(1− ρ2T )

(1− ρ2)2 + ρ2 1− ρ
2T

1− ρ2 y
2
0 =

σ 2

(1− ρ2)T + O(1), (10)

so that

E[ y2t−1] =
σ 2

(1− ρ2)T + O(1) and E[ yt yt−1] = ρ σ 2

(1− ρ2)T + O(1).

Since only O(T )-terms contribute to the Bartlett correction, the contribution of y0 is negligible for

our purpose. Lastly, we can use the following two approximations

(t/T ) = 1
2
T + O(1) and (t/T )2 = 1

3T
+ O(1).
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The expectations of the second-order derivatives are given by (after replacing all subindices 4 by ρ

and omitting O(1)-terms):

λ11 = − 1
2σ 4 T, λ33 = − (1+ρ+ρ2)

3σ 2 T,

λ22 = − (1−ρ)2
σ 2

T, λρρ = − 1
(1−ρ2)T,

λ(23) = − (1−ρ2)
2σ 2 T .

The non-zero expectations of the third-order derivatives are given by (omitting O(1)-terms):

λ111 = 2
σ 6
T, λ(1ρρ) = 1

(1−ρ2)σ 2 T,

λ(122) = (1−ρ)2
σ 4

T, λ(22ρ) = 2(1−ρ)
σ 2

T,

λ(123) = (1−ρ2)
2σ 4 T, λ(23ρ) = ρ

σ 2
T,

λ(133) = (1+ρ+ρ2)
3σ 4 T, λ(33ρ) = − (1+2ρ)

3σ 2 T .
The non-zero expectations of the fourth-order derivatives are given by (omitting O(1)-terms):

λ1111 = − 9
σ 8
T, λ(122ρ) = − 2(1−ρ)

σ 4
T,

λ(1122) = − 2(1−ρ)2
σ 6

T, λ(123ρ) = − ρ
σ 4
T,

λ(1123) = − (1−ρ2)
σ 6

T, λ(22ρρ) = − 2
σ 2
T,

λ(1133) = − 2(1+ρ+ρ2)
3σ 6 T, λ(33ρρ) = − 2

3σ 2 T .

λ(11ρρ) = − 2
(1−ρ2)σ 4 T,

Using Mathematica to carry out the summation shown in (1) for k = 4 and k = 3 gives ξ 4 =
(47+ 25ρ)/(6(1− ρ)T ) and ξ 3 = 13/(3T ). Calculating 1+ ξ 4 − ξ 3 completes the proof. ¤

The Bartlett correction in the AR(1) model with intercept and trend has the same functional form

as in the model with only an intercept. As before, the factor is increasing in ρ and goes to infinity for

ρ ↑ 1. For ρ > −3/5, the correction factor in the model with trend is larger than the factor in the
model without a trend. Hence, for this range, the finite-sample problems in the model with trend are

expected to be more severe than in the model without trend.

5 SOME FURTHER RESULTS

In this section, we shall consider two issues that were brought up by a referee. First, we investigate

the effect of using the unconditional likelihood. Secondly, we shall consider some terms that are

asymptotically negligible but might be important in finite samples.
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Consider the stationary AR(1) model

y∗t = ρy∗t−1 + εt, |ρ| < 1, y∗0 ∼ N (0, σ 2/(1− ρ2)).

The (unconditional) log-likelihood is given by

L ∝ −1
2
log

σ 2

(1− ρ2) − (1− ρ
2)

2σ 2
(y∗0 )

2 − T
2
log(σ 2)− 1

2σ 2
y∗t − ρy∗t−1 2 ,

where the first two terms are due to y∗0 . The second-order derivatives L11, L(1ρ) and Lρρ are easy to

derive. In this model specification, we have the following exact results

E[ y∗t ] = E[ y∗t−1] = 0 and E[y∗0 ] = 0,

E[ (y∗t )
2] = E[ (y∗t−1)

2] = σ 2/(1− ρ2)T and E[ y∗t y
∗
t−1] = ρσ 2/(1− ρ2)T,

and the expectations of the derivatives under the stationary distribution are given by

λ11 = − 1
2σ 4

T + 1
2σ 4

= − 1
2σ 4

T + O(1), λ(1ρ) = 0,

λ(ρρ) = − 1
(1− ρ2)T −

1+ ρ2
(1− ρ2)2 = −

1
(1− ρ2)T + O(1).

Since only O(T )-terms contribute to the Bartlett correction, the expectations of the derivatives are the

same as in the previous section. This also holds for the higher-order derivatives and in the models with

deterministic components. Therefore, the Bartlett correction based on the unconditional likelihood is

the same as the one based on the conditional likelihood.

Next, we consider the pure AR(1) model with y0 = 0. Due to formula (10), we can write

E[ y2t ] =
σ 2

(1− ρ2)T − ρ
2 (1− ρ2T )
(1− ρ2)2 σ

2. (11)

Looking at these components from a local-to-unity perspective, i.e. ρ = 1 − γ /T , we have that
the first term, which is O(T 2), is just as large as the second term, which is also O(T 2). Note that

this second term was neglected in the analysis so far, which resulted in a constant Bartlett correction.

Using Lawley’s formula (1), together with the result stated in (11) and

E[ y2t−1] =
σ 2

(1− ρ2)T −
(1− ρ2T )
(1− ρ2)2 σ

2 and E[ yt yt−1] = ρE[ y2t−1],
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we find the following extended Bartlett correction for the pure AR(1) model

E[LR] ≈ 1+ 3
2T

+4ρ
2(1− 3ρ2)(1− ρ2T )2 − 2(1− ρ2)(1− ρ2T )(3ρ2(1− ρ2)− ρ2T (1+ 7ρ2))T

ρ2(1− ρ2T − (1− ρ2)T )3

−2(1− ρ
2)2(2ρ4T + ρ2T (3− ρ2)− ρ2(1− ρ2))T 2 − 4ρ2T (1− ρ2)3T 3

ρ2(1− ρ2T − (1− ρ2)T )3 . (12)

Looking at formula (12), the extended Bartlett correction now does depend on ρ. In fact, it remains

finite for ρ ↑ 1, since

lim
ρ↑1
E[LR] ≈ 1

18
26+ 8

T − 1 −
5
T

. (13)

Unfortunately, formula (13) overestimates the true expectation of the LR statistic in the unit root

model; see Nielsen (1997) for a more accurate approximation.

Figure 1 shows various corrections factors including the extended Bartlett correction. Further-

more, it shows the expectation of the LR statistics, i.e. E[LR], E[LRc] and E[LRτ ], approximated

by simulation and correction factors (based on simulations) that leads to LR statistics having a 5%

size. Note that the latter factors are not exact for other significant levels. In the pure AR(1) model,

the extended Bartlett correction as shown in (12) increases as |ρ| approaches 1, although it is clearly
larger than E[LR]. Furthermore, it seems that the simulated values of E[LR] are also too large for

|ρ| near to 1. In the AR(1) model with intercept (and also trend), there is only a significant different
value between the extended and non-extended Bartlett correction for values of ρ close to−1. Further-
more, the simulated values of E[LRc] (and E[LRτ ]) now deviate substantially from the adjustment

that leads to a correct size. This shows that the Bartlett approach based on the expectation of the LR

statistic is not very adequate in the model containing deterministic terms when ρ is close to 1. In these

models, inference based on the restricted likelihood seems promising; see Chen and Deo (2006).

We conclude by noting that the unconditional approach leads to still another extended Bartlett

correction for y0 /= 0, so then the correspondence between the two approaches is lost. Since the

unconditional approach uses more information, a comparison between the two is outside the scope of

this paper.

Insert Figure 1 about here.
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6 MONTE CARLO RESULTS

To assess the quality of the asymptotic expansions, a small simulation study has been carried out.

All the simulations were done on a PC using Gauss 6. Observations were generated according to

an AR(1) process. All reported results are based on 105 replications and two sample sizes were

considered: T ∈ {20, 80}. The AR(1) parameter was taken as ρ ∈ {−0.99,−0.98, ..., 0.99}. Since
the LR statistic is invariant with respect to σ (and µ in the model with intercept), we set σ = 1 (and
µ = 0) without loss of generality. In addition, β = 0 in the model with a trend. The starting value
was set to zero, i.e. y0 = 0. The simulations were also carried out for y0 ∼ N(0, 1/(1− ρ2)), which
did not change the results significantly. The nominal significance level was taken to be 5%. Results

remain qualitatively the same for the 1% and 10% level.

Figure 2 shows the rejection frequencies for the three AR(1) models considered in this paper. In

the pure AR(1) model, inference based on the uncorrected LR test and the χ2-distribution performs

reasonably well. Only when |ρ| is very close to 1, the rejection frequencies rise slightly above 6%.
Note that the rejection error rate seems to be an even function of ρ. Since the Bartlett correction does

not depend on ρ, the curve of rejection frequencies is shifted towards the nominal significance level

for |ρ| < 0.8. In line with Figure 1, inference based on simulated values of E[LR] as a correction
factor becomes conservative for |ρ| > 0.9.

Insert Figure 2 about here.

Next, consider the rejection frequencies when an intercept is added to the AR(1) model (middle

two graphs of Figure 2). As expected, the discrepancy between the rejection frequencies and the

nominal level is larger than in the model without intercept. Furthermore, the rejection error rate is

more pronounced for ρ close to +1 than for ρ close to −1. The Bartlett correction seems to work
well for ρ ∈ (−0.9, 0.7) when T = 20. For T = 80, the frequencies are only 1% different from

the nominal level if ρ ≤ 0.9. Since the Bartlett factor tends to infinity as ρ ↑ 1, the corrected test
becomes very conservative for values of ρ close to 1. The use of the simulated values of E[LRc]

leads to a slight improvement in comparison to the analytical Bartlett factor.

Lastly, we consider the results for the AR(1) model with intercept and trend (lower two graphs

of Figure 2). When T = 20, the ordinary LR test massively rejects the true null hypothesis for
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large positive values of ρ (its empirical size is higher than 20% for ρ > 0.7). The Bartlett-corrected

LR test, however, becomes very conservative for these parameter values. For T = 80, the rejection
frequencies are within 1 percentage point of the nominal significance level for ρ ≤ 0.8. Again,

adjusting using simulated values of E[LRτ ] leads to more accurate inference for value of ρ close to

1.

Overall, we conclude that the Bartlett correction works well within a reasonable range of the

parameter space. However, the ability to control the size depends on the deterministic terms included

in the estimation model.

7 CONCLUSION

In this paper, the Bartlett correction is derived for testing hypotheses about the autoregressive parame-

ter ρ in the stable AR(1) model with and without an intercept and linear trend. In case deterministic

components are present, it is found that the correction factor is asymmetric in ρ. Furthermore, the

Bartlett correction is monotonically increasing in ρ and tends to infinity when ρ approaches the sta-

bility boundary of +1. Hence, the Bartlett factor overcorrects for large positive values of ρ. At
least theoretically, the (first-order) Bartlett correction does not depend on the treatment of the starting

value.

The simulation results indicate that the Bartlett corrections are useful for controlling the size of

the LR statistic in the models considered. The empirical size is close to the nominal significance level

(only 1 percentage point deviation) for a large part of the parameter space, even though the range of

the parameter space critically depends upon the deterministic components in the estimation model.

Although useful, these Bartlett corrections are not the ultimate panacea for the finite-sample problems

that exists in autoregressive models.
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Figure 1: Various correction factors in the AR(1) model with possible intercept and trend. The

solid line is the Bartlett factor as shown in Theorem 1-3 of the paper. The gray line is the extended

approximation discussed in Section 5. The dotted line is based on simulation of E[LR] (top), E[LRc]

(middle) or E[LRτ ] (bottom) and the dashed line is based on a simulated correction factor that leads

to a LR test with 5% size.
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Figure 2: Rejection frequencies in the AR(1) model with possible intercept and trend. The dashed

gray line is based on the LR statistic and the asymptotic χ2-distribution, while the black line is based

on the Bartlett-corrected LR statistic using the adjustments shown in Theorem 1-3. The dotted line

uses the simulated value of E[LR] (top), E[LRc] (middle) or E[LRτ ] (bottom) as correction factor.
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