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SUMMARY We compare and investigate Neyman’s smooth test, its components, and the
Kolmogorov-Smirnov (KS) goodness-of-fit test for testing uniformity of multivariate forecast
densities. Simulations indicate that the KS test lacks power when the forecast distributions
are misspecified, especially for correlated sequences of random variables. Neyman’s smooth test
and its components work well in samples of size typically available, although there sometimes are
size distortions. The components provide directed diagnosis regarding the kind of departure from
the null. For illustration, the tests are applied to forecasts densities obtained from a bivariate
threshold model fitted to high-frequency financial data.
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1 Introduction

Standard forecast evaluation criteria, like the root mean squared forecast error, condense the

relative forecast performance at all horizons down to a single number. By contrast, a more

complete characterization of the degree of uncertainty can be obtained by reporting interval

forecasts and density forecasts; see, e.g., Clements (2005, Ch. 5) for a good introduction. This

applies to both time series and cross section data. The focus in this paper is on evaluating

multivariate forecast densities, and in particular on testing the hypothesis that the conditional

multivariate forecast density depicts the true conditional forecast density. The following frame-

work addresses this testing problem for bivariate time series data. For cross section data an

analogous framework holds.

Suppose, for ease of exposition, that we have a series of L 1—step ahead forecasts of a

bivariate time series Zt = (Z1,t, Z2,t)
0. Let pt(Z1,t, Z2,t|Ωt−1) (t = 1, . . . , L) denote the joint

forecast density, where the set Ωt−1 refers to the past history of (Z1,t, Z2,t). Further, suppose

this density can be factorized into the product of the conditional (c) density and the marginal (m)

density as, e.g., pt(Z1,t, Z2,t|Ωt−1) = pct(Z1,t|Z2,t,Ωt−1)×pmt (Z2,t|Ωt−1). Each element (Z1,t, Z2,t)
can be transformed by its corresponding probability integral transformation (PIT) to give

U c
1|2,t =

Z Zc
1|2,t+1

−∞
pct(u|Z2,t,Ωt−1)du, Um

2,t =

Z Zm
2,t+1

−∞
pmt (u|Ωt−1)du, (t = 1, . . . , L), (1)

where Zc
1|2,t+1 and Zm

2,t+1 are respectively the conditional and marginal 1—step ahead forecasts.

Under the null (H0) that the model forecast density corresponds to the true forecast density,

given by the data generating process (DGP) which is denoted by ft(Z1,t, Z2,t|Ωt−1), that is
pt(Z1,t, Z2,t|Ωt−1) = ft(Z1,t, Z2,t|Ωt−1), the two sequences of random variables {U c

1|2,t} and {Um
2,t}

(t = 1, . . . , L) will each be i.i.d. U(0, 1) distributed (Rosenblatt, 1952). Moreover, the two

sequences of PITs will themselves be independent.

Various approaches can be used to assess whether a particular sequence of PITs, say {Ut}Lt=1,
is i.i.d. U(0, 1). Diebold et al. (1998) checked uniformity and serial independence of the Ut’s

graphically via the histogram and the sample correlogram. They also advocated the use of the

Kolmogorov-Smirnov (KS) goodness-of-fit test as a more formal way of testing the uniformity

part. However, it is well-known that the power of the KS statistic is rather low; see, e.g.,

Stephens (1974). Alternative tests for i.i.d. uniformity, which are often equal in power to the

KS statistic, are for instance the Crámer-von Mises test and the Kuiper test.

The above methods are sometimes referred to as omnibus tests, i.e. they are sensitive to

almost all alternatives to the null. In the present context, this property implies that when an
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omnibus test fails to reject the H0, we can conclude that there is not enough evidence that the

time series is not generated from the joint forecasting density. On the other hand, a rejection

would not provide any information about the form of the density. Test statistics that can be

decomposed into interpretable components may be a solution. Such a test is Neyman’s (1937)

smooth test for testing uniformity. The test can be viewed as a compromise between omnibus

tests and tests whose power is focused in the direction of a specific alternative. Successive

components of the smooth test can be directly related to changes in mean, variance, skewness,

and kurtosis (Section 2). Surveys of the works on Neyman’s smooth test are provided by Rayner

& Best (1989) and Bera & Ghosh (2001). Interestingly, in reviewing several goodness-of-fit tests,

Rayner & Best (1990) concluded, ”Don’t use those other methods — use a smooth test!”.

In this paper we adopt Neyman’s smooth test to assess departures from the H0 with respect

to specific features of the multivariate forecast distribution function, like their location, scale and

skewness. We compare and investigate the size and power of Neyman smooth test, its compo-

nents, and the KS test under a number of distributional assumptions for the DGP (Subsections

3.1—3.3). We also consider the properties of the tests in the presence of misspecified time series

correlation structure of a bivariate VAR model, using PITs of 1— and 2—step ahead forecast error

densities from estimated univariate AR models; Subsection 3.4. In Section 4 we apply the tests

to forecasts densities obtained from a bivariate threshold model fitted to minute returns of S&P

500 index futures and prices. Section 5 concludes.

Because we are interested in misspecification in one of the first four moments, rather than

the i.i.d. property, we do not consider the Berkowitz (2001) test. Also, in the simulations and

the empirical example, we ignore the impact of various forms of model misspecification on the

outcomes of the test statistics.

2 Neyman’s smooth test

Suppose X1, . . . ,Xn are n independent observations on a random variable X with unknown

distribution function F (x). Let f(x) denote the associated probability density function (pdf).

To test whether the pdf of X is a uniform density function in the interval [0, 1], Neyman (1937)

postulated the (smooth) alternative hypothesis that the pdf of the Xi is given by

C(θ) exp
n kX

i=1

θihi(x)
o
, (k = 1, . . . , n− 1),
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where θ = (θ1, . . . , θk) is a vector of k real parameters, the functions hi(·) are the first normalized
Legendre polynomials on [0, 1] of order i, θi are free parameters, and C(·) is a normalization func-
tion that ensures the pdf integrates to one. Using the multiparameter version of the generalized

Neyman-Pearson lemma, the smooth test statistic is given by

Ψ2k =
kX
i=1

u2i with ui =
1√
n

nX
j=1

hi(yj), (2)

where yj = F (xj) =
R xj
0 f(u)du (j = 1, . . . , n). Under H∗

0 : θ = 0, Ψ2k is asymptotically χ2k

distributed, and under H∗
1 : at least one θi 6= 0, the test statistic follows a non-central χ2k

distribution with non-centrality parameter λ =
Pk

i=1 θ
2
i .

Many generalizations of Neyman’s smooth test for uniformity have been proposed in the

literature, including testing for different alternatives using different orthonormal polynomials;

see, e.g., Rayner & Best (1989, 1990). One advantage of introducing the orthonormal Legen-

dre functions is that the asymptotic null distribution of Ψ2k turns out to be simple. Another

advantage is that the components u2i are easily interpretable. To see this in more detail,

consider the following recursive relation for Legendre polynomials Pi(z) (i ≥ 2) on [−1, 1]:
(i+ 1)Pi+1(z) = (2i+ 1)zPi(z)− iPi−1(z), starting from P0(z) = 1, P1(z) = z. To render them

orthogonal we introduce the normalized functions hi(z) = Pi(z)/si with si = (2i+1)−1/2. Now,

if we want to test whether f(x) is U(0, 1) distributed, we define z = 2x− 1. This implies that
we test if z is a uniform variable in [−1, 1]. Then, it is easy to verify, that the components u2i
(i = 1, . . . , 4) are given by

u21 = 3n(µ̂1)
2, u22 = 45n(µ̂2 − 1/3)2/4, u23 = 7n(5µ̂3 − 3µ̂1)2/4,

u24 = 9n{35(µ̂4 − 1/5)− 30(µ̂2 − 1/3)}2/64,

where µ̂i = (
Pn

j=1 z
i
j)/n.

3 Monte Carlo simulations

Here we present some Monte Carlo power results for Neyman’s smooth test Ψ24, its components

u2i (i = 1, . . . , 4), and the KS test, for a number of bivariate distributions. The choice k = 4

was motivated by Monte Carlo results obtained by Rayner & Rayner (2001). They noted that

fewer components result in more powerful smooth tests for uniformity. As to the choice of PITs,

Clements & Smith (2002) showed that the KS test of uniformity has the highest power for
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both the ‘product’ (p) and the ‘ratio’ (r) of PITs, having typical elements {Up
t = U c

1|2,t × Um
2,t}

and {Ur
t = U c

1|2,t/U
m
2,t} respectively. So we decided to restrict the simulations to these two

combinations of PITs. The associated distribution functions can be easily obtained; see, e.g.

Clements & Smith (2002, Appendix). Specifically, let U1 and U2 be two independent random

variables each U(0, 1) distributed. Then the random variable Up = U1 × U2 has a distribution

function given by FUp(x) = x − x ln(x), 0 < x < 1. Further, it can be shown the distribution

function of the ratio of U1 and U2, say Ur = U1/U2, is given by FUr(x) = x/2 if 0 < x < 1, and

FUr(x) = 1− 0.5× x−1 if 1 < x <∞.
In all experiments the nominal significance level was set at 0.05. The number of replications

was fixed at 1000.

3.1 Standardized bivariate normal

When there are just two variables, X1 and X2, it is well-known that the standardized bivariate

normal distribution is given by

p(x1, x2; ρ) = Z(x1)Z
³x2 − ρx1p

1− ρ2

´.p
1− ρ2 = Z(x2)Z

³x1 − ρx2p
1− ρ2

´.p
1− ρ2, (3)

where Z(x) = (1/
√
2π) exp(−x2/2), and ρ the correlation coefficient. Thus, the conditional

distribution of X1, given X2, is normal with expected value ρX2 and variance (1 − ρ2). In

generating the PITs from (3) it is effectively assumed that the conditional distribution for X1,

given X2, is equal to the marginal for X1. This is an example of misspecification that affects

only the correlation. To make the rejection rates comparable across statistics, the estimated

rejection rates are size-adjusted, i.e. the size being common for all test statistics when ρ 6= 0.
Table 1 shows sizes and size-adjusted power results for n = 50, and 100 with correlation

values ranging from -0.8 to 0.8 in steps of 0.4. The simulations permit several observations.

Table 1 about here

Table 2 about here

• The u22(·) tests are the most powerful for both n = 50 and n = 100. The second highest

power is obtained by the Ψ24(·) tests.

• The power of the u22(p) tests is markedly better for ρ < 0 than for ρ > 0. The u22(r) tests
show a similar asymmetry in power, but now the performance of both tests is better for

ρ > 0 than for ρ < 0.
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• The KS(·) tests have the lowest power as compared to the u22(·), and Ψ24(·) tests. In

particular this applies to values of ρ in the range [−0.4, 0.4].

3.2 Marginal Student’s t with Gaussian copula

Copulae provide a general approach to modelling dependence between random variables. Sim-

ilar as Clements & Smith (2002), we use the bivariate Gaussian copula function to generate

alternative bivariate distributions. In particular, given the standardized bivariate vector of ran-

dom variables (X1,X2) with correlation ρ, we construct correlated uniform random variables

as Ui = Φ(Xi) (i = 1, 2). Then, applying the inverse of the Student-t distribution to the uni-

form random variables, we obtain random drawings from bivariate distributions with correlated

marginal Student-t distributions.

Table 2 shows sizes and size-adjusted power results for n = 50 and 100, with marginal

Student-t distributions having 5 and 10 degrees of freedom (df). Some observations are in order:

• When ρ < 0, u22(p) has the highest power for all values of n and df . On the other hand,

when ρ > 0, the u22(r) test is more powerful.

• When ρ < 0, the Ψ24(p) test displays power nearly as high as the u
2
2(p) test. Also, when

ρ > 0, the Ψ24(r) test performs slightly worse than the u22(r) test. This suggests that

a reasonable power of Neyman’s smooth test can already be obtained from using a few

components like u22(·), u24(·), or u22(·) + u24(·).

• All tests show increasing power as n and/or df increase.

• The size properties of all tests are similar. In almost all cases the empirical sizes are higher
than the nominal size.

3.3 Marginal generalized λ distribution with Gaussian copula

The generalized lambda distribution (GLD) is a flexible four-parameter family of curves which

includes several standard distributions as special cases; see, e.g., Karian & Dudewicz (2000).

The GLD is defined by its quantile function

F−1(p) ≡ Qλ1,λ2,λ3,λ4(p) = λ1 − 1

λ2λ3
+

1

λ2λ4
+
1

λ2

³pλ3
λ3
− (1− p)λ4

λ4

´
, (0 6 p 6 1),

where λ1 denotes the location parameter, λ2 is the scale parameter, and λ3 and λ4 are the shape

parameters. If λ3 = λ4 the distribution is symmetric. The condition min(λ3, λ4) > −1/4 ensures
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that fourth and lower moments exist. In this case, the skewness and kurtosis are well-defined

functions of λ3 and λ4; see, e.g., Ramberg et al. (1979). Inverting the first derivative of the

quantile function yields the density function f(Q(p)):

f(Q(p)) = λ2/(λ3p
λ3−1 + λ4(1− p)λ4−1).

The condition λ3×λ4 > 0, along with the appropriate scaling function, ensures that this density

function is non-negative on the probability measure p.

We consider three GLDs, each scaled to have a 0 mean and unit variance. The parameters

(λ1, λ2, λ3, λ4) are set at (−0.494, 0.2000, 0.0782, 0.2069), (−0.2220, 0.0485, 0.0223, 0.0337), and
(−0.049, 0.0276, 0.0149, 0.0163). The corresponding skewness and kurtosis values are, respec-
tively, i) (0.4,3), ii) (0.4,4), and iii) (0.1,4). Figures 1.a)—1.f) give plots of the size-adjusted

estimated power functions of the test statistics KS(·), u22(·), and Ψ24(·). The u22(·) test was se-
lected because its estimated power was the highest among the u2i (·) (i = 1, . . . , 4) tests. The

sample size was fixed at n = 100. We also looked at random samples of n = 50. The results

presented here are typical.

• From Figures 1.a), 1.c), and 1.e) we see that the u22(p) test (dashed-dotted-dotted lines)

has the highest power for all skewness and kurtosis values, for all values of ρ. The lowest

power is obtained with the KS(p) test (solid lines).

• From Figures 1.b), 1.d), and 1.f) we see that u22(r) has the highest power, followed by the

Ψ24(r) test (medium-dashed lines) for all values of ρ, skewness and kurtosis. The powers

of both tests increase in the direction of a symmetric distribution when skewness and

kurtosis move from (0.4,4) to (0.1,4). Also the power increases when the distribution is

more skewed and less peaked; compare Figure 1.d) and Figure 1.f).

Figure 1 about here

3.4 VAR model

In this subsection we compare the relative merits of the tests in a dynamic out-of-sample fore-

casting experiment. To this end, we consider the stationary bivariate VAR(1) process:

Zt =

 5

10

+
 0.5 0.1

0.4 0.5

Zt−1 + εt, (4)
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where {εt} is a sequence of random shock vectors normally, i.i.d. with zero mean and with

positive definite covariance matrix Ω =

 1 ρ

ρ 1

. With this process, we generated bivariate
time series of length T = 200, plus some pre-sample values to avoid possible start-up problems,

for values of ρ ranging from -0.8 to 0.8 in steps of 0.4. However, we incorrectly assume that

both series Z1,t and Z2,t can be well-fitted by univariate AR(2) models.

To generate the forecasts, the rolling forecasting method is used. That is: let T be the total

number of observations. Let m be the last in-sample observation. Then, for this particular

origin, T −m observations are retained as the subsample for evaluating the forecasts of the time

series models. By ‘rolling’ it is meant that time-index t extends as far as T − S where S is the

maximum forecast horizon under consideration. At each time point t the parameters estimates

of the AR(2) models are re-estimated as new observations become available in the subsample.

Thus, the method gives rise to T − m 1—step ahead forecasts and associated forecast errors,

T −m− 1 2—step ahead forecasts and associated forecast errors, etc.
Note that all tests discussed in this paper can be applied to h > 1—step ahead forecasts

provided the following simple provision for the usual (h − 1)—order dependence in the optimal
successive forecasts is made. That is, we divide the forecasts into sets of independent forecasts,

taking the first, the h+ 1, the 2h+ 1 etc. for set 1, and the second, the h+ 2, the 2h+ 2 etc.

for the second set, and so on; see Diebold et al. (1999). Thus, if h = 2, each of the sub-series of

PITs {Up
1 , U

p
3 , U

p
5 , . . .}, {Up

2 , U
p
4 , U

p
6 , . . .} . . . should be i.i.d. U(0, 1). In a similar way sub-series

of PITs can be obtained from the sequences {Ur
t }Lt=1. Tables 3 and 4 show power results for,

respectively, a maximum forecast horizon S = 1 (so h = 1) and S = 2. From Table 3 we make

the following observations:

Table 3 about here

Table 4 about here

• When ρ = 0, the highest power is obtained with the u22(·) test. Note that the actual
marginal models of a bivariate VAR(1) model is univariate ARMA(2,1). Thus, the fitted

univariate AR(2) models are misspecified. It is interesting to see the test detects this

neglected dynamic structure of the data through the PITs of the forecast error densities.

• When ρ = −0.4, u22(p) is more powerful than u22(r). On the other hand, when ρ = 0.4,

u22(r) is to be preferred over u
2
2(p). This was also observed in Subsection 3.1. Finally, as
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expected, all powers increase when the concurrent correlation between the two series is

increasing.

The results in Table 4 permit the following conclusions:

• When ρ = 0, the highest power resulted from the u22(r) test. There is no power difference

for h = 1 and for h = 2. This also applies to the case ρ 6= 0. As compared to the case

ρ = 0 and h = S = 1 (Table 3), all tests display lower power results. This suggests that

for out-of-sample forecasting the tests are sensitive to the choice of the maximum forecast

horizon S.

• When ρ > 0, the powers of all tests are markedly better for the product of PITs than for

the ratio of PITs. However, when ρ < 0, the performance of the tests is better for the

ratio of PITs than for the product of PITs.

The above observations are typical for forecasts made from other AR models, and different

values of T and m.

4 An application

As an illustration, we evaluate density forecasts from a two-regime bivariate threshold model.

The data under study are the transactions for the S&P500 stock index in May 1993 and its June

futures contract traded at the Chicago Mercantile Exchange; see Forbes et al. (1999), who used

to construct the time series ft,c, the log price of the index futures at maturity c, and the series

st, the log of a security index price. The time interval is 1—minute (intraday). Several authors

used this data to study index futures arbitrage. Let Z1,t = ft,c − ft−1,c and Z2,t = st − st−1

denote the first differences of the series. Similar to Tsay (1998), we replaced 10 extreme values

in the series Z1,t and Z2,t by the simple average of their two nearest neighbors. This step may

affect the conditional heteroskedasticity in the data. However, it is not the intention of this

paper to specify any type of parametric model to take care of (G)ARCH-type effects. Then,

using T = 7060 observations, Tsay (1998) fitted a three-regime bivariate threshold model to

Z1,t and Z2,t, with a third (exogenous) variable X∗
t−1 controlling the switching dynamics. The

variable X∗
t is assumed to be weakly stationary and have a continuous distribution. Its values

follow from a version of the so-called cost-of-carry model; see, e.g., Tsay (1998). Time plots of

the three series are provided by Tsay (1998, 2002).
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Let Zt = (Z1,t, Z2,t)
0. Then the two-regime bivariate threshold model of order p is given by

Zt =

 c1 +
Pp

i=1Φ
(1)
i Zt−i + β1Xt−1 + ε

(1)
t if Xt−1 ≤ γ

c2 +
Pp

i=1Φ
(2)
i Zt−i + β2Xt−1 + ε

(2)
t if Xt−1 > γ,

(5)

where Xt = 100×X∗
t , γ is a real number, Φ

(1)
i (i = 1, . . . , p) are 2× 2 matrices of coefficients,

cj are constants, and βj (j = 1, 2) are unknown parameters. The innovations {ε(j)t } satisfy
ε
(j)
t = Σ

1/2
j at, where Σ

1/2
j are symmetric positive definite matrices, and {at} is a sequence of

i.i.d. random variates with mean zero and covariance matrix I, the identity matrix. Model (5)

is a special case of Tsay’s (1998) three-regime bivariate model. But, since in his model the series

Z1,t and Z2,t do not depend on the variable Xt in the middle regime, it is reasonable to evaluate

the prediction performance of (5).

Table 5 about here

Using the notation introduced in Subsection 3.4, we fixed S = 1. The following three values

were selected for the last in-sample observation m = 6960, 6860, and 6760. Hence, 1—step ahead

forecast densities will be based on respectively, L = 100, 200, and 300 1—step ahead forecasts.

We set the maximum value of the lag order p at 8. In each step of the ‘rolling’ forecasting

method, the minimum AIC criterion was employed to select the threshold value γ, using a grid

search method with 300 points. The models’ innovations {ε(j)t } are assumed to be Gaussian
distributed. Note that within this setup, both the model’s order and the model’s parameter

estimates are the same as the population values for generating the forecasts. Thus, we neglect

possible sensitivity of the tests with respect to various forms of model misspecification. Also the

imposition of normality of the error process may affect the outcomes of the tests.

Table 5 presents the results of the KS, the smooth test and its components. Values of �(α, n)

for which α = Prob.(KS ≥ �(α, n)) are tabulated by Miller (1956) for various levels α, and

sample sizes n = 1, 2, . . . , 100. At n = 100, α = 0.01, and 0.05 the tabular values read 0.14987

and 0.12067, respectively. For n > 100, critical values can be obtained by the asymptotic formula

�̃(α, n) =
p
ln(1/α)/2n. At n = 200 (n = 300), this formula gives 0.10730 (0.08761) (α = 0.01)

and 0.08654 (0.07066) (α = 0.05).

We see that for L = 100, 200, and 300 almost all test statistics based on the product of PITs

suggest that there is no evidence against the usefulness of the threshold model to predict the

density of future realizations of minute returns of S&P 500 index futures and prices at the 5%

level. One exception is the first component u21(p) for L = 300. For the ratio of PITs both the
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second component u22(r) and the overall Ψ
2
4(r) statistic are highly significant at the 5% level for

L = 200 and 300. From this we can infer that some variability in the second moments are not

accounted for by the fitted threshold models. The KS test does not provide any indication of

model misspecification.

5 Concluding remarks

We have compared and evaluated the power and size properties of the classical KS goodness-

of-fit test with Neyman’s smooth test and its components for testing uniformity of multivariate

forecast densities. Both simulations and empirical results indicate that the latter test and its

components outperform the KS test for various alternative bivariate distributions, and forecast

horizons. Moreover, Neyman’s smooth test and its components are directional in detecting

model misspecifications. Hence, the use of Neyman’s smooth test is recommended as a formal

test for evaluating multivariate forecast densities.

This paper makes one simplifying assumption: the forecast model is completely known. This

assumption was adopted in order not to complicate the comparison of the tests. A pure non-

parametric estimation of the model and its empirical forecast density may be used as a sensible

alternative approach. We are currently working in this direction.
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Table 1: Sizes and power of KS(·), Ψ24(·), and u2i (·) (i = 1, . . . , 4) tests; normal distribution.

Product (p) Ratio (r)

Smooth tests Smooth tests

ρ KS(p) u21(p) u22(p) u23(p) u24(p) Ψ2
4(p) KS(r) u21(r) u22(r) u23(r) u24(r) Ψ2

4(r)

n = 50

-0.8 0.781 0.117 0.995 0.023 0.116 0.978 0.219 0.094 0.628 0.066 0.070 0.451

-0.4 0.105 0.061 0.369 0.033 0.033 0.149 0.089 0.054 0.263 0.071 0.068 0.186

0.0 0.056 0.048 0.045 0.056 0.052 0.045 0.040 0.036 0.049 0.048 0.056 0.052

0.4 0.118 0.103 0.295 0.081 0.135 0.287 0.083 0.032 0.393 0.034 0.041 0.164

0.8 0.321 0.237 0.748 0.163 0.444 0.754 0.737 0.004 1.000 0.011 0.377 0.989

n = 100

-0.8 0.997 0.299 1.000 0.028 0.279 1.000 0.418 0.106 0.918 0.070 0.095 0.785

-0.4 0.190 0.095 0.709 0.030 0.056 0.499 0.142 0.074 0.457 0.059 0.067 0.302

0.0 0.040 0.043 0.036 0.030 0.046 0.040 0.029 0.038 0.045 0.058 0.045 0.044

0.4 0.195 0.161 0.526 0.088 0.252 0.511 0.152 0.030 0.692 0.033 0.046 0.415

0.8 0.664 0.396 0.957 0.219 0.693 0.967 0.996 0.006 1.000 0.011 0.744 1.000
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Table 2: Size and power of KS(·), Ψ24(·), and u2i (·) (i = 1, . . . , 4) tests; Student’-t (Gaussian

copula) distribution.

Product (p) Ratio (r)

Smooth test Smooth test

ρ KS(p) u21(p) u22(p) u23(p) u24(p) Ψ2
4(p) KS(r) u21(r) u22(r) u23(r) u24(r) Ψ2

4(r)

n = 50, df = 10

-0.8 0.824 0.068 0.992 0.021 0.257 0.982 0.151 0.097 0.379 0.067 0.046 0.303

-0.4 0.125 0.036 0.476 0.035 0.042 0.247 0.079 0.074 0.102 0.065 0.029 0.107

0.0 0.046 0.047 0.060 0.068 0.059 0.049 0.065 0.047 0.079 0.057 0.066 0.074

0.4 0.156 0.137 0.212 0.052 0.132 0.260 0.108 0.025 0.402 0.037 0.055 0.230

0.8 0.323 0.273 0.590 0.103 0.389 0.676 0.791 0.003 1.000 0.011 0.470 0.988

n = 100, df = 10

-0.8 0.997 0.149 1.000 0.027 0.476 1.000 0.376 0.091 0.730 0.079 0.073 0.593

-0.4 0.225 0.049 0.709 0.043 0.026 0.492 0.151 0.069 0.221 0.065 0.066 0.181

0.0 0.065 0.057 0.079 0.063 0.060 0.080 0.033 0.033 0.065 0.043 0.049 0.053

0.4 0.169 0.156 0.283 0.051 0.205 0.346 0.320 0.032 0.741 0.032 0.103 0.532

0.8 0.539 0.394 0.792 0.136 0.583 0.891 1.000 0.004 1.000 0.015 0.880 1.000

n = 50, df = 5

-0.8 0.719 0.022 0.988 0.032 0.437 0.972 0.096 0.082 0.170 0.074 0.083 0.185

-0.4 0.078 0.017 0.481 0.052 0.044 0.285 0.070 0.075 0.022 0.059 0.070 0.067

0.0 0.097 0.053 0.120 0.093 0.061 0.111 0.064 0.033 0.111 0.062 0.052 0.075

0.4 0.084 0.129 0.053 0.042 0.098 0.101 0.184 0.028 0.501 0.028 0.120 0.401

0.8 0.187 0.273 0.242 0.070 0.295 0.418 0.921 0.004 1.000 0.012 0.756 0.998

n = 100, df = 5

-0.8 0.986 0.062 1.000 0.042 0.824 1.000 0.136 0.077 0.212 0.070 0.053 0.224

-0.4 0.144 0.017 0.755 0.153 0.093 0.830 0.060 0.075 0.027 0.055 0.083 0.556

0.0 0.116 0.064 0.211 0.142 0.066 0.176 0.061 0.038 0.213 0.056 0.060 0.105

0.4 0.087 0.197 0.048 0.020 0.184 0.116 0.358 0.029 0.759 0.032 0.180 0.726

0.8 0.261 0.406 0.337 0.043 0.508 0.573 1.000 0.002 1.000 0.015 0.963 1.000
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Table 3: Powers of the tests for uniformity using PITs of 1— and 2—step ahead forecast error

densities. Data generating process VAR(1), and forecasts are generated from estimated AR(2)

models; T = 200, m = 100.

Product (p) Ratio (r)

Smooth test Smooth test

ρ h KS(p) u21(p) u22(p) u23(p) u24(p) Ψ2
4(p) KS(r) u21(r) u22(r) u23(r) u24(r) Ψ2

4(r)

-0.8 1 0.640 0.021 0.998 0.030 0.067 0.990 0.055 0.027 0.045 0.045 0.207 0.087

2 0.632 0.028 1.000 0.067 0.060 0.994 0.048 0.031 0.059 0.032 0.197 0.097

-0.4 1 0.291 0.106 0.828 0.040 0.042 0.576 0.036 0.015 0.255 0.023 0.111 0.125

2 0.291 0.098 0.832 0.042 0.025 0.597 0.031 0.011 0.240 0.021 0.117 0.105

0.0 1 0.205 0.180 0.317 0.032 0.048 0.196 0.087 0.010 0.725 0.019 0.043 0.360

2 0.211 0.160 0.317 0.040 0.052 0.194 0.075 0.007 0.702 0.018 0.041 0.345

0.4 1 0.208 0.248 0.065 0.042 0.043 0.139 0.373 0.003 0.991 0.011 0.056 0.893

2 0.208 0.246 0.053 0.053 0.059 0.140 0.332 0.003 0.985 0.011 0.048 0.871

0.8 1 0.267 0.340 0.082 0.087 0.069 0.236 0.985 0.002 1.000 0.019 0.844 1.000

2 0.272 0.320 0.096 0.075 0.062 0.235 0.982 0.000 1.000 0.017 0.815 1.000

Table 4: Powers of the tests using PITs of 1—step ahead forecast error densities. Data generating

process VAR(1), and forecasts are generated from estimated AR(2) models; T = 200, m = 100.

Product (p) Ratio (r)

Smooth test Smooth test

ρ KS(p) u21(p) u22(p) u23(p) u24(p) Ψ4(p) KS(r) u21(r) u22(r) u23(r) u24(r) Ψ4(r)

-0.8 1.000 0.073 1.000 0.217 0.805 1.000 0.030 0.010 0.053 0.034 0.502 0.233

-0.4 0.889 0.162 0.999 0.101 0.037 0.999 0.020 0.001 0.313 0.033 0.317 0.258

0.0 0.534 0.244 0.921 0.055 0.050 0.879 0.083 0.000 0.856 0.013 0.125 0.650

0.4 0.408 0.388 0.354 0.050 0.072 0.422 0.610 0.000 1.000 0.009 0.036 0.993

0.8 0.454 0.558 0.053 0.065 0.047 0.354 1.000 0.000 1.000 0.001 0.949 1.000
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Table 5: Values of KS test, Neyman’s smooth test and its components using PITs of 1—step

ahead forecast densities. Forecasts are based on a two-regime bivariate threshold model fitted to

the minute returns of S&P 500 index futures and prices and the associated threshold variable.

p-values are in parenthesis.

Number of Product (p) Ratio (r)

forecasts Smooth test Smooth test

(L) KS(p) u21(p) u22(p) u23(p) u24(p) Ψ2
4(p) KS(r) u21(r) u22(r) u23(r) u24(r) Ψ2

4(r)

100 0.133 2.333 0.030 0.220 0.127 2.710 0.118 1.192 2.024 5.044 0.590 8.850

(0.127) (0.862) (0.639) (0.722) (0.607) (0.275) (0.155) (0.025) (0.442) (0.065)

200 0.095 3.577 1.001 0.080 0.118 4.776 0.100 1.881 6.389 1.142 1.518 10.930

(0.059) (0.317) (0.777) (0.731) (0.311) (0.170) (0.011) (0.285) (0.218) (0.027)

300 0.077 4.128 0.112 2.060 0.278 6.578 0.094 2.420 6.828 0.245 5.971 15.464

(0.042) (0.738) (0.151) (0.598) (0.160) (0.120) (0.009) (0.621) (0.145) (0.004)
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Figure 1: Size-adjusted estimated power functions of the test statistics KS(·) (solid lines), Ψ24(·)
(medium-dashed lines), and u22(·) (dashed-dotted-dotted lines); n = 100.
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