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Abstract

We show that the limiting distributions of subset extensions of the weak instrument
robust instrumental variable statistics are boundedly similar when the remaining structural
parameters are estimated using maximum likelihood. They are bounded from above by
the limiting distributions which apply when the remaining structural parameters are well-
identified and from below by the limiting distributions which hold when the remaining
structural parameters are completely unidentified. The lower bound distribution does not
depend on nuisance parameters and converges in case of Kleibergen’s (2002) Lagrange
multiplier statistic to the limiting distribution under the high level assumption when the
number of instruments gets large. The power curves of the robust subset statistics are non-
standard since they converge to identification statistics for distant values of the parameter
of interest. The power of a test on a well-identified parameter is therefore low at distant
values when one of the remaining structural parameters is weakly identified. It is identical
to the power of a test for a distant value of any of the other structural parameters. All
subset results extend to tests on the parameters of the included exogenous variables.

1 Introduction

A sizeable literature currently exists that deals with statistics for the linear instrumental variables
(IV) regression model whose limiting distributions are robust to instrument quality, see e.g.
Anderson and Rubin (1949), Kleibergen (2002), Moreira (2003) and Andrews et. al. (2005). These
weak instrument robust statistics test hypotheses that are specified on all structural parameters
of the linear IV regression model. Many interesting hypotheses are, however, specified on subsets
of the structural parameters and/or on the parameters associated with the included exogenous
variables. When we replace the structural parameters that are not specified by the hypothesis of
interest by estimators, the limiting distributions of the robust statistics extend to tests of such
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hypotheses when a high level identification assumption on these remaining structural parameters
holds, see e.g. Stock and Wright (2000) and Kleibergen (2004,2005). This high level assumption
is rather arbitrary and its validity is typically unclear. It is needed to ensure that the parameters
whose values are not specified under the null hypothesis are replaced by consistent estimators
so the limiting distributions of the weak instrument robust statistics remain unaltered. When
the high level assumption is not satisfied, the limiting distributions are unknown. The high level
assumption is avoided when we test the hypotheses using a projection argument which results in
conservative tests, see Dufour and Taamouti (2005a,2005b).
We show that when we estimate the parameters that are not specified by the hypothesis of

interest by maximum likelihood that the limiting distributions of the robust subset statistics
are boundedly similar (pivotal). They are bounded from above by the limiting distribution
which applies when the high level assumption holds and from below by the limiting distribution
which applies when the unspecified parameters are completely unidentified. The lower bound
distribution does not depend on nuisance parameters and converges to the limiting distribution
under the high level assumption when the number of instruments gets large in case of Kleibergen’s
(2002) Lagrange multiplier (KLM) statistic. The robust subset statistics are thus conservative
when we apply the limiting distributions that hold under the high level identification assumption.
We use the conservative critical values that result under the high level identification assump-

tion to compute power curves of the robust subset statistics. These power curves show that the
weak identification of a particular parameter spills over to tests on any of the other parameters.
For large values of the parameter of interest, we show that the robust subset statistics correspond
with tests of the identification of any of the structural parameters. Hence, when a particular
(combination of the) structural parameter(s) is weakly identified, the power curves of tests on
the structural parameters using the robust subset statistics converge to a rejection frequency
that is well below one when the parameter of interest becomes large. The quality of the identifi-
cation of the structural parameters whose values are not specified under the null hypothesis are
therefore of equal importance for the power of the tests as the identification of the hypothesized
parameters itself.
The paper is organized as follows. In the second section, we state the robust subset statistics.

Because the subset likelihood ratio statistic has no closed form analytical expression, we provide
an extension of Moreira’s (2003) conditional likelihood ratio statistic for tests on subsets of the
structural parameters. In the third section, we discuss the limiting distributions of the robust
subset statistics when the remaining structural parameters are completely non-identified. We
show that these distributions provide a lower bound on the limiting distributions of the robust
subset statistics while the limiting distributions under the high level identification assumption
provide a upperbound. In the fourth section, we analyse the size and power of the subset
statistics and show that they converge to a statistic that tests for the identification of any of the
structural parameters when the parameter of interest becomes large. The fifth section illustrates
some possible shapes of the p-value plots that result from the robust subset statistics. The sixth
section extends the robust subset statistics to statistics that conduct tests of hypotheses specified
on the parameters of the included exogenous variables. It also analyses the size and power of
such tests. Finally, the seventh section concludes.
We use the following notation throughout the paper: vec(A) stands for the (column) vector-

ization of the N × n matrix A, vec(A) = (a01 . . . a
0
n)
0 for A = (a1 . . . an), PA = A(A0A)−1A0 is
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a projection on the columns of the full rank matrix A and MA = IN − PA is a projection on
the space orthogonal to A. Convergence in probability is denoted by “→

p
” and convergence in

distribution by “→
d
”.

2 Subset statistics in the Linear IV Regression Model

We consider the linear IV regression model

y = Xβ +Wγ + ε
X = ZΠX + VX
W = ZΠW + VW ,

(1)

where y, X and W are N × 1, N × mx and N × mw dimensional matrices that contain the
endogenous variables, Z is a N × k dimensional matrix of instruments and m = mx +mw. The
N × 1, N ×mx and N ×mw dimensional matrices ε, VX and VW contain the disturbances. The
mx× 1, mw × 1, k×mx and k×mw dimensional matrices β, γ, ΠX and ΠW consist of unknown
parameters. We can add a set of exogenous variables to all equations in (1) and the results that
we obtain next remain unaltered when we replace all variables by the residuals that result from
a regression on these additional exogenous variables.
We make, analogous to Staiger and Stock (1997), an assumption on the convergence of the

different variables in (1).

Assumption 1: When the sample size N converges to infinity, the following convergence results
hold jointly:

a. 1
N
(ε
... VX

... VW )0(ε
... VX

... VW ) →
p
Σ, with Σ a positive definite (m + 1) × (m + 1) matrix

and Σ =

⎛⎝ σεε σεX σεW
σXε ΣXX ΣXW

σWε ΣWX ΣWW

⎞⎠ , σεε : 1× 1, σεX = σ0Xε : 1×mx, σεW = σ0Wε : 1×mw,

ΣXX : mx ×mx, ΣXW = Σ0WX : mx ×mw, ΣWW : mw ×mw.

b. 1
N
Z 0Z →

p
Q, with Q a positive definite k × k matrix.

c. 1√
N
Z 0(ε

... VX
... VW )→

d
(ψZε

... ψZX

... ψZW ), with ψZε : k × 1, ψZX : k ×mx, ψZW : k ×mw

and vec(ψZε

... ψZX

... ψZW ) ∼ N (0,Σ⊗Q) .

Statistics to test joint hypotheses on β and γ, like, for example, H∗ : β = β0 and γ = γ0,
have been developped whose (conditional) limiting distributions under H∗ and Assumption 1 do
not depend on the value of ΠX and ΠW , see e.g. Anderson and Rubin (1949), Kleibergen (2002)
and Moreira (2003). These identification robust statistics can be adapted to test for hypotheses
that are specified on a subset of the parameters, for example, H0 : β = β0. We construct such
robust subset statistics which use the maximum likelihood estimator (MLE) γ̃ to estimate the
unknown value of γ. The MLE results from the first order condition (FOC) for a maximum of
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the likelihood. The Anderson-Rubin (AR) statistic is proportional to the concentrated likelihood
so we can obtain the FOC from (k times) the AR statistic:

∂
∂γ
AR(β0, γ̃) = 0 ⇔ 2

σ̂εε(β0)
Π̃W (β0)

0Z 0(y −Xβ0 −Wγ̃) = 0, (2)

where AR(β0, γ) =
1

σ̂εε(β0,γ)
(y − Xβ0 −Wγ)0PZ(y − Xβ0 −Wγ), σ̂εε(β0, γ) =

1
N−k (y − Xβ0 −

Wγ)0 MZ(y −Xβ0 −Wγ), Π̃W (β0) = (Z
0Z)−1Z 0

h
W − (y −Xβ0 −Wγ̃) σ̂εW (β0)

σ̂εε(β0)

i
and σ̂εε(β0) =

σ̂εε(β0, γ̃), σ̂εW (β0) =
1

N−k(y −Xβ0 −Wγ̃)0MZW.
In order to specify the robust subset statistics, we decompose (Z 0Z)−1Z 0(y : X :W ) into three

components: Z 0(y−Xβ0−Wγ̃), Π̃W (β0) and Π̃X(β0) = (Z
0Z)−1Z 0

h
X − (y −Xβ0 −Wγ̃) σ̂εX(β0)

σ̂εε(β0)

i
,

σ̂εX(β0) =
1

N−k (y −Xβ0 −Wγ̃)0MZX.

Lemma 1: When Assumption 1 and H 0 : β = β0 hold, Π̃W (β0) and Π̃X(β0) are given the
MLE γ̃ independent of Z 0(y −Xβ0 −Wγ̃) in large samples.

Proof. see the Appendix.

Lemma 2: When Assumption 1 holds and under H 0 : β = β0, Π̃W (β0) and Π̃X(β0) are
uncorrelated with Z 0(y −Xβ0 −Wγ̃) in large samples such that

E
∙
limN→∞ 1

N
1
2 δW

Π̃W (β0)
0Z0(y−Xβ0−Wγ̃)√

σ̂εε(β0)

¸
= 0 and E

∙
limN→∞ 1

N
1
2 δX

Π̃X(β0)
0Z0(y−Xβ0−Wγ̃)√

σ̂εε(β0)

¸
= 0,

(3)
where δW and δX are such that limN→∞ 1

NδW
Π0WZ 0ZΠW = CW , limN→∞ 1

NδX
Π0XZ

0ZΠX = CX

with CW and CX mw ×mw and mx ×mx dimensional matrices of constants such that δW and
δX are zero in case of irrelevant or weak instruments and one in case of strong instruments.1

Proof. see the Appendix.
We use Lemmas 1 and 2 to define the robust subset statistics which are equal to the robust

statistics that test the joint hypothesis H∗ : β = β0 and γ = γ0 when γ0 equals γ̃.

Definition 1: 1. The AR statistic (times k) to test H 0 : β = β0 reads

AR(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PZ(y −Xβ0 −Wγ̃). (4)

2. Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test H 0 reads, see Kleibergen
(2004),

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PMZΠ̃W (β0)

ZΠ̃X(β0)
(y −Xβ0 −Wγ̃). (5)

1For reasons of brevity, we refrain from discussing intermediate cases where instead of normalizing Π0WZ 0ZΠW
(or Π0XZ

0ZΠX) by N−δW , we normalize a quadratic form with respect to Π0WZ0ZΠW by a diagonal matrix
diag(N−δW,1 , . . . , N−δw,mw ) with different values of δW,i, i = 1, . . . ,mW . These cases also have no effect on the
results for the robust subset statistics.
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3. A J-statistic that tests misspecification under H 0 reads, see Kleibergen (2004),

JKLM(β0) = AR(β0)−KLM(β0). (6)

4. The likelihood ratio (LR) statistic to test H 0 reads,

LR(β0) = AR(β0)−minβ AR(β), (7)

where minβ AR(β) equals the smallest root of the characteristic polynomial:¯̄̄̄
Ω̂− 1

N−k (y
... X

... W )0PZ(y
... X

... W )

¯̄̄̄
= 0, (8)

with Ω̂ = 1
N−k (y

... X
... W )0MZ(y

... X
... W ).

The subset LR statistic (7) can be specified as a function of the uncorrelated components

under H0, i.e. Z 0(y −Xβ0 −Wγ̃) and (Π̃X(β0)
... Π̃W (β0)).

Theorem 1. The LR statistic (7) equals

LR(β0) = AR(β0)− λmin, (9)

where λmin is the smallest root of the polynomial¯̄̄̄
λIm+1 −

µ
ϕ0ϕ ϕ0S
S 0ϕ S 0S

¶¯̄̄̄
= 0, (10)

with ϕ = U 0(Z 0Z)− 1
2Z 0ε̂ 1√

σ̂εε(β0)
, ε̂ = y −Xβ0 −Wγ̃ and U and S result from a singular value

decomposition of T (β0) = (Z
0Z)

1
2 [Π̃X(β0)

... Π̃W (β0)]Σ̂
− 1
2

(X : W )(X : W ).ε :

T (β0) = USV 0 (11)

in which U : k×k, U 0U = Ik, V : m×m, V 0V = Im, V 0 = (V 0
X

... V 0
W ), VX : mx×m, VW : mw×m;

and S is a diagonal k ×m dimensional matrix with the singular values in decreasing order on
the main diagonal and

Σ̂
− 1
2

(X : W )(X : W ).ε =

Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εΣ̂
− 12
XX.(ε : W )

0

Σ̂
− 12
WW.ε

!
(12)

where Σ̂XX.(ε : W ) =
1

N−kX
0M(Z : W : ε̂)X, Σ̂WX.ε =

1
N−kW

0M(Z : ε̂)X, Σ̂WW.ε =
1

N−kW
0M(Z : ε̂)W.

Proof. see the Appendix.

Theorem 1 differs from the decomposition of the LR statistic given in Kleibergen (2006) since
we test only a subset of the structural parameters. The estimator for the remaining structural
parameters results from the FOC (2) which puts a restriction on the elements of the characteristic
polynomial in Theorem 1.
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Corollary 1. The FOC (2) for γ̃ implies that VWS0ϕ = 0.

Proof. Since Π̃W (β0)
0Zε̂ = 0, Σ̂

− 1
2

WW.εΠ̃W (β0)
0Z 0ε̂ 1√

σ̂εε(β0)
= VWS 0ϕ = 0.

Corollary 1 is implied by the FOC and the lower block triangular specification of Σ̂
− 1
2

(X : W )(X : W ).ε.

If we do not use a lower block triangular specification of Σ̂
− 1
2

(X : W )(X : W ).ε, the FOC implies a more
complicated restriction on ϕ.
The LR statistic that results from Theorem 1 does not have a closed form analytical expres-

sion. Alongside the subset LR statistic (9), we therefore also use an approximation of it that has
an explicit expresssion, see Kleibergen (2006).

Proposition 1. A upperbound on the subset LR statistic (9) reads

MQLR(β0) =
1
2

∙
AR(β0)− rk(β0) +

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

(13)
where rk(β0) is the smallest characteristic root of Σ̂MQLR(β0) = T (β0)

0T (β0).

Proof. see the Appendix.

Unlike the subset LR statistic (9), MQLR(β0) (13) is a function of Z
0(y−Xβ0−Wγ̃), Π̃X(β0)

and Π̃W (β0) with a closed form analytical expression. Except for the usage of the characteristic
root rk(β0), its expression coincides with that of Moreira’s (2003) conditional likelihood ratio
statistic. Thus we refer to it as MQLR(β0). The MQLR statistic (13) is a quasi-LR statistic
that preserves the main properties of the LR statistic: its conditional distribution given rk(β0)
coincides with that of AR(β0) when rk(β0) is small and with that of KLM(β0) when rk(β0) is
large.

Corollary 2. The LR and MQLR statistics are identical when β0 satisfies the FOC.

Proof. see the Appendix.

The (conditional) limiting distributions of the robust subset statistics result from the zero
correlation between Z 0(y − Xβ0 − Zγ̃) and Π̃X(β0), Π̃W (β0) in large samples that is stated in
Lemma 2 and from a high level assumption with respect to the rank of ΠW which implies an
asymptotic normal distribution for Z 0(y−Xβ0−Zγ̃), Π̃X(β0) and Π̃W (β0), see Kleibergen (2004).
The asymptotic normality and zero correlation imply that Z 0(y−Xβ0−Zγ̃) and Π̃X(β0), Π̃W (β0)
are independent in large samples.

Assumption 2: The value of the k×mw dimensional matrix ΠW is fixed and of full rank.

Theorem 2. a. Under H 0 and when Assumptions 1 and 2 hold, the (conditional) limiting
distributions of AR(β0), KLM(β0), JKLM(β0) and MQLR(β0) given rk(β0) are characterized
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by

1. AR(β0) →
d

ψmx
+ ψk−m,

2. KLM(β0) →
d

ψmx
,

3. JKLM(β0) →
d

ψk−m,

4. MQLR(β0)|rk(β0) →
d

1
2

∙
ψmx

+ ψk−m − rk(β0) +
q¡

ψmx
+ ψk−m + rk(β0)

¢2 − 4ψk−mrk(β0)
¸
,

(14)
where ψmx

and ψk−m are independent χ
2(mx) and χ2(k −m) distributed random variables.

b. Under H 0 and when Assumptions 1 and 2 hold, the (conditional) limiting distribution of
LR(β0) given T (β0) is characterized by

LR(β0)|T (β0)→
d

ψk−m + ψmx
− µmin, (15)

where µmin is the smallest root of the polynomial¯̄̄̄
¯λIm+1 −

Ã
ψk−m + ψmx

¡
ϕmx
ϕk−m

¢0S
S 0¡ ϕmx

ϕk−m

¢ S 0S

!¯̄̄̄
¯ = 0, (16)

with ϕk−m a N(0, Ik−m) distributed random variable, ψk−m = ϕ0k−mϕk−m; ϕmx
= MSV 0

W
ζm with

ζm a N(0, Im) distributed random variable, ψmx
= ϕ0mx

ϕmx
and VW and S result from the singular

value decomposition stated in Theorem 1.

Proof. see Kleibergen (2004) for the proof of part a. Part b results from the decomposition
of LR(β0) in Theorem 1 for which Assumption 1 and 2 imply that ϕ →

d
MSV 0

W
ζk with ζk a

N(0, Ik) distributed random variable. Part b implies that VWS 0
¡
ϕmx
ϕk−m

¢
= 0.

Theorem 2 shows that the conditional limiting distribution of LR(β0) given T (β0) just de-
pends on S and VW which result from a singular value decomposition. The number of unre-

stricted elements of S equals m while the number of unrestricted elements of V = (V 0
X

... V 0
W )

0

equals 1
2
m(m − 1) since V 0V = Im. Hence, the number of conditioning elements for the condi-

tional limiting distribution of LR(β0) equals
1
2
m(m+ 1) which is smaller than the km elements

of T (β0).
The (conditional) limiting distributions in Theorem 2 hold under Assumption 2 which is a

high level assumption that is difficult to verify in practice. We therefore establish the limiting
distributions of the different statistics when Assumption 2 fails to hold, i.e. when ΠW equals
zero instead of a full rank value. We show that the limiting distributions of the statistics in this
extreme setting provide a lower bound for all other cases while the limiting distributions from
Theorem 2 provide a upper bound.

3 Limiting distributions of robust subset statistics

To analyse the limiting distributions of the robust subset statistics in the general case, we use
Lemma 1. Lemma 1 states that the conditional limiting distributions of Z 0(y −Xβ0 − Zγ̃) and
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T (β0) given γ̃ are independent. Hence, the limiting distributions of the robust subset statistics
depend on the distribution of γ̃.We therefore analyse these limiting distributions for two extreme
settings of the distribution of γ̃ : ΠW = 0 and ΠW full rank which is already stated in Theorem 2.
We show that these extreme settings provide lower and upper bounds on the limiting distributions
for all other cases.

Lemma 3. When ΠW = 0 and Assumption 1 and H 0 hold, the FOC (2) corresponds in large
samples with h

ξw + (ξε.w − ξwγ̄)
γ̄0

1+γ̄0γ̄

i0
[ξε.w − ξwγ̄] = 0, (17)

where ξw and ξε.w are k× 1 and k×mw dimensional independently standard normal distributed

matrices and γ̄ = Σ
1
2
WW (γ̃ − γ0 − Σ−1WWσWε)σ

− 1
2

εε.w, σεε.w = σεε − σεwΣ
−1
wwσwε.

Proof. see the Appendix.

The solution of γ̄ to the FOC in Lemma 3 is not unique and the MLE results as the solution
that minimizes the AR statistic. Lemma 3 shows that γ̄ does not depend on any parameters
besides the dimension parameters k and mw. When ΠW equals zero, the distribution of γ̄ does
therefore not depend on any parameters as well and is a standard Cauchy density, see e.g.Mariano
and Sawa (1972) and Phillips (1989). We use Lemma 3 to construct the limiting distributions of
the robust subset statistics to test H0 : β = β0 when ΠW equals zero.

Theorem 3. a. Under Assumption 1, H 0 : β = β0 and when ΠW equals zero:

1. The limiting behavior of the AR statistic to test H 0 : β = β0 is characterized by:

AR(β0)→
d

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 [ξε.w − ξwγ̄] . (18)

2. The limiting behavior of the KLM statistic to test H 0 : β = β0 is characterized by:

KLM(β0)→
d

1
1+γ̄0γ̄ (ξε.w − ξwγ̄)

0PM
[ξw+(ξε.w−ξwγ̄) γ̄0

1+γ̄0γ̄ ]
A(ξε.w − ξwγ̄), (19)

where A is a fixed k ×mx dimensional matrix.

3. The limiting behavior of the JKLM statistic is under H 0 characterized by:

JKLM(β0)→
d

1
1+γ̄0γ̄ (ξε.w − ξwγ̄)

0M
[A : ξw+(ξε.w−ξwγ̄) γ̄0

1+γ̄0γ̄ ]
(ξε.w − ξwγ̄). (20)

4. The conditional limiting behavior of the MQLR statistic given rk(β0) to test H 0 : β = β0
reads

MQLR(β0)|rk(β0)→
d

1
2

h
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0 [ξε.w − ξwγ̄]− rk(β0)+½³

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 [ξε.w − ξwγ̄] + rk(β0)
´2
−

4

µ
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0Mh

A : ξw+(ξε.w−ξwγ̄) γ̄0
1+γ̄0γ̄

i [ξε.w − ξwγ̄]

¶
rk(β0)

¾ 1
2

#
.

(21)
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5. The conditional limiting distribution of the LR statistic given T (β0) to test H 0 : β = β0
reads

LR(β0)|T (β0)→
d

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 [ξε.w − ξwγ̄]− µmin, (22)

where µmin is the smallest root of the polynomial¯̄̄̄
¯λIm+1 −

Ã
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0 [ξε.w − ξwγ̄]

1√
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 U 0S
S 0U [ξε.w − ξwγ̄]

1√
1+γ̄0γ̄ S 0S

!¯̄̄̄
¯ = 0. (23)

Proof. see the Appendix.

Figure 1 shows the χ2(1) distribution function and the limiting distribution function of
KLM(β0) when ΠW = 0 that results from Theorem 3 for different numbers of instruments and
mw = mx = 1. Figure 1 shows that the χ2(1) distribution provides a upperbound for the limit-
ing distribution function of KLM(β0) when ΠW = 0. It also shows that the limiting distribution
of KLM(β0) when ΠW = 0 converges to a χ2(1) distribution when the number of instruments
increases.

Theorem 4. Under H 0 : β = β0, Assumption 1 and when the sample size N and the number
of instruments jointly converge to infinity such that k/N → 0, the limiting behavior of KLM(β0)
when ΠW = 0 is characterized by

KLM(β0)→
d

χ2(mx). (24)

Proof. see the Appendix.

Theorem 4 implies that the χ2 distribution becomes a better approximation of the limiting
distribution of KLM(β0) when the number of instruments gets large. The number of instruments
should, however, not be too large compared to the sample size because a different limiting
distribution of KLM(β0) results when it is proportional to the sample size, see Bekker and
Kleibergen (2003).
Figure 2 shows the χ2(k −mw)/(k −mw) distribution function and the limiting distribution

function of AR(β0)/(k−mw) when ΠW = 0 that results from Theorem 3 for different number of
instruments and mw = 1. Figure 2 shows that the limiting distribution of AR(β0) is bounded by
the χ2(k −mw) distribution when ΠW = 0. Figure 2 shows that the χ2(k −mw) distribution is
a much more distant upperbound for the limiting distribution of AR(β0) than the upperbound
for KLM(β0) in Figure 1. The χ

2 approximation of the limiting distribution of AR(β0) when
ΠW = 0 is thus a much more conservative one than for KLM(β0). Another important difference
with KLM(β0) is that there is no convergence of the limiting distribution of AR(β0) towards a
χ2 distribution when the number of instruments gets large.
The conditional limiting distributions of LR(β0) and MQLR(β0) when ΠW = 0 behave similar

to that of AR(β0) and KLM(β0) since they are just functions of these statistics for a given value
of the conditioning statistics. We therefore refrain from showing these distribution functions as
well. Since JKLM(β0) is also a function of AR(β0) and KLM(β0), we also refrain from showing
the distribution function of JKLM(β0).
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Figure 1: (Limiting) Distribution functions of χ2(1) (solid) and KLM(β0) when Πw = 0, mw =
mx = 1 and k = 2 (dotted), 5 (dashed-dotted), 20 (dashed) and 100 (pointed).
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Figure 2: (Limiting) Distribution functions of χ2(k−1)/(k−1) and AR(β0)/(k−1) when Πw = 0,
mw = mx = 1 and k = 2 (dotted and dashed-dotted), 20 (solid and dashed) and 100 (solid with
triangles and solid with plusses).
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Lemma 1 states that Z 0(y − Xβ0 −Wγ̃) and (Π̃X(β0, γ̃), Π̃W (β0, γ̃)) are conditional on γ̃
independent in large samples. Under Assumption 2, γ is well identified and the limiting distri-
bution of γ̃ is a point mass located at the true value γ0. Hence, the conditional independence
from Lemma 1 extends to unconditional independence when Assumption 2 holds. Theorem 5
states that the (conditional) limiting distributions of the robust subset statistics when Assump-
tion 2 holds, which result from Theorem 2, provide upperbounds on their (conditional) limiting
distributions for general values of ΠW as shown in Figures 1 and 2. The (conditional) limit-
ing distributions under ΠW = 0, which result from Theorem 3, provide a lowerbound on the
(conditional) limiting distributions of the statistics.

Theorem 5. Under H 0 and when Assumption 1 holds, the (conditional) limiting distribu-
tions of the robust subset statistics under a full rank value of ΠW provide a upperbound on
the (conditional) limiting distributions for general values of ΠW while the (conditional) limiting
distributions under a zero value of ΠW provide a lowerbound.

Proof. see the Appendix.

Theorem 5 shows that the (conditional) limiting distributions of the robust subset statistics
are boundedly similar. The critical values that result from the (conditional) limiting distributions
in Theorem 2 can therefore be applied in general, so even for (almost) lower rank values of ΠW ,
since the size of these tests is at most equal to the size under a full rank value of ΠW . Usage of
the critical values from Theorem 2 results in tests that are conservative.

4 Size and Power

We conduct a size and power comparison of the different statistics to analyse the influence of the
quality of the identification of γ for tests on β. We therefore conduct a simulation experiment

using (1) with mx = mw = 1, γ = 1, N = 500 and vec(ε
... VX

... VW ) ∼ N(0,Σ⊗ IN). The instru-
ments Z are generated from a N(0, Ik ⊗ IN) distribution. We compute the rejection frequency
of testing H0 : β = 0 using the robust subset statistics and the two stage least squares (2SLS)
t-statistic, to which we refer as 2SLS(β0). The number of simulations that we conduct equals
5000.
We control for the identification of β and γ by specifyingΠX andΠW in accordance with a pre-

specified value of the matrix generalisation of the concentration parameter, see e.g. Phillips (1983)
and Rothenberg (1984). We therefore analyse the size and power of tests on β for different values

of Θ = (Z 0Z)
1
2 (ΠX

... ΠW )Ω
− 1
2

XW , with ΩXW =
³

ΣXX

ΣWX

ΣXW

ΣWW

´
, whose quadratic form constitutes the

matrix concentration parameter. We specify Θ such that only its first two rows have non-zero
elements.

Observed size when γ is not identified. We first analyse the size of the different statistics
for conducting tests on β when γ is completely unidentified so ΠW = 0. We therefore specify
Σ and Θ such that Σ equals the identity matrix and Θ11 = 5, Θ12 = Θ21 = Θ22 = 0. Table 1
contains the observed size of the different statistics when we test H0 using the 95% asymptotic

11



#instr. \ stat. KLM(β0) LR(β0) MQLR(β0) AR(β0) JKLM(β0) 2SLS(β0)
2 0.36 0.36 0.36 0.36 - 0.24
5 0.88 0.44 0.44 0.28 0.36 1.3
20 2.3 0.60 0.56 0.12 0.08 3.0
50 3.6 0.71 0.56 0.04 0.04 4.4

Table 1: Observed size (in percentages) of the different statistics that test H0 when Πw = 0 using
the 95% (conditional) asymptotic significance level.

(conditional) critical values that result from Theorem 2. In the Appendix we show how to obtain
the conditional critical values for LR(β0) using Theorem 2b when m = 2.
Table 1 confirms Figures 1, 2 and Theorems 4 and 5. It shows that the robust subset tests are

conservative when we use the critical values that result from Theorem 2. Table 1 also confirms the
convergence of the asymptotic distribution of KLM(β0) when ΠW = 0 towards a χ2 distribution
when the number of instruments gets large as stated in Theorem 4 and shown in Figure 1. Since
KLM(β0), LR(β0), MQLR(β0) and AR(β0) are identical when the model is exactly identified, so
k = m = 2, the size of these statistics coincides when k = m = 2 and JKLM(β0) is not defined.
The size of the 2SLS t-statistic in Table 1 shows that it is conservative when ΠW = 0 and Σ

equals the identity matrix. This result is specific for the identity covariance matrix case and, as
we show later, does not apply to general specifications of the covariance matrix.

Power and size for varying levels of identification. We conduct a power comparison of
the different statistics to analyse the influence of the identification of γ on tests for the value
of β. Except for the specification of the covariance matrix Σ, we use the previous specification
of the parameters. The covariance matrix Σ is specified such that σεε = σXX = σWW = 1,
σXε = σεX = 0.9, σWε = σεW = 0.8 and σXW = σWX = 0.6 and the number of instruments
equals 20, k = 20.
Since the KLM-statistic is proportional to a quadratic form of the derivative of the AR-

statistic, it is equal to zero at (local) minima, maxima and saddle points of the AR statistic, i.e.
where the FOC holds. This affects the power of the KLM statistic, see e.g. Kleibergen (2006).
We therefore also compute the power of testing H0 using a combination of the KLM and JKLM
statistics where we apply a 96% significance level for the KLM statistic and a 99% significance
level for the JKLM statistic so the size of the combined test procedure equals 5% since the KLM
and JKLM statistics converge to independent random variables under H0. The combined KLM,
JKLM test procedure is indicated by CJKLM.
Panel 1 shows the power curves for different values of the matrix concentration parameter Θ

with Θ12 = Θ21 = 0 and Table 2 shows the observed sizes when we test at the 95% significance
level. The value of Θ in Figure 1.1 is such that both β and γ are well identified. Hence all
statistics have nice shaped power curves and the AR statistic is the least powerful statistic
because of the larger degrees of freedom parameter of its limiting distribution. The power of
JKLM(β0) is rather low since it tests the hypothesis of overidentification which is satisfied for
all the different values of β. Table 2 shows that the 2SLS-statistic is size distorted in this well
identified setting which is due to the large degree of endogeneity.
The value of Θ in Figure 1.2 is such that γ is weakly identified and β is well identified. Figure
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Panel 1: Power curves of AR(β0) (dash-dotted), LR(β0) (dashed-points), KLM(β0) (dashed),
JKLM(β0) (solid-triangles), MQLR(β0) (solid), CJKLM (solid-plusses) and 2SLS(β0) (dotted)
for testing H0 : β = 0.
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Figure 1.1: Strongly identified β and γ : Figure 1.2: Strongly identified β and weakly
Θ11 = Θ22 = 10. identified γ : Θ11 = 10, Θ22 = 3.
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Figure 1.3: Weakly identified β and strongly Figure 1.3: Weakly identified β and γ :
identified γ : Θ11 = 3, Θ22 = 10. Θ11 = Θ22 = 3.

1.2 shows that the weak identification of γ has large consequences for especially the power of
tests on β. The LR statistic is the most powerful statistic in Figure 1.2 but the MQLR statistic
has comparable power. As shown in Table 2, except for the 2SLS t-statistic, the size of the tests
remains almost unaltered by the weak identification of γ but the power is strongly affected.
Figure 1.3 has a value of Θ that makes β weakly identified and γ strongly identified. Again

the LR statistic is the most powerful statistic but the power of the MQLR and KLM statistics are
comparable. Table 3 shows that the size distortions of all statistics, except the 2SLS t-statistic,
is rather small. The size of the 2SLS t-statistic is completely spurious.
The specification of Θ is such that all parameters are weakly identified in Figure 1.4. The

power of all statistics is therefore rather low and none of the statistics clearly dominates the
others. Because of the low degree of identification, Table 2 shows that the AR statistic is rather
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KLM(β0) LR(β0) MQLR(β0) JKLM(β0) CJKLM(β0) AR(β0) 2SLS(β0)
Fig. 1.1 5.4 4.4 5.4 5.1 5.2 5.5 29
Fig. 1.2 5.9 6.5 6.0 4.9 5.6 5.6 31
Fig. 1.3 5.2 5.7 5.2 4.9 4.8 5.3 98
Fig. 1.4 6.3 4.6 4.4 1.9 5.3 2.3 96
Fig. 2.1 3.1 1.9 2.0 1.6 2.5 1.5 4.1
Fig. 2.2 5.3 5.5 5.2 5.1 5.1 5.3 3.4
Fig. 2.3 4.1 3.6 3.9 4.1 3.9 4.0 4.3
Fig. 2.4 4.9 4.8 5.0 5.2 4.7 5.3 3.8
Fig. 2.5 4.6 4.6 4.5 4.9 4.5 4.9 4.5
Fig. 2.6 4.9 4.7 5.1 5.3 4.8 5.3 4.3
Fig. 3.1 6.1 6.5 5.9 5.0 5.4 5.5 88
Fig. 3.2 5.5 5.8 5.3 5.0 5.2 5.6 99

Table 2: Size of the different statistics in percentages that test H0 at the 95% significance level.

undersized which corresponds with Table 1. The performance of the LR and MQLR statistics is
again rather similar. The size of the 2SLS t-statistic in Table 2 is again completely spurious.
The specification of the covariance matrix Σ in Panel 1 is such that there are spill-overs

between the identification of β and γ that results from Θ. It is therefore difficult to fully assess
the influence of the weak identification of γ on the size and power of tests on β. To analyse the
influence of the weak identification of γ on the power of tests on β in a more isolated manner, we
equate the covariance matrix Σ to the identity matrix. Table 2 and Panel 2 show the resulting
size and power for tests on β.
Table 2 shows that the robust subset statistics are undersized when γ is weakly identified

which is in accordance with Table 1 and Theorem 5. The values of Θ in Figure 1.2 and 2.2 are
identical but the robust subset statistics are only undersized in Figure 2.2 and not in Figure 1.2.
This results because of the different values of Σ that are used for Figures 1.2 and 2.2 such that
ΠW is small for Figure 2.2 but sizeable for Figure 1.2.
The power curves in Panel 2 show that 2SLS(β0) is the most powerful statistic for testing H0.

The previous Figures, however, show that 2SLS(β0) is often severely size-distorted in cases when
any correlation is present which makes its results not trustworthy. Among the statistics that
are at most conservative when identification is weak, LR(β0) is the most powerful statistic for
testing H0 but its power is almost indistinguishable of that of MQLR(β0). The power of LR(β0)
and MQLR(β0) exceed that of AR(β0) for values of β that are relatively close to zero but are
remarkably similar to that of AR(β0) for more distant values of β. This argument holds in a
reverse manner with respect to KLM(β0).
The level of identification of β and γ is reversed in the two columns of Panel 2. In the left-

handside column, the identification of γ is worse than of β and vice versa in the right-handside
column. Table 2 therefore shows that the statistics are somewhat undersized in the left-handside
column while they are size correct in the right-handside column. Besides the size issue, the power
curves in the left and right-handside columns of Panel 2 are remarkably similar for distant values
of β. They only differ around the hypothesized value of the parameter. This indicates that the
statistics behave in a systematic manner for distant values of β which is stated in Theorem 6.
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Panel 2: Power curves of AR(β0) (dash-dotted), LR(β0) (dashed-points), KLM(β0) (dashed),
JKLM(β0) (solid-triangles), MQLR(β0) (solid), CJKLM (solid-plusses) and 2SLS(β0) (dotted)
for testing H0 : β = 0.
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Figure 2.1: Θ11 = 10, Θ22 = 3. Figure 2.2: Θ11 = 3, Θ22 = 10.
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Figure 2.3: Θ11 = 10, Θ22 = 5. Figure 2.4: Θ11 = 5, Θ22 = 10.
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Figure 2.5: Θ11 = 10, Θ22 = 7. Figure 2.6: Θ11 = 7, Θ22 = 10.
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Theorem 6. When mx = 1, Assumption 1 holds and for tests of H 0 : β = β0 for values of β0
that differ substantially from the true value:

a. AR(β0) equals the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW , Ω̂XW = 1
N−k (X

... W )0MZ(X
... W ).

b. The eigenvalues of Σ̂MQLR(β0) = T (β0)
0T (β0) are equal to the eigenvalues of∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.(X : W )

... (X
... W )Ω̂

− 1
2

XWV1

¸0
PZ∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.(X : W )

... (X
... W )Ω̂

− 1
2

XWV1

¸
.

(25)

where σ̂Xy =
1

N−kX
0MZy, σ̂Wy =

1
N−kW

0MZy, σ̂yy =
1

N−ky
0MZy, σ̂yy.(X : W ) = σ̂yy −¡

σ̂Xy

σ̂Wy

¢0
Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
and V1 is a m×mw matrix that contains the eigenvectors of the largest

mw eigenvalues of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW .

c. The expressions of the AR, LR and MQLR statistics that test H 0 : β = β0 are identical to
their expressions that test H ∗

0 : α = 0 in the model

(X
... W )Ω̂

− 1
2

XWv1 = εα+ (X
... W )Ω̂

− 1
2

XWV1δ + u
ε = ZΦε + Vε

(X
... W )Ω̂

− 1
2

XWV1 = ZΦV1 + VV1 ,

(26)

where v1 is a m × 1 vector that contains the eigenvector of the smallest eigenvalue of
Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW , ε = y − Xβ −Wγ with β and γ the true values of the
structural parameters so Φε is a k×1 vector of zeros, α : 1×1, δ : mw×1 and ΦV1 : k×mw

and u, Vε and VV1 are n× 1, n× 1 and n×mw matrices of disturbances.

Proof. see the Appendix.

Corollary 3. When Assumption 1 holds, so Φε equals zero, the smallest eigenvalue of Σ̂MQLR(β0)

corresponds with a test for a reduced rank value of (Φε
... ΦV1) whose rank equals at most mw − 1

and the χ2(k−mw) distribution provides a upperbound on the limiting distribution of this smallest
eigenvalue.

Proof. When the rank of (Φε
... ΦV1) equals mw− 1, the smallest eigenvalue equals a reduced

rank statistic with a χ2(k −mw) limiting distribution which because of Theorem 5 provides an
upperbound in case the rank is less than mw − 1.
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Panel 3: Power curves of AR(β0) (dash-dotted), LR(β0) (dashed-points), KLM(β0) (dashed),
JKLM(β0) (solid-triangles), MQLR(β0) (solid), CJKLM (solid-plusses) and 2SLS(β0) (dotted)
for testing H0 : β = 0.
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Figure 3.1: Strongly identified β and weakly Figure 3.2: Weakly identified β and strongly
identified γ : Θ11 = 10,Θ22 = 5, Θ12 = 5, identified γ : Θ11 = 5, Θ22 = 10, Θ12 = 5,
Θ21 = 5, Eigenvalues Θ0Θ : 3.65, 171. Θ21 = 5, Eigenvalues Θ0Θ : 3.65, 171.

Theorem 6 shows that the power of the AR statistic equals the rejection frequency of a
rank test when the value of β gets large. The rank test to which the AR statistic converges is
identical for all structural parameters. Hence, the power of the AR statistic for discriminating
distant values of any structural parameter is the same. This explains the equality of the rejection
frequencies of the AR statistic for distant values of β in the left and right-handside figures of
Panel 3.
The LR and MQLR statistics are similar to the AR statistic when the smallest eigenvalue

of Σ̂MQLR(β0) = T (β0)
0T (β0) is small. Corollary 3 shows that this eigenvalue is bounded by a

χ2(k −mw) distributed random variable for values of β0 that are distant from the true value.
This implies that its value is relatively small so the LR and MQLR statistics resemble the AR
statistic at distant values of β0. The power of the LR and MQLR statistics are therefore similar
to that of the AR statistic at these distant values. The value of the LR and MQLR statistics at
distant values of β0 are the same for all structural parameters which explains the equality of the
power curves in the left and right-handside columns of Panel 3 at such distant values.
The identification of β and γ is governed by the matrix concentration parameter Θ. Besides

having values that especially identify β and/or γ, the matrix concentration parameter can also
be such that linear combinations of β and γ are strong or weakly identified. To analyse the
influence of the strong/weak identification of combinations of β and γ on tests for β, we specified
the value of Θ such that it is close to a reduced rank one. We used the previous non-diagonal
specification of Σ to further disperse the identification of combinations of β and γ.
Table 2 and Panel 3 shows the size and power of tests for β when the value of Θ is close to

a reduced rank one which is revealed by the eigenvalues of Θ0Θ. Except for the 2SLS t-statistic,
the size of the statistics is close to 5%. The weak identification of a linear combination of γ and
β is such that the power of all statistics is rather low. Figures 3.1 and 3.2 show that LR(β0) and
MQLR(β0) are the most powerful statistics.
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5 Confidence Sets

Theorem 6 shows that tests on different parameters become identical when the parameters of
interest get large. Its consequences for the power curves in Panels 1-3 are clearly visible and
it has similar implications for the confidence sets of the structural parameters. We therefore
use the previously discussed data generating process to compute some (one minus the) p-value
plots which allow us to obtain the confidence set of a specific parameter. The p-value plots are
constructed by inverting the values of the statistics that test H0 : β = β0 for a range of values of
β0 using the (conditional) limiting distributions that result from Theorem 2. Since these limiting
distributions are conservative, the coverage probability of the resulting confidence sets is at most
equal to the level of the test.
Panel 4 contains the one minus p-value plots for a data generating process that is identical

to that of Panel 2. The Figures in Panel 4 are such that the Figures on the left-handside contain
the p-value plot of tests on γ while the Figures on the right-handside contain p-value plots of
tests on β. The data set used to compute the p-value plot of β and γ is the same and only differs
over the rows of Panel 4.
Panel 4 shows that tests on β and γ differ around the true value of β (0) and γ (1) but are

identical at distant values. This is exactly in line with Theorem 6. It shows that even when β is
well identified, confidence sets of β are unbounded when γ is weakly identified.
The odd behavior of the p-value plot of KLM(β0) results since it is equal to zero when the

FOC holds. Figures 4.2, 4.4 and 4.6 therefore show that KLM(β0) is equal to zero when AR(β0)
is maximal. We note that the p-value plots of KLM(β0), LR(β0), MQLR(β0) and 2SLS(β0) are
equal to zero at resp. the MLE and for 2SLS(β0), the 2SLS estimator, but this is not visible in
all of the Figures in Panel 4 because of the specified grid for β0.
The data generating process that is used to construct Panel 5 is identical to that of Panel 1.

Because of the presence of correlation, a linear combination of β and γ is weakly identified in the
Figures in the top two rows of Panel 5 such that the p-value plots do not converge to one. The
resulting 95% confidence sets of β are therefore unbounded for these Figures. For distant values
of β and γ, Panel 5 shows that the statistics that conduct tests on β or γ become identical.
Panels 4 and 5 show that the distinguishing features of the robust subsets statistics for the

power curves, i.e. that they do not converge to one when the parameters of interest gets large
and statistics that test hypotheses on different parameter become identical for distant values of
the parameter of interest, appropriately extend to confidence sets.
Panels 1-5 show that the LR and MQLR statistics behave in an almost identical manner.

The MQLR statistic is, however, much easier to use since its conditional limiting distribution
only depends on one statistic. The number of conditioning statistics for the LR statistic is equal
to 1

2
m(m + 1). The computation of the conditional critical values discussed in the Appendix

also shows that these conditioning statistics can not be used in a straightforward manner. We
used, for example, one million conditional critical values to compute the power curves of the LR
statistics in Panels 1-3 while we used only one hundred conditional critical values to compute
the power curves of the MQLR statistic. Thus we only use the MQLR statistic in the sequel of
the paper.
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Panel 4: One minus p-value plots of AR (dash-dotted), LR (dashed-points), KLM (dashed),
MQLR (solid), JKLM (points) and 2SLS (dotted) for testing β and γ, k = 20, Θ21 = Θ12 = 0.
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Figure 4.1: Θ11 = 1, Θ22 = 10. Figure 4.2: Θ11 = 1, Θ22 = 10.
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Figure 4.3: Θ11 = 3, Θ22 = 10. Figure 4.4: Θ11 = 3, Θ22 = 10.
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Figure 4.5: Θ11 = 5, Θ22 = 10. Figure 4.6: Θ11 = 5, Θ22 = 10.
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Panel 5: One minus p-value plots of AR (dash-dotted), LR (dashed-points), KLM (dashed),
MQLR (solid), JKLM (points) and 2SLS (dotted) for testing β and γ, k = 20, Θ21 = Θ12 = 0.
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Figure 5.1: Θ11 = 1, Θ22 = 10. Figure 5.2: Θ11 = 1, Θ22 = 10.
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Figure 5.5: Θ11 = 5, Θ22 = 10. Figure 5.6: Θ11 = 5, Θ22 = 10.
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6 Tests on the parameters of exogenous variables

The robust subset statistics extend to tests on the parameters of the exogenous variables that
are included in the structural equation. Their expressions remain almost unaltered when X is
exogenous and is spanned by the matrix of instruments. The linear IV regression model then
reads

y = Xβ +Wγ + ε
W = XΠWX + ZΠWZ + VW ,

(27)

where (X
... Z) is the N × (k +mx) dimensional matrix of instruments and ΠXW and ΠZW are

mx×mw and k×mw matrices of parameters. All other parameters are identical to those defined
for (1). We are interested in testing H0 : β = β0 and we adapt the expressions of the statistics
from Definition 1 to accomodate tests of this hypothesis.

Definition 2: 1. The AR statistic (times k) to test H 0 : β = β0 reads

AR(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PZ̃(y −Xβ0 −Wγ̃), (28)

with Z̃ = (X
... Z) and γ̃ the MLE of γ given that β = β0.

2. The KLM statistic to test H 0 reads,

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PMZ̃Π̃W (β0)

X(y −Xβ0 −Wγ̃), (29)

with Π̃W (β0) = (Z̃
0Z̃)−1Z̃ 0

h
W − (y −Xβ0 −Wγ̃) σ̂εW (β0)

σ̂εε(β0)

i
, σ̂εε(β0) =

1
N−k (y−Xβ0−Wγ̃)0MZ̃(y−

Xβ0 −Wγ̃), σ̂εW (β0) =
1

N−k (y − Xβ0 −Wγ̃)0MZ̃W, since Π̃X(β0) = (Z̃
0Z̃)−1Z̃ 0X =

¡
Imx
0

¢
, as

σ̂εX(β0) =
1

N−k (y −Xβ0 −Wγ̃)0MZ̃X = 0.
3. A J-statistic that tests misspecification under H 0 reads,

JKLM(β0) = AR(β0)−KLM(β0). (30)

4. A quasi likelihood ratio statistic based on Moreira’s (2003) likelihood ratio statistic to test H 0

reads,

MQLR(β0) =
1
2

∙
AR(β0)− rk(β0) +

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

(31)
where rk(β0) is the smallest eigenvalue of

Σ̂MQLR = Σ̂
− 1
2
0

WW.ε

h
W − (y −Xβ0 − Zγ̃) σ̂εW (β0)

σ̂εε(β0)

i0
PMXZ

h
W − (y −Xβ0 − Zγ̃) σ̂εW (β0)

σ̂εε(β0)

i
Σ̂
− 1
2

WW.ε.

with σ̂εW (β0) =
1

N−k (y−Xβ0−Wγ̃)0MZ̃W, Σ̂WW = 1
N−kW

0MZ̃W, Σ̂WW.ε = Σ̂WW− σ̂εW (β0)
0σ̂εW (β0)

σ̂εε(β0)
.

Except for MQLR(β0), all statistics in Definition 2 are direct extensions of those in Definition
1 when we note that Π̃X(β0) =

¡
Imx
0

¢
, when X belongs to the set of instruments. The alteration

of the expression of Σ̂MQLR for MLR(β0) partly results from MZ̃X = 0 and since only the
instruments Z identify γ.
Under a full rank value of ΠWZ , the (conditional) limiting distributions of the statistics in

Definition 2 are identical to those in Theorem 2 when “k” is equal to “k + mx”. Alongside
Theorem 2, Theorems 3-5 apply to the statistics from Theorem 2 as well.
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KLM(β0) MQLR(β0) JKLM(β0) CJKLM(β0) AR(β0) 2SLS(β0)
Fig. 6.1 3.7 2.4 1.5 3.1 1.8 4.6
Fig. 6.2 4.3 4.0 4.0 4.1 4.1 4.7
Fig. 6.3 4.2 4.3 5.6 4.4 5.9 4.7
Fig. 7.1 5.1 4.5 4.6 4.1 4.4 13.0
Fig. 7.2 4.6 5.1 5.9 4.2 6.3 7.8
Fig. 7.3 4.3 4.4 6.0 4.5 6.3 5.9

Table 3: Size of the different statistics in percentages that test H0 at the 95% significance level.

Theorem 7. The (conditional) limiting distributions of the robust subset statistics from Defi-
nition 2 are bounded from above by the limiting distribution under a full rank value of ΠWZ and
from below by the limiting distribution under a zero value of ΠWZ .

Proof. results from Theorem 5.

6.1 Size and power properties

To illustrate the behavior of the robust subset statistics from Definition 2, we analyse their size
and power properties. We therefore conduct a simulation experiment using (27) with N = 500,
mw = mx = 1 and k = 19 so the total number of instruments equals k+mx = 20. All instruments

are independently generated from N(0, IN) distributions and vec(ε
... VW ) is generated from a

N(0,Σ⊗ IN) distribution. The number of simulations equals 5000.
The data generating process for the power curves in Panel 6 has ΠWX = 0, γ = 1 and

Σ = Imw+1. The specification of ΘWZ = (Z 0MXZ)
1
2ΠWZΣ

− 1
2

W in Panel 6 is such that its first
element ΘWZ,11 is unequal to zero and all remaining elements of ΘWZ are equal to zero. Table 3
shows the observed size of the different statistics when we test at the 95% significance level.
The parameters of the data generating process used for Panel 6 are specified such that β is

not partly identified by the parameters in the equation of W since ΠXW = 0 and σεW = 0. Panel
6 is thus comparable to Panel 2 whose data generating process is specified in a similar manner.
The resulting power curves and observed sizes therefore closely resemble those in Panel 2 and
Table 2. Table 3 shows that the statistics are conservative when the identification is rather low,
which is in accordance with Theorem 7.
Panel 6 shows that the rejection frequencies converge to a constant unequal to one for distant

values of β when the identification of γ is rather weak. This indicates that Theorem 6 extends
to tests on subsets of the parameters.
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Panel 6: Power curves of AR(β0) (dashed-dotted), KLM(β0) (dashed), MQLR(β0) (solid),
JKLM(β0) (solid-triangles), CJKLM(solid-plusses) and 2SLS(β0) (dotted) for testing H0 : β = 0.
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Figure 6.1: ΘWZ,11 = 3 Figure 6.2: ΘWZ,11 = 5
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Figure 6.3: ΘWZ,11 = 7

Theorem 8. When mx = 1, Assumption 1 holds, X is exogenous and for tests of H 0 : β = β0
with a value of β0 that differs substantially from the true value:

1. AR(β0) is equal to the smallest eigenvalue of Σ̂
− 1
2
0

WWW 0PMXZW Σ̂
− 1
2

WW , Σ̂WW = 1
N−kW

0MZ̃W.

2. The eigenvalues of Σ̂MQLR(β0) = T (β0)
0T (β0) are equal to the eigenvalues of∙

(y −W Σ̂
− 1
2

WW σ̂Wy)σ̂
− 1
2

yy.W

... W Σ̂
− 1
2

WWV1

¸0
PZ

∙
(y −W Σ̂

− 1
2

WW σ̂Wy)σ̂
− 1
2

yy.W

... W Σ̂
− 1
2

WWV1

¸
, (32)

where V1 is a m×mw matrix that contains the eigenvectors of the largest mw eigenvalues

of Σ̂
− 1
2
0

WWW 0 PMXZW Σ̂
− 1
2

WW , σ̂yy.W = σ̂yy − σ̂0WyΣ̂
−1
WW σ̂Wy.
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3. The expressions of the AR, LR and MQLR statistics that test H 0 : β = β0 are identical to
their expressions that test H ∗

0 : α = 0 in the model

PMXZW Σ̂
− 1
2

WWv1 = εα+ PMXZW Σ̂
− 1
2

WWV1δ + u
ε = ZΦε + Vε

PMXZW Σ̂
− 1
2

WWV1 = ZΦV1 + VV1 ,

(33)

where v1 is a m × 1 vector that contains the eigenvector of the smallest eigenvalue of
Σ̂
− 1
2
0

WWW 0PMXZW Σ̂
− 1
2

WW , ε = y − Xβ −Wγ with β and γ the true values of the structural
parameters so Φε is a k×1 vector of zeros, α : 1× 1, δ : mw × 1 and ΦV1 : k ×mw and u,
Vε and VV1 are n× 1, n× 1 and n×mw matrices of disturbances.

Proof. follows from the proof of Theorem 6.

Corollary 4. When Assumption 1 holds so Φε equals zero, the smallest eigenvalue of Σ̂MQLR(β0)

corresponds with a test for a reduced rank value of (Φε
... ΦV1) whose rank equals at most mw − 1

and the χ2(k−mw) distribution provides a upperbound on the limiting distribution of this smallest
eigenvalue.

Theorem 8 explains the convergence of the rejection frequences in Panel 6 and implies that
the behavior of MQLR(β0) is similar to that of AR(β0) for distant values of β. Identical to the
previous Panels, 2SLS(β0) is the most powerful statistic in Panel 6 while Table 3 shows that it
also has little size distortion. This results because σεW = 0. For non-zero values of σεW , the
size-distortion is often substantial.
The parameter settings for Panel 7 are such that β is partially identified by the parameters

in the equation of W since ΠXW = 1 and σεW = 0.8. All remaining parameters are identical to
those in Panel 6. Because of the partial identification, Table 3 shows that the statistics are no
longer conservative when ΘWZ,11 is small. Because of the non-zero value of σεW , 2SLS(β0) is now
severly size distorted when ΘWZ,11 is small. Thus the 2SLS t-statistic can even be size distorted
when we use it to test the parameters of the exogenous variables.
Although the small value of ΘWZ,11 does not affect the size of the tests from Definition 2, it

still strongly influences the power. Panel 7 shows that the power curves do not converge to one
when ΘWZ,11 is small which is in accordance with Theorem 8.

7 Conclusions

The limiting distributions of the robust subset instrumental variable statistics that result under a
high level identification assumption on the remaining structural parameters provide upperbounds
on the limiting distribution of these statistics in general. Lower bounds result from the limiting
distributions under complete identification failure of the remaining parameters. For distant values
of the parameter of interest, the robust subset instrumental variable statistics correspond with
identification statistics. Even if the parameter of interest is well-identified, the power of tests
on it do therefore not necessarily converge to one when the hypothesized value gets large. A
simplification of the LR statistic that is based on an extension of Moreira’s (2003) conditional

24



Panel 7: Power curves of AR(β0) (dashed-dotted), KLM(β0) (dashed), MQLR(β0) (solid),
JKLM(β0) (solid-triangles), CJKLM(solid-plusses) and 2SLS(β0) (dotted) for testing H0 : β = 0.
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Figure 7.1: ΘWZ,11 = 3 Figure 7.2: ΘWZ,11 = 5
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Figure 7.3: ΘWZ,11 = 7

likelihood statistic, is shown to perform equally well as the LR statistic and is much easier to
use in practice.
The subset AR statistic is less conservative than the projection based AR statistic from

Dufour and Taamouti (2005a,b). This results since the degrees of freedom parameter of its
limiting distribution is smaller than that of the projection based AR statistic while the latter is
also based on the minimal value of the AR statistic given that H0 holds.
In future work, we plan to extend the results from this paper towards parameters estimated

using the generalized method of moments.
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Appendix

Proof of Lemma 1. Assumption 1 implies that for β = β0, γ = γ1,

1√
N

∙
vec(Z 0(y −Xβ0 −Wγ1)

... Z 0X
... Z 0W )− (Im+1 ⊗ Z 0Z)vec(ΠW (γ0 − γ1)

... ΠX
... ΠW )

¸
→
d
(ψZε

... ψZX

... ψZW ),

since y −Xβ0 −Wγ1 = ε+W (γ0 − γ1). The joint limiting distribution of Z
0(y −Xβ0 −Wγ1)

and
Π̃W (β0, γ1) = (Z 0Z)−1Z 0

h
W − (y −Xβ0 −Wγ1)

σ̂εW (β0,γ1)
σ̂εε(β0,γ1)

i
,

Π̃X(β0, γ1) = (Z 0Z)−1Z 0
h
X − (y −Xβ0 −Wγ1)

σ̂εX(β0,γ1)
σ̂εε(β0,γ1)

i
,

with σ̂εW (β0, γ1) =
1

N−k (y − Xβ0 − Wγ1)
0MZW, σ̂εX(β0, γ1) =

1
N−k (y − Xβ0 − Wγ1)

0MZX,

σ̂εε(β0, γ1) =
1

N−k (y −Xβ0 −Wγ1)
0MZ(y −Xβ0 −Wγ1), then reads

√
N

∙
vec((Z 0Z)−1Z 0(y −Xβ0 −Wγ1)

... Π̃X(β0, γ1)
... Π̃W (β0, γ1))−

vec(ΠW (γ0 − γ1)
... ΠX −ΠW (γ0 − γ1)

σεX+(γ0−γ1)0ΣWX

σεε+2σεW (γ0−γ1)+(γ0−γ1)0ΣWW (γ0−γ1)
...

ΠW −ΠW (γ0 − γ1)
σεW+(γ0−γ1)0ΣWW

σεε+2σεW (γ0−γ1)+(γ0−γ1)0ΣWW (γ0−γ1))
i

→
d
(ϕZε

... ϕZX

... ϕZW ),

where ϕZε : k × 1, ϕZX : k × mx, ϕZW : k × mw and ϕZε and vec(ϕZX

... ϕZW ) are indepen-
dently normal distributed random vectors with mean zero and covariance matrices σεεQ−1 and
Σ(X : W )(X : W ).ε ⊗Q−1 where Σ(X : W )(X : W ).ε =

³
ΣXX

ΣWX

ΣXW

ΣWW

´
− ¡σXε

σWε

¢
σ−1εε

¡
σXε

σWε

¢0
.

The above shows that given γ1, the limiting distributions of Z
0(y−Xβ0−Wγ1) and Π̃X(β0, γ1),

Π̃W (β0, γ1) are independent. When γ1 is itself a random variable, the limiting distributions of
Z 0(y −Xβ0 −Wγ1) and Π̃X(β0, γ1), Π̃W (β0, γ1) are independent conditional on the value of γ1
so the limiting density function can be factorized as2

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ1), N

− 1
2
δX Π̃X(β0, γ1), N

− 1
2
δW Π̃W (β0, γ1), γ1) =

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ1), N

− 1
2
δX Π̃X(β0, γ1), N

− 1
2
δW Π̃W (β0, γ1)|γ1)p∞(γ1) =

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ1)|γ1)p∞(N− 1

2
δX Π̃X(β0, γ1), N

− 1
2
δW Π̃W (β0, γ1)|γ1)p∞(γ1),

where p∞(.) is the limiting density function and δW and δX are such that limN→∞ 1
NδW

Π0WZ 0ZΠW =

CW , limN→∞ 1
NδX

Π0XZ
0ZΠX = CX with CW and CX mw ×mw and mx ×mx dimensional ma-

trices of constants such that δW and δX are zero in case of irrelevant or weak instruments and
one in case of strong instruments. The above argument applies to any random γ1 such as, for
example, the MLE γ̃ since, although γ̃ is solved from Π̃W (β0, γ̃) and (Z

0Z)−1Z 0(y−Xβ0−Wγ̃),
all dependence between Π̃W (β0, γ̃) and (Z

0Z)−1Z 0(y −Xβ0 −Wγ̃) runs through γ̃.

2To save on notation, we (incorrectly) depicted the density function as a function of random variables.
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Proof of Lemma 2. Because of the FOC:

1
σ̂εε(β0)

Π̃W (β0)
0Z 0(y −Xβ0 −Wγ̃) = 0,

it automatically follows that Z0ε̂√
σ̂εε(β0)

, with ε̂ = y−Xβ0−Wγ̃ = ε−W (γ̃− γ0), is uncorrelated

with Π̃W (β0) = ΠW +N− 1
2 (Z

0Z
N
)−1 1√

N
Z 0
h
VW − ε̂ σ̂εW (β0)

σ̂εε(β0)

i
in large samples so

E
∙
limN→∞ 1

N
1
2 δW

Π̃W (β0)
0 Z0ε̂√

σ̂εε(β0)

¸
= 0,

where δW is such that limN→∞ 1
NδW

Π0WZ 0ZΠW = CW with CW a mw ×mw matrix of constants
so δW = 0 in case of irrelevant or weak instruments and δW = 1 in case of strong instruments.
To show that Z 0ε̂ and Π̃X(β0) = (Z

0Z)−1Z 0
h
X − ε̂ σ̂εX(β0)

σ̂εε(β0)

i
are uncorrelated in large samples,

we analyse the covariance between X and ε̂ =MZΠ̃W (β0)
ε̂:

E
h
limN→∞ 1

N
X 0MZΠ̃W (β0)

ε̂
i

= E
h
limN→∞ 1

N
(ZΠX + VX)

0MZΠ̃W (β0)
(ε−W (γ̃ − γ0))

i
= E

h
limN→∞ 1

N

n
(ZΠX + VX)

0MZΠ̃W (β0)
[ε− (ZΠW + VW ) (γ̃ − γ0)]

oi
= E

£
limN→∞ 1

N
{V 0

Xε− V 0
XMZVW (γ̃ − γ0)}

¤
= E [limN→∞ σ̂Xε(β0)] ,

since 1
N
Z 0MZΠ̃W (β0)

ε →
p
0, 1

N
Z 0MZΠ̃W (β0)

VW →
p
0 and 1

N
Z 0MZΠ̃W (β0)

ZΠW (γ̃ − γ0) →
p
0. The

last of these three result holds since in case ΠW has a fixed full rank value: (γ̃ − γ0) →
p
0,

in case ΠW is of order 1√
N
(weak instruments): 1

N
Z 0MZΠ̃W (β0)

ZΠW →
p
0 and when ΠW = 0 :

1
N
Z 0MZΠ̃W (β0)

ZΠW →
p
0.

The above implies that the correlation between X − ε̂ σ̂εX(β0)
σ̂εε(β0)

and ε̂ equals zero so

E
h
limN→∞ 1

N
1
2 δX

Π̃X(β0)
0Z 0ε̂

i
= 0,

where δX is such that limN→∞ 1
NδX

Π0XZ
0ZΠX = CX with CX a mx ×mx matrix of constants.

Proof of Theorem 1. The LR statistic to test H0 reads

LR(β0) = AR(β0)−minβ AR(β).
The value of AR(β) is obtained by minimizing over γ so minβ AR(β) can also be specified as

minβ AR(β) = minβ,γ
1

1
N−k (y−Xβ−Wγ)0MZ(y−Xβ−Wγ)

(y −Xβ −Wγ)0PZ(y −Xβ −Wγ),

which equals the smallest root of the characteristic polynomial¯̄̄̄
λΩ̂− (y ... X ... W )0PZ(y

... X
... W )

¯̄̄̄
= 0,
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with Ω̂ = 1
N−k (y

... X
... W )0MZ(y

... X
... W ). The roots of the characteristic polynomial do not

alter when we pre- and post-multiply by a triangular matrix with ones on the diagonal:¯̄̄̄
¯̄
⎛⎝ 1 0 0
−β0 Imx 0
−γ̃ 0 Imw

⎞⎠0 ∙
λΩ̂− (y ... X ... W )0PZ(y

... X
... W )

¸⎛⎝ 1 0 0
−β0 Imx 0
−γ̃ 0 Imw

⎞⎠¯̄̄̄¯̄ = 0⇔¯̄̄̄
λΣ̂(β0)− (ε̂

... X
... W )0PZ(ε̂

... X
... W )

¯̄̄̄
= 0,

with Σ̂(β0) =

⎛⎝ 1 0 0
−β0 Imx 0
−γ̃ 0 Imw

⎞⎠0

Ω̂

⎛⎝ 1 0 0
−β0 Imx 0
−γ̃ 0 Imw

⎞⎠ =

µ
σ̂εε(β0) σ̂ε(X : W )(β0)

σ̂(X : W )ε(β0) Σ̂(X : W )(X : W )

¶
,

σ̂εε(β0) : 1× 1, σ̂ε(X : W )(β0) = σ̂ε(X : W )(β0)
0 : 1×m, Σ̂(X : W )(X : W ) : m×m.

We decompose Σ̂(β0)
−1 as

Σ̂(β0)
−1 = Σ̂(β0)

− 1
2
0Σ̂(β0)

− 1
2 ,

Σ̂(β0)
− 1
2 =

⎛⎝ σ̂εε(β0)
− 1
2 −σ̂εε(β0)−1σ̂ε(X : W )(β0)Σ̂

− 1
2

(X : W )(X : W ).ε

0 Σ̂
− 1
2

(X : W )(X : W ).ε

⎞⎠ ,

with Σ̂(X : W )(X : W ).ε =
1

N−k (X
... W )0M(Z : ε̂)(X

... W ), such that Σ̂(β0)
− 1
2
0Σ̂(β0)Σ̂(β0)

− 1
2 =

Ik(m+1), and we can specify the characteristic polynomial as¯̄̄̄
λIm+1 − Σ̂(β0)

− 1
2
0(y
... X

... W )0PZ(y
... X

... W )Σ̂(β0)
− 1
2

¯̄̄̄
= 0⇔¯̄̄̄

λIm+1 −
∙µ
(Z 0Z)−1Z 0 ε̂√

σ̂εε(β0)

...
∙
(Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε

¶¸0
Z 0Z∙µ

(Z 0Z)−1Z 0 ε̂√
σ̂εε(β0)

...
∙
Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε

¶¸¯̄̄̄
= 0⇔¯̄̄̄

¯̄λIm+1 −µ σ̂εε(β0)
− 12

0

0

Σ̂
− 12
(X : W )(X : W ).ε

¶0⎛⎝ ε̂0PZ ε̂
³
Π̃X(β0)

0Z0ε̂
0

´0³
Π̃X(β0)

0Z0ε̂
0

´ ³
Π̃X(β0)

0Z0ZΠ̃X(β0)

Π̃W (β0)
0Z0ZΠ̃X(β0)

Π̃X(β0)
0Z0ZΠ̃W (β0)

Π̃W (β0)
0Z0ZΠ̃W (β0)

´ ⎞⎠µ
σ̂εε(β0)

− 12
0

0

Σ̂
− 12
(X : W )(X : W ).ε

¶¯̄̄̄
= 0,

when we use a lower triangular decomposition to construct Σ̂
− 1
2

(X : W )(X : W ).ε, the block structure
of the matrix in the characteristic polynomial is preserved:

Σ̂
− 1
2

(X : W )(X : W ).ε =

Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εΣ̂
− 12
XX.(ε : W )

0

Σ̂
− 12
WW.ε

!

with Σ̂XX.(ε : W ) =
1

N−kX
0M(Z : W : ε̂)X, Σ̂WX.ε =

1
N−kW

0M(Z : ε̂)X, Σ̂WW.ε =
1

N−kW
0M(Z : ε̂)W,
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so the characteristic polynomial becomes¯̄̄̄
¯̄̄̄
¯λIm+1 −

⎛⎜⎜⎜⎝
1

σ̂εε(β0)
ε̂0PZ ε̂

µ
1√

σ̂εε(β0)
ε̂0ZΠ̃X(β0)Σ̂

− 1
2

XX.(ε : W )

... 0
¶

Ã
Σ̂
− 12 0
XX.(ε : W )

Π̃X(β0)
0Z0ε̂ 1√

σ̂εε(β0)

0

!
T (β0)

0T (β0)

⎞⎟⎟⎟⎠
¯̄̄̄
¯̄̄̄
¯ = 0,

where T (β0) = (Z
0Z)

1
2

∙
Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε.We conduct a singular value decom-

position of T (β0), see e.g. Golub and van Loan (1989),

T (β0) = (Z
0Z)

1
2

∙
Π̃X(β0)

... Π̃W (β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε = USV 0 ⇔⎧⎪⎨⎪⎩ (Z 0Z)
1
2

∙
Π̃X(β0)

... Π̃W (β0)

¸Ã
Σ̂
− 12
XX.(ε : W )

−Σ̂−1WW.εΣ̂WX.εΣ̂
− 12
XX.(ε : W )

!
= USV 0X

(Z 0Z)
1
2 Π̃W (β0)Σ̂

− 1
2

WW.ε = USV 0W

where U : k × k, U 0U = Ik, V : m×m, V 0V = Im, V 0 = (V 0X
... V 0W ), VX : mx ×m, VW : mw ×m;

and S is a diagonal k ×m dimensional matrix with the singular values in decreasing order on
the main diagonal, to specify the characteristic polynomial as,¯̄̄̄

¯̄̄λIm+1 −
⎛⎜⎝ η0η

µ
η0USV 0X

... 0
¶

³
VXS0U 0η

0

´
VS 0SV 0

⎞⎟⎠
¯̄̄̄
¯̄̄ = 0⇔

¯̄̄̄
λIm+1 −

µ
1 0
0 V

¶µ
η0η η0US
S 0U 0η S 0S

¶µ
1 0
0 V

¶0 ¯̄̄̄
= 0⇔¯̄̄̄

λIm+1 −
µ

ϕ0ϕ ϕ0S
S 0ϕ S 0S

¶¯̄̄̄
= 0

with η = (Z 0Z)−
1
2Z 0 ε̂√

σ̂εε(β0)
and η0USV 0W = 0, ϕ = U 0η and ϕ0SV 0W = 0.

Proof of Proposition 1. The singular values contained in the k×m matrix S are the square
roots of the eigenvalues of T (β0)

0T (β0).Using the properties of the determinant, the characteristic

polynomial
¯̄̄
λIm+1 −

³
ϕ0ϕ
S0ϕ

ϕ0S
S0S
´¯̄̄
can be specified as

f(λ, s211, . . . , s
2
mm) =

¯̄̄̄
λIm+1 −

µ
ϕ0ϕ ϕ0S
S 0ϕ S 0S

¶¯̄̄̄
=

Qm
j=1(λ− s2jj) [λ− ϕ0ϕ]−Pm

i=1 s
2
iiϕ

2
i

Qm
j=1,j 6=i(λ− s2jj)

=
Qm

j=1(λ− s2jj)
h
λ− ϕ0ϕ−Pm

i=1
s2iiϕ

2
i

λ−s2ii

i
,

with ϕ = (ϕ1 . . . ϕk)
0 and s11 > . . . > smm are the m diagonal elements of S.
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The (m+ 1)-th order polynomial f(λ, s211, . . . , s
2
mm) has m+ 1 roots. Since

f(0, s211, . . . , s
2
mm) = (−1)m+1Pk

i=m+1 ϕ
2
i

Qm
j=1 s

2
jj

f(s2mm, s
2
11, . . . , s

2
mm) = (−1)mϕ2m

Qm
j=1 s

2
jj

f(s2m−1m−1, s
2
11, . . . , s

2
mm) = (−1)m−1ϕ2m−1

Qm
j=1 s

2
jj

...
f(s211, s

2
11, . . . , s

2
mm) = −ϕ21

Qm
j=1 s

2
jj ,

the polynomial f(λ, s211, . . . , s
2
mm) alters sign between 0 and s

2
mm, s

2
mm and s

2
m−1m−1, etc. Thus the

smallest root of f(λ, s211, . . . , s
2
mm) lies between 0 and s

2
mm, the second smallest root lies between

s2mm and s2m−1m−1, etc. and the largest root exceeds s
2
11 because f(λ, s

2
11, . . . , s

2
mm) is positive at

infinite values of λ since s211 is finite valued.
The roots of the polynomial f(λ, s211, . . . , s

2
mm) have no analytical expression since m > 1.

We therefore approximate the smallest root of the polynomial f(λ, s211, . . . , s
2
mm) by the smallest

root that results from restricting s211, . . . , s
2
m−1m−1 to the smallest root, s

2
mm :

f(ν, s2mm, . . . , s
2
mm) =

Qm
j=1(ν − s2mm)

h
ν − ϕ0ϕ−Pm

i=1
s2mmϕ2i
ν−s2mm

i
= (ν − s2mm)

m−1 [(ν − ϕ0ϕ) (ν − s2mm)− s2mm

Pm
i=1 ϕ

2
i ] .

The smallest root of f(ν, s2mm, . . . , s
2
mm) equals the smallest root of (ν − ϕ0ϕ) (ν − s2mm) −

s2mm

Pm
i=1 ϕ

2
i which is a quadratic polynomial so it has an analytical expression of its small-

est root:

νmin =
1
2

∙
ϕ0ϕ+ s2mm −

q
(ϕ0ϕ+ s2mm)

2 − 4s2mm

Pk
i=m+1 ϕ

2
i

¸
= 1

2

∙
AR(β0) + rk(β0)−

q
(AR(β0) + rk(β0))

2 − 4 (AR(β0)−KLM(β0)) rk(β0)
¸
,

where AR(β0) = ϕ0ϕ, rk(β0) = s2mm and KLM(β0) =
Pm

i=1 ϕ
2
i .

The root νmin is smaller than or equal to the smallest root of f(λ, s211, . . . , s
2
mm). We can

show this in two different manners. The first manner uses the Implicit Function Theorem to
construct the derivative of the smallest root of f(λ, s211, . . . , s

2
mm) with respect to (s

2
11 . . . s

2
mm)

which is non-negative. Thus decreasing s211, . . . , s
2
m−1m−1 to s

2
mm as we did to obtain νmin can not

increase the value of the smallest root, see Kleibergen (2006). The second approach shows that
f(νmin, s

2
11, . . . , s

2
mm) has the same sign as f(0, s

2
11, . . . , s

2
mm) such that, since f(s

2
mm, s

2
11, . . . , s

2
mm)

has an opposite sign, the smallest root of f(ν, s211, . . . , s
2
mm) lies in the interval [νmin, s

2
mm] , see
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Hillier (2006):

f(νmin, s
2
11, . . . , s

2
mm)

=
Qm

j=1(νmin − s2jj)
h
νmin − ϕ0ϕ−Pm

i=1
s2iiϕ

2
i

(νmin−s2ii)

i
=
Qm

j=1(νmin − s2jj)
h
νmin − ϕ0ϕ− s2mm

νmin−s2mm

Pm
i=1 ϕ

2
i +

³Pm
i=1

³
s2mm

νmin−s2mm
− s2ii

νmin−s2ii

´
ϕ2i

´i
=
Qm−1

j=1 (νmin − s2jj) [(νmin − s2mm)(νmin − ϕ0ϕ)− s2mm

Pm
i=1 ϕ

2
i ] +Qm

j=1(νmin − s2jj)
³Pm

i=1

³
s2mm

νmin−s2mm
− s2ii

νmin−s2ii

´
ϕ2i

´
=
Qm

j=1(νmin − s2jj)
³Pm

i=1

³
s2mm

νmin−s2mm
− s2ii

νmin−s2ii

´
ϕ2i

´
=
Pm−1

i=1

³
s2mm

Qm−1
j=1 (νmin − s2jj)− s2ii

Qm
j=1,j 6=i(νmin − s2jj)

´
ϕ2i

=
Pm−1

i=1

³Qm−1
j=1,j 6=i(νmin − s2jj)

´
(s2mm(νmin − s2ii)− s2ii(νmin − s2mm))ϕ

2
i

= (−1)m−1Pm−1
i=1

³Qm−1
j=1,j 6=i(s

2
jj − νmin)

´
(s2ii − s2mm) νminϕ

2
i

which, since s2jj ≥ νmin, j = 1, . . . ,m, and s2ii ≥ s2mm, i = 1, . . . ,m − 1, has the same sign as
f(0, s211, . . . , s

2
mm) = (−1)m+1

Pk
i=m+1 ϕ

2
i

Qm
j=1 s

2
jj,which is opposite that of f(s

2
mm, s

2
11, . . . , s

2
mm) =

(−1)mϕ2m
Qm

j=1 s
2
jj. Hence, the smallest root of f(λ, s

2
11, . . . , s

2
mm) lies in the interval [νmin, s

2
mm] .

Proof of Corollary 2. When β0 is such that the FOC holds, ϕi = 0, i = 1, . . . ,m, and the
characteristic polynomial reads¯̄̄̄

λIm+1 −
µ Pk

i=m+1 ϕ
2
i 0

0 S 0S
¶¯̄̄̄

= 0.

The characteristic polynomial shows that the values of β0 for which the FOC holds are such that

(1
... −β00

... −γ̃0)0 is an eigenvector that belongs to one of the roots of the characteristic polynomial
|λΩ̂− (y ... X ... W )0PZ(y

... X
... W )| = 0.When (1 ... −β00

... −γ̃0)0 satisfies the FOC,Pk
i=m+1 ϕ

2
i and

the m non-zero elements of S 0S are equal to the m + 1 roots of the characteristic polynomial

|λΩ̂− (y ... X ... W )0PZ(y
... X

... W )| = 0. Hence, there are m+ 1 different solutions to the FOC.
The value of the MQLR statistic for the solutions to the FOC reads:

MQLR(β0) =
1
2

h
AR(β0)− rk(β0) +

p
(AR(β0)− rk(β0))2

i
since AR(β0) =

Pk
i=m+1 ϕ

2
i as ϕi = 0, i = 1, . . . ,m. We can now distinguish two different cases:

1. AR(β0) is equal to the smallest root of |λΩ̂ − (y
... X

... W )0PZ(y
... X

... W )| = 0 so
AR(β0) <rk(β0) since rk(β0) is then the second smallest root and

MQLR(β0) =
1
2

h
AR(β0)− rk(β0) +

p
(AR(β0)− rk(β0))2

i
= 1

2
[AR(β0)− rk(β0) + rk(β0)−AR(β0)]

= 0

since AR(β0) <rk(β0). Hence MQLR(β0) =LR(β0) and β0 equals the LIML estimator.
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2. AR(β0) is equal to a root of |λΩ̂−(y
... X

...W )0PZ(y
... X

...W )| = 0 which is not the smallest
one so AR(β0) >rk(β0) since rk(β0) is now equal to the smallest root and

MQLR(β0) =
1
2

h
AR(β0)− rk(β0) +

p
(AR(β0)− rk(β0))2

i
= 1

2
[AR(β0)− rk(β0) +AR(β0)− rk(β0)]

= AR(β0)− rk(β0)
since AR(β0) >rk(β0). Hence, MQLR(β0) =LR(β0).

Proof of Lemma 3. The FOC for a maximum of the likelihood with respect to γ is such that:

1
1

N−k (y−Xβ0−Wγ̃)0MZ(y−Xβ0−Wγ̃)
Π̃W (β0)

0Z 0(y −Xβ0 −Wγ̃) = 0⇔
1

1
N−k (y−Xβ0−Wγ̃)0MZ(y−Xβ0−Wγ̃)

h
W − (y −Xβ0 −Wγ̃) (y−Xβ0−Wγ̃)0MZW

(y−Xβ0−Wγ̃)0MZ(y−Xβ0−Wγ̃)

i0
PZ(y −Xβ0 −Wγ0 −W (γ̃ − γ0)) = 0⇔

1
1

N−k (ε−W (γ̃−γ0))0MZ(ε−W (γ̃−γ0))h
W − (ε−W (γ̃ − γ0))

(ε−W (γ̃−γ0))0MZW
(ε−W (γ̃−γ0))0MZ(ε−W (γ̃−γ0))

i0
PZ(ε−W (γ̃ − γ0)) = 0,

where ε = y −Xβ0 −Wγ0. Using the equation for W, we can specify the FOC as

1
1

N−k (ε−(ZΠW+VW )(γ̃−γ0))0MZ(ε−(ZΠW+VW )(γ̃−γ0)) [ZΠW + VW − (ε− (ZΠW + VW )(γ̃ − γ0))
1

N−k (ε−(ZΠW+VW )(γ̃−γ0))0MZ(ZΠW+VW )
1

N−k (ε−(ZΠW+VW )(γ̃−γ0))0MZ(ε−(ZΠW+VW )(γ̃−γ0))

i0
PZ(ε− (ZΠW + VW )(γ̃ − γ0)) = 0.

Under Assumption 1, 1
N−kε

0MZε →
p

σεε,
1

N−kε
0MZVW →

p
σεW , 1

N−kV
0
WMZVW →

p
ΣWW and

γ∗ = Σ
1
2
WW (γ̃ − γ0)σ

− 1
2

εε.w, ΘW = (Z 0Z)
1
2ΠWΣ

− 1
2

WW , ξε.w = (Z 0Z)−
1
2Z 0(ε − VWΣ−1WWσWε)σ

− 1
2

εε.w,

σεε.w = σεε − σεWΣ−1WWσWε, ρWε = Σ
− 1
2

WWσWεσ
− 1
2

εε.w. For large samples, the FOC can then be
specified as

1
1+(γ∗−ρWε)

0(γ∗−ρWε)
Σ

1
2
0

WW [ΘW + ξw − (ξε.w −ΘWγ∗ − ξw(γ
∗ − ρWε))

−(γ∗−ρWε)
0

1+(γ∗−ρWε)
0(γ∗−ρWε)

i0
[ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε)] + op(1) = 0⇔
1

1+(γ∗−ρWε)
0(γ∗−ρWε)

Σ
1
2
0

WW {Θ0
W [ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε)] +h
ξw − (ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε))
−(γ∗−ρWε)

0
1+(γ∗−ρWε)

0(γ∗−ρWε)

i0
[ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε)]}+ op(1) = 0.

Hence, when ΘW equals zero, the FOC simplifies to

Σ
1
2
0

WW

h
ξw − (ξε.w − ξw(γ

∗ − ρWε))
−(γ∗−ρWε)

0
1+(γ∗−ρWε)

0(γ∗−ρWε)

i0
[ξε.w − ξw(γ

∗ − ρWε)] + op(1) = 0

which is equivalent to h
ξw + (ξε.w − ξwγ̄)

γ̄0
1+γ̄0γ̄

i0
[ξε.w − ξwγ̄] + op(1) = 0,

with γ̄ = γ∗ − ρWε = Σ
1
2
WW (γ̃ − γ0 − Σ−1WWσWε)σ

− 1
2

εε.w.
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Proof of Theorem 3. a.
1. AR-statistic: k times the AR statistic for testing H0 : β = β0 reads

AR(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PZ(y −Xβ0 −Wγ̃)

= 1
1

N−k (ε−W (γ̃−γ0))0MZ(ε−W (γ̃−γ0))(ε−W (γ̃ − γ0))
0PZ(ε−W (γ̃ − γ0))

which is in large samples identical to (using the notation from the proof of Lemma 3)

AR(β0)→
d

1
1+(γ∗−ρWε)

0(γ∗−ρWε)
[ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε)]
0 [ξε.w −ΘWγ∗ − ξw(γ

∗ − ρWε)] .

When ΠW , and thus ΘW , equals zero, this expression simplifies further

AR(β0)→
d

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 [ξε.w − ξwγ̄] .

Since γ̄ does not depend on nuisance parameters, the distribution of AR(β0) does not depend on
nuisance parameters when ΠW equals zero.
2. KLM-statistic: The expression of the KLM-statistic for testing H0 reads

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0PMZΠ̃W (β0)

ZΠ̃X(β0)
(y −Xβ0 −Wγ̃).

In large samples and when ΠW equals zero:

(Z 0Z)
1
2 Π̃W (β0) = (Z 0Z)−

1
2Z 0

h
W − (y −Xβ0 −Wγ̃) σ̂εX(β0)

σ̂εε(β0)

i
=

h
ξw − (ξε.w − ξwγ̄)

γ̄0
1+γ̄0γ̄

i
Σ

1
2
WW + op(1)

(Z 0Z)
1
2 Π̃X(β0) = (Z 0Z)−

1
2Z 0

h
X − (y −Xβ0 −Wγ̃) σ̂εX(β0)

σ̂εε(β0)

i
=

∙
ΘX + ξx − (ξε.w − ξwγ̄)

( 1−γ̄)
0
(ρε.w,XρWX

)
1+γ̄0γ̄

¸
Σ

1
2
XX + op(1)

where ξx = (Z
0Z)−

1
2Z 0VXΣ

− 1
2

XX , ΘX = (Z
0Z)

1
2ΠXΣ

− 1
2

XX , ρε.w,X = σ
− 1
2

εε.w(σεX − σεWΣ−1WWΣWX)Σ
− 1
2

XX ,

ρWX = Σ
− 1
2

WWΣWXΣ
− 1
2

XX , and we used that¡
1

−(γ̃−γ0)
¢0¡ σεX

ΣWX

¢
= σεX − σεWΣ−1WWΣWX − (γ̃ − γ0 − Σ−1WWσWε)

0ΣWX

= σ
1
2
εε.w

£
ρε.w,X − γ̄0ρWX

¤
Σ
− 1
2

XX .

Hence, we can specify the limit behavior of KLM(β0) as

KLM(β0)→
d

1
1+γ̄0γ̄ (ξε.w − ξwγ̄)

0P
M
[ξw+(ξε.w−ξwγ̄) γ̄0

1+γ̄0γ̄ ]

⎡⎣ΘX+ξx−(ξε.w−ξwγ̄)
( 1−γ̄)

0
(ρε.w,XρWX

)
1+γ̄0γ̄

⎤⎦(ξε.w − ξwγ̄).

Because ΘX + ξx − (ξε.w − ξwγ̄)
( 1−γ̄)

0
(ρε.w,XρWX

)
1+γ̄0γ̄ and ξw + (ξε.w − ξwγ̄)

γ̄0
1+γ̄0γ̄ are given γ̄ independent

of (ξε.w − ξwγ̄)
1√
1+γ̄0γ̄ , the limit behavior of KLM(β0) is identical to

KLM(β0)→
d

1
1+γ̄0γ̄ (ξε.w − ξwγ̄)

0PM
[ξw+(ξε.w−ξwγ̄) γ̄0

1+γ̄0γ̄ ]
A(ξε.w − ξwγ̄),
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whereA is a fixed k×mx dimensional matrix and which shows that the limit behavior of KLM(β0)
given ΠW = 0 does not depend on nuisance parameters.
3. JKLM-statistic: The expression of the JKLM statistic reads

JKLM(β0) = AR(β0)−KLM(β0)
→
d

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0Mh
A : ξw+(ξε.w−ξwγ̄) γ̄0

1+γ̄0γ̄
i [ξε.w − ξwγ̄] .

4. MQLR-statistic: The expression of the MQLR statistic to test H0 reads

MQLR(β0) =
1
2

∙
AR(β0)− smm +

q
(AR(β0) + smm)

2 − 4 (AR(β0)−KLM(β0)) smm

¸
,

where smm is the smallest eigenvalue of Σ̂
− 1
2
0

(X : W )(X : W ).ε

∙
(X

... W )− (y −Xβ0 − Zγ̃)
σ̂ε(X : W )(β0)

σ̂εε(β0)

¸0
PZ∙

(X
... W )− (y −Xβ0 − Zγ̃)

σ̂ε(X : W )(β0)

σ̂εε(β0)

¸
Σ̂
− 1
2

(X : W )(X : W ).ε. The limiting distribution of MQLR(β0)

conditional on smm is therefore

MQLR(β0)|smm →
d

1
2

∙
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0 [ξε.w − ξwγ̄]− smm +

½³
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0 [ξε.w − ξwγ̄] + smm

´2
−

4

µ
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0Mh

A : ξw+(ξε.w−ξwγ̄) γ̄0
1+γ̄0γ̄

i [ξε.w − ξwγ̄]

¶
smm

¾ 1
2

#
.

5. LR-statistic: Since η = (Z 0Z)−
1
2Z 0 ε̂√

σ̂εε(β0)
→
d
[ξε.w − ξwγ̄]

1√
1+γ̄0γ̄ and ϕ = U 0η, ϕ →

d

U 0 [ξε.w − ξwγ̄] . The conditional limiting expression for the LR statistic then reads

LR(β0)|T (β0)→
d

1
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 [ξε.w − ξwγ̄]− µmin,

where µmin is the smallest root of the polynomial¯̄̄̄
¯λIm+1 −

Ã
1

1+γ̄0γ̄ [ξε.w − ξwγ̄]
0 [ξε.w − ξwγ̄]

1√
1+γ̄0γ̄ [ξε.w − ξwγ̄]

0 U 0S
S 0U [ξε.w − ξwγ̄]

1√
1+γ̄0γ̄ S 0S

!¯̄̄̄
¯ = 0.

Proof of Theorem 4. We proof the asymptotic normality of the KLM statistic under many
instruments asymptotics and when ΠW = 0 in two steps. First, we establish the convergence of
the covariance estimators. Second, we establish the convergence of the score vector in the KLM
statistic.
When ΠW = 0 and ε.W = ε −WΣ−1WWσWε, we use that when k and N jointly converge to

infinity, where the convergence rate of k is at most equal to that of N, that

³√
N
0

0√
k

´"Ã σ
− 1
2

εε.w
1
N
ε0.WXΣ

− 1
2

XX

σ
− 1
2

εε.w
1
k
ε0.WPZXΣ

− 1
2

XX

!
−
µ

ρε.w,x
ρε.w,x

¶#
→
d

µ
ϕε.w,x

ϕε.wPx

¶
,
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with
¡
ϕε.w,x
ϕε.wPx

¢ ∼ N(0,
¡
1
α
α
1

¢⊗ Imx), α = limk,N→∞
q

k
N
, ρε.w,x = σ

− 1
2

εε.w(σεX − σεWΣ−1WWΣWX)Σ
− 1
2

XX .

The conditions for this central limit theorem to hold are rather mild and assume, for example,

that E([ε.W ]i) = 0, E([VX ]0i) = 0, E([ε.W ]i[VX ]
0
i) = ρε.w,xΣ

1
2
XX , E([ε.W ]i[Z]

0
i) = 0, E([VX ]i[Z]

0
i) = 0,

where [a]i is the i-th row of the matrix/vector a, no correlations between the different rows and
a finite variance for all these terms. The above central limit theorem implies that

1
N−kσ

− 1
2

εε.wε0.WMZXΣ
− 1
2

XX =
1

N−k
h
Nσ

− 1
2

εε.w
1
N
ε0.WXΣ

− 1
2

XX − kσ
− 1
2

εε.w
1
k
ε0.WPZXΣ

− 1
2

XX

i
=

ρε.w,x +
1

N−k
¡
1
−1
¢0 ³√N

0
0√
k

´ ¡
ϕε.w,x
ψε.w,x

¢
+ op(

1√
N−k ).

The behavior of 1√
N−k

¡
1
−1
¢0 ³√N

0
0√
k

´ ¡
ϕε.w,x
ψε.w,x

¢
is then such that

1√
N−k

¡
1
−1
¢0 ³√N

0
0√
k

´ ¡
ϕε.w,x
ϕε.wPx

¢→
d

ϕε.wMx,

with ϕε.wMx ∼ N(0, Imx), since limk,N→∞ 1
N−k

¡
1
−1
¢0 ³√N

0
0√
k

´0 ³
1√
k
N

√
k
N
1

´³√
N
0

0√
k

´ ¡
1
−1
¢
= 1, so

1
N−kσ

− 1
2

εε.wε0.WMZXΣ
− 1
2

XX = ρε.w,x +
1√
N−kϕε.wMx + op(

1√
N−k ).

In a similar manner, it can be shown that

³√
N
0

0√
k

´"Ã σ
− 1
2

εε.w
1
N
ε0.WWΣ

− 1
2

WW

σ
− 1
2

εε.w
1
k
ε0.WPZWΣ

− 1
2

WW

!#
→
d

µ
ϕε.w,w

ϕε.wPw

¶
,

with
¡
ϕε.w,w
ϕε.wPw

¢ ∼ N(0,
¡
1
α
α
1

¢⊗ Imw), so

1
N−kσ

− 1
2

εε.wε0.WMZWΣ
− 1
2

WW = 1√
N−kϕε.wMw + op(

1√
N−k ),

where ϕε.wMw ∼ N(0, ImW
), and

1
N−kΣ

− 1
2

WWW 0MZXΣ
− 1
2

XX = ρw,x +
1√
N−kϕwMx + op(

1√
N−k )

1
N−kΣ

− 1
2

WWW 0MZWΣ
− 1
2

WW = Imw +
1√
N−kϕwMw + op(

1√
N−k )

1
N−kσ

−1
εε.wε

0
.WMZε

0
.W = 1 + 1√

N−kϕε.wMε.w + op(
1√
N−k),

with ρw,x = Σ
− 1
2

WWΣWXΣ
− 1
2

XX and ϕε.wMε.w, ϕε.wMw, ϕε.wMx, DmwϕwMw and vec(ϕwMx) are (possi-
bly correlated) normal random variables, with Dmw the duplication matrix that selects all unique
elements of a symmetricmw×mw matrix. We use the above results to determine the convergence
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behaviors of σ̂εε(β0), σ̂εW (β0) and σ̂εX(β0) :

σ̂εε(β0) =
1

N−k (y −Xβ0 −Wγ̃)0MZ (y −Xβ0 −Wγ̃)

= 1
N−k (ε−W (γ̃ − γ0))

0MZ (ε−W (γ̃ − γ0))
= 1

N−kε
0
.WMZε.W + (γ̃ − γ0 − Σ−1WWσWε)

0 1
N−kW

0MZε.W
+ 1

N−kε
0
.wMZW (γ̃ − γ0 − Σ−1WWσWε)

+(γ̃ − γ0 − Σ−1WWσWε)
0 1
N−kW

0MZW (γ̃ − γ0 − Σ−1WWσWε)

= σεε.w
h
σ−1εε.w

1
N−kε

0
.WMZε.W + γ̄0 1

N−kΣ
− 1
2

wwW 0MZε.Wσ
− 1
2

εε.w

+ 1
N−kσ

− 1
2

εε.wε0.WMZWΣ
− 1
2

wwγ̄ + 1
N−k γ̄

0Σ
− 1
2

wwW 0MZWΣ
− 1
2

wwγ̄
i

= σεε.w

h
1 + γ̄0γ̄ + 1√

N−k (ϕε.wMε.w + ϕε.wMwγ̄ + γ̄0ϕε.wMw + γ̄0ϕwMwγ̄)

+op(
1√
N−k )

i
,

σ̂εW (β0) =
1

N−k (y −Xβ0 −Wγ̃)0MZW

= 1
N−k (ε−W (γ̃ − γ0))

0MZW
= 1

N−k
£
ε0.WMZW − (γ̃ − γ0 − Σ−1WWσWε)

0W 0MZW
¤

= 1
N−kσ

1
2
εε.w

h
(N − k)σ

− 1
2

εε.w
1

N−kε
0
.WMZWΣ

− 1
2

WW − (N − k)γ̄0Σ
− 1
2
0

WW
1

N−kW
0MZWΣ

− 1
2

WW

i
Σ

1
2
WW

= σ
1
2
εε.w

¡
1
−γ̄
¢0¡ 0

Imw

¢
Σ

1
2
WW +

1√
N−kσ

1
2
εε.w

¡
1
−γ̄
¢0¡ϕε.wMw

ϕwMw

¢
Σ

1
2
WW + op(

1√
N−k )

= −σ
1
2
εε.wγ̄0Σ

1
2
WW +

1√
N−kσ

1
2
εε.w

¡
1
−γ̄
¢0¡ϕε.wMw

ϕwMw

¢
Σ

1
2
WW + op(

1√
N−k ),

σ̂εX(β0) =
1

N−k (y −Xβ0 −Wγ̃)0MZX

= 1
N−k (ε−W (γ̃ − γ0))

0MZX

= 1
N−k

£
ε0.WMZX − (γ̃ − γ0 − Σ−1WWσWε)

0W 0MZX
¤

= 1
N−kσ

1
2
εε.w

h
(N − k)σ

− 1
2

εε.w
1

N−kε
0
.WMZXΣ

− 1
2

XX − (N − k)γ̄0Σ
− 1
2
0

WW
1

N−kW
0MZXΣ

− 1
2

XX

i
Σ

1
2
XX

= σ
1
2
εε.w

¡
1
−γ̄
¢0¡ρε.w,x

ρWX

¢
Σ

1
2
XX +

1√
N−kσ

1
2
εε.w

¡
1
−γ̄
¢0¡ϕε.wMx

ϕwMx

¢
Σ

1
2
XX + op(

1√
N−k ).

The approximation error due to the many instruments in the covariance estimators is of a lower
order than 1√

N−k . Thus it does not affect the expressions of the covariance estimators when the
convergence rate of the number of instruments is lower than that of the number of observations.
When the number of instruments gets large, we can decompose the FOC (17) as:h

ξw + (ξε.w − ξwγ̄)
γ̄0

1+γ̄0γ̄

i0
[ξε.w − ξwγ̄] = 0⇔Pk

i=1 ξ
0
w,i

£
ξε.w,i − ξw,iγ̄

¤
+ γ̄

1+γ̄0γ̄

Pk
i=1

£
ξε.w,i − ξw,iγ̄

¤0 £
ξε.w,i − ξw,iγ̄

¤
= 0⇔

1
k
ξ0w,j

£
ξε.w,j − ξw,j γ̄

¤
+ 1

k
γ̄

1+γ̄0γ̄

£
ξε.w,j − ξw,j γ̄

¤0 £
ξε.w,j − ξw,j γ̄

¤
+

1
k

Pk
i=1,i6=j ξ

0
w,i

£
ξε.w,i − ξw,iγ̄

¤
+ 1

k
γ̄

1+γ̄0γ̄

Pk
i=1,i6=j

£
ξε.w,i − ξw,iγ̄

¤0 £
ξε.w,i − ξw,iγ̄

¤
= 0,

for ξw = (ξ0w,1 . . . ξ
0
w,k)

0, ξε.w = (ξε.w,1 . . . ξε.w,k)
0, ξw,i : 1 ×m, ξε.w,i : 1 × 1, i = 1, . . . , k, which

shows that the influence of the individual ξε.w,j and ξε.w,j elements on the FOC vanishes when k
gets large such that γ̄ is independent of the individual ξε.w,j and ξε.w,j elements for large number
of instruments.
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Given the convergence behavior of the covariance estimators and γ̄, we can express the score
vector involved in the KLM statistic as

1√
σ̂εε(β0)

(y −Xβ0 −Wγ̃)0MZΠ̃W (β0)
ZΠ̃X(β0) =

(ξε.w−ξwγ̄)√
1+γ̄0γ̄

0
M∙

ξw− (ξε.w−ξwγ̄)√
1+γ̄0γ̄

γ̄0√
1+γ̄0γ̄

¸∙
ΘX + ξX − (ξε.w−ξwγ̄)√

1+γ̄0γ̄
( 1−γ̄)

0
(ρε.w,xρWX

)√
1+γ̄0γ̄

¸
Σ

1
2
XX +Op(

1√
N−k ),

where ΘX = (Z
0Z)−

1
2Z 0ΠXΣ

− 1
2

XX , ξW = (Z 0Z)−
1
2Z 0VWΣ

− 1
2

WW and ξε.W = (Z 0Z)−
1
2Z 0ε.Wσ

− 1
2

εε.W . The
first part of this score vector equals the sum of k elements each of which have an expected value
equal to zero:

E

Ã"
M∙

ξw− (ξε.w−ξwγ̄)√
1+γ̄0γ̄

γ̄0√
1+γ̄0γ̄

¸ (ξε.w−ξwγ̄)√
1+γ̄0γ̄

#
i"

M∙
ξw− (ξε.w−ξwγ̄)√

1+γ̄0γ̄
γ̄0√
1+γ̄0γ̄

¸ ∙ΘX + ξX − (ξε.w−ξwγ̄)√
1+γ̄0γ̄

( 1−γ̄)
0
(ρε.w,xρWX

)√
1+γ̄0γ̄

¸#
i

!
= 0,

where [a]i is the i-th row of the matrix a. Since γ̄ is independent of ξε.w,i and ξw,i for large
values of k, the k elements of ξε.w−ξwγ̄√

1+γ̄0γ̄ are uncorrelated and have mean zero and variance one
despite the Cauchy distribution of γ̄. The same reasoning applies to the k elements of ΘX+ξX−
(ξε.w−ξwγ̄)√

1+γ̄0γ̄
( 1−γ̄)

0
(ρε.w,xρWX

)√
1+γ̄0γ̄ which are uncorrelated with one another and also with the k elements of

ξε.w−ξwγ̄√
1+γ̄0γ̄ which explains the zero value of the mean stated above. Hence, the score vector satisfies

a central limit theorem when both k and N become large:

1√
k
(y −Xβ0 −Wγ̃)0MZΠ̃W (β0)

ZΠ̃X(β0) =
1√
k

(ξε.w−ξwγ̄)√
1+γ̄0γ̄

0
M∙

ξw− (ξε.w−ξwγ̄)√
1+γ̄0γ̄

γ̄0√
1+γ̄0γ̄

¸∙
ΘX + ξX − (ξε.w−ξwγ̄)√

1+γ̄0γ̄

µ
( 1−γ̄)

0
(ρε.w,xρWX

)√
1+γ̄0γ̄ +

1√
N−k(

1
−γ̄)

0
(ϕε.wMx
ϕwMx

)√
1+γ̄0γ̄

¶¸
Σ

1
2
XX

→
d
ϕΠXε,

with ϕΠXε ∼ N(0, A),

A = limk→∞ 1
k
Σ

1
2
0

XX

∙
ΘX + ξX − (ξε.w−ξwγ̄)√

1+γ̄0γ̄

µ
( 1−γ̄)

0
(ρε.w,xρWX

)√
1+γ̄0γ̄

¶¸0
M∙

ξw− (ξε.w−ξwγ̄)√
1+γ̄0γ̄

γ̄0√
1+γ̄0γ̄

¸ ∙ΘX + ξX − (ξε.w−ξwγ̄)√
1+γ̄0γ̄

µ
( 1−γ̄)

0
(ρε.w,xρWX

)√
1+γ̄0γ̄

¶¸
Σ

1
2
XX .

The limit behavior of the KLM statistic when both k and N converge to infinity, k/N → 0, is
therefore characterized by

KLM(β0)→
d
χ2(mx).
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Proof of Theorem 5. We show that the conditional limiting distributions under a full rank
value of ΠW provide a upperbound for the conditional limiting distributions for general values of
ΠW and a lowerbound results when ΠW = 0. Hence, we show that the conditional critical values
that would result from the density function

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ̃), N− 1

2
δX Π̃X(β0, γ̃), N

− 1
2
δW Π̃W (β0, γ̃), γ̃) =

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ̃)|γ̃)p∞(N− 1

2
δX Π̃X(β0, γ̃), N

− 1
2
δW Π̃W (β0, γ̃)|γ̃)p∞(γ̃),

are smaller than those that result from the density function

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ̃)|γ̃)p∞(N− 1

2
δX Π̃X(β0, γ̃), N

− 1
2
δW Π̃W (β0, γ̃)|γ̃)p∞(γ̃|ΠW full rank)

which imply a point mass distribution for p∞(γ̃) and result from Theorem 2, and exceed those
that result from

p∞(
√
N(Z 0Z)−1Z 0(y −Xβ0 −Wγ̃)|γ̃)p∞(N− 1

2
δX Π̃X(β0, γ̃), N

− 1
2
δW Π̃W (β0, γ̃)|γ̃)p∞(γ̃|ΠW = 0)

which accord with Theorem 3.
1. AR(β0) : AR(β0) equals the smallest root of the characteristic polynomial¯̄̄̄

λΩ̂w − (y −Xβ0
... W )0PZ(y −Xβ0

... W )

¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 − Ω̂
− 1
2
0

w (y −Xβ0
... W )0PZ(y −Xβ0

... W )Ω̂
− 1
2

w

¯̄̄̄
= 0,

with Ω̂w =
1

N−k (y −Xβ0
... W )0MZ(y −Xβ0

... W ). The reduced form model for (y −Xβ0
... W )
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(y −Xβ0

... W ) = ZΠW (γ0
... Imw) + (u

... VW ),

with u = ε+VWγ0, soΩw =

µ
σεε+σεwγ0+γ

0
0σwε+γ

0
0Σwwγ0
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... σεw+γ00Σww
Σww

¶
. Pre-multiplying by (Z 0Z)−

1
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and post-multiplying by Ω
− 1
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Ã
σ
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εε.w
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Σ
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(Z 0Z)−
1
2Z 0(y −Xβ0

... W )Ω
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∙
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wwσwεσ
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... Imw)+
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εε.w
... VWΣ
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2

ww)

= ΘW (ρW
... Imw) + (ξε.w

... ξw) + op(1),

with ρW = −Σ−
1
2

wwσwεσ
− 1
2

εε.w, ΘW = (Z 0Z)
1
2ΠWΣ

− 1
2

ww. Since Ω̂w →
p

Ωw and ξε.w and ξw are in-

dependent k × 1 and k × mw dimensional standard normal distributed random variables, the
characteristic polynomial is for large samples equivalent to¯̄̄̄

λImw+1 −
∙
ΘW (ρW

... Imw) + (ξε.w
... ξw)

¸0 ∙
ΘW (ρW
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... ξw)

¸¯̄̄̄
= 0.
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We conduct a singular value decomposition of ΘW , ΘW = USV 0, U : k × mw, U 0U = Ik,
V : mw × mw, V 0V = Imw and S : k × mw is a diagonal matrix with the singular values in
decreasing order on the main diagonal. Using the singular value decomposition, we can specify
the characteristic polynomial as¯̄̄̄

λImw+1 −
∙
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¸0 ∙
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∙
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∙
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... Imw) + U 0(ξε.w
... ξwV)

¸0 ∙
S(αw

... Imw) + U 0(ξε.w
... ξwV)

¸¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −A0
∙
S(αW

... Imw) + U 0(ξε.w
... ξwV)

¸0 ∙
S(αw

... Imw) + U 0(ξε.w
... ξwV)

¸
A

¯̄̄̄
= 0,

with αW = V 0ρW , (ξ∗ε.w
... ξ∗w) = U 0(ξε.w

... ξwV) and A = (a1
... A1), a1 : (mw + 1) × 1, A1 :

(mw + 1)×mw; a1 =
¡

1
−αw

¢
(1 + α0wαw)

− 1
2 , A1 = (αw

... Imw)
0B−1, B =

∙
(αw

... Imw)(αw
... Imw)

0
¸ 1
2

,

such that A0A = Imw+1, and¯̄̄̄
λImw+1 −A0

∙
S(αW

... Imw) + U 0(ξε.w
... ξwV)

¸0 ∙
S(αw

... Imw) + U 0(ξε.w
... ξwV)

¸
A

¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
∙
S
µ
0
... B
¶
+ (ξ∗ε.w

... ξ∗w)
¸0 ∙
S
µ
0
... B
¶
+ (ξ∗ε.w

... ξ∗w)
¸¯̄̄̄

= 0⇔¯̄̄̄
λImw+1 −

µ
ξ∗ε.w

... SB + ξ∗w

¶0µ
ξ∗ε.w

... SB + ξ∗w

¶¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
µ

ξ∗0ε.wξ∗ε.w
(SB+ξ∗w)0ξ∗ε.w

... ξ∗0ε.w(SB+ξ∗w)
(SB+ξ∗w)0(SB+ξ∗w)

¶¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
µ
1
0

... ξ∗0ε.w(SB+ξ∗w)[(SB+ξ∗w)0(SB+ξ∗w)]−1
Imw

¶µ
ξ∗0ε.wM(SB+ξ∗w)ξ

∗
ε.w

0

...

0
(SB+ξ∗w)0(SB+ξ∗w)

´ µ
1
0

... ξ∗0ε.w(SB+ξ∗w)[(SB+ξ∗w)0(SB+ξ∗w)]−1
Imw

¶0 ¯̄̄̄
= 0⇔¯̄̄̄

λImw+1 −
µ

ξ∗0ε.wM(SB+ξ∗w)ξ
∗
ε.w

0

... 0
(SB+ξ∗w)0(SB+ξ∗w)

¶¯̄̄̄
= 0,

The above shows that the roots of the characteristic polynomial equal the eigenvalues of the

block-diagonal matrix
µ

ξ∗0ε.wM(SB+ξ∗w)ξ
∗
ε.w

0

... 0
(SB+ξ∗w)0(SB+ξ∗w)

¶
. The eigenvalues of this matrix are

equal to ξ∗0ε.wM(SB+ξ∗w)ξ
∗
ε.w and the eigenvalues of

(SB + ξ∗w)
0(SB + ξ∗w).
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Since ξ∗ε.w and ξ
∗
w are independent, ξ

∗0
ε.wM(SB+ξ∗w)ξ

∗
ε.w is a χ

2(k−mw) distributed random variable
that is independent of (SB+ξ∗w)

0(SB+ξ∗w). Because SB+ξ∗w ∼ N(SB, Ik), (SB+ξ∗w)
0(SB+ξ∗w)

is a non-central Wishart distributed matrix with k degrees of freedom, identity covariance matrix
and non-centrality parameter BS 0SB.
The distribution of the smallest characteristic root of a non-central Wishart distributed ran-

dom matrix decreases when the non-centrality parameter decreases. Hence, the distribution of
the smallest eigenvalue of (SB + ξ∗w)

0(SB + ξ∗w) decreases when the non-centrality parameter
BS 0SB decreases. We reflect smaller values of ΠW (ΘW ) by smaller values of S so the non-
centrality parameter decreases when ΠW decreases and therefore also the distribution of the
smallest root. The distribution of the smallest root when S = 0 therefore provides a lowerbound
on the distribution of the smallest root.
The AR statistic equals the minimum of an independent χ2(k − mw) distributed random

variable and the smallest eigenvalue of (SB+ ξ∗w)
0(SB+ ξ∗w). Since the distribution of the latter

decreases when S decreases, the distribution of the AR statistic is non-increasing for decreasing
values of S (ΠW ) since the χ2(k − mw) distributed random variable does not depend on S.
Thus the distribution of the smallest eigenvalue when S (ΠW ) is large (infinite) provides an
upperbound on the distribution of the AR statistic while the distribution when S (ΠW ) is zero
provides a lowerbound.
2. KLM(β0) : The specification of KLM(β0) is identical to

KLM(β0) =
1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0P(ZΠ̃X(β0) : ZΠ̃W (β0))

(y −Xβ0 −Wγ̃)

= 1
σ̂εε(β0)

(y −Xβ0 −Wγ̃)0Z(Z 0Z)−
1
2P

(Z0Z)
1
2 (Π̃X(β0) : Π̃W (β0))

(Z 0Z)−
1
2Z 0(y −Xβ0 −Wγ̃).

Under H0 and given γ̃, Lemma 1 states that Z 0(y − Xβ0 −Wγ̃) and (Π̃X(β0)
... Π̃W (β0)) are

independent in large samples. Hence, KLM(β0) results from a projection of (Z
0Z)−

1
2Z 0(y−Xβ0−

Wγ̃) onto a space, (Z 0Z)
1
2 (Π̃X(β0)

... Π̃W (β0)), that is given γ̃ independent of (Z 0Z)−
1
2Z 0(y −

Xβ0 − Wγ̃). The same reasoning applies to AR(β0) which also results from a projection of
(Z 0Z)−

1
2Z 0(y−Xβ0−Wγ̃) onto a space, Ik, that is given γ̃ independent of (Z 0Z)−

1
2Z 0(y−Xβ0−

Wγ̃). The limiting distribution of AR(β0) is bounded by its limiting distributions that result
under well and no identified values of γ so the same reasoning applies to the limiting distribution
of KLM(β0). The limiting distribution of KLM(β0) equals a χ

2(mx) distribution when γ is well
identified and the limiting distribution of KLM(β0) is therefore bounded from above by a χ

2(mx)
distribution and from below by the distribution that applies for a zero value of ΠW .
3. The JKLM statistic can be specified as

JKLM(β0) = AR(β0)−KLM(β0)
= 1

σ̂εε(β0)
(y −Xβ0 −Wγ̃)0Z(Z 0Z)−

1
2P

(Z0Z)−
1
2 (Π̃X(β0)

... ZΠ̃W (β0))⊥
(Z 0Z)−

1
2Z 0(y −Xβ0 −Wγ̃),

which shows that the same projection argument as for KLM(β0) can be used here as well.

40



4. Since

∂MQLR(β0)
∂KLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)+rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
≥ 0

∂MQLR(β0)
∂JKLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
,

the derivative of ∂MQLR(β0)
∂JKLM(β0)

is larger than equal to zero both when KLM(β0)+JKLM(β0)−rk(β0)
is larger than or equal to zero and when KLM(β0)+JKLM(β0)−rk(β0) is less than zero because
in the latter case:

∂MQLR(β0)
∂JKLM(β0)

= 1
2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)+rk(β0))2−4JKLM(β0)rk(β0)

¶
= 1

2

µ
1 + KLM(β0)+JKLM(β0)−rk(β0)√

(KLM(β0)+JKLM(β0)−rk(β0))2+4KLM(β0)rk(β0)

¶
= 1

2

⎛⎝1− 1r
1+

4KLM(β0)rk(β0)
(KLM(β0)+JKLM (β0)−rk(β0))2

⎞⎠ ≥ 0 KLM(β0) + JKLM(β0) < rk(β0).

Hence, the derivatives of MQLR(β0) both with respect to KLM(β0) and JKLM(β0) are non-
negative which imply that the conditional limiting distribution of MQLR(β0) is bounded by its
conditional limiting distribution that results from Theorem 2 since the limiting distributions of
KLM(β0) and JKLM(β0) are bounded by the limiting distributions that result from Theorem 2.
5. LR(β0) : LR(β0) equals

LR(β0) = AR(β0)− λmin,

where λmin is the smallest root of the polynomial
¯̄̄
λIm+1 −

³
ϕ0ϕ
S0ϕ

ϕ0S
S0S
´¯̄̄
= 0. The specification of

ϕ is such that ϕ = U 0η with U orthonomal, U 0U = Ik, and η = (Z 0Z)−1Z 0 ε̂√
σ̂εε(β0)

so AR(β0) =

η0η = ϕ0ϕ. The limiting distribution of AR(β0) =
Pk

i=1 ϕ
2
i , ϕ = (ϕ1 · · ·ϕk)

0, is bounded by the
limiting distributions in case of full rank and zero values of ΠW . We show that the derivative of
LR(β0) with respect to ϕ2i is non-negative such that a smaller value of ϕ

2
i , which results when

ΠW decreases, does not increase LR(β0). We therefore construct the derivatives of AR(β0) and
λmin with respect to ϕ2i :

∂AR(β0)
∂ϕ2i

= 1.

Since λmin has no closed form expression, we use the Implicit Function Theorem to construct the
derivative of λmin with respect to ϕ2i :

∂λmin
∂ϕ2i

= −
∂f(λmin)

∂ϕ2
i

∂f(λmin)

∂λmin

=
1+

s2ii
λmin−s2ii

1+
Pm

j=1

s2
jj

(λmin−s2jj)2

i ≤ m

= 1

1+
Pm

j=1

s2
jj

(λmin−s2jj)2

i > m
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where we used that
∂f(λmin)

∂ϕ2i
= −Qm

i=1(λmin − s2ii)
h
1 +

s2ii
λmin−s2ii

i
i ≤ m

= −Qm
i=1(λmin − s2ii) i > m

∂f(λmin)
∂λmin

=
Qm

i=1(λmin − s2ii)
h
1 +

Pm
j=1

s2jj
(λmin−s2jj)2

i
,

for which it is used that λmin − ϕ0ϕ −Pm
j=1

s2jjϕ
2
j

λmin−s2jj = 0. The derivative ∂λmin
∂ϕ2i

is less than one

since λmin < s2ii, i = 1, . . . ,m, so its denominator exceeds one while its numerator is less than
one when i ≤ m and equal to one when i > m. Since the derivative ∂λmin

∂ϕ2i
is less than one, ∂LR(β0)

∂ϕ2i

is non-negative. It is important to note that the s2ii’s are given γ̃ independent of ϕi which results
from Lemma 2 as the s2ii’s result from Π̃X(β0) and Π̃W (β0).

Proof of Theorem 6. a. When we test H0 : β = β0 and β0 is large compared to the true

value β, the different elements of Σ̃(β0) =
³

σ̃εε(β0)
σ̃Wε(β0)

σ̃εW (β0)

Σ̃WW (β0)

´
= 1

N−k (y −Xβ0
... W )0MZ(y −Xβ0

... W ), can be characterized by
1
β20
σ̃εε(β0) = σ̂XX − 2

β0
σ̂yX +

1
β20
σ̂yy

− 1
β0
σ̃εW (β0) = σ̂XW − 1

β0
σ̂yW

Σ̃WW (β0) = Σ̂WW ,

with σ̂yy =
1

N−ky
0MZy, σ̂XX =

1
N−kX

0MZX, σ̂XW = 1
N−kX

0MZW, σ̂yW = 1
N−ky

0MZW, Σ̂WW =
1

N−kW
0MZW, soµ −β−10 0
0 ImW

¶0
Σ̃(β0)

µ −β−10 0
0 ImW

¶
= Ω̂XW − 1

β0

µ
2σ̂yX σ̂yW
σ̂0yW 0

¶
+ 1

β20

µ
σ̂yy 0
0 0

¶
.

The MLE of γ is obtained from the smallest root of the characteristic polynomial:¯̄̄̄
λΣ̃(β0)− (y −Xβ0

... W )0PZ(y −Xβ0
... W )

¯̄̄̄
= 0,

and the smallest root of this polynomial, say λ1, equals the AR statistic to test H0. The smallest
root does not alter when we respecify the characteristic polynomial as¯̄̄̄

λImW+1 − Σ̃(β0)
− 1
2
0(y −Xβ0

... W )0PZ(y −Xβ0
... W )Σ̃(β0)

− 1
2

¯̄̄̄
= 0.

Using the specification of Σ̃(β0), we can specify Σ̃(β0)
− 1
2 as

Σ̃(β0)
− 1
2 =

µ −β−10 0
0 ImW

¶
Ω̂
− 1
2

XW +O(β−20 ),

where O(β−20 ) indicates that the highest order of the remaining terms is β
−2
0 . Using this speci-

fication, we can specify Σ̃(β0)
− 1
2
0(y −Xβ0

... W )0PZ(y −Xβ0
... W )Σ̃(β0)

− 1
2 for large values of β

as

Σ̃(β0)
− 1
2
0(y −Xβ0

... W )0PZ(y −Xβ0
... W )Σ̃(β0)

− 1
2 = Ω̂

− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW +O(β−10 ).
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For large values of β0, the AR statistic thus corresponds with the smallest eigenvalue of Ω̂
− 1
2
0

XW (X
... W )0PZ(X

... W )Ω̂
− 1
2

XW which is a statistic that tests for a reduced rank value of (ΠX
... ΠW ),

Ω̂XW = 1
N−k (X

... W )0MZ(X
... W ).

b. Let V = (v1
... V1) : m×m contain the eigenvectors of Ω̂

− 1
2
0

XW (X
...W )0PZ(X

...W )Ω̂
− 1
2

XW with v1 the
eigenvector of the smallest eigenvalue and V1 contains the eigenvectors of the larger eigenvalues.
The eigenvectors are orthonormal so V 0V = Im. For large values of β0,

Σ̃(β0)
− 1
2v1 =

³
−β−10
0

0
Ik

´
Ω̂
− 1
2

XWv1 +O(β−20 ).

The MLE γ̃ is obtained from the eigenvector that belongs to the smallest eigenvalue which for
large values of β0 is therefore such that

d
¡
1
−γ̃
¢
= Σ̃(β0)

− 1
2 v1

=
³
−β−10
0

0
Ik

´
Ω
− 1
2

XWv1 +O(β−20 ),

with d = − 1
β0
e01Ω

− 1
2

XWv1, where e1 equals the first column of Im, or the first m-dimensional unity
vector. Using the expression of the MLE, it results that

d(y −Xβ0 −Wγ̃) = d(y −Xβ0
... W )

¡
1
−γ̃
¢

= (X
... W )Ω̂

− 1
2

XWv1 + dy +O(d2)

dσ̃ε(X : W )(β0) =
d

T−k (y −Xβ0 −Wγ̃)0MZ(X
... W )

= v01Ω̂
− 1
2

XW Ω̂XW + d(σ̂yX
... σ̂yW ) +O(d2)

d2σ̃εε(β0) =
d2

T−k (y −Xβ0 −Wγ̃)0MZ(y −Xβ0 −Wγ̃)

= v01Ω̂
− 1
2

XW Ω̂XW Ω̂
− 1
2

XWv1 + 2d(σ̂yX
... σ̂yW )Ω̂

− 1
2

XWv1 + d2σ̂yy

= 1 + 2d(σ̂yX
... σ̂yW )v1 + d2σ̂yy +O(d2)

since

v01Ω̂
− 12
XW Ω̂XW+d(σ̂yX : σ̂yW )

1+2d(σ̂yX : σ̂yW )Ω̂
− 12
XW v1+d2σ̂yy

= v01Ω̂
− 1
2

XW Ω̂XW + d((σ̂yX : σ̂yW )− 2(σ̂yX : σ̂yW )Ω̂−
1
2

XWv1v
0
1Ω̂
− 1
2

XW Ω̂XW ) +O(d2),

we can also obtain that

(X
... W )− (y −Xβ0 −Wγ̃)

σ̃ε(X : W )(β0)

σ̃εε(β0)
= (X

... W )− d(y −Xβ0 −Wγ̃)
dσ̃ε(X : W )(β0)

d2σ̃εε(β0)

= (X
... W )−

∙
(X

... W )Ω̂
− 1
2

XWv1 + dy

¸
v01Ω̂

− 12
XW Ω̂XW+d(σ̂yX : σ̂yW )

1+2d(σ̂yX : σ̂yW )Ω̂
− 12
XW v1+d2σ̂yy

= (X
... W )−

∙
(X

... W )Ω̂
− 1
2

XWv1 + dy

¸
h
v01Ω̂

− 1
2

XW Ω̂XW + d((σ̂yX : σ̂yW )− 2(σ̂yX : σ̂yW )Ω̂−
1
2

XWv1v
0
1Ω̂
− 1
2

XW Ω̂XW )
i
.
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We postmultiply this expression by (Ω̂
− 1
2

XWv1
... Ω̂

− 1
2

XWV1) :∙
(X

... W )− (y −Xβ0 −Wγ̃)
σ̃ε(X : W )(β0)

σ̃εε(β0)

¸
(Ω̂
− 1
2

XWv1
... Ω̂

− 1
2

XWV1)

=

∙
−d(y − (X ... W )Ω̂

− 1
2

XWv1(σ̂yX : σ̂yW )Ω̂
− 1
2

XWv1
...

(X
... W )Ω̂

− 1
2

XWV1 − d

µ
(X

... W )Ω̂
− 1
2

XWv1(σ̂yX : σ̂yW )Ω̂
− 1
2

XWV1

¶¸
+O(d2).

A further post-multiplication by

⎛⎝ −1
d
σ̂
− 1
2

yy.(X : W ) 0

−V 0
1Ω̂

− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢
σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠ , with σ̂Xy = σ̂0yX , σ̂Wy =

σ̂0yW , σ̂yy.(X : W ) = σ̂yy −
¡
σ̂Xy

σ̂Wy

¢0
Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
, then yields∙

(X
... W )− (y −Xβ0 −Wγ̃)

σ̃ε(X : W )(β0)

σ̃εε(β0)

¸
(Ω̂
− 1
2

XWv1
... Ω̂

− 1
2

XWV1)

⎛⎝ −1
d
σ̂
− 1
2

yy.(X : W ) 0

−V 0
1Ω̂

− 1
2
0

XW (σ̂yX : σ̂yW )
0σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠
=

∙
y − (X ... W )Ω̂

− 1
2

XWv1v
0
1Ω̂
− 1
2
0

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWV1 − d

µ
(X

... W )Ω̂
− 1
2

XWv1(σ̂yX : σ̂yW )Ω̂
− 1
2

XWV1

¶¸
⎛⎝ −1

d
σ̂
− 1
2

yy.(X : W ) 0

−V 0
1Ω̂

− 1
2
0

XW (σ̂yX : σ̂yW )
0σ̂
− 1
2

yy.(X : W ) Imw

⎞⎠+O(d2)

=

∙
y − (X ... W )Ω̂

− 1
2

XW (v1v
0
1 + V1V

0
1) Ω̂

− 1
2

XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWV1

¸µ
σ̂
− 12
yy.X W

0
0

ImW

¶
+O(d)

=

∙
y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢ ... (X ... W )Ω̂
− 1
2

XWV1

¸µ
σ̂
− 12
yy.(X : W )

0

0
ImW

¶
+O(d),

where we used that v1v01+V1V
0
1 = Im. Since the quadratic form of the above matrix with respect

to MZ equals the identity matrix, the eigenvalues of T (β0)
0T (β0) correspond for large values of

β0 with the eigenvalues of∙
(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWV1

¸0
PZ∙

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
)σ̂
− 1
2

yy.X W

... (X
... W )Ω̂

− 1
2

XWV1

¸
.

c. When the true values of β and γ equal (β, γ),

(y − (X ... W )Ω̂−1XW

¡
σ̂Xy

σ̂Wy

¢
= ε− (X ... W )Ω̂−1XW

¡
σ̂Xε

σ̂Wε

¢
,

where ε = y−Xβ−Zγ and σ̂Xε =
1

T−kX
0MZε and σ̂Wε =

1
T−kX

0MZε, since
¡
σ̂Xy

σ̂Wy

¢
= Ω̂XW

¡
β
γ

¢
+¡

σ̂Xε

σ̂Wε

¢
. The expressions of are therefore for large values of β0 identical to the expressions of these

statistics that test H∗0 : α = 0
In the model

(X
... W )Ω̂

− 1
2

XWv1 = εα+ (X
... W )Ω̂

− 1
2

XWV1δ + u
ε = ZΦε + Vε

(X
... W )Ω̂

− 1
2

XWV1 = ZΦV1 + VV1 ,
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where α : 1× 1, δ : mW × 1, Φε : k× 1 and ΦV1 : k×mW and u, Vε and VV1 are n× 1, n× 1 and
n×mw matrices of disturbances, the expressions of the AR, LR and MQLR statistics that test
H∗0 : α = 0 result from noting that δ̃ = 0 such that

AR(α = 0) = v01Ω̂
− 12 0
XW (X : W )0PZ(X : W )Ω̂

− 12
XW v1

v01Ω̂
− 12 0
XW (X : W )0MZ(X : W )Ω̂

− 12
XW v1

= λ1.

Similarly,

Φ̃ = (Z 0Z)−1Z 0
"
(ε
... (X

... W )Ω̂
− 1
2

XWV1)− (X ... W )Ω̂
− 1
2

XWv1
v01Ω̂

− 12 0
XW (X : W )0MZ(ε

... (X
... W )Ω̂

− 12
XWV1)
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¸
which we use to construct the LR and MQLR statistics to test H0 : β = β0 for large values of β0.

Critical values for LR(β0) when m=2. Theorem 2b shows that the limiting distribution of
LR(β0) is conditional on V and S. When m = 2, S has two non-zero elements and V has one
unrestricted element since it is restricted to be orthonormal: V 0V =I2. Depending on its realized
value, V can be classified to have one of the following four orthonormal specifications:

1. V =
µ
cos(a) sin(a)
sin(a) − cos(a)

¶
0 ≤ a ≤ π

2. V =
µ
cos(a) − sin(a)
sin(a) cos(a)

¶
0 ≤ a ≤ π

3. V =
µ

cos(a) sin(a)
− sin(a) cos(a)

¶
0 ≤ a ≤ π

4. V =
µ

cos(a) − sin(a)
− sin(a) − cos(a)

¶
0 ≤ a ≤ π.

These four orthonormal specifications reflect all possible values of V in a unique manner. They
are functions of a whose value lies between 0 and π.We therefore compute the conditional (95%)
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critical values of LR(β0) given s11, s22 and a for each of the four different specifications of V
using Theorem 2b. We use hundred possible values of both s11, s22 and twenty-five for a. Thus
we compute one million 95% critical values (= 4× 25× 100× 100).
To compute the size and power when testing at the 95% significance level, we conduct a

singular value decomposition of the realized value of T (β0) for every data-set and determine
which of the above specifications of V accords with the computed one. We then compute a and
determine the appropriate 95% critical value givens s11, s22 and a for the respective specification
of V.

References

[1] Anderson, T.W. and H. Rubin. Estimators of the Parameters of a Single Equation in a
Complete Set of Stochastic Equations. The Annals of Mathematical Statistics, 21:570—582,
(1949).

[2] Andrews, D.W.K., M.J. Moreira and J.H. Stock. Optimal Invariant Similar Tests for In-
strumental Variables Regression. Econometrica, 2005.

[3] Bekker, P.A. and F. Kleibergen. Finite-Sample Instrumental Variables Inference using an
Asymptotically Pivotal Statistic. Econometric Theory, 19:744—753, 2003.

[4] Dufour, J.-M. and M. Taamouti. Projection-based statistical inference in linear structural
models with possibly weak instruments. Econometrica, 73:1351—1365, 2005a.

[5] Dufour, J.-M. and M. Taamouti. Further results on projection-based inference in IV regres-
sions with weak, collinear or missing instruments. Technical report, Université de Montréal,
2005b.

[6] Golub, G.H. and C.F. van Loan. Matrix Computations. The John Hopkins University Press
(Baltimore), 1989.

[7] Hillier, G. Exact Critical Value and Power Functions for the Conditional Likelihood Ratio
and Related Tests in the IV Regression Model with Known Covariance. 2006. Working
Paper, Department of Economics, University of Southampton.

[8] Kleibergen, F. Pivotal Statistics for testing Structural Parameters in Instrumental Variables
Regression. Econometrica, 70:1781—1803, 2002.

[9] Kleibergen, F. Testing Subsets of Structural Parameters in the Instrumental Variables
Regression Model. Review of Economic and Statistics, 86:418—423, 2004.

[10] Kleibergen, F. Testing Parameters in GMM without assuming that they are identified.
Econometrica, 73:1103—1124, 2005.

[11] Kleibergen, F. Generalizing weak instrument robust IV statistics towards multiple parame-
ters, unrestricted covariance matrices and identification statistics. Journal of Econometrics,
2006. Forthcoming.

46



[12] Mariano, R.S. and T. Sawa. The Exact Finite-Sample Distribution of the Limited-
Information Maximum Likelihood Estimator in the Case of Two Included Endogenous Vari-
ables. Journal of the American Statistical Association, 67:159—163, 1972.

[13] Moreira, M.J.,. A Conditional Likelihood Ratio Test for Structural Models. Econometrica,
71:1027—1048, 2003.

[14] Phillips, P.C.B. Exact Small Sample Theory in the Simultaneous Equations Model. In
Z. Griliches and M.D. Intrilligator, editors, Handbook of Econometrics, Vol.1. North-Holland
Publishing Co., Amsterdam, 1983.

[15] Phillips, P.C.B. Partially Identified Econometric Models. Econometric Theory, 5:181—240,
(1989).

[16] Rothenberg, T.J. Approximating the Distributions of Econometric Estimators and Test
Statistics. In Z. Griliches and M.D. Intrilligator, editor, Handbook of Econometrics, Volume
2, chapter 15, pages 881—935. Elsevier Science B.V., 1984.

[17] Staiger, D. and J.H. Stock. Instrumental Variables Regression with Weak Instruments.
Econometrica, 65:557—586, 1997.

[18] Stock, J.H. and J.H. Wright. GMM with Weak Identification. Econometrica, 68:1055—1096,
2000.

47




