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Abstract

In probit and logit models, the β coefficients vary inversely with the variance
of the disturbances. The omission of a relevant orthogonal regressor leads
to increased unobserved heterogeneity, and this depresses the β coefficients
of the remaining regressors towards zero. For the probit model, Wooldridge
(2002) has shown that this bias does not carry over to the effect of these
regressors on the outcome. We find by simulations that this also holds for the
logit model, even when omitting a variable leads to severe misspecification of
the disturbance. More simulations show that logit analysis is quite insensitive
to pure misspecification of the disturbance as such.2 3

1 Introduction

The observed variation of an outcome Y may be related to any number
of covariates Xj. As a rule, some but not all of these determinants are
explicitly included in a statistical analysis, and the effect of the remainder is
relegated to a disturbance term which is treated as a random variable. With
cross-section data from a sample survey, the variation of the covariates is
determined by the sample design, and their observation by the manner of
data collection. Together, these determine the character of the disturbances.

In classic linear regression it is an important issue whether the missing co-
variates are correlated with the included explanatory variables or not. If they
are, the effect of included variables is confounded with that of the omitted
variables, and the estimates of the linear coefficients are biased as a result.
But in the special case that the omitted variables are orthogonal to the in-

1I have benefited from the comments of Jan Kiviet, Bill Greene and one of the editors
on an earlier draft of this paper.

2JEL Classification numbers: C13 C15 C25
3Keywords: discrete choice, unobserved hetereogeneity, misspecified disturbances
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cluded variables, no bias ensues, and their absence leads only to an increase
in the variance of the disturbance term which is of no particular concern.

No such comforting theorem exists for nonlinear models. In the study of
durations, for example, it is fully recognized that the variance of the distur-
bances (here usually denoted as unobserved heterogeneity) does affect the
model coefficients. For models of discrete choice, several authors like Lee
(1982, p.208), Ruud (1983, p.228) and Gourieroux (2000, p.33) have tried to
establish conditions that would render orthogonal omitted variables equally
harmless as in linear regression. But these attempts have been to no avail.
Indeed, Yatchew and Griliches (1985) (while mainly concerned with other
matters) demonstrated for the binary discrete choice model that omitting
orthogonal relevant variables does bias β towards zero, and this is gener-
ally accepted by practitioners in the field. Recently, the argument has been
carried a step further by Wooldridge (2002), who has shown for the probit
model that while β is affected by omitting orthogonal variables, the partial
effect of the regressors on the outcome is not.

Below, we shall first retrace the arguments of Yatchew and Griliches and
of Wooldridge. We then report simulations which extend Wooldridge’s result
to the logit model. This naturally raises the issue of misspecification of
the disturbances. We find that this is of little importance in the present
context, and also that logistic regression is insensitive to misspecification of
the disturbances as such.

2 The latent variable regression equation

We derive the logit (or probit) model from a latent variable regression equa-
tion

Y ∗
i = xT

i β∗ + ε∗i (1)

with the standard properties: the regressor vector xi (which always includes a
unit variable X0) represents known constants, ε∗i is a random disturbance that
is uncorrelated with the regressors, and β∗ is a vector of unknown parameters.
In an ordinary regression equation, the Y ∗

i are observed, and β∗ can be
estimated by Ordinary Least Squares. In a discrete model, the Y ∗

i are not
observed but constitute latent variables, and their sign determines the (0, 1)
indicator variable Yi that is observed, as in

Yi = 1 iff Y ∗
i > 0,

Yi = 0 otherwise.
(2)

For a symmetrical distribution function Fε of ε this gives

P (Yi = 1) = Fε(x
T
i β∗). (3)

2



Both in ordinary regression and in the discrete model identification of the
parameters calls for further assumptions about the disturbances ε∗i . In both
models, identification of the constant β∗

0 requires that their mean is specified;
it is invariably set at zero. In the discrete model, their variance σ∗2 must
be specified, too, since the inequality (2) is invariant to scaling of Y ∗

i , and
hence to scaling of ε∗i and of β∗, so that neither σ∗ nor β∗ are identified.
This indeterminacy is resolved by imposing a set value C on σ∗. Both sides
of (1) are then multiplied by C/σ∗, and it is replaced by

Y +
i = xT

i β + εi (4)

with

Y +
i = Y ∗

i

C

σ∗ , β = β∗ C

σ∗ , εi = ε∗i
C

σ∗ (5)

and
var(εi) = C2.

The observed Yi are now defined by the equivalent of (2)

Yi = 1 iff Y +
i > 0,

Yi = 0 otherwise.

In the probit model εi has a standard normal distribution and C equals 1;

in the logit model εi has a logistic distribution and C equals λ = π/
√

(3) ≈
1.81384. In either case the normalized parameters β that are estimated may
be regarded as derived or reduced form coefficients with respect to the original
β∗, and by (5) they then vary inversely with σ∗.

These identifying restrictions are a matter of convenience, not of convic-
tion. It is seldom argued that the zero mean of ε is a ’natural’ value5, or
that there are grounds for the standard normal distribution of ε of the probit
model. Nor do I know of a rational justification of the logistic distribution.
Identifying restrictions of this sort are intrinsically arbitrary, and they should
not materially affect the results of statistical analysis.

3 Omitting a variable: the effect on β

We trace the effect of omitting a relevant determinant from the analysis by
examining the removal of X2 from an equation with two independent regres-
sors X1 and X2. The orthogonality of the regressors makes this a special

4The difference between these values accounts for the difference of logit and probit
coefficients from the same data.

5For a counterexample see Greene (1990, p.147), not repeated in later editions of the
book.
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case, which brings out the difference between discrete models and classic lin-
ear regression. It is of course much more tractable than the general case of
correlated regressors; if needs be, the latter can be treated along the same
lines as in linear regression, but while this would complicate the argument
it would not alter its drift. We may add that the case of uncorrelated re-
gressors is not quite as unrealistic as it may seem: in cross-section microdata,
covariates are often only weakly correlated. Besides, the assumption that dis-
turbances are independent of the regressors is seldom contested, while they
are generally understood to reflect inter alia the effect of neglected covariates.

We start from the full equation with two orthognal regressors

Y ∗
i = β∗

0 + β∗
1X1i + β∗

2X2i + ε∗i . (6)

This satisfies all the standard requirements listed before: in particular ε∗i has
zero mean, variance σ∗2, and is uncorrelated with both regressors. In the
curtailed equation X2 is omitted, and its contribution to Y ∗

i relegated to the
disturbance term, as in

Y ∗
i = (β∗

0 + β∗
2X̄2) + β∗

1X1i + ε•i (7)

with
ε•i = ε∗i + β∗

2(X2i − X̄2). (8)

Since X2 is orthogonal to X1 this has all the required properties too. Upon
comparing (6) and (7), and ignoring the intercept (by common usage), we
find that the coefficient of X1 is the same, but that the disturbance variance
has increased from σ∗2 to

σ•2 = σ∗2 + β∗2
2 var(X2). (9)

This depresses the slope coefficients of the discrete model towards zero, for
instead of (5) we now have

β• = β∗ C

σ• . (10)

For the coefficient of the remaining regressor X1 of (7), the equations (5),
(10) and (9) give

β•
1

β1

=
σ∗

σ• = λ =
1√

1 + β2
2var(X2)/C2

(11)

or
β•

1 = λβ1. (12)

with λ < 1.
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This factor λ was called the rescaling factor by Yatchew and Griliches
(1985), who first put forward the above argument, and the attenuation bias
by Wooldridge (2002). The argument is easily generalized to more than two
regressors. It can be empirically verified by deleting successive regressors
from a large set (provided they are more or less orthogonal). At each stage
the full equation provides an estimate of β2 and hence, by (11), of λ. For an
example see Cramer (2003, section 5.5).

The addition of β2
2var(X2) to ε∗ in (8) also affects the distribution of

the disturbance. In the logit model, ε∗ of the full equation is assigned a
logistic distribution; by (8) X2 must have a very special sample distribution
indeed for εo of the curtailed equation to have a logistic distribution, too. In
practice, at least one of the two models is misspecified, and this may lead to
further systematic changes in the estimated coefficients. A similar argument
applies to probit models. Here, X2 must be normal for both equations to
have normal disturbances. Most people feel more comfortable with this, but
it is of course equally restrictive.

Leaving the misspecification issue aside, we conclude that even with or-
thogonal regressors omitted variables depress the remaining coefficients to-
wards zero, relatively to their value in the full equation. In other words, the
β̂ of discrete models vary inversely with the variance of the disturbance, or
with the extent of unobserved heterogeneity. This is somewhat disturbing,
even though it does not affect all practical conclusions from these models:
the relative sizes of the coefficients are preserved, and so is the ranking of
cases by estimated probabilities used in the selection of likely propects in
marketing and finance. But the β̂ are biased, and estimates from analyses
that differ in the size of the disturbance variance are not directly comparable.

4 The effect on derivatives

In an ordinary regression equation, β represents the partial derivatives of Y
in respect of the regressors, and hence their effect on the outcome. But in a
discrete model, this is not so. The derivative of P (Yi = 1) with respect to
some Xk, evaluated at the regressor vector x◦, follows from (3) as

δP (Yi = 1)

δXk

= fε(x
T
i β∗).

In a probit model, F is the standard normal model, and this derivative is

φ(x◦T β)βk (13)

with φ the normal density; for the logit model, it is

P ◦(1− P ◦)βk (14)
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with P ◦ = P (x◦T β) the logit probability. In these derivatives, the downward
movement of βk may be compensated by inverse changes in the other terms.
Wooldridge (2002, section 15.7.1) has shown for the probit model and a
normal distribution of X2 that this is indeed the case.

Wooldridge considers the average partial effect or APE of Xk on P at a
given point x◦. In the present case of an equation with two regressors, the
partial effect of X1 is the derivative (13) at (X◦

1 , X
◦
2 ). If the X2 are unknown

(as in the curtailed equation) we take the average or expected value of the
derivative over the distribution of X2, and this is the APE. For the probit
model, this gives (in present notation)

APEp = EX2 [β1 φ(X◦
1β1 + X2β2)] .

If X2 follows a normal distribution with zero mean and variance τ 2, this
expectation is

APEp =
∫

X2

1√
2π

exp−1/2(β1X1 + β2X2)
2 1

τ
√

2π
exp−1/2

(
β2X2

τ

)2

dX2.

This is analytically tractable; the exponents can be rearranged, the square
completed, and the expectation established. Making use of

λ =
1√

1 + β2
2τ

2

from (11), it is found that

APEp = λ β1 φ(X◦
1λβ1)

or, by (12),
APEp = β•

1 φ(X◦
i β•

i )

i.e. APE is equal to the partial derivative given by the curtailed equation.
Estimates of the partial derivative from this equation are therefore not sub-
ject to attenuation bias.

A similar intuitive argument applies to the derivative of the logit model
of (14), for as β moves towards zero, P goes towards .5 and P (1−P ) towards
its maximum value of .25, and this will counteract the downward bias of β.
If we write the average partial effect at a given X◦

1 for the logit, we have

APEl = EX2 β1 P ◦(1− P ◦),

where P ◦ is the logit probability with argument β1X
◦
1 + β2X2. If this is

written in full as an integral, with a normal distribution of X2, as before, it
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does not seem to offer the same scope for an analytical solution as the logit
did. It cannot be excluded that there is some other smart distribution of X2

than the normal which does permit an elegant solution, but this is as yet
unknown. Here a number of simulations have been performed in order to
find out how the logit case works out in practice.

These simulations bear on a simple two-variable regression equation like
(6) with β∗

0 = 0, β∗
1 = β∗

2 = 1, or

Y +
i = X1i + X2i + ε∗i . (15)

The disturbance ε∗i is a logistic variate with mean zero and standard deviation
1.8138 or variance 3.29, so that no further normalization is necessary and
β = β∗. The two regressors Xi and X2 are independent normal variates
with mean zero and variance also equal to 3.29. The three components thus
contribute equally to the variation of Y +

i ; in the full equation the systematic
component is two-thirds of the total, and in the curtailed equation it is one
third. By (11) the rescaling factor is .70. Apart from the scaling of regressors
and coeffients, which is matter of convenience, this design is an analogue of
the probit case treated by Wooldridge, and it is also reasonably similar to
the sample data of marketing research and finance.

We generate a sample of 3, 000 observations of the three right-hand vari-
ables of (15), and set

Yi = 1 iff Y +
i > 0,

Yi = 0 otherwise,

as in (12). By the values that have been adopted the sample frequency of
Yi = 1 will be close to .5. The β of (15) - with true β (0, 1, 1) - are estimated in
the usual Maximum Likelihood manner, and this is repeated for the curtailed
equation with X1 alone. In addition to the estimates of β1 we also calculate
the means of the derivative (14) over all observations of the original sample,
both for the full and for the curtailed equation. This is the average sample
effect or ASE

ASE =
1

n

∑
P̂i(1− P̂i)β̂1.

It is a sample mean, not an expectation, and it does not refer to a single
fixed X◦

1 ; but otherwise it is quite similar to Wooldridge’s APE. It is the
partial derivative of the expected sample frequency with respect to a shift in
all X1i.
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We illustrate the results of these calculations by the follIowing example.

full curtailed ratio
equation equation

β̂1 .96 .67 .69
s.d. (.04) (.03)

ASE1 .12 .13 1.05

Upon the removal of X2, β̂1 declines in line with the rescaling factor of .70,
but ASE1 is hardly affected. This is the result of changes in P̂i. As β̂2 is set
at zero and β̂1 is reduced, the sample P̂i move towards .5. In the present case,
this is their mean, so that their dispersion is reduced; their standard deviation
declines from .35 for the full equation to .17 for the curtailed equation. As a
result, the P̂i(1− P̂i) increase, and this compensates ASE for the reduction
of β̂1. At the same time,the values of P̂i for Yi = 1 and of 1 − P̂i for Yi = 0
are reduced: the loglikelihood declines from −1198.58 for the full equation
to −1747.86 for the curtailed equation. - The interesting point is however
not so much how these mechanisms work, but that they compensate ASE1

so well.
In Table 1 we report the mean and standard deviation of the estimates

for 100 replications of this simulation. These confirm the main result: while
β1 is biased by the rescaling factor, in most cases the derivative ASE1 is
not. Subsidiary findings are that the estimates from the curtailed equation
do not have a greater dispersion than those from the full equation, as one
might expect. And then the reduction in β̂1 is somewhat larger than the
rescaling factor of .70. This difference of −.036 is slight but significant. We
attribute the further reduction of the β̂1 by a factor .664/.700 = .95 to the
misspecification of the disturbance in the curtailed equation, where a normal
variate has been added to the original logistic term.
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TABLE 1
Mean and standard deviation of estimates in
100 replications, normal distribution of X2

Full Curtailed Ratio
equation equation

β̂1:
mean 1.000 .664 .665
s. d. .044 .028 .024

ASE1:
mean .129 .129 1.001
s. d. .003 .004 .022

This issue is further explored in Table 2, which reports experiments with
various other distributions of X2. In all cases X2 is scaled to have zero
mean and variance 3.29, so that the rescaling factor is always .70; the .50/.50
binary dummy, for example, takes the values −1.81, +1.81, each for half of
the observations. The distributions differ in their kurtosis, and sometimes in
their skewness.

The original disturbances of the full equation have a logistic distribu-
tion, which is symmetrical, with rather fat tails: the kurtosis is 1.2. First we
consider four symmetrical distributions. The normal distribution of Table 1
has kurtosis zero, and this gave a misspecification effect of .664/.70 = .95.
The alternative of the first line of Table 2 is to give X2 a logistic distri-
bution with the higher kurtosis, too6. This gives a misspecification effect of
.679/.700 = .97. The opposite case of slim tails arises if we make X2 a binary
.50/.50 dummy: this has kurtosis −2. This turns out to be a severe misspeci-
fication, with major effects. The downward misspecification bias increases to
.606/.700 = .87; moreover ASE1 of the full equation differs from the values
for the other specifications. But even so it is not affected by omitting X2.

6Note that the sum of two logistic variates does not have a logistic distribution.
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TABLE 2
Mean and standard deviation of estimates in 100 replications,

various distributions of X2

Distribution Full Curtailed Ratio
of X2 equation equation

Logistic:
β̂1 1.001 .680 .679

.041 .031 .021

ASE1 .131 .131 .999
.003 .004 .025

Binary Dummy:
β̂1 1.002 .606 .605

.044 .026 .023

ASE1 .121 .121 1.000
.003 .003 .028

t(6):
β̂1 1.006 .687 .683

.038 .036 .022

ASE1 .132 .131 .999
.003 .004 .022

Lognormal:
β̂1 1.005 .695 .691

.046 .027 .027

ASE1 .132 .132 1.000
.005 .003 .023

Skew Dummy:
β̂1 .997 .677 .679

.040 .031 .022

ASE1 .130 .130 .996
.003 .004 .023

If a (much) lower kurtosis means a larger reduction, one might expect an
opposite effect for a higher kurtosis, like the t distribution with 6 degrees of
freedom, with kurtosis 3. But in fact it does not produce an upward bias:
the misspecification effect remains at .687/.700 = .98. - The performance
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of the last two distributions, which are skewed, is no different. For the
lognormal, with skewness 1.32 and kurtosis 3.18, the misspecification effect
is .692/.700 = .99, and for the skew dummy with proportions (.20, .80) with
skewness −1.50 and kurtosis .25 it is .679/.700 = .97.

The overall conclusion is that the attenuation bias affects β̂1 but not
ASE1. As for the misspecification effects, with one exception (the binary
dummy) they are slight, no more than a few percent, even though they may
well be significant.

5 Pure misspecification of the disturbance

So far we have added various X2 to the logistic disturbances of the initial
full equation, and found only minor misspecification effects. This suggests
that logit analysis may well be insensitive to any misspecification of the
distribution of the disturbances.

TABLE 3
Mean and standard deviation of β̂1 of the full equation in

100 replications, for various distributions of the disturbance.

Distribution Skewness Kurtosis β̂1 s.e.β̂1 ASE1

of disturbance

Logistic 0 1.2 1.005 .042 .128
.046 .002 .004

Normal 0 0 .956 .040 .126
.038 .001 .004

Binary Dummy 0 -2 .835 .036 .121
.032 .001 .004

t(6) 0 3 1.028 .042 .130
.041 .001 .003

Lognormal 1.3 3.2 1.036 .043 .130
.036 .001 .003

Skew Dummy -1.5 0.3 1.005 .042 .129
.041 .001 .009

This robustness is confirmed by simulations of the full equation (15). This
is a simple latent variable equation with two independent normal regressors
with β (1, 1). Both regressors and the disturbances have been scaled to
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have zero mean and variance 3.29, so that the systematic part accounts for
two-thirds of the variation of Y +

i . Table 3 shows the results for β̂1, for its
estimated standard error and for ASE1; the results for β̂2 are of course almost
identical.

The first line of Table 3 refers to the reference case or correct specification,
and the second to a normal distribution that is not very much different. Yet
the normal induces a significant reduction of β̂1, since the difference of the
mean from the true value of 1 is .044 and the standard deviation of the
mean is .0038. The binary dummy that follows is an extreme case, leading
to a substantial decline of β̂1. But, as before, the other extreme of the t(6)
distribution gives only a slight bias (even though it is significant) and the
same holds for the lognormal. The effect of the skew dummy is even not
significant. The effects on the standard errors of the estimate (derived from
a misspecified model) are quite modest; they are in line with the standard
deviations of the estimates over the replications.

Apart from one case (the .50/.50 dummy), the misspecification effect on
β̂1 is no more than a few percent. While this may well be significant, it is a
quite acceptable defect for most empirical work. One expects that the stark
misspecifications of the disturbances that we have considered will be brought
to light by the proper statistical tests, but in the end they do not greatly
matter for the substantive results of applied work.

With a downward misspecification bias, the same compensating mech-
anism as before mitigates the effect on ASE1, though not as perfectly as
earlier.

6 Concluding Remarks

In probit and logit analysis, omitting a variable will bias β̂ of the remaining
regressors towards zero. For the probit model, Wooldridge (2002) has proved
that this bias does not carry over to the partial effect of the remaining regres-
sors, or the derivatives of the outcome in their respect. For the logit model,
simulations confirm that it shares this property of the probit, as is so often
the case. And while omitting a variable always implies misspecification of
the disturbance, the additional effect of this on the β̂, while significant, is
generally slight, of the order of a few percent or so. The same holds for pure
misspecification of the disturbances, outside the context of omitted variables.

In field work, we never know how the disturbances are actually dis-
tributed; although the necessary assymptions may be put to the test, such
statistical tests are rarely employed in empirical work. The present findings
suggest that this is not an important issue. The blatant misspecifications of
the disturbances that we have introduced in the last section should surely
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be significant by any proper test, yet their effects are so slight that they are
of little consequence for the substantive results. As an empirical tool, logis-
tic regression is quite robust with respect to deviations of the disturbance
distribution from the model.
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