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Abstract

Finite sample distributions of studentized inequality measures differ sub-
stantially from their asymptotic normal distribution in terms of location and
skewness. We study these aspects formally by deriving the second order ex-
pansion of the first and third cumulant of the studentized inequality measure.
We state distribution-free expressions for the bias and skewness coefficients.
In the second part we improve over first-order theory by deriving Edgeworth
expansions and normalizing transforms. These are designed to eliminate the
second order term in the distributional expansion of the studentized transform.
The resulting finite sample distributions are shown to be much closer to the
Gaussian limit distribution than the distributions of the studentized inequality
measure.
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1 Introduction

Most attention in the statistical literature on inequality measures has focused on
the asymptotic properties of their estimators (see e.g. Cowell, 1989, Thistle, 1990,
Davidson and Duclos, 1997). Their finite sample properties have rarely been consid-
ered. Exceptions are, for instance, Mills and Zandvakili (1997) and Biewen (2001)
who investigate bootstrap inference, and Maasoumi and Theil (1979) who develop
small-sigma approximations. We consider finite sample properties of Generalized En-
tropy (GE) indices of inequality, which constitute a leading class of inequality indices
since it is the only class that simultaneously satisfies the key properties of anonymity
and scale independence, and the principles of transfer, decomposability, and popula-
tion (see e.g. Maasoumi 1999 or Cowell 2000). Studies of industrial concentration,
or income studies after decomposition into population subgroups, or cross country
comparisons based on macro data, can easily yield samples of the sizes considered
here.
Even for relatively large samples we show that standard first order theory provides

poor guidance for actual behavior. The distribution of the studentized inequality mea-
sure differs substantially from the Gaussian limit in terms of location and skewness.
We study the bias (average deviation from zero) and skewness formally in the first
part of this paper by deriving the second order expansions of the first three cumu-
lants. We refer to the resulting coefficients of n−1/2 as bias and skewness coefficients.
This is the first key contribution of this paper. Moreover, the bias and skewness coef-
ficients can be estimated non-parametrically using sample moments without affecting
the order of the approximation. In all applications considered below, it is shown that
the bias and skewness coefficients times n−1/2 are substantial compared to the limit
values of zero.
Having analyzed these departures from normality of the finite sample distribution

of the studentized inequality index, we turn to potential corrections in the second
part of the paper. These corrections are based on considering the second order term
in the distributional expansion, which is a function of the bias and skewness coeffi-
cient derived in the first part of the paper. We consider two approaches. Edgeworth
expansions directly adjust the asymptotic approximation by including the O

¡
n−1/2

¢
term, whereas normalizing transformations of the inequality measure are nonlinear
transformations designed to annihilate this term asymptotically. Edgeworth expan-
sions can suffer from negativity of the density and oscillations in the tails and we
show that this is indeed a problem for standardized inequality measures.
The focus of the second part of the paper is therefore on normalizing transforms.

The second key contribution of this paper is the derivation of normalizing trans-
forms for GE inequality measures. First, we show that the skewness coefficient of a
standardized non-linear transform of the inequality measure is zero if the transform
satisfies a crucial differential equation. We further derive the bias coefficient of this
transform, so that we obtain a bias-corrected transform which yields the desired as-
ymptotic refinement. Second, we use this general result to compute the normalizing
transform for various income distributions and sensitivity parameters of the inequal-
ity index, and study their finite sample distributions. We show that these are indeed
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closer to the Gaussian limit distribution.
The organization of this paper is as follows. Section 2 states the class of inequality

measures, considers estimation, and states the first order (Normal) approximation.
The quality of this Normal approximation in finite samples is studied via simulations
in Section 3. We consider quantiles of the actual density of the studentized inequality
index, and we illustrate the consequences of the departure from normality for infer-
ence. In Section 4 we study the problems of bias and skewness formally by deriving
the bias and skewness coefficients. These enable us to give the Edgeworth expansion
for the GE indices. We proceed to study bias and skewness coefficients for specific
income distributions and sensitivity parameters of the inequality index. The behavior
of the Edgeworth expansion is illustrated and we derive the normalizing transforms in
Section 5, and study their behavior. Section 6 concludes and the proofs are collected
in the Appendix.

2 Generalized Entropy Indices of Inequality

We consider the popular and leading class of inequality indices, the GE indices. These
are of particular interest because it is the only class of inequality measures that
simultaneously satisfies the key properties of anonymity and scale independence, the
principles of transfer and decomposability, and the population principle. For an
extensive discussion of the properties of the GE index see Cowell (1977, 1980, 2000).
The class of indices is defined for any real α by

I(α;F )
=



1
α2−α

h
µα(F )
µ1(F )

α − 1
i

for α 6= {0, 1}

− R log( x
µ1(F )

) dF (x) for α = 0R
x

µ1(F )
log( x

µ1(F )
) dF (x) for α = 1

(1)

where α is a sensitivity parameter, F is the income distribution, and µα(F ) =R
xαdF (x) is the moment functional, and we will assume incomes to be positive.

The index is continuous in α. The larger the parameter α, the larger is the sensi-
tivity of the inequality index to the upper tail of the income distribution. It is not
monotonic in α, however.
GE indices constitute a large class which nests some popular inequality measures

popular as special cases. If α = 2 the index is known as the (Hirschman-)Herfindahl
index and equals half the coefficient of variation squared. Herfindahl’s index plays
an important role as measure of concentration in industrial organization and merger
decisions (see e.g. Hart, 1971). In empirical work on income distributions this value
of α is considered large. Two other popular inequality measures are the so-called
Theil indices, which are the limiting cases α = 0 and α = 1 (Theil, 1967). Finally,
the Atkinson (1970) index is ordinally equivalent to the GE index.
Although the index is defined for any real value of α, in practice only values

between 0 and 2 are used and we confine our examination to this range. The limiting
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cases 0 and 1 are treated implicitly below since all key quantities are continuous in
α.

2.1 Estimation and Normal Approximations

In empirical work the inequality measure I needs to be estimated from a sample
of incomes denoted Xi, i = 1, . . . , n. We follow standard practice and assume that
incomes are independently and identically distributed with distribution F and are
positive. The measure I is a functional, mapping income distributions into scalars.
The commonly used estimator simply uses the empirical distribution function (EDF)bF (x) = n−1

P
i 1(−∞,x) (Xi) , where 1(−∞,x] (.) denotes the indicator function on the

open interval smaller than or equal to x,

bI = I( bF ).
Since I is a function of moments, the EDF-estimator is also referred to in the literature
as the method of moments estimator. It is standard practice to obtain the asymptotic
variance σ2 = aV ar(n1/2(bI − I)) by the delta method, yielding

σ2 =
1

(α2 − α)2
1

µ2α+21

£
µ21µ2α + α2µ2αµ2 − 2αµαµ1µα+1 − (1− α)2 µ2αµ

2
1

¤
,

and to estimate it by an EDF-based estimator, denoted bσ2.
Inference about the population value I is then based on the studentized measure,

defined as

S = n1/2

ÃbI − Ibσ
!
. (2)

By standard central limit arguments, S has a distribution that converges asymptot-
ically to the Gaussian distribution (see, inter alia, Cowell, 1989, or Thistle, 1990).
Denoting the Gaussian distribution and density by Φ and φ respectively, then using
order notation, we have

Pr (S ≤ x) = Φ (x) +O
¡
n−1/2

¢
. (3)

Standard, first order, inference methods only use the first term Φ (x) in this ap-
proximation. In the next section we examine in experiments how well Pr (S ≤ x) is
approximated by Φ (x) in finite samples. In the light of our negative findings, we will
then consider the O

¡
n−1/2

¢
term explicitly.

3 Quality of the Normal Approximation

In this section we investigate how well the Normal approximation of Pr (S ≤ x) per-
forms in realistic settings for samples of varying sizes and income distributions that
we will now describe.

4



3.1 Income Distributions

The experiments are based on three parametric income distributions which are reg-
ularly used to fit real real-world income data: the Gamma, the Lognormal, and
the Singh-Maddala distribution. We use the common shorthand notation G (r, λ),
LN(µ, v1/2), and SM (a, b, c) to refer to them. Generalized Entropy indices are scale
invariant, and thus independent of the scale parameters λ, µ, and a for theG, LN, and
SM distributions respectively. For notational convenience, we suppress the irrelevant
scale parameters.
McDonald (1984) has shown that these three distributions are special cases of the

Generalized Beta distribution of the second kind (GB2), whose density is given by

f (x; a, b, c, d) =
bxbd−1

abdB (c, d)
h
1 + (x/a)b

id+c ,

where B (·, ·) denotes the Beta function. In particular, SM has density f (x; a, b, c, 1),
G has density limc→∞ f

¡
x; cλ−1, 1, c, r

¢
, and LN is a special case involving c → ∞

and b → 0. All three distributions are skewed to the right, but differ in other ways,
such as their tail behavior. Schluter and Trede (2002), for instance, show that the
right tail of the generalized beta distribution can be written as 1 − F (x; a, b, c, d) =
g1x

−bc ¡1 + g2x
−b +O

¡
x−2b

¢¢
for some constants g1 and g2 and x large. It follows

that SM has a heavy right tail which decays like a power function (with right tail
index equal to bc). G and LN decay exponentially fast. The left tail of GB2 can be
written as F (x, a, b, c, d) = g3x

bd
¡
1 + g4x

b +O
¡
x2b
¢¢
for some constants g3 and g4

and x small. The moments of the distributions are stated in McDonald (1984).
The population inequality index specializes for the different income distributions

to:

Gamma : I(α; r) = (α2 − α)
−1
[r−αΓ(α+ r)/Γ(r)− 1] ,

Lognormal: I(α; v) = (α2 − α)
−1 £

exp
¡
1
2
v(α− 1)α¢− 1¤ ,

Singh-Maddala: I(α; b, c) = (α2 − α)
−1 c−(α−1)B (1 + α/b, c− α/b)

B (1 + 1/b, c− 1/b)α − 1 , bc > α.

We focus on these three income distributions not only because they are quite
different, but more importantly because they are regularly used to fit actual real-
world income data.
For instance, Brachmann et al. (1996) estimate the distributional parameters on

German income data for the 1980s and early 1990s. ForG they report point estimates
r ∈ [3.4, 4], for LN v ∈ [0.28, 0.31], and for SM b ∈ [2.7, 2.9] and c ∈ [1.6, 2.1]. Singh
and Maddala (1976) report point estimates of b ∈ [1.9, 2.1], c ∈ [2.5, 3] for US income
data from the 1960s. For US income data from the 1970s McDonald (1984) reports
r = 2.3, v ∈ [0.48, 0.51], b ∈ [2.9, 3.76] and c ∈ [1.8, 2.9]. For the Lognormal Kloek and
van Dijk (1978) find v ∈ [0.21, 0.54] for different groups of income earners using 1973
Dutch data. Across these studies, we have r ∈ [2.3, 4], v ∈ [0.28, 0.54], b ∈ [1.9, 3.76],
and c ∈ [1.6, 3]. Throughout this paper, we use parameter values in similar ranges.
For example, we use r = 3, ν = 0.1 and 0.49, b = 3.5 and 2.7 and c = 1.7 and 3.
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For further recent examples see Bandourian et al. (2003) who fit these income
distribution models for a large number of countries, including the USA, Canada,
Taiwan and most European countries for the period 1969-1997.

3.2 Quantiles and Confidence Levels for Studentized Inequal-
ity Indices

In the first experiment, we simulate the quantiles of the finite sample distribution
Pr (S ≤ x) and compare these to the Gaussian quantiles. We find substantial bias
and skewness. In order to assess the consequences of the departure from normality,
we turn to inferential procedures in the second experiment, and examine the extent
to which the actual finite sample behavior of standard confidence intervals deviates
from its nominal behavior.
In the first experiment we focus on two tail quantiles (0.025, 0.975) because of

their role in inferential procedures, and three middle quantiles (0.25, 0.5, 0.75). We
simulate these quantiles of I for the each income distribution, different sample sizes,
and also vary the sensitivity parameter α of the inequality index in the range [0, 2].
The top panel of Figure 1 depicts the results. The Gaussian limit values are indicated
on the right axes.
From the figure we can observe the following. First, the discrepancy between

actual and Gaussian quantiles varies substantially across the distributions. It is the
smallest for the Gamma case, and the worst for the Lognormal case. Second, the
performance worsens across all income distributions as α increases. This is to be
expected, since as α increases, the moments entering S and the expected finite sample
bias increases. Third, across the five depicted quantiles, the extreme 0.025 quantile
exhibits the largest deviation from the corresponding Gaussian quantile. All empirical
quantiles lie below the corresponding Gaussian quantiles. This suggests that the
actual distribution is biased, skewed to the left, and that the skewness increases in
α. We focus extensively on this skewness in the next section. Fourth, the deviations
decrease naturally as sample size increases, but the improvements are slow. The worst
performer is the lower extreme quantile, relative to corresponding Gaussian quantile.
Hence skewness is persistent even in fairly large samples.
In order to illustrate the consequences for inference of this substantial departure

we have also examined the actual coverage behavior of standard confidence intervals
derived from approximation (3). Setting x = Φ−1 (p), yields the standard one-sided
confidence interval for I with lower confidence bound bI−bσn−1/2Φ−1 (p), and the usual
nominal p× 100% symmetric confidence intervals are given by

bI − bσ√
n
Φ−1

µ
1 + p

2

¶
≤ I ≤ bI − bσ√

n
Φ−1

µ
1− p

2

¶
.

Note that the asymptotic coverage rate for one-sided confidence intervals is Pr(S ≤
Φ−1 (p)) = p+O

¡
n−1/2

¢
, and for symmetric confidence intervals, based on a standard

symmetry argument, equals p+O (n−1).
The lower panel of Figure 1 depicts the actual coverage errors of symmetric two-

sided confidence intervals for samples from the three income distributions of sizes 100,
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Figure 1: Quantiles and Coverage errors. Notes: The top panel depicts selected
quantiles of the actual finite sample distributions, as a function of the sensitivity
parameter α of the inequality measure. The ticks on the right axis are the Gaussian
limit values. The solid line refers to samples of size 100, the dashed lined to sizes
250, and the dotted line to sizes 500. The bottom panel depicts the actual coverage
errors of the standard two sided symmetric confidence intervals (CIs). The solid line
refers to CIs with nominal 5%, the broken line to CIs with nominal 10% coverage
errors. The sample sizes are again 100, 250, and 500. The distributions are G (3, .),
LN(., 0.49), SM (., 2.9, 1.9). All simulations are based on R = 106 replications.

7



250, and 500 as α varies. The solid line refers to confidence intervals with nominal
coverage errors of 5%, the broken line to nominal rates of 10%. We see that the actual
error rates can be much larger than the nominal ones and the discrepancy increases
with increasing α.
Performance also varies substantially across income distributions. For clarity,

Table 1 shows explicit coverage error values for α = 2. The worst performance here is
for the Lognormal case where, for a sample size of 100, the coverage failure is almost
5 times larger than the nominal 5%. The best results obtain in the Gamma case, but
even there the coverage rates are two times the nominal 5% when n = 100.

n = 50 100 250 500

G (3, ·) 12.8 10.0 7.6 6.3
LN(·; 0.49) 30.5 24.5 18.1 14.7
SM(·, 2.9, 1.9) 21.4 17.8 14.2 12.3

Table 1: Actual coverage failure in percent of nominal 95% symmetric first order
confidence intervals for the GE index with α = 2. Based on 100,000 replications.

Changing parameter values of the income distribution does change the absolute
and relative performance, however. Keeping α = 2, and n = 100, we found from sim-
ulations not reported in this paper, that the performance improves in the Lognormal
case as σ2 decreases (although for σ2 = 0.25 coverage failure is still 15.7%), worsens in
the Singh-Maddala case as b and c decrease, (e.g. when they are decreased to b = 2.8
and c = 1.7, coverage failure worsens to 22.6%), and does not change very much in
the Gamma case as r varies over the range 2.3 to 4, with coverage rates from 10.3%
to 9.3% respectively. See Garderen and Schluter (2003) for further results and also
Biewen (2001). The results in the next section help to understand these empirical
findings.

4 Cumulants and Edgeworth Expansions

The simulation study in the previous section has shown that the Normal approxima-
tion suffers from substantial bias and skewness problems. In this section we study
bias and skewness formally by considering expansions to second order of the first and
third cumulant (assuming they exist) of the studentized inequality measures S. These
expansions are given by

KS,1 = n−1/2k1,2 +O
¡
n−3/2

¢
, (4)

KS,3 = n−1/2k3,1 +O
¡
n−3/2

¢
.

The expansion of the second cumulant is KS,2 = 1 +O(n−1).1 A key contribution of
our paper is the derivation of the bias and skewness coefficients k1,2 and k3,1 for the

1Due to the studentization of S, KS,3/K
3/2
S,2 = n−1/2k3,1+O

¡
n−1

¢
, and k3,1 is therefore also the

coefficient of skewness.
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examined inequality indices. These coefficients are the critical factors in the second
order terms in the expansion of the cumulant generating function of S,

1

2
t2 + n−1/2

·
t k1,2 +

1

6
t3k3,1

¸
+O

¡
n−1

¢
,

and the Edgeworth expansion

Pr(S ≤ x) = Φ(x)− n−1/2
µ
k1,2 +

1

6
k3,1(x

2 − 1)
¶
φ(x) +O(n−1). (5)

See e.g. Hall (1992) for an extensive discussion of Edgeworth expansions, who ob-
serves, for instance, that the right hand side of equation (5) does not necessarily
converge as an infinite series. Regularity conditions for the validity of the expansion
are also stated in Hall (1992, Section 2.4). The GE index is a smooth function of the
moments with continuous third derivatives and µ1 > 0 since we assume incomes to be
positive. This implies that Theorem 2.2 in Hall (1992) applies and hence we require
that the income distribution for X satisfies the moment conditions E (X3) <∞ and
E (X3α) < ∞ and that X has a proper density function (implying that Cramér’s
condition is satisfied). Note that these moment conditions restrict the admissible
parameter values for the Singh-Maddala distribution (bc > max(3, 3α)).
Normal approximations only consider the first order term, i.e. 1

2
t2 or Φ(x), so the

higher order term indicates deviation from normality. The coefficients k1,2 and k3,1
can also be used to predict when first order inference will be poor. In Section 5 they
are used in the derivation and construction of the normalizing transform.
We first state explicitly the bias and skewness coefficients as a function of the

sensitivity parameter α of the inequality measures nonparametrically, and proceed to
study their behavior for the income distributions considered in Section 3.

4.1 Bias and Skewness Coefficients for the Studentized In-
equality Measures

Proposition 1. Assuming the expectations E (X3) and E (X3α) exist, then the bias
and skewness coefficients for the studentized inequality measures are given by

k1,2 =

µ
B−1/2M2 − 1

2
B−3/2M5

¶
· ¡1− 2 · 1(0,1) (α)¢ ,

k3,1 = B−3/2 (M4 + 6M1M3 − 3M5) ·
¡
1− 2 · 1(0,1) (α)

¢
,
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where 1(0,1) is the indicator function on the interval (0, 1) and

B = µ21µ2α + α2µ2αµ2 − 2αµαµ1µα+1 − (1− α)2 µ2αµ
2
1,

M1 = µ1µα+1 − µ21µα − αµαµ2 + αµαµ
2
1,

M2 = µα+1 − µ1µα −
1

2
α (α+ 1)

µα
µ1

¡
µ2 − µ21

¢
,

M3 = µ1
¡
µ2α − µ2α

¢− 1
2
α (α+ 1)µα

¡
µα+1 − µ1µα

¢− αµαM2,

M4 = µ31
¡
µ3a − 3µ2αµα + 2µ3α

¢
−3αµαµ21

¡
µ2α+1 − µ2αµ1 − 2µα+1µα + 2µ2αµ1

¢
+3 (αµα)

2 µ1
¡
µα+2 − 2µα+1µ1 + 2µαµ21 − µαµ2

¢
− (αµα)3

¡
µ3 − 3µ2µ1 + 2µ31

¢
,

M5 = 2
¡
µ21µ2α +

¡
α2 − α

¢
µ1µαµα+1 − α3µ2µ

2
α + (α− 1) (1− α)2 µ21µ

2
α

¢ ¡
µα+1 − µ1µα

¢
+α2µ1µ

2
α

¡
µα+2 − µ2µα

¢
+2µ1

¡
α2µαµ2 − αµ1µα+1 − (1− α)2 µ21µα

¢ ¡
µ2α − µ2α

¢
+2α2µ1µ

2
α

¡
µα+2 − µ1µα+1

¢− 2αµ21µα ¡µ2α+1 − µa+1µα
¢

−αµ21µα
¡
µ2α+1 − µ1µ2α

¢
+ µ31 (µ3α − µαµ2α)

−2αµα
¡
µ1µ2α − αµαµα+1 − (1− α)2 µ1µ

2
α

¢ ¡
µ2 − µ21

¢
−α3µ3α (µ3 − µ1µ2) ,

and µα is the α-th moment of the income distribution F .2

All moments µα exist under the regularity assumptions we made for the existence
of the Edgeworth expansion above.
Appendix B presents simulation support for the expressions in the proposition.
The second order Edgeworth expansion for the studentized inequality index is

given by (5) with k1,2 and k3,1 given in Proposition 1. Bias and skewness coefficients
can be estimated non-parametrically by the sample analogues of the formulas in
Proposition 1 (we refer to these estimators by bk1,2 and bk3,1). Moreover, such estimation
does not affect the order of the approximation of the Edgeworth expansion since the
estimators are

√
n-consistent.

4.2 Examples

The bias and skewness coefficients are functions of the sensitivity parameter α of the
inequality index and the relevant parameters of the income distribution. We proceed
to examine the behavior of the coefficients for the income distributions studied in
Section 3, the Gamma, Lognormal, and Singh-Maddala distributions.

2The R and Mathematica computer code for these expressions are available from the authors
upon request.
The interpretation of the individual contributions is made plain in the derivation contained in

Appendix A.1.
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Figure 2 depicts the contour plots of k1,2 and k3,1. The coefficients share important
features across all three income distributions. (i) All bias and skewness coefficients
are negative (ii) except for small values of α, bias and skewness increase in magnitude
as α increases (iii) bias and skewness decrease with r in the Gamma case and with b in
the Singh-Maddala case (holding c constant and chosen so that all relevant moments
exist), and they increase with sd = v1/2 in the Lognormal case. (iv) the numeric values
of the coefficients are of quantitative importance, as dividing them by the square root
of the sample sizes considered in Section 3 yields values which are large relative to the
Gaussian limit values of zero. The correction in the Edgeworth expansion is large and
is this often regarded as a negative indication of the reliability of the approximation.
Despite the rather lengthy expressions for the coefficients, it is possible to simplify

these considerably in some special cases.
As a first example, consider the Gamma case with α = 2 fixed and r varying. In

terms of the contour plot of 3, this is the top-most horizontal section. We have

k1,2 = − 3√
2

r + 3p
r (r + 1)

and k3,1 = − 8√
2

r + 4p
r (r + 1)

. (6)

Consistent with observation (iii) above, these decrease in magnitude as r increases.
For the case of fixing r = 3 and varying α instead, we have

k3,1 = − 2√
3

¡− ¡α2 + 3¢Γ2 (3 + α) + 6Γ (3 + 2α)
¢−3/2 × (7)

(Γ3 (3 + α)
¡
18α2 + α3 + 3α4 + 18

¢
+ 36Γ (3 + 3α)

−18Γ (3 + 2α)Γ (3 + α)
¡
2α2 + 3

¢
)× ¡1− 2 · 1(0,1) (α)¢ .

Consistent with (ii) skewness increases in magnitude for α > 0.5. Obviously, (6) and
(7) coincide for α = 2 and r = 3.
As another example consider the skewness coefficient in the Lognormal case with

sd = v1/2 and α = 2 fixed. We have

k3,1 =
¡
4ev − 4e2v + e4v − 1¢−3/2 ×¡−2e12v + 12e8v + 12e6v − 48e5v − 36e4v + 136e3v − 96e2v + 24ev − 2¢ .

Consistent with (iii) that skewness increases in magnitude with sd.

4.3 Edgeworth density

The Edgeworth expansion follows immediately from the derived coefficients, and the
implied second order expansion of the density is (1+n−1/2x[1

6
k3,1 (x

2 − 3)+k1,2])φ (x).
For instance, in the Gamma case with α = 2 fixed and r varying, using (6), we

have

pdf(x) = φ (x)

"
1− n−1/2x

√
2

6
p
r (r + 1)

¡
4x2 (4 + r)− 3r − 21¢#+O

¡
n−1

¢
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Figure 2: Bias and skewness coefficients k1,2 and k3,1 as functions of relevant parame-
ters of the income distributions, and of the sensitivity parameter α of the inequality
index.

12



-4 -2 2 4

0.1

0.2

0.3

0.4

Actual Density of S
Edgeworth , theory
Edgeworth , empirical

Figure 3: Density estimates. Notes: The income distribution is G(3,.), the sensitivity
parameter of the inequality index is α=2, and the sample size is n =100. The solid
line depicts the simulated density of S, the first dashed line (− · ·−) depicts the
Edgeworth density based on the theoretical k1,2 and k3,1, and the second dashed line
(− ·−) is the Edgeworth density based on the estimated k1,2 and k3,1. Kernel density
estimates based on 105 replications.

Figure 3 depicts two versions of this Edgeworth density for the case r = 3 and n =
100, one with the theoretical coefficients, and one empirical version. This empirical
version can be thought of as the mean Edgeworth expansions when averaged over
simulation iterations. By the linearity of the density functions in terms of the k1,2 and
k3,1, this simply equals the Edgeworth density evaluated at the averaged estimates of
k1,2 and k3,1. The graph also shows the simulated density of the studentized inequality
index.
Both approximations are an improvement over the Normal approximation in that

they capture the skewness of the distribution. Several features are noteworthy, how-
ever. First, the Edgeworth density is not guaranteed to be positive and we see that
the right hand tail actually goes negative, although less so for the empirical than for
the theoretical Edgeworth approximation. Second, the right tail of the theoretical
Edgeworth density decays too quickly. As r decreases, we know from the contour
plots that both bias and skewness increase, and the actual density departs further
from the Gaussian density.
For r = 0.6, not shown in Figure 3, the Edgeworth density exhibits the third

problematic feature more clearly: oscillations in the tails of the approximation. This
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problem of oscillation, which is also present for the other income distributions studied
here, is well known (see e.g. Niki and Konishi, 1986), and motivates the search for a
normalizing transform.

5 Normalizing Transforms

Rather than directly adjusting the asymptotic approximation for S by including the
O
¡
n−1/2

¢
term in the approximating density, normalizing transformations of the in-

equality measure are designed to annihilate this term asymptotically. The resulting
distribution of the studentized transformed and bias corrected inequality measure
then satisfies Φ(x)+O(n−1), so that, compared to (3) or (5), the order of the approx-
imation has improved.
In our derivations of the required refinement we essentially follow an approach

proposed in Niki and Konishi (1986). See also Marsh (2004) for a multivariate exten-
sion. However, there are four important differences. First, we standardize using the
empirical quantities, whereas Niki and Konishi use theoretical versions. Second, we
deal explicitly with the open issue highlighted by Niki and Konishi (1986, p.377) that
the cumulants depend on the true quantity I being estimated. Third, we deal with the
complication that income distributions and the inequality measure I often depends
on more than one parameter, as in the case of the Singh-Maddala distribution. This
implies that I is not an invertible mapping of the parameters and as a consequence
a whole family of solutions exist. One can choose any member of this family and
we show what difference this choice makes. Finally, only in the simplest of cases can
we find an analytic solution as in Niki and Konishi (1986) or our Gamma example
with α = 2 below. In general we need numerical techniques, which we develop and
implement.
We investigate the properties of the transformations and derive the associated

bias and skewness coefficients. The skewness coefficient is zero if the transform is the
solution to the key differential equation given below. We then derive the solutions to
this differential equation for different inequality measures and income distributions.
We will leave the dependence of σ, k1,2, and k3,1 and other quantities on α and the

income distribution and its parameters implicit for notational simplicity throughout
this section.

5.1 Transformations

Let t denote a transformation of the inequality measure I with continuous first and
second derivatives t0 and t00, satisfying t0(bI) 6= 0. The standardized transform defined
by

T = n1/2
t(bI)− t(I)bσt0(bI) , (8)

will also be asymptotically Normal, but its cumulants will have changed and depend
on the nonlinear transformation t. We want to relate the cumulants of T to the
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cumulants of S and determine T such that the third cumulant vanishes. In order to
do so, we first state the basic relation between S and T in the following lemma.

Lemma 2.
T = S − 1

2

t00 (I)
t0 (I)

n−1/2σS2 +Op

¡
n−1

¢
(9)

Assuming that the distribution of T also admits a valid Edgeworth expansion, it
will be of the form

Pr(T ≤ x) = Φ(x)− n−1/2
µ
λ1,2 +

1

6
λ3,1(x

2 − 1)
¶
φ(x) +O(n−1), (10)

where λ1,2 and λ3,1 are the coefficients for n−1/2 of the first and third cumulant of T
respectively. The cumulants of T are naturally related to the cumulants of S since t
is a smooth function of I. The next lemma states this relationship.

Lemma 3.

λ1,2 = k1,2 − 1
2
σ
t00 (I)
t0 (I)

, (11)

λ3,1 = −3σt
00 (I)− k3,1t

0 (I)
t0 (I)

. (12)

Our results differ form those stated in Niki and Konishi (1986) because our de-
finition of the standardized transform (8) has bσt0(bI) in the denominator instead of
σt0(I) used by Niki and Konishi. The consequence of this is that in expression (9)
the second term on the right has a coefficient of -1. Finally, the differences between
λ1,2 and λ3,1 of Lemma 3, and the results of Niki and Konishi are the negative signs
of the second right hand terms. This again is a result of σt0(I) being estimated.
The normalizing transform we seek is a function t that reduces the skewness of T

to zero up to second order. It follows from equation (12) that the skewness term λ3,1
is reduced to zero if the transform t satisfies the differential equation

3σt00 (I)− k3,1t
0 (I) = 0, (13)

or, assuming t0 (I) 6= 0,
t00 (I)
t0 (I)

=
1

3

k3,1
σ

.

The formal solution to the differential equation is

t (I) =

Z
exp

µZ
1

3

k3,1
σ

dI

¶
dI.

The asymptotic refinement we seek is found by solving the differential equation
(13), and making a subsequent direct bias correction based on (11). Note that the
differential equation is invariant to affine transformations.
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Proposition 4. If the transform t satisfies the differential equation (13), then

Pr
¡
T − n−1/2λ1,2 ≤ x

¢
= Φ(x) +O(n−1). (14)

The availability of the refinement in practice depends on whether the differential
equation (13) can be solved for particular inequality measures and income distrib-
utions. The bias correction can be applied using the

√
n-consistent estimator bλ1,2

based on the EDF, giving rise to the following result.

Corollary 5. Pr
³
T − n−1/2bλ1,2 ≤ x

´
= Φ(x) +O(n−1).

5.2 Transforms for Inequality Measures

We turn to deriving the normalizing transforms for the three distributional cases dis-
cussed above. The relative simplicity of the Gamma case yields an explicit analytical
solution. Typically, however, the transform is computed using numerical techniques
which we develop and implement below. We then provide a systematic discussion of
the properties of the transforms across income distributions and sensitivity parame-
ters.

5.2.1 The Gamma Distribution

Assume that incomes follow the Gamma distribution G (r, .), and consider the case
of varying r and α fixed at 2. The formulas for k1,2 and k3,1 specialize to expression
(6), and using the fact that I (2) = (2r)−1, the differential equation (13) yields

t00 (I)
t0 (I)

= −4
3

1

I

1 + 8I

1 + 2I
.

Integration yields the exact solution

t (I) = −3I−1/3 + 140
81
21/3 ln

¡
I1/3 + 2−1/3

¢
(15)

−70
81
21/3 ln

¡
I2/3 − I1/32−1/3 + 2−2/3

¢− 140
81
31/221/3 arctan 3−1/2

¡
24/3I1/3 − 1¢

−118
27

I2/3

1 + 2I
− 16
9

I2/3

(1 + 2I)2
− 2
3

I2/3

(1 + 2I)3
.

The transformation for this particular case is depicted in the second panel of Figure
4 together with the transformations for other values of the sensitivity parameter α,
and other income distributions. We discuss this figure below. We also discuss the
distribution of the transformed statistic following Figure 6 below.

5.2.2 Numerical Solutions

In general we cannot obtain analytic solutions. The Gamma example with α = 2 is
special for two reasons. First, because the simple form of the differential equation,
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and second because there is a simple invertible relation between the inequality index
and the parameters of the distribution. This relation is no longer trivial when α 6= 2,
and in general there is no analytically tractable relation for other distributions. It is
possible however to obtain a numerical inverse and to solve the differential equation
(13) numerically. This involves three steps:

1. Using the general formulas for the cumulants k1,2, k3,1, and σ2 we can use
the theoretical moments from a specific income distributions to express the
cumulants k1,2, k3,1, and σ2 in terms of parameters from the income distribution.

2. We express the cumulants in terms of I. This requires the inverse of I which
we calculate numerically. The inverse can be determined if I depends on one
parameter only. This obviously holds for one parameter families, but also for
the Log-Normal and Gamma distributions, because I is scale invariant. This
invariance property is inherited by the cumulants, so that k1,2 and k3,1 depend
only on the shape parameter and we can express them as functions of I.
For other distributions we can choose a one dimensional path for the parameters
such that I becomes an invertible function. This can be achieved by imposing
the correct number of restrictions (d − 1, if I depends on d income parame-
ters), or by making the d income distribution parameters a function of only
one parameter. In our Singh-Maddala distribution we show what difference the
restriction makes by first holding b fixed, such that I is an invertible function
of c only, and then holding c fixed.

3. We solve the differential equation (13) numerically. This solution is then avail-
able for use in practice and simulations.3

The solutions depend, in general, on the sensitivity parameter α, which is a fixed
known constant, and the true underlying distribution. If I depends on more than
one parameter of the income distribution, then the solution will furthermore de-
pend on the chosen restriction, or parametrization. This applies, for instance, to the
Singh-Maddala distribution, and we compare the two solutions associated with the
restriction that b is fixed (such that the inequality measure I is a function of c only),
and that c is fixed.
Since no analytical solutions are available in general, we display the transforms

graphically in Figures 4 and 5. Figure 4 shows the transforms for different values of the
sensitivity parameter α and, in each panel, we consider a different income distribution.
In Figure 5 we compare the transforms across income distributions when α is fixed
at 2. In order to relate the curvature of the transforms to the untransformed case,
we have also depicted the 45-degree lines, which represents the identity transforms.
The figures have been generated by setting the initial conditions of the differential
equation such that the solutions cross the horizontal axis at the same point at an
angle of 45 degrees. Consequently, if no transformation was required, the solution
would coincide with this 45 degree line. For the Singh-Maddala income distribution,

3The Mathematica code is available from the authors upon request.
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we display the solutions for the two restrictions separately. Finally, for the Gamma
case with α = 2, we cannot visually distinguish the numerical solution from the exact
solution given by Equation (15).
Consider Figure 4 first. We see that for all the distributions the transforms change

substantially as we vary α. The transform for a = 2 is the one most curved in all four
cases. This implies that α = 2 requires, informally speaking, the biggest amount of
transformation to obtain a standard Normal distribution. Recall from the previous
simulations that α = 2 is the most troublesome case. For α = 0, the least amount of
adaptation is required in the Lognormal and Singh-Maddala cases, whereas for the
Gamma case, α = 0.5 is slightly flatter than α = 0. The behaviour of the transform
is therefore not monotonic in α. For the Singh-Maddala distribution we see quite a
difference between the case where we hold b constant and where we hold c fixed. This
is related to the fact that I, and the gradient of I with respect to b change much faster
than with respect to c. This has a further consequence that the domain of definition
of the numerical transform is much broader for c fixed than for b fixed. This can be
seen from the graph e.g. for α = 2 the numerical transform is only calculated for I
between approximately 0.055 and 0.095 for b fixed and between 0.03 and 0.28 for c
fixed.
Next, we compare the transforms in Figure 5 across income distributions when

α = 2. One might have hoped that the normalizing transforms were similar, so that a
"consensus" transform could be applied by practitioners across income distributions.
The figure shows, however, that this is not the case: the transforms vary substantially
between income distributions and there is no single transform that is appropriate for
this variety of cases.
The transforms, which we derive as numerical objects in Mathematica, can be

used in simulations to show that the transformed statistics are distributed closer to
a standard Normal distribution. We examine the extent to which this transform
achieves skewness reduction in samples of size n = 100. We simulate the densities of
the studentized inequality measure S, and the studentized bias corrected transform
T based on Corollary 5. The top panel in Figure 6 considers the Gamma case for
which we derived an exact solution for the transform in Equation (15). The actual
finite sample density of S departs substantially from the limiting density (the same
distributional case has been depicted in Figure 3). In particular, the density is skewed
to the left, and biased. The transform succeeds in reducing substantially the skewness,
and the bias correction shifts the density to the right. The resulting density is much
closer to the Gaussian density.
Figure 6 also shows the resulting distribution for the Lognormal and Singh-

Maddala cases which require the application of our numerical solutions.
The graph shows that the distribution of T is indeed closer to a standard Normal

distribution than that of S, with the exception of the transform based on the Singh-
Maddala distribution holding b fixed. The transforms seem to overcompensate the
skewness as the distribution of T is now skewed to the right.
When constructing 95% confidence intervals using the standard Normal critical

values, the transformed statistic gives coverage rates much closer to the nominal one
than the simple standardized statistic S. For the Gamma case the coverage failure
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Figure 4: Transforms for different distributions and αs. Notes: On the horizontal
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Maddala case at the bottom requires a restriction and b = 3.5 is chosen in the left
hand panel and c = 3.5 in the right hand panel.
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rate based on S is 10.0% and based on T it is 5.3%. For the Lognormal case these
rates are 10.6% and 5.8% respectively and for the Singh-Maddala case they are 8.9%
and 7.5% when holding c fixed.
These similar gains are not unexpected since the cumulants are fairly close for the

three cases with k1,2 = −3.67,−4.32,−4.60 and k3,1 = −11.4,−14.1,−15.8 for the
Gamma, Lognormal and Singh-Maddala cases respectively.
The choice of restriction used to establish an invertible relation between the index

and parameters is not innocuous, however, since holding b fixed instead of c leads to
a coverage that is far worse with 19% coverage failure (of which 2% points are caused
by the fact that Î falls outside the domain of definition of the numerical transform).
This implies that care needs to be taken with this choice. One option would be to
use a path in the parameter space for which the change in the index I is maximized.
This requires a further solution to a differential equation, which is not difficult, but
would complicate the exposition. The path holding c fixed is closer to this direction
than holding b fixed. The optimal direction is (0.97,0.23) when b = 3.5 and c = 3.0
and (0.99,0.16) when b = 3.5 and c = 3.5, hence close to holding c fixed and little
gain is therefore expected from determining the optimal restriction.

6 Conclusions

The finite sample distribution of the studentized inequality measure is not located
at zero and is substantially skewed. In the first part of the paper we have derived
general nonparametric bias and skewness coefficients based on cumulant expansions.
Edgeworth expansions directly adjust the asymptotic approximation by including the
O
¡
n−1/2

¢
term, a function of the bias and skewness coefficients. In contrast, normal-

izing transformations of the inequality measure are designed to annihilate this term
asymptotically. The observed problems for the Edgeworth expansion of negativity of
the density and tail oscillation have led us to derive and construct the normalizing
transforms in the second part of this paper. We have shown that the finite sample
distributions of these transforms are much closer to the Gaussian distribution. How-
ever, we show that the transforms of the inequality measure vary with the sensitivity
parameter and between income distributions. This implies that there is no universal
transform that works well across all cases.
Although this paper is a second order investigation into the problems associated

with GE inequality indices, we have shown that the nonlinear transform can also
be used to improve inference. For standard symmetric two-sided 95% confidence
intervals using the standard Normal critical values, the transformed statistic gives
coverage rates much closer to the nominal one than the simple standardized statistic
S. The construction of good finite sample confidence intervals across various income
distributions is the subject of current work.
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A Proofs

We first prove lemmas 2, 3, and Proposition 4 and postpone the proof of Proposition
1 until Section A.1.
Proof of Lemma 2.
Expand T (bI) about I to second order and use the definition of S to obtain

n1/2bσ t(bI)− t (I)

t0
³bI´ = S − 1

2

t00 (I)
t0 (I)

n−1/2σ̂S2 +O

µ°°°Î − I
°°°2¶ ,

Now using the fact that σ̂ and Î are
√
n consistent estimators the result follows.

Proof of Lemma 3.
Taking expectations of (9) using E (S) = n−1/2k1,2+O

¡
n−3/2

¢
, and E (S2) = 1+

O (n−1) leads to

λ1,2 = k1,2 − 1
2

t00 (I)
t0 (I)

σ.

Also E (T 2) = 1 +O (n−1). We have

T 3 = S3 − 3
2

t00 (I)
t0 (I)

n−1/2σS4 +Op

¡
n−1

¢
.

Taking expectations, noting that E (S4) = 3 +Op

¡
n−1/2

¢
, yields

E
¡
T 3
¢
= E

¡
S3
¢− 9

2

t00 (I)
t0 (I)

n−1/2σ +O
¡
n−1

¢
,

with E (S3) = n−1/2 [k3,1 + 3k1,2]. Therefore E(T 3) − 3E(T 2)E(T ) + 2 (E(T ))3 =
n−1/2λ3,1 +O (n−1) with

λ3,1 = k3,1 − 3t
00 (I)
t0 (I)

σ.

Proof of Proposition 4.
Note that λ3,1 = 0 by construction. Considering the Edgeworth expansion Equa-

tion (10) for T at x+n−1/2λ1,2, expanding it about x and collecting terms of the same
order yields the stated result.

A.1 Proof of Proposition 1

Proposition 1 is derived in several steps. First, we derive an asymptotic expansions of
the studentized inequality measure S. As a compact notation, we use Sq to denote a
term of an expansion of S which is of order in probability n−q. The desired stochastic
expansion of S is of the form

S = S0 + S1/2 +Op

¡
n−1

¢
. (16)

We determine the terms S0 and S1/2. We then derive the bias and skewness coefficients
k1,2 and k3,1 by considering expectations of powers of S. We only consider the case
|α| > 1 explicitly. For |α| < 1, the coefficients of the expansions need to be multiplied
by −1 since α (α− 1) < 0 but (α2 (α− 1)2)1/2 > 0.
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A.1.1 The Stochastic Expansion of S

Recall our notation for population and sample moments, µα(F ) =
R
yαdF (y) and

mα = µα( bF ). The basic technique in the derivation is to center and expand sam-
ple moments. For instance, we have m−α

1 = (µ1 + n−1
P
(Xi − µ1))

−α
= µ−α1 −

αµ−α−11 (n−1
P
(Xi − µ1)) + Op (n

−1). For this technique it is convenient to define
the following stochastic quantities:

Y1 = (X − µ1) , (17)

Y2 = µ1 (X
α − µα)− αµα (X − µ1) ,

Y3 = (X
α − µα)− α (α+ 1)µαµ

−1
1 (X − µ1) /2,

Y4 = 2
¡
µ1µ2α − αµαµα+1 − (1− α)2 µ1µ

2
α

¢
(X − µ1)

+ α2µ2α
¡
X2 − µ2

¢
+ 2

¡
α2µαµ2 − αµ1µα+1 − (1− α)2 µ21µα

¢
(Xα − µα)

− 2αµ1µα
¡
Xα+1 − µα+1

¢
+ µ21

¡
X2α − µ2α

¢
.

with specific elements for observation i written like Y1,i = (Xi − µ1), etc.

We derive the stochastic expansion of S = n1/2
³bI − I

´
/bσ in four steps.

First, write out the numerator

n1/2(bI − I) = n1/2
£
α2 − α

¤−1
µ−α1 m−α

1 [µα1mα − µαm
α
1 ] .

Second, consider the asymptotic variance by applying the delta-method

σ2 = aV ar(n1/2(bI − I)) =
1

(α2 − α)2
1

µ2α+21

B0,

with
B0 =

£
α2µ2αµ2 − 2αµ1µαµα+1 + µ21µ2α − (1− α)2 µ21µ

2
α

¤
. (18)

The variance is estimated by using the corresponding sample moments. Denote the
estimate of B0 by bB0. Then combining the results from steps 1 and 2 yields

S = n1/2 bB−1/20

£
mαm1 − µ−α1 µαm

α+1
1

¤
.

Third, consider the expansion bB0 = B0 +B1/2 +Op (n
−1). We have

bB−1/2 =
£
B0 +B1/2 +Op

¡
n−1

¢¤−1/2
,

= B
−1/2
0 − 1

2
B
−3/2
0 B1/2 +Op

¡
n−1

¢
.

The term B1/2 is derived by centering and collecting terms of the same order. It then
follows that B1/2 = [n−1

P
i Y4,i]
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Fourth, consider the term
£
mαm1 − µ−α1 µαm

α+1
1

¤
by expanding the functions of

the sample moments. Putting everything together and collecting terms of the same
order, it follows that S = S0 + S1/2 +Op (n

−1) with

S0 = n1/2B
−1/2
0

h
n−1

X
Y2,i
i
, (19)

S1/2 = n1/2B
−1/2
0

"
n−1

X
i

Y1,i

#"
n−1

X
j

Y3,j

#

−n1/21
2
B
−3/2
0

"
n−1

X
i

Y2,i

#"
n−1

X
k

Y4,k

#
.

A.1.2 The Asymptotic Bias Term k1,2

Taking expectations of the individual terms of (16) immediately yields, because of
centering, E(S0) = 0, and E(S1/2) = n−1/2(B−1/2E(Y1Y3)− 0.5B−3/2E (Y2Y4)). Since
E (S) = n−1/2k1,2 +O (n−1) it follows immediately that

k1,2 = B
−1/2
0 E(Y1Y3)− 1

2
B
−3/2
0 E (Y2Y4) , (20)

with E(Y1Y3) =M2 and E (Y2Y4) =M5 stated explicitly in Proposition 1.

A.1.3 The Asymptotic Skewness Term k3,1

In order to derive the asymptotic skewness term, we first need to obtain an expansion
of the third moment of S. We take expectations of

S3 =
¡
S0 + S1/2 +Op

¡
n−1

¢¢3
= S30 + 3S

2
0S1/2 +Op

¡
n−1

¢
.

by considering the constituent parts separately.

1. E
¡
S20S1/2

¢
= n3/2B

−3/2
0 E

³
n−4

P
i

P
j

P
k

P
l Y2,iY2,jY1,kY3,l

´
+

−0.5n3/2B−5/20 ×E
³
n−4

P
i

P
j

P
k

P
l Y2,iY2,jY2,kY4,l

´
.

Since we are only interested in the O
¡
n−1/2

¢
term, we conclude that

E
¡
S20S1/2

¢
= n−1/2B−3/20 ×·

E
¡
Y 2
2

¢
E (Y1Y3) + 2E (Y1Y2)E (Y2Y3)− 3

2
E (Y2Y4)

¸
+O

¡
n−1

¢
,

after noting that E (Y 2
2 ) = B0.

2. Consider S30 = n3/2B
−3/2
0 n−3 (

P
Y2,i)

3. Hence E(S30) = n−1/2B−3/20 E(Y 3
2 ) +

O (n−1) .
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In summary

E(S3) = n−1/2B−3/2 × (21)µ
E(Y 3

2 ) + 3

·
E (Y2Y2)E (Y1Y3) + 2E (Y1Y2)E (Y2Y3)− 3

2
E (Y2Y4)

¸¶
+O

¡
n−1

¢
.

Finally, since K = n−1/2k31 + O
¡
n−3/2

¢
, and K3 = E (S3) − 3E (S2)E (S) +

2 (E (S))3, using E (S2) = 1 +O (n−1), (20) and (21) we conclude that

k3,1 = B
−3/2
0

£
E(Y 3

2 ) + 6E (Y1Y2)E (Y2Y3)− 3E (Y2Y4)
¤
, (22)

where E(Y 3
2 ) = M4, E (Y1Y2) = M1, and E (Y2Y3) = M3 are stated explicitly in

Proposition 1.

B Simulation Evidence for k1,2 and k3,1

This section provides a comparison of the population bias and skewness coefficients
k1,2 and k3,1 as defined in Proposition 1 and simulated k-statistics. The experiments
are designed as follows. We draw R independent samples of size n from income
distribution F and index the iteration by subscript r with r = 1, 2, ..., R. The resulting
studentized inequality measure is denoted Sr.
The scaled k-statistics are defined as follows. Consider the first cumulant of S for

which we have K1 = n−1/2k1,2 +O
¡
n−3/2

¢
or

k1,2 = n1/2K1 +O
¡
n−1

¢
.

The cumulant K1 is simulated using the k-statistic bK1 = R−1
P

r Sr with bK1 =
K1 +Op

¡
R−1/2

¢
. Therefore

ksim1,2 ≡ n1/2 bK1,

= k1,2 +O
¡
n−1

¢
+Op

¡
n1/2R−1/2

¢
.

Similarly

ksim3,1 ≡ n1/2 bK3,

= k3,1 +O
¡
n−1

¢
+Op

¡
n1/2R−1/2

¢
,

where bK3 = rR−1
P

r (Sr −R−1
P

r Sr)
3 with correction factor

r = R2/[(R− 1) (R− 2)]→ 1 which ensures unbiasedness of this k-statistic.
Figure 7 depicts both k1,2 and ksim1,2 , and k3,1 and k

sim
3,1 as functions of the sensitivity

parameter α of the inequality measure for the Singh-Maddala SM(.,3.5, 3.5) income
distribution. The simulated values are based on n=103 and R=106 replications. The
simulated values are in good agreement with the theoretical values. We have repeated
these experiment for various income distributions and arrive at similar conclusions.
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Figure 7: Theoretical bias and skewness coefficients and simulated k-statistics for
the SM(.,3.5,3.5) income distribution. Notes: The solid lines depict the population
coefficients k1,2 and k3,1 as a function of α. The dashed lines are the simulated k-
statistics with n = 1000 and R = 106 repetitions.
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