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Abstract

In this paper we present a new three-step approach to the estimation of Generalized

Orthogonal GARCH (GO-GARCH) models, as proposed by van der Weide (2002). The

approach only requires (non-linear) least-squares methods in combination with univari-

ate GARCH estimation, and as such is computationally attractive, especially in larger-

dimensional systems, where a full likelihood optimization is often infeasible. The effective-

ness of the method is investigated using Monte Carlo simulations as well as a number of

empirical applications.

1 Introduction

Daily time series of financial returns are well known to display volatility clustering; i.e., highly

volatile periods alternate with periods of low volatility. The class of GARCH (generalized

autoregressive-conditional heteroskedasticity) models have proved to be a suitable approach to

describe this property, and to exploit it for purposes of risk management and derivative pricing.

When such applications depend on the joint evolution of a vector of returns, for example for risk

management of a portfolio (with time-varying weights), then multivariate generalizations of the

GARCH model are required. Until fairly recently, the application of such multivariate GARCH

models was confined to low-dimensional systems, because the dimension of the parameter space

increases very rapidly with the dimension of the system.

Balancing generality and feasibility is largely what defines the challenge in multivariate

GARCH modelling. One recent model is the Generalized Orthogonal GARCH model (GO-

GARCH; see van der Weide, 2002). The GO-GARCH model essentially consists of two parts:

(i) a set of conditionally uncorrelated univariate GARCH processes; and (ii) a linear map that
∗This research has been supported by the Netherlands Organization for Scientific Research (NWO) under a

NWO-MaG Pionier grant.
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relates these components to the observed data. The model was obtained as a generalization

of the O-GARCH model (Alexander, 2001), which is nested as a special case where the linear

map is orthogonal. The practical power of the O-GARCH model lies in its two-step method.

In particular, all GARCH parameters can be conveniently estimated by appealing to univariate

GARCH models for the principal components of the original series. The first step, where the

orthogonal map is estimated, involves only solving an eigenvalue problem.

With the extension from an orthogonal link matrix to an arbitrary invertible link matrix,

the GO-GARCH model has not kept this practical two-step structure intact. The method

originally proposed by van der Weide (2002) is in fact a two-step approach, but not one where

only univariate GARCH estimation is needed in the second step. In the first step, only part

of the invertible matrix is identified. The remaining parameters of this link matrix, together

with the univariate GARCH parameters for the factors, are then estimated by maximizing a

multivariate likelihood function. The latter can be troublesome for high dimensions.

Therefore, this paper puts forward a new method for estimating the GO-GARCH model.

This alternative method is meant to make the model more attractive purely from a practical

point of view. In comparison to the two-step method originally proposed, our alternative is

more practical in terms of implementation, as well as more feasible in terms of estimation. With

improved feasibility we mean that the new approach is less likely to experience convergence

difficulties when compared with the original method. This advantage will be most noticeable,

and most welcomed, in higher dimensions. The price we pay for these practical advances is a

loss of efficiency.

These practical improvements have been realized by adding a third step to the original

two-step method. With this extra step, the estimation of the second part of the link matrix is

separated from estimation of the univariate GARCH models. Apart from the practical aspects,

keeping estimation of the link matrix and the GARCH parameters separate also has another

notable advantage. The link matrix is estimated without imposing any knowledge of GARCH

structure (for the uncorrelated components). Although this is part of where the loss in efficiency

stems from, at the same time our estimator of the link matrix will also be robust with respect

to any misspecification in the GARCH structure.

Another multivariate GARCH class is the Dynamic Conditional Correlation (DCC) model

by Engle (2002), which was obtained as a generalization of the Constant Conditional Corre-

lation (CCC) model by Bollerslev (1990). The CCC model has a convenient structure, where

estimation of the parameters may (also) be done by means of univariate GARCH estimation,

after which the constant correlation may be easily estimated. By extending the model to allow

for time-varying correlation, DCC managed to keep this practical two-step approach intact. For

an overview of the recent advances on multivariate GARCH modelling we refer to Bauwens et

al. (2006).

The generality of any multivariate GARCH model can be measured by the ability to account

for the key stylized facts of multivariate data: (i) persistence in volatility and covariation; (ii)
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time-varying correlation; and (iii) spill-over effects in volatility. Additionally it is desired that

the model is closed under linear transformations. The DCC model incorporates the first two

items, but does not allow for volatility spill-overs, nor is it closed under linear transformations.

GO-GARCH meets all criteria, but gives in on DCC in terms of practicability. With our

alternative three-step estimation approach we managed to improve on feasibility of the GO-

GARCH model, while preserving its level of generality.

The remainder of the paper is structured as follows. Section 2 discusses the GO-GARCH

model, and the originally proposed two-step estimation procedure. The three-step estimator

is derived in Section 3. Section 4 provides a brief examination of the loss function. Section 5

studies some of the finite-sample properties of the new estimator. Some empirical applications

to a number of widely traded stock indices of the United States and Europe are presented in

Section 6 and 7, and Section 8 concludes.

2 The model

Consider an m-vector process {xt, t = 1, 2, . . .} of financial returns. We are interested in mod-

elling the conditional variance matrix Vt = Var(xt|Ft−1), where Ft = {xt, xt−1, . . .}. The

starting point of the GO-GARCH model is the assumption that there exists an m × m non-

singular matrix Z, and an m-vector process {yt = (y1t, . . . , ymt)′} of independent1 component

processes (i.e., {yit} is independent of {yjt}, i 6= j), such that

xt = Zyt. (1)

Each of the component processes {yit} is modelled as a univariate GARCH process, i.e.,

yit|Ft−1 ∼ N(0, hit), (2)

hit = ωi + αiy
2
i,t−1 + βihi,t−1. (3)

This implies that

xt|Ft−1 ∼ N(0, Vt), (4)

Vt = ZHtZ
′, (5)

with Ht = diag(h1t, . . . , hmt). The specification (2)–(3) and hence (4)–(5) may be extended in

various directions, to allow for a non-zero conditional mean of xt, a non-Gaussian conditional

distribution, or conditional variance specifications other than GARCH(1,1). The essential as-

sumption is (1), together with independence of the processes {yit}.
The model was proposed by van der Weide (2002), as a generalization of the orthogonal

GARCH model pioneered by Ding (1994) and popularized by Alexander (2001), where the
1Although the discussion is facilitated by assuming the component processes to be independent, all that is

needed is that they are conditionally uncorrelated, with conditional variances that depend only on the past of

the separate processes.
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matrix Z is restricted to be orthogonal. It may also be viewed as a factor GARCH model

where the number of factors equals the dimension of the system (and with no idiosyncratic

noise). As such, it was analyzed by Vrontos et al. (2003), although they restrict Z to be lower

triangular, which is not without loss of generality.

Throughout this paper we will assume that yt and hence xt is covariance stationary, such that

the unconditional variances H := Var(yt) and V := Var(xt) = ZHZ ′ exist. In the O-GARCH

model of Alexander (2001), the time series {xt} has been standardized such that V := Var(xt)

is in fact the correlation matrix of xt. Let P be the orthogonal matrix of eigenvectors of V , and

Λ the diagonal matrix containing the corresponding eigenvalues, such that V = PΛP ′. The

principal component vector yt = P ′xt then satisfies H = Var(yt) = P ′V P = Λ, such that the

components of yt are unconditionally uncorrelated. This property is then strengthened to the

assumption that the components of yt are independent, or at least conditionally uncorrelated,

with no dynamic links between their respective volatility processes hit. Therefore this is a

special case2 of the GO-GARCH model, with Z = P , an orthogonal matrix, and yt the principal

components of xt.

In the GO-GARCH model, we may impose that each of the components yit has an uncon-

ditional variance of unity, which in the GARCH(1,1) specification (3) leads to the restriction

ωi = 1− αi − βi. (6)

This is an identifying restriction, since the variance of xt is determined by Z and hence not

restricted by (6). Indeed, this restriction implies Var(yt) = E(Ht) = Im, and hence

V = Var(xt) = ZZ ′. (7)

Consider the singular value decomposition of Z:

Z = PΛ1/2U ′, (8)

where P contains the orthonormal eigenvectors of ZZ ′ = V , where Λ = diag(λ1, . . . , λm)

contains the corresponding eigenvalues (with λi > 0 for all i), and where U is the orthogonal

matrix of eigenvectors of Z ′Z. Note that P and Λ are identified from the unconditional variance

matrix V . The matrix U , on the other hand, is only identified from the structure of the

conditional variance matrix Vt. The O-GARCH model (with a slight redefinition of yt 7→ Λ1/2yt,

loosening the restriction Var(yt) = Im) corresponds to the restriction U = Im. Note that in the

GO-GARCH model the components of xt do not have to be standardized as in the O-GARCH
2For larger-dimensional systems, Alexander (2001) proposes to include only the first k < m principal com-

ponents in yt, which together explain a sufficient percentage of the total variation in xt. Then Z only contains

the first k columns from P . Note however, that the implied conditional variance matrix of xt is singular if

k < m. Therefore, in the GO-GARCH model xt and yt always have the same dimension. Recently, Lanne and

Saikkonen (2005) introduced a test procedure that can be used to identify the number of factors needed to model

the conditional variance of the observed vector xt, in a GO-GARCH setting (they consider a non-singular Z).
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model, which would lead to a different matrix P ; however, for comparison purposes between

the two models we will use the standardization in the empirical analysis of this paper.

The distinction between ‘unconditional information’ (which identifies P and Λ) and ‘con-

ditional information’ (which identifies U) is the basis of the two-step estimation procedure

proposed by van der Weide (2002). Define st := Λ−1/2P ′xt, such that the GO-GARCH model

implies st = U ′yt. Since V is estimated consistently by V̂ = n−1
∑n

t=1 xtx
′
t, this yields consis-

tent estimates P̂ and Λ̂ of P and Λ, respectively, and hence ŝt := Λ̂−1/2P̂ ′xt. The remaining

parameters U and {αi, βi}m
i=1 may then be estimated by maximum likelihood, replacing the

unobserved st by ŝt. Note that orthogonality of U implies that this matrix is characterized by

m(m− 1)/2 free parameters.

Although this procedure is feasible for moderately large portfolios, for larger values of m the

full maximization of the likelihood function over the free parameters in U becomes problematic.

Therefore, this paper proposes an alternative procedure to estimate the matrix U and hence

Z. Note that given a consistent estimator Ẑ of Z, we may construct ŷt := Ẑ−1xt, and estimate

the parameters {αi, βi}m
i=1 in univariate GARCH models for {ŷit}.

3 Estimation

The idea of our approach is to identify U from the (cross-) autocorrelation structure of sts
′
t,

where st = Λ−1/2P ′xt is the standardized and orthogonalized version of xt. In order to motivate

the estimator proposed below, we start by analyzing some moment conditions on squares and

cross-products of the components of yt, and then investigate what they imply for sts
′
t.

Let ρi denote the first-order autocorrelation of y2
it. If hit follows a GARCH(1,1) specification,

as assumed above, then an explicit expression for ρi is available, implying ρi > 0. However,

the procedure proposed here is intended to be applicable for a wider range of GARCH-type

specifications, as long as ρi := Corr(y2
it, y

2
i,t−1) > 0.

Because y2
it is independent of y2

j,t−1 and uncorrelated with yi,t−1yj,t−1, j 6= i, the linear

projection of y2
it − 1 on wt−1 := vech(yt−1y

′
t−1) is given by

y2
it − 1 = ρi(y

2
i,t−1 − 1) + υii,t, (9)

where E(υii,t) = 0 and Cov(υii,t, wt−1) = 0. Next, because E(yityjt|Ft−1) = 0, it follows that

the linear projection of yityjt on wt−1 is 0, such that yityjt = υij,t, where υij,t again satisfies the

properties E(υij,t) = 0 and Cov(υij,t, wt−1) = 0. These results may be summarized as

yty
′
t − Im = Dρ(yt−1y

′
t−1 � Im − Im) + Υt

= D1/2
ρ

(
yt−1y

′
t−1 � Im − Im

)
D1/2

ρ + Υt, (10)

where Dρ = diag(ρ1, . . . ρm), where “�” denotes the Hadamard (element-by-element) product,

and where Υt = (υij,t) has mean zero and is uncorrelated to wt−1.
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Suppose now that we estimate the following regression model

yty
′
t − Im = A

(
yt−1y

′
t−1 − Im

)
A + Et, (11)

with A a symmetric matrix, by non-linear least-squares. That is, suppose that we minimize

S(A) =
1
n

n∑
t=1

tr
(
E2

t

)
=

1
n

n∑
t=1

tr
([

yty
′
t − Im −A

(
yt−1y

′
t−1 − Im

)
A
]2) (12)

over symmetric matrices A. The difference between (10) and (11) is that the diagonal matrix

yt−1y
′
t−1 � Im has been replaced by yt−1y

′
t−1. This means, in particular, that the off-diagonal

elements of the matrix A (yt−1yt−1 − Im) A are no longer zero, even if A is diagonal. In this

sense, (11) is a misspecified regression model. However, we might expect that the pseudo-true

value of A, i.e., the solution to the equations E [∂S(A)/∂A] = 0, is still a diagonal matrix. This

question is analysed in Theorem 1 below, but first we demonstrate how this result is used to

obtain an estimate of U .

Using yt = Ust, and the properties tr AB = trBA and U ′U = UU ′ = In, we may rewrite

the criterion function as

S(A) =
1
n

n∑
t=1

tr
([

Usts
′
tU

′ − Im −AU (st−1st−1 − Im) U ′A
]2)

=
1
n

n∑
t=1

tr
([

sts
′
t − Im − U ′AU (st−1st−1 − Im) U ′AU

]2)
=

1
n

n∑
t=1

tr
([

sts
′
t − Im −B (st−1st−1 − Im) B

]2)
= S∗(B). (13)

It is immediately clear from the first-order conditions that if Â and B̂ minimize S(A) and

S∗(B) over symmetric matrices, respectively, then B̂ = U ′ÂU . Therefore, if plimn→∞ Â =

Da = diag(a1, . . . , am), then plimn→∞ B̂ = U ′DaU . This in turn means that the eigenvectors

of B̂ provide a consistent estimator of U ′, provided that the corresponding eigenvalues a1, . . . , am

are distinct. Let us provide a summary.

Summary 1 The observed data is described by st = U
′
yt, where yt represents a vector of

independent processes and where U denotes an orthogonal matrix. The assumptions imply

Ests
′
t = Eyty

′
t = Im. Our objective is to estimate U . The proposed method considers the

following matrix regression:

sts
′
t − Im = B

(
st−1s

′
t−1 − Im

)
B + Γt, E(Γt) = 0, (14)

which is equivalent to equation (11). The relation yt = Ust implies B = U
′
AU , which we will

utilize to estimate U . Given that A is diagonal, U may be obtained as the eigenvector matrix

of B, provided that the elements of A = Da are distinct. Consistent estimates of B = U
′
DaU

will then provide consistent estimates of U .

6



The proposed method of estimation is built on the assumption that A is diagonal, at least

asymptotically. Theorem 1 proves that this assumption is valid. An explicit expression of the

pseudo-true value of A is derived, which confirms that A = Da is diagonal. It can be seen

that Da does not necessarily equal D
1
2
ρ . In general, it is a function of both the first-order

autocorrelations ρi of y2
it and the kurtosis κi of yit, i = 1, . . . ,m.

Theorem 1 Assume that the m-vector process {yt, t ≥ 1} consists of independent station-

ary processes {yit, t ≥ 1} with mean zero and unit unconditional variance. Next, assume

that ρi = Corr(y2
it, y

2
i,t−1) > 0 and define κi = E(y4

it) (possibly infinite). Then the equa-

tion E [∂S(A)/∂A] = 0, with S(A) defined in (12), has a diagonal solution A = Da =

diag(a1, . . . , am), where ai satisfies

ai

ρi(κi − 1)− a2
i (κi − 1)−

∑
j 6=i

a2
j

 = 0, i = 1, . . . ,m. (15)

We distinguish three cases:

1. The equations (15) have a solution with a2
i > 0 for all i, given by

a2
1
...

a2
m

 =


ρ1(1 + θ1)

...

ρm(1 + θm)

−
(

ρ1(1 + θ1) + . . . + ρm(1 + θm)
1 + θ1 + . . . + θm

)
θ1

...

θm

 , (16)

where θi = 1
κi−2 .

2. The equations (15) have ai = 0, ∀i as the only solution.

3. The equations (15) have a partly positive solution, with some of the diagonal elements ai

equal to zero. Letting P denote the set of indices corresponding to the nonzero positive

solutions, we find

a2
i = ρi(1 + θi)−

(∑
j∈P ρj(1 + θj)
1 +

∑
j∈P θj

)
θi. (17)

If only one positive solution remains, Da = diag
(
0, . . . ,

√
ρi, . . . , 0

)
.

Proof. It will be convenient to introduce Qt = yty
′
t − Im. Using symmetry of Et =

Qt −AQt−1A for all symmetric matrices A, the partial derivative ∂S(A)/∂A is obtained from

d trE2
t = trEtdEt + tr(dEt)Et

= 2 trEtdEt

= −2 trEtAQt−1dA− 2 trEt(dA)Qt−1A

= −4 trEtAQt−1dA

= −4(vec EtAQt−1)′D(d vechA),
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where D is the duplication matrix, such that vec A = D vechA for any symmetric matrix A.

Therefore,
∂S(A)

∂ vechA
=
−4
n

D′
n∑

t=1

vec EtAQt−1.

The pseudo-true value A∗ is obtained from setting the expected partial derivative to zero.

Therefore, it solves the equations

E [(Qt −A∗Qt−1A
∗) A∗Qt−1] = 0. (18)

The assumptions imply that

Qt = D1/2
ρ (Qt−1 � Im)D1/2

ρ + Υt, (19)

see (10). Substitution of (19) into (18) leads to

E
[(

D1/2
ρ (Qt−1 � Im)D1/2

ρ + Υt −A∗Qt−1A
∗
)

A∗Qt−1

]
= E

[
D1/2

ρ (Qt−1 � Im)D1/2
ρ A∗Qt−1

]
− E

[
A∗Qt−1A

∗2Qt−1

]
= 0.

We now investigate if this equation has a diagonal solution A∗ = Da. For convenience, replace

Qt−1 by Q = (qij), and note that

E(qii) = E(qij) = 0,

E(q2
ii) = κi − 1, E(q2

ij) = 1,

E(qiiqjj) = E(qiiqij) = E(qiiqjk) = E(qijqkl) = 0.

Therefore,

E
[
D1/2

ρ (Q� Im)D1/2
ρ DaQ

]
= E




ρ1a1q
2
11 · · · ρ1a1q11q1m

... · · ·
...

ρmamqmmqm1 · · · ρmamq2
mm




=


ρ1a1(κ1 − 1) · · · 0

...
. . .

...

0 · · · ρmam(κm − 1)

 ,

and

E
[
DaQD2

aQ
]

= E




a2
1q11 · · · a1amq1m

...
. . .

...

ama1qm1 · · · a2
mqmm




a1q11 · · · a1q1m

...
. . .

...

amqm1 · · · amqmm




=


a1

(
a2

1(κ1 − 1) +
∑

i6=1 a2
i

)
· · · 0

...
. . .

...

0 · · · am

(
a2

m(κm − 1) +
∑

i6=m a2
i

)
 .
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The relevant equations therefore become

ai

ρi(κi − 1)− a2
i (κi − 1)−

∑
j 6=i

a2
j

 = 0, i = 1, . . . ,m,

which has the trivial solution ai = 0 ∀i, a partly positive-, and a strictly positive solution. The

positive elements can be expressed as a solution to following matrix equation:

(
Dκ + 11

′
)

a2
1
...

a2
m

 =


(κ1 − 1)ρ1

...

(κm − 1)ρm

 , (20)

where Dκ = diag (κ1 − 2, . . . , κm − 2), and 1 is a vector of ones. Isolating the elements of Da

by inverting the matrix on the left we obtain
a2

1
...

a2
m

 =

(
D−1

κ − θθ
′

1 + tr
(
D−1

κ

))


(κ1 − 1)ρ1
...

(κm − 1)ρm

 , (21)

where θ = (θ1, . . . , θm)
′
with θi = 1

κi−2 . By rearranging terms we find
a2

1
...

a2
m

 =


ρ1(1 + θ1)

...

ρm(1 + θm)

−
(∑

i ρi(1 + θi)
1 +

∑
i θi

)
θ1

...

θm

 , (22)

which corresponds to the expression presented in the theorem. The partly positive solution is

obtained by first deciding on the zero elements, those who can not satisfy (17), and then solve

the positive elements by considering the linear equation for these elements only. �

Note that the conditions in Theorem 1 place no restrictions on the fourth moments of the

independent processes {yit}. If the kurtosis of the ith process, κi, tends to infinity, then

θi → 0, and hence ai →
√

ρi. However, the consistency proof of the estimator Â, defined by the

first-order condition ∂S(Â)/∂A = 0, requires the fourth moments to be finite. This is because

plimn→∞ Â = Da follows from uniform convergence of ∂S(A)/∂A to a non-stochastic function

G(A) = E[∂S(A)/∂A], satisfying G(Da) = 0. When κi →∞, then E[∂S(A)/∂A] is not defined

for any other value than A = Da, so that ∂S(A)/∂A does not converge uniformly, and hence

consistency cannot be proved. In Section 5, we investigate by Monte Carlo simulation how the

procedure performs in the infinite-kurtosis case.

Let B̂ be the least-squares estimator in (14), i.e., B̂ = arg minB S∗(B), where S∗(B) is

defined in (13), and the minimization is over symmetric matrices B. Theorem 1 implies that

if κi < ∞ for all i, then plimn→∞ B̂ = U ′DaU . To conclude from this that the matrix of

eigenvalues Û of B̂ is a consistent estimator of U , the diagonal elements of Da need to be

distinct. This leads to the next corollary.

9



Corollary 1 The estimator Û defined in Summary 1 is consistent if:

(i) κi < ∞ ∀i, and

(ii) the solutions ai, i = 1, . . . ,m described in Theorem 1 are distinct.

Lack of identification, and hence inconsistency of Û , may occur if ai = aj = 0, or if ai = aj > 0

for some i 6= j. Let P denote the set of indices corresponding to the positive elements. Then

ai = aj > 0 occurs if

ρi(1 + θi)

(
1 +

∑
l∈P

θl

)
− θi

∑
l∈P

θl = ρj(1 + θj)

(
1 +

∑
l∈P

θl

)
− θj

∑
l∈P

θl. (23)

The trivial solution here is given by ρi = ρj and θi = θj (implying κi = κj).

Henceforth we will refer to the region in parameter space described by Corollary 1 as the

‘non-identification area’.

4 The objective function and its maxima

In this section we will derive the asymptotic objective function and investigate the nature of

its maxima as we move through the parameter space. This also allows us to observe how zeros

enter the diagonal of the pseudo-true value of A = Da. The example we use here will also

be used in the Monte Carlo section. As such the knowledge accumulated in this section will

directly carry over to the next.

For the sake of clarity we consider the bivariate case. Each of the two independent compo-

nents is described by a stationary ARCH(1) process:

y1,t =
√

h1,tε1,t, y2,t =
√

h2,tε2,t, (24)

where Eεi,t = Eεj,t = Eεi,tεj,t = 0, and where

h1,t = (1− α1) + α1y
2
1,t−1 (25)

h2,t = (1− α2) + α2y
2
2,t−1 (26)

This means Eyty
′
t = I2 while Et−1yty

′
t = Ht = diag (h1,t, h2,t).

Next we investigate how these model parameters determine the pseudo-true value of A = Da.

From Theorem 1 we know that the model parameters enter the objective function via the implied

autocorrelations ρi and the kurtosis κi, if finite. For the ARCH(1) process these are given by

ρi = αi (27)

κi =
3
(
1− α2

i

)
1− 3α2

i

, (28)

We will use these in the proof of the next lemma.
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Lemma 1 The curves in the (α1, α2)-plane along which a zero enters the diagonal of Da are

described by

C1 : 2α1 = α2

(
1− 3α2

1

)
(29)

C2 : 2α2 = α1

(
1− 3α2

2

)
. (30)

The partly positive solutions for the diagonal elements of Da are given by
(√

α1, 0
)

and
(
0,
√

α2

)
.

Proof. Working with the expressions for positive ai from Theorem 1, and setting them

equal to zero, we obtain

(κ1 − 1)ρ1 = ρ2 (31)

(κ2 − 1)ρ2 = ρ1. (32)

Substituting ρi = αi and κi =
3(1−α2

i )
1−3α2

i
from equations (27) and (28) yields the result presented

in the lemma. �

A plot of the curves in the (α1, α2)-plane is provided by Figure 1. The two straight lines,

parallel to the axis, describe the limit values for α1 and α2 above which the fourth moments do

not exist. According to equation (28) the kurtosis tends to infinity when α =
√

1
3 ≈ 0.57.

Figure 1: The different regions in the (α1, α2)-plane corresponding to the different type of

solutions for the pseudo-true value of A = Da. The upper and the lower curve are respectively

denoted by C1 and C2.
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Let us briefly summarize the figure. In the upper right corner, where both fourth moments

do not exist, the pseudo-true value of A is given by Da = D
1
2
ρ = diag(

√
α1,

√
α2). Moving down

until α2 falls below α∗2 =
√

1
3 , but remaining above the lower curve, the second kurtosis κ2 comes

into existence. As a result a2 declines further but remains positive, a2 = (ρ2 −
ρ1

κ2−1)
1
2 <

√
ρ2.
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The first diagonal element remains a1 = √
ρ1. If we stay above the lower curve and move to

the left until the first kurtosis κ1 also comes into existence, then a1 too will show additional

decline. In that case, Da = diag(a1, a2) < diag(√ρ1,
√

ρ2). A zero enters the diagonal if we

cross either C1 or C2 anywhere in the (α1, α2)-plane; At any point below C2 (the lower curve)

we have Da = diag(√ρ1, 0) = diag(
√

α1, 0), while anywhere left from C1 (the upper curve)

we obtain Da = diag(0,
√

ρ2) = diag(0,
√

α2). Indeed, note the symmetry with respect to the

diagonal α1 = α2. At the origin all elements are zero, i.e. Da = 0.

By inspecting the (asymptotic) objective function we will see how the pseudo-true value

of A attains the different types of solutions sketched above. The following lemma derives an

explicit expression for minus the expected objective function3 f(A) = −E[S(A)] in the bivariate

case where we assume an infinite number of observations.

Lemma 2 Let A = (aij) be a symmetric 2×2 matrix. For any bivariate example characterized

by its autocorrelations ρi and kurtosis κi, the asymptotic objective function f(A) = −E[S(A)]

is given by

fρ,κ(A) = 2
(
ρ1(κ1 − 1)a2

11 + ρ2(κ2 − 1)a2
22

)
− (κ1 + κ2)

−
(
(κ1 − 1)(a2

11 + a2
12)

2 + (κ2 − 1)(a2
12 + a2

22)
2
)
− tr

(
LA2LA2

)
,

where L = 11
′ − I2. In case of the bivariate ARCH(1) process described by eq. (24-26), for

parameter values αi <
√

1
3 , this translates to

fα(A) = 4
(

α1a
2
11

1− 3α2
1

+
α2a

2
22

1− 3α2
2

)
− 3

(
1− α2

1

1− 3α2
1

+
1− α2

2

1− 3α2
2

)
− 2

(
(a2

11 + a2
12)

2

1− 3α2
1

+
(a2

12 + a2
22)

2

1− 3α2
2

)
− tr

(
LA2LA2

)
Proof. The asymptotic objective function f is defined by

f(A) = −E
[
tr(E2

t )
]

= −E
[
tr(Qt −AQt−1A)2

]
, (33)

where Qt = yty
′
t− Im. Let us first focus on trE2

t . We will take expectations and add the minus

later. Developing the matrix product yields

tr(E2
t ) = tr(Q2

t )− 2 tr (QtAQt−1A) + tr
(
Qt−1A

2Qt−1A
2
)

(34)

= tr (M1)− 2 tr (M2) + tr (M3) . (35)

Note that the second term contains both Qt and Qt−1, which are not independent. The model

assumptions imply (see equation (10))

Qt = Dρ (Qt−1 � Im) + Ψt, (36)

3The minus sign implies that we focus on the maximum of f(A) in the figures in this section instead of the

minimum.
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where E [Ψt] = E [Qt−1Ψt] = 0. Substituting this into M2, and taking expectations, gives

E [M2] = E [Dρ (Qt−1 � Im) AQt−1A] . (37)

At this point we are safe to drop the time subscript, i.e. Qt and Qt−1 both become Q. It will

be convenient to decompose Q into

Q = Q1 + Q2, (38)

where Q1 = diag(q11, q22) and where Q2 = q12L, with L = 11
′ − Im. Using this decomposition,

the relevant elements of E [M2] are seen to be

E [M2] = E [DρQ1AQ1A] + E [DρQ1AQ2A]

= E

[
q11(a2

11q11 + a2
12q22)ρ1

q22(a2
12q11 + a2

22q22)ρ2

]
+ E [q12DρQ1ALA] .

The only stochastic variables in the equation are provided by Q. The moments of its elements

are given by

E [qii] = E [qij ] = 0 (39)

E [qiiqjj ] = E [qiiqij ] = 0 (40)

E
[
q2
ii

]
= κi − 1 (41)

E
[
q2
ij

]
= 1. (42)

For M2 this implies

E [M2] =

[
(κ1 − 1)ρ1a

2
11

(κ2 − 1)ρ2a
2
22

]
. (43)

Let us now center attention on the third term, M3. Substituting the decomposition for Q, and

rearranging terms, we find

M3 = QA2QA2 = Q1A
2Q1A

2 + Q1A
2Q2A

2 + Q2A
2Q1A

2 + Q2A
2Q2A

2. (44)

Here the relevant elements (ignoring off-diagonal elements) are seen to be

M3 = diag

[
q11(a4

11q11 + a4
12q11 + 2a11a

2
12a22q22 + a2

12a
2
22q22 + a2

11a
2
12(2q11 + q22))

q22(a4
22q22 + a4

12q22 + 2a11a
2
12a22q11 + a2

11a
2
12q11 + a2

12a
2
22(q11 + 2q22))

]
+ 2q12Q1A

2LA2 + q2
12LA2LA2.

Taking expectations, and simplifying the expression, leaves us with

E [M3] =

[
(κ1 − 1)(a2

11 + a2
12)

2

(κ2 − 1)(a2
12 + a2

22)
2

]
+ LA2LA2. (45)

Last, we turn to the first term, M1, which is the most compact of the three

M1 = Q2 =

[
q2
11 + q2

12 q11q12 + q12q22

q11q12 + q12q22 q2
12 + q2

22

]
. (46)
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In expectation this reduces to

E [M1] =

[
κ1 0

0 κ2

]
. (47)

By putting the three terms together, summing their diagonal elements and adding the minus

sign, we finally obtain the expression for the asymptotic objective function as presented in the

lemma. �

Figures 2 to 4 provide plots of the asymptotic objective function f(A) for different values

of (α1, α2), having set a12 = 0. The figures on the right display the contour plots in the

(a1, a2)-plane while the figures on the left plot the values of f(A) in 3D.

Figure 2: The asymptotic objection function f(A) for α = (0.10; 0.15), with a12 = 0
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Figure 3: The asymptotic objection function f(A) for α = (0.10; 0.30), with a12 = 0
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Figure 4: The asymptotic objection function f(A) for α = (0.30; 0.30), with a12 = 0
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In Figure 2, it can be verified, the asymptotic objective function has four local maxima,

each of which correspond to the same value of (a1, a2) ≈ (0.187, 0.366) following from (17). In

Figure 3 two maxima remain, with (a1, a2) ≈ (0, 0.548); note that (α1, α2) = (0.1, 0.3) indeed

meets the condition of Lemma 1 for a partly positive solution. Finally, Figure 4 corresponds

to the special case where the diagonal elements are no longer distinct; It can be verified that

α1 = α2 = 0.3 implies a1 = a2 ≈ 0.466.

5 Some Monte Carlo evidence

To assess the finite-sample behavior of the estimator of U proposed in the previous sections,

labelled ÛNLS , and its loss of efficiency relative to the ML estimator ÛML, this section considers

a number of small-scale Monte Carlo experiments. The section is divided into two subsections.

The first subsection explores how performance of the proposed estimator varies with the under-

lying model parameters. The second evaluates performance for different lengths of the sample

size.

To compare the performance of the estimators, we require a single descriptive statistic that

measures the accuracy with which we are able to estimate U . Given the true value U0 and an

estimate Û , any matrix norm ‖Û −U0‖ could be used. An advantage of the 2-dimensional case

is that the orthogonal matrix can be parameterized by a single parameter, which we will denote

ϕ, which defines the rotation angle4 with respect to I2. In all experiments we set ϕ0 = π/6

to characterize the orthogonal matrix U0. The root mean squared error (RMSE) will be our
4Note that this parameterization may also be extended to the m-dimensional case. Then 1

2
m(m− 1) rotation

angles are required to identify U (see van der Weide, 2002).
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choice of summary statistic:

RMSE(n) =

(
1
N

N∑
i=1

(ϕ̂i − ϕ0)
2

) 1
2

, (48)

where N denotes the number of Monte Carlo replications.

Note that without further constraints different rotation angles may correspond to orthogonal

matrices that are in effect identical. To avoid such identification problems, we decide on an

explicit structure for U :

U(ϕ) =

[
cos ϕ sinϕ

− sinϕ cos ϕ

]
, (49)

where ϕ ∈ [0, π
2 ). In words, estimates of U will often show variations of (49) where rows are

exchanged and/or rows have been multiplied by −1. We deal with that by first imposing (49)

before we determine the rotation angle as ϕ = arccos (U11).

One reason we do not center attention on the ARCH parameters in this Monte Carlo exercise

is that they are in essence a derivative. The proposed estimator for U requires no model

specification for the volatility dynamics. It merely assumes that volatility varies over time.

Robustness to any misspecification in the GARCH-type model marks one of the advantages of

the proposed estimator. Given an estimate for U , one subsequently transforms the data using

Û and estimates the GARCH parameters in a separate stage.

Finally note that the next subsection will use the same example that was introduced, and

examined, in the previous section. Accordingly we benefit from the theoretical results accumu-

lated as we conduct and interpret the simulation experiments.

5.1 For different values of the model parameters

As stated in the outset of this section, we consider the bivariate ARCH(1) example introduced

in the previous section (see equations (24)–(26)). From the results presented in the estimation

section we know that the effectiveness of the proposed estimator is not independent of the model

parameters that describe the persistence in volatility. In this example the persistence in volatil-

ity is entirely described by the ARCH parameters α1 and α2. We will evaluate performance as

we vary α in the range [0, 1]. An application of Corollary 1 for this bivariate ARCH(1) example

leads us to the following lemma.

Lemma 3 The non-identification area in the (α1, α2)-plane, along which the proposed estimator

Û breaks down asymptotically, is given by

α1 = α2. (50)

Proof. Applying Corollary 1 to the bivariate case yields

(κ1 − 1)κ2ρ1 = κ1(κ2 − 1)ρ2. (51)
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By directly substituting the expressions for the autocorrelations ρ and kurtosis κ given the

ARCH(1) specification (see equations (27) and (28)), we obtain

3
(

2α1

1− 3α2
1

)(
1− α2

2

1− 3α2
2

)
= 3

(
2α2

1− 3α2
2

)(
1− α2

1

1− 3α2
1

)
, (52)

which is seen to simplify to

α1

(
1− α2

2

)
= α2

(
1− α2

1

)
. (53)

The latter equality holds if and only if α1 = α2, which is what is stated in the lemma. �

The non-identification area marks one region in parameter space where the proposed estima-

tor breaks down asymptotically. In this example the problematic region in the (α1, α2)-plane is

described by a line, the diagonal α1 = α2. For finite samples however the bounds of the region

will be less clear-cut. Even if estimates remain consistent away from the diagonal α1 = α2,

it seems plausible that efficiency of the proposed estimator declines as the model parameters

approach the non-identification area.

In addition to consistency problems due to lack of identification, it is of interest to investigate

the effect of infinite kurtosis (αi ≥
√

1
3) or even infinite variance (αi = 1) on the behavior

of the estimator. Furthermore, we can investigate whether the behavior of the estimator is

substantially different between the cases where both ai’s are positive, and the case where one of

them is zero (i.e., whether it matters if we are inside our outside the parameter region bounded

by the curves C1 and C2 in Figure 1).

In this Monte Carlo experiment all parameters other than α = (α1, α2) will be kept constant.

Their values are listed in Table 1.

parameter value

ϕ0
π
6

sample size n 3000

replications N 2500

Table 1: Parameters kept fixed during Monte Carlo experiment

Figure 5 summarizes our first results, a contour and surface plot of the RMSE for α ∈
[0, 1] × [0, 1]. We observe the following properties. First, the RMSE is high on the diagonal,

i.e., in the non-identification area characterized by Lemma 3. Second, the RMSE is high when

both processes have an infinite kurtosis. Both properties are as expected from Corollary 1.

However, we also note that the estimator performs quite well if only one of the processes has

infinite kurtosis (for example, when α1 = 0.1 and α2 = 0.8). Although we do not have a formal

explanation of this, it is clear that the estimator benefits from the fact that the two independent

processes have a very different autocorrelation structure in the squares in this case; the existence

of moments is then relatively unimportant.
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Figure 5: Values of the RMSE for α ∈ [0, 1]× [0, 1]
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Perhaps even more striking is the fact that the RMSE is very low if one of the processes has

αi = 1 (i.e., an integrated ARCH process, with infinite variance), as long as the other process has

αj < 1 (whether the other process has finite higher moments appears to be irrelevant). Again,

we see that the different autocorrelations in squares between the processes is very helpful for

ÛNLS .

5.2 For different values of the sample size

This subsection investigates how efficiency of the proposed estimator increases with the sample

size. The results will be placed against the background of the ML estimator, which allows us

to judge the loss of efficiency. Figure 6 displays the results, for n ∈ {800, 1600, 3200, 6400},
and for two bivariate systems where the independent factors yit follow a GARCH(1,1) process,

with parameter values inspired by the empirical results in the next section. In the left panel of

Figure 6, the GARCH parameters are set equal to(
α1

β1

)
=

(
0.09

0.90

)
,

(
α2

β2

)
=

(
0.04

0.95

)
, (54)

whereas the right panel, they are(
α1

β1

)
=

(
0.16

0.83

)
,

(
α2

β2

)
=

(
0.03

0.96

)
. (55)

Note that in all cases, αi + βi = 0.99, which corresponds to the values typically found in

practice. In the second set of parameter values, the difference in α1 and α2 (and hence in the

first-order autocorrelations ρ1 and ρ2) is larger, such that we expect our estimator to perform

better. Note that in all cases, the kurtosis of yit is finite. Recall that for a mean-zero Gaussian

GARCH(1,1) process yt, we have (see Bollerslev, 1986, 1988):

ρ = Corr(y2
t , y

2
t−1) =

α(1− αβ − β2)
1− 2αβ − β2 , κ =

E(y4
t )

E(y2
t )2

= 3
1− α2 − β2 − 2αβ

1− 3α2 − 2αβ − β2 .
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Figure 6: Values of the RMSE for different lengths of the sample size, for parameter values

given in (54) (left panel) and (55) (right panel)
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From Figure 6, we observe that the RMSE of both estimators decreases as the sample size

increases, as expected. We also see that our estimator has a higher RMSE than the MLE in

both cases, and that both estimators perform better in the second case, where the difference

between the two independent GARCH processes is larger. Although the absolute difference in

RMSE between the two estimators decreases as n →∞ and as the difference between the two

α’s gets larger, the relative efficiency does not change much; in all cases the RMSE of ÛNLS

is about five times larger than that of ÛML. Clearly this relative inefficiency is the price we

have to pay for the relative simplicity of our proposed method, but also for its robustness: the

maximum likelihood estimator can be expected to be much more sensitive to misspecification

in the GARCH processes for the independent components.

6 Empirical application: Dow Jones and Nasdaq in the 1990s

This section considers an empirical application of the method proposed in the previous sections.

Following Engle (2002), we consider 10 years of daily returns (March 26, 1990 through March

23, 2000) on the Dow Jones Industrial index and the Nasdaq Composite index (n = 2609).

The data are displayed in Figure 7. Both series clearly display volatility clustering. We

observe that the volatility of Nasdaq is higher, on average, than the Dow Jones volatility.

Furthermore, both volatilities clearly decrease in the middle of the sample, and increase sub-

stantially towards the end of the 1990s.

We compare estimated O-GARCH, GO-GARCH and DCC models for the time-varying

correlation between the Dow Jones and Nasdaq, where we apply our proposed NLS-based

three-step method to the GO-GARCH model. Later, we will compare the NLS model parameter

estimates with those obtained from the two-step ML method.
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Figure 7: Daily Dow Jones and Nasdaq returns, March 1990 – March 2000
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Figure 8 displays the estimated volatilities, covariances and correlations based on the three

models. At first sight, all three methods seem to imply very similar volatilities, in particular

for the Dow Jones.

Figure 8: Estimated volatilities, covariances and correlations
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The larger differences occur in the volatility peaks, which is not surprising, since the main
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difference between empirical GARCH specifications for the same data-set usually concerns the

height of the volatility during the peaks (as well as the subsequent speed of mean reversion).

A similar picture emerges from the covariances: the methods agree about the general pattern

of covariances over time, but differ in the height of the covariances during the peak periods.

For the time-varying correlations, the differences between the three methods are more pro-

nounced. This is more obvious in Figure 9, where we have depicted the three correlation series

in separate graphs.

Figure 9: Estimated correlations
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The most obvious difference between the GO-GARCH correlations and the other two spec-

ifications is the range in which they vary: the GO-GARCH correlations always lie between 0.6

and 0.9, whereas the other two can become as low as 0.3–0.4. We also see that the O-GARCH

and DCC correlation patterns are very similar, and that the GO-GARCH correlation series

behaves like a smoothed version of the other two.

The fact that GO-GARCH correlation series sometimes display upper and lower bounds was

also noted by van der Weide (2002). Whether this property should be seen as beneficial or not is

up to the user. It is quite debatable whether the short periods of very low correlation implied by

the O-GARCH and DCC models are genuine; they may be fully driven by the volatility patterns

in those periods, and in that case the less volatile behavior of the GO-GARCH correlations may

provide a better indication of the actual correlation between these two series5.
5Recall that O-GARCH is nested as a special case in the GO-GARCH model. The data thus has the option

to pick the former. Yet the empirical observations decide otherwise as indicated by a likelihood-ratio test, which
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The estimates of the matrix U from the NLS-based and ML methods are given by

ÛNLS =

[
0.523 −0.852

0.852 0.523

]
, ÛML =

[
0.856 0.517

−0.517 0.856

]
.

These two estimates are very similar, once we take into account that the rows of U may be

interchanged (corresponding to the components of yt being interchanged) or multiplied by −1

(corresponding to replacing yit by −yit). Parametrizing the orthogonal matrix as in (49), with

ϕ ∈ [0, 1
2π), we find that ϕ̂NLS = 0.175π and ϕ̂ML = 0.173π.

The two corresponding estimates of the matrix Z are given by

ẐNLS =

[
0.149 0.989

0.814 0.581

]
, ẐML =

[
0.990 −0.142

0.587 −0.810

]
.

The cosine of the angle between the two columns of Z is estimated as 0.654 (NLS) or −0.651

(ML). Note that in the O-GARCH model, the columns of Z are orthogonal. Therefore, this

cosine, or the estimates of ϕ given above, may be interpreted as the deviation of the esti-

mated GO-GARCH model from an O-GARCH specification. We have not tried to construct

standard errors for these estimates, such that their significance cannot be established. How-

ever, a likelihood ratio test statistic for the hypothesis U = I2 is equal to 166, suggesting that

this restriction may be safely rejected. (Unreported Monte Carlo simulations indicate that the

asymptotic χ2(1) null distribution of the likelihood ratio statistic provides a good approximation

to the actual null distribution.)

The estimated GARCH(1,1) parameters for the two independent components (based on

ẐNLS) are given by (
α̂1

β̂1

)
=

(
0.088

0.905

)
,

(
α̂2

β̂2

)
=

(
0.044

0.952

)
. (56)

Note that the volatility persistence α + β is very similar for both factors, but the estimates

of α are different, indicating that the first factor will display more short-run variation in the

volatility. The estimates based on ẐML instead of ẐNLS are very similar.

We conclude this section with some diagnostics for the GO-GARCH model. To this end, we

construct standardized residuals ẑt = V̂
−1/2
t xt, where V̂

1/2
t denotes the symmetric square root

of V̂t = ẐĤtẐ
′, based on either the ML or the NLS estimator. Next, we estimate a first-order

vector autoregression for the vector rt = (ẑ2
1t, ẑ

2
2t, ẑ1tẑ2t)′, and test whether all nine coefficients

in this VAR model are equal to zero. When using the NLS estimators the resulting Wald

statistic is given by 14.12, with a p-value of 0.12; for the ML estimator the Wald statistic is

9.66, with a p-value of 0.38. Hence we see that the GO-GARCH model, estimated using either

one of the two available methods, captures the volatility and correlation dynamics and volatility

spill-overs quite well.

rejects O-GARCH in favour of GO-GARCH.
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7 Higher-variate examples: US versus European stock indices

The empirical application in this section involves two higher-variate examples: Five widely

traded stock indices in the US versus the national indices of the five largest markets in Europe.

For the US, we have the Dow Jones Composite (DJ), the Nasdaq 100 (NAS), the New York Stock

Exchange Composite (NYA), the Standard and Poor 500 index (SP), and the Major Market

Index (XMI). The European markets we consider for our example are located in Amsterdam

(AEX), Paris (CAC), Frankfurt (DAX), London (FTSE), and in Zurich (SMI). The samples are

of a different size, for we have about 19 years for the US (December 1, 1987 through August 1,

2006), compared to roughly 14 years for Europe (November 11, 1992 through August 1, 2006).

This amounts to respectively 4708 and 3502 daily returns6. Note that we started our sample of

US data well after black Monday, the major stock market crash of 1987, to prevent this outlier

from possibly influencing the results7.

Where the bivariate example from the first empirical application provided a suitable point

of departure to study the estimator in more detail, the two five-variate examples in this section

will be more of a test-case. Estimation of the multi-variate GARCH model is particularly

challenging for larger dimensional systems, and as such the higher-variate examples make an

interesting comparison between the different estimators. Naturally, the higher-variate examples

also provide a useful test for the model’s ability to fit the data. For comparison we included

the more parsimonious O-GARCH model.

Descriptive statistics of the data are displayed in Tables 2 and 3. We observe that the

standard deviation of the daily returns shows little variation across the indices of both the

US and Europe. The Nasdaq 100 appears an exception, as an index for the more volatile

high-tech stocks; its standard deviation is almost double the size of the other indices. If we

exclude the Nasdaq, we find that the European indices are perhaps slightly more volatile than

the US indices. The London FTSE index is least volatile, at a level comparable to the US.

More apparent differences between the US and Europe concern the skewness and kurtosis. The

empirical densities for the US are noticeably more skewed, where the European appear almost

symmetric, and exhibit heavier tails.
6Note that there will be days where not all stock exchanges are open for trade. We observed a number of such

cases for the different European markets, while it appeared not much of an issue for the US indices from our

example. Overall, we find that the London exchange has a slightly larger number of trading days compared to

the other exchanges. Some apparent dates include the 26th of December (whenever it is not part of the weekend),

and September 11, 2001 (the terorist attack in New York), where the Paris exchange appeared the only market

in Europe open for trade. For our European sample there were 20 days where we had missing price data for four

out of the five indices. These observations were dropped from our sample. There are also days where only one

or two indices report missing values, for only their markets would be closed for trade. In these cases, we decided

to impute a zero return. After data-cleaning, our sample of European indices consists out of 3502 daily returns.

No observations needed to be dropped from the US sample.
7Results not reported here show that including the stock market crash in our sample noticeably affects the

estimates from the two-step ML method. The three-step NLS estimator appears largely robust to this outlier.
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DJ NAS NYA SP XMI AEX CAC DAX FTSE SMI

SD 0.009 0.018 0.009 0.010 0.010 0.013 0.013 0.014 0.010 0.011

SK −0.35 −0.10 −0.34 −0.22 −0.32 −0.13 −0.07 −0.17 −0.16 −0.14

K 7.9 8.2 7.7 7.3 7.8 7.8 5.5 6.0 6.0 7.2

Table 2: Standard deviation (SD), skwewness (SK) and kurtosis (K) for raw returns of both

US and European indices

These are interesting differences, for the GARCH models used here neither accommodate

skewness, nor allow for particularly heavy tails. As such, these differences will plausibly chal-

lenge the robustness of the estimators with respect to such misspecifications in the model.

Finally, Table 3 shows some differences in the (unconditional) correlations: levels ranging from

0.59 to 0.98 for US indices compared to 0.71 to 0.83 for the European indices. Overall, it

appears the US indices are slightly more correlated.

DJ NAS NYA SP XMI AEX CAC DAX FTSE SMI

1.00 0.65 0.94 0.92 0.91 1.00 0.83 0.79 0.78 0.78

1.00 0.72 0.81 0.59 1.00 0.78 0.78 0.73

1.00 0.98 0.92 1.00 0.70 0.71

1.00 0.90 1.00 0.72

Table 3: Unconditional correlations between raw returns, for both US and European indices

As stated, the key objective will be to compare our three-step NLS estimator with the orig-

inally proposed two-step ML estimator. In terms of convergence of the numerical optimization

procedure, we experienced no difficulties with the NLS estimator; with a first pick of initial

values we obtained convergence for both data sets. We also obtained convergence for the ML

estimator, although we had to play a little with the initial values for the US data.

To assess how well each estimates the GO-GARCH model, i.e. fit the model to the data, we

will appeal to a simple test for misspecification. Let ẑt = V̂
− 1

2
t xt be the standardized residuals,

where the matrix V̂t denotes the estimated (conditional) covariance of xt, based on either the

NLS or the ML estimator. The matrix V̂
− 1

2
t is obtained as the inverted symmetric square root

of V̂t. Let rt = (ẑ2
1t, . . . , ẑ

2
5t, ẑ1tẑ2t, . . . , ẑ4tẑ5t)

′
, where rt contains all multiples ẑitẑjt for j > i

and i, j = 1, . . . , 5. Then we estimate a first-order vector autoregression for the vector rt, and

use the adjusted-R2’s as our diagnostics. If the model is correctly specified, and the estimators

provide accurate estimates, then the VAR model should not pick up much structure in the

standardized residuals. The results are presented in Tables 4 and 5. To save space we only

report on the adjusted-R2’s for ẑ2
1t to ẑ2

5t as our dependent variables.
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variable O GO-ML GO-NLS RAW

ẑ2
1t 0.20 0.11 0.07 0.04

ẑ2
2t 0.02 0.01 0.01 0.09

ẑ2
3t 0.02 0.05 0.03 0.05

ẑ2
4t 0.04 0.04 0.04 0.06

ẑ2
5t 0.06 0.03 0.01 0.05

likelihood −30, 851 −29, 769 −30, 470

Table 4: US example: adjusted-R2’s for regressions against squared residuals, as well as the

value of the likelihood function for each model

variable O GO-ML GO-NLS RAW

ẑ2
1t 0.01 0.02 0.02 0.13

ẑ2
2t 0.01 0.00 0.02 0.10

ẑ2
3t 0.06 0.01 0.01 0.07

ẑ2
4t 0.00 0.00 0.00 0.11

ẑ2
5t 0.02 0.01 0.02 0.13

likelihood −22, 726 −22, 394 −22, 916

Table 5: EU example: adjusted-R2’s for regressions against squared residuals, as well as the

value of the likelihood function for each model

We observe a number of apparent results. Firstly, our NLS estimator performs either as

good as the ML estimator (when both perform well), or it seems to perform better. Secondly,

the results for the US and Europe are notably different; judging by our diagnostics, the GO-

GARCH model fits the European data better than the data from the US. Note that for the

European indices, O-GARCH too provides decent results.

It is an interesting detail that GO-GARCH fits the European data better than the US data.

It is even more interesting that, for the latter data, the NLS estimator outperforms the ML

estimator. Where the ML estimator performs poorly, yet better than the O-GARCH model, the

NLS estimator provides a decent fit. Let us put forward a possible explanation for why the NLS

estimator, which should be less efficient when the model is correctly specified, is able to do better

than the ML estimator8. It is anticipated that our three-step NLS estimator is more robust

against misspecification. From the descriptive statistics, we read that the empirical densities
8Note that the value of the likelihood function is highest for the ML estimate. In addition to the value of the

link matrix, however, the likelihood function also depends on the exact model specification for the independent

components, in this case a GARCH(1,1) model with normal disturbances. The three-step NLS estimator does

not require this model to be specified; its estimate of the link matrix is considered optimal regardless of which

model is assumed for the components. Therefore, if our model is misspecified, the value of the likelihood function
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associated with the US indices exhibit substantial skewness as well as particularly heavy tails.

The model is not tailored to account for these stylized facts, and as such is misspecified, which

will affect the ML estimates. Consistent with this reasoning is that the ML estimator performs

well for the European data, judging by our diagnostics slightly better than the NLS estimator.

Indeed, misspecification is less of an issue here, for the data do not share the same stylized facts

that would particularly hamper the ML estimates; the skewness is fairly low, while the kurtosis

consistent with normal disturbances that feature GARCH structure.

Something worth trying is to replace the normal distribution for the uncorrelated compo-

nents with a multivariate skewed t-distribution, see for example Bauwens and Laurent (2005).

As such the model is better equipped to handle the stylized facts observed for the US data. If

it is indeed the robustness to misspecification of the NLS estimator that sets it apart from the

ML estimator, this exercise is anticipated to reduce this discrepancy.

8 Concluding remarks

This paper puts forward an alternative method of estimation for the GO-GARCH model, by

appealing to a NLS-based three-step estimator, which is meant to make the model more attrac-

tive purely from a practical point of view. The method is better suited for higher-dimensional

systems, where the two-step ML procedure originally proposed by van der Weide (2002) is more

likely to experience convergence difficulties. The preliminary empirical and Monte Carlo results

indicate that the new estimation procedure is promising, although it is noticeably less efficient

than the ML procedure. This loss of efficiency however, is accompanied by an increase in ro-

bustness: possible misspecification of the GARCH models of the independent components will

have no effect on the estimation of the link matrix. Our empirical examples seem to suggest

that our NLS estimator indeed benefits from this robustness.
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