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Abstract

This study extends earlier results on bias-corrected estimators for the fixed-effects
dynamic panel data model. We derive the inconsistency of the LSDV estimator for
finite T and N large in case of both time series and cross-section heteroscedasticity
and show how to implement the resulting inconsistency expression in bias-correction
procedures.

1. Introduction

The inconsistency of the least-squares dummy variable (LSDV) estimator in dynamic panel
data models for fixed T has led to the development of a range of new estimators. Various
generalized method of moments (GMM) estimators have been proposed and compared (see
e.g. Arellano and Bond, 1991; Arellano and Bover, 1995; Ahn and Schmidt, 1995; Blundell
and Bond; 1998). In Bun and Carree (2005) a new and simple estimator for dynamic
panel data models with or without additional exogenous explanatory variables has been
introduced. It is computed as a bias correction to the LSDV estimator (also referred to as
within or fixed effects estimator) and is, as such, related to estimators developed by Kiviet
(1995), Hansen (2001) and Hahn and Kuersteiner (2002).
Bun and Carree (2005) derive the bias-corrected estimator for finite number of time peri-

ods T and large number of cross-section units N under the assumption of homoscedasticity.
This paper extends the framework to both time-series and cross-section heteroscedasticity,
which are common in applied economic research. The rest of the paper is organized as
follows. In section 2 we introduce the model and derive the inconsistency of the LSDV esti-
mator under a variety of assumptions regarding the variance structure of the disturbances.
In section 3 we extend the principle of bias-correction developed in Bun and Carree (2005)
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to models with heteroscedastic disturbances. Section 4 contains results from Monte Carlo
experiments. Section 5 concludes.

2. Inconsistency of the LSDV estimator

Consider the linear first-order dynamic panel data model with K additional time-varying
regressors

yit = γyi,t−1 + β0xit + ηi + εit, i = 1, ..., N ; t = 1, ..., T. (2.1)

In this model the dependent variable yit is determined by the one-period lagged value of the
dependent variable yi,t−1,a K × 1 vector of explanatory variables xit, an individual specific
effect ηi and a mean zero error term εit with variance σ2it. Stacking the observations over
time we get

yi = γyi,−1 +Xiβ + ηiιT + εi, i = 1, ..., N, (2.2)

where yi = (yi1, ..., yiT )0, yi,−1 = (yi0, ..., yi,T−1)0, Xi = (xi1, ..., xiT )
0, εi = (εi1, ..., εiT )0 and

ιT = (1, ..., 1)
0 is a T × 1 vector of ones. We assume that conditional on the observables

yi0 and Xi and the unobservables ηi the disturbance term εi is independently distributed
across individuals with mean zero and covariance matrix Σi. We allow for both time-series
and cross-section heteroscedasticity in the following way:

Σi = diag(σ2it) with lim
N→∞

1

N

NX
i=1

Σi = ΣT = diag(σ2t ). (2.3)

Hence, regarding cross-sectional heteroscedasticity we follow Phillips and Sul (2004, As-
sumption A1), but extend their assumption to allow for time series heteroscedasticity too.
Phillips and Sul (2004) show that the particular form of the inconsistency of the LSDV
estimator in case of cross-sectional heteroscedasticity does not change. Below we show that
in case of time series heteroscedasticity it does, however, which is relevant when developing
bias-corrected procedures as will be shown in the next section.
Stacking the observations once again across individuals one gets

y = γy−1 +Xβ + (IN ⊗ ιT )η + ε, (2.4)

where y and y−1 are NT × 1 vectors of stacked observations, X is a NT × K matrix,
η = (η1, ..., ηN)

0 and ε is a NT × 1 vector of disturbances. Define A = IN ⊗ AT with
AT = IT − 1

T
ιT ι

0
T as the within transformation which eliminates the individual effects. The

LSDV coefficient estimator of γ and β in model (2.4) is equal to ordinary least squares on
the transformed model

ỹ = γỹ−1 + X̃β + ε̃, (2.5)

where ỹ = Ay, ỹ−1 = Ay−1, X̃ = AX and ε̃ = Aε.
The LSDV estimators are biased and inconsistent for T finite and N large because

ỹ−1 and ε̃ are correlated. Results on the extent of the inconsistency have been derived by
Nickell (1981) and Kiviet (1995) assuming iid disturbances εit. Using partitioned regression
techniques the LSDV estimation errors of γ and β in (2.5) can be expressed as (see also
Nickell, 1981)

γ̂ − γ = (ỹ0−1Mỹ−1)−1ỹ0−1Mε̃,

β̂ − β = −(X̃ 0X̃)−1X̃ 0ỹ−1(γ̂ − γ) + (X̃ 0X̃)−1X̃ 0ε̃,
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where M = I − X̃(X̃ 0X̃)−1X̃ 0. Hence, the inconsistency reads

plimN→∞(γ̂ − γ) =
¡
plimN→∞

1
N
ỹ0−1Mỹ−1

¢−1
plimN→∞

1
N
ỹ0−1Mε̃

plimN→∞(β̂ − β) = −plimN→∞(X̃
0X̃)−1X̃ 0ỹ−1 plimN→∞(γ̂ − γ)

 , (2.6)

from which it is seen that the inconsistency critically depends on plimN→∞
1
N
ỹ0−1Mε̃. Be-

cause of the assumed strict exogeneity ofX this term can be written as plimN→∞
1
N
ỹ0−1Mε̃ =

plimN→∞
1
N
ỹ0−1ε̃.

For further assessment of the inconsistency of the LSDV estimator (2.11) we have to
evaluate

plimN→∞
1

N
ỹ0−1ε̃ = lim

N→∞
1

N

NX
i=1

E
£
ỹ0i,−1ε̃i

¤
,

hence we need a decomposition of the transformed regressor ỹ−1 into two parts, i.e. corre-
lated with ε̃ or not. From (2.2) it is seen that

yi = γ (LTyi + yi0eT ) +Xiβ + ηiιT + εi, (2.7)

where we introduced a T ×T matrix LT with ones on the first lower subdiagonal and zeros
elsewhere and where eT is the T ×1 unit vector with its first element equal to one. Defining
ΓT = (IT − γLT )

−1 we can write

yi = ΓT (γyi0eT +Xiβ + ηiιT + εi) . (2.8)

Furthermore, we have

ỹi,−1 = AT (LTyi + yi0eT )

= AT (LTΓT (γyi0eT +Xiβ + ηiιT + εi) + yi0eT )

= ΠTεi + vi (2.9)

where ΠT = ATLTΓT and vi = yi0(γΠT + AT )eT + ΠTXiβ + ηiΠT ιT . Note that under the
assumptions made εi and vi are uncorrelated and that the elements of ΠT depend on γ
only.
Using the decomposition (2.9) we have

E
£
ỹ0i,−1ε̃i

¤
= tr (ΠTΣi) . (2.10)

Further evaluation of the expectation in (2.10) requires an explicit assumption about the
variance structure of εi. Using (2.3) we have

plimN→∞
1

N
ỹ0−1ε̃ = lim

N→∞
1

N

NX
i=1

tr(ΠTΣi) = tr

Ã
ΠT lim

N→∞
1

N

NX
i=1

Σi

!
= tr(ΠTΣT ),

hence, as shown by Phillips and Sul (2004) already, the presence of cross-sectional het-
eroscedasticity does not have consequences for the particular form of the inconsistency. In
case of time series heteroscedasticity, i.e. ΣT = diag(σ2t ), we derive

tr(ΠTΣT ) = −
T−2X
j=0

σ2T−1−j

jX
s=0

γs.
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Note that assuming homoscedasticity, i.e. ΣT = σ2IT , it is easily seen that

plimN→∞
1

N
ỹ0−1ε̃ = σ2tr(ΠT ) = −σ2

µ
1

1− γ
− 1− γT

T (1− γ)2

¶
,

which has been derived before in Nickell (1981) and Kiviet (1995).
Summarizing the results, while cross-section heteroscedasticity does not alter the spe-

cific form of the inconsistency, time-series heteroscedasticity does. Note that, although
precise form of the inconsistency changes, also in case of heteroscedasticity it is O(T−1).
Defining Σxy−1 = plimN→∞

1
N
X̃ 0ỹ−1, Σxx = plimN→∞

1
N
X̃ 0X̃, σ2y−1 = plimN→∞

1
N
ỹ0−1ỹ−1

the inconsistency of the LSDV estimator (2.6) can be expressed as

plimN→∞(γ̂ − γ) = tr(ΠTΣT )/σ
2
y−1|X

plimN→∞(β̂ − β) = −ζ plimN→∞(γ̂ − γ)

 , (2.11)

where we introduced σ2y−1|X = (1− ρ2Xy−1)σ
2
y−1 as the conditional variance of ỹ−1, ρ

2
Xy−1 =

Σ0xy−1Σ
−1
xxΣxy−1/σ

2
y−1 as the (asymptotic) squared multiple correlation coefficient of the re-

gression of ỹ−1 on X̃ and ζ = Σ−1xxΣxy−1 as the corresponding vector of regression coefficients.

3. Bias correction in case of heteroscedasticity

We now turn to bias-corrected estimation of γ and β. We will use (2.11) to develop
both linear and nonlinear bias corrections. The former closely corresponds with the bias
correction proposed by Kiviet (1995), while the latter is a straightforward application of
the method proposed in Bun and Carree (2005). Both studies assumed homoscedasticity,
but we will extend their methods to models with heteroscedastic disturbances.
First, the additive bias corrected estimator is constructed as the original LSDV estima-

tor minus an estimate of the inconsistency (2.11). For that we need preliminary consistent
estimates of σ2y−1|X , ζ, ΠT and ΣT . The first two quantities can be estimated consistently

using their sample analogs σ̂2y−1|X and ζ̂. Regarding ΠT and ΣT GMM coefficient estima-

tors (labelled γ̂gmm and β̂gmm) are used for providing first step consistent estimates. ΠT is
depending on γ only, hence we use γ̂gmm to provide a consistent estimate Π̂T,gmm. ΣT can
be estimated consistently from the GMM residuals by

Σ̂T,gmm = diag
¡
σ̂2t,gmm

¢
, (3.1)

σ̂2t,gmm =
(ỹt − γ̂gmmỹt−1 − X̃tβ̂gmm)

0(ỹt − γ̂gmmỹt−1 − X̃tβ̂gmm)

N(T − 1)/T ,

where ỹt = (ỹ1t, ..., ỹNt)
0, ỹt−1 = (ỹ1,t−1, ..., ỹN,t−1)0, X̃t = (x̃1t, ..., x̃Nt)

0.Using (2.11) the
additive bias-corrected estimator (abc) for γ and β is

γ̂abc = γ̂lsdv −
tr(Π̂T,gmmΣ̂T,gmm)

σ̂2y−1|X

β̂abc = β̂lsdv + ζ̂
tr(Π̂T,gmmΣ̂T,gmm)

σ̂2y−1|X

 . (3.2)
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Note that we use a slightly different version of Kiviet’s (1995) estimator, i.e. there is bias
correction of the first-order term (2.11) only and higher order bias terms are neglected. Bun
and Kiviet (2002), however, show that this first-order term is responsible for the majority
of the finite sample bias in the LSDV estimator.
Second, regarding the nonlinear bias correction we first assume the variance structure

ΣT to be given as σ2y−1|X and ζ. Hence, the only unknown quantities in (2.11) are γ and β.
Using the first expression of (2.11) the bias-corrected estimator for γ is that γ which solves

γ̂ = γ − tr(ΠTΣT )

σ2y−1|X
, (3.3)

The resulting estimator can then be inserted into the second expression in (2.11) to find
the bias-corrected estimator for β. In general σ2y−1|X , ζ and ΣT are unknown and have to
be estimated too. As before the first two quantities can be estimated consistently using
their sample analogs. Regarding ΣT we use the consistent, although infeasible, estimator

Σ̂T = diag
¡
σ̂2t
¢
, (3.4)

σ̂2t =
(ỹt − γỹt−1 − X̃tβ)

0(ỹt − γỹt−1 − X̃tβ)

N (T − 1) /T .

We then solve the following system of K + 1 equations simultaneously for γ and β:

γ̂lsdv = γ − tr(ΠT Σ̂T )σ̂
2
y−1|X

β̂lsdv = β + ζ̂tr(ΠT Σ̂T )σ̂
2
y−1|X

 . (3.5)

We will label the solutions γ̂nbc and β̂nbc. Note that in case of homoscedasticity the resulting
procedure is equal to one proposed in Bun and Carree (2005).

4. Monte Carlo experiments

In this section we compare the performance of the additive and nonlinear bias-corrected
estimators (labelled abc and nbc respectively) with some alternative estimators. We com-
pare it with (i) the LSDV-estimator (lsdv), (ii) the GMM-estimator (gmm) by Arellano
and Bond (1991). Assuming strict exogeneity of xit we have T (T −1)/2+T (T −1) moment
conditions for gmm, i.e. E [yi,t−s∆εit] = 0 (t = 2, ..., T ; s = 2, ..., t) and E [xis∆εit] = 0
(t = 2, ..., T ; s = 1, ..., T ). Additional moment conditions due to imposing homoscedasticity
are not exploited as Ahn and Schmidt (1995) note that efficiency gains are small. Under
the assumptions made in section 2 the GMM-estimator is consistent for finite T and N
large, hence it is a reasonable benchmark for evaluating the bias-corrected estimators.
Data for y have been generated according to equation (2.1) with ηi ∼ IIN [0, σ2η] and

εit ∼ IIN [0, σ2it]. The generating equation for the explanatory variable x is
xit = ρxi,t−1 + ξit, i = 1, ..., N ; t = 1, ..., T, (4.1)

where ξit ∼ IIN [0, σ2ξ ]. We choose γ = 0.8, β = 1, ρ = 0.8 and ση = σξ = 1. We
assume that the panel data set has 600 observations and conduct experiments for several
combinations of T and N for which NT = 600.
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Regarding the disturbance variance structure σ2it we use two research designs, i.e. (1)
cross-sectional heteroscedasticity and (2) time series heteroscedasticity. For design 1 we
specify σ2it = σ2i ∼ χ2(1) and for design 2 we have σ2it = σ2t = 0.95− 0.05T + 0.1t. In these
specifications it is ensured that 1

N

PN
i=1 σ

2
it ≈ 1 and 1

T

PT
t=1 σ

2
it = 1.

Simulation results are presented in Tables 1 and 2. Regarding coefficient estimators we
present in these tables the bias in estimating γ and β together with the root mean squared
error (RMSE). In calculating the RMSE of coefficient estimators we use the variance as
estimated from the Monte Carlo as a measure of true variance. For each experiment we
performed 10,000 Monte Carlo replications.
We observe the following patterns in the simulation results for the coefficient estimators.

First, bias in estimating the autoregressive parameter γ is negative for lsdv and gmm.
Second, regarding (bias-corrected) LSDV bias in estimating both γ and β decreases for
larger T (and smaller N), but not for gmm. This is to be expected as gmm should
perform well especially for T small and N large. Third, in estimating both γ and β both
bias-corrected estimators are virtually unbiased. Finally, based on a mean squared error
criterion bias corrected estimators are efficient compared with gmm coefficient estimators.

5. Concluding remarks

This study has developed bias-corrected estimation techniques for the LSDV estimator
in the dynamic panel data model with heteroscedastic disturbances. The inconsistency
of the LSDV estimator for finite T and N large is derived under both time series and
cross-section heteroscedasticity. The resulting expressions are used in extending existing
additive and nonlinear bias correction procedures. The resulting bias-corrected estimators
are consistent for finite T and N large. We provided some simulation results allowing
for either cross-section or time-series heteroscedasticity. From the simulation results it is
seen that the proposed bias corrected estimators behave satisfactorily in finite samples.
Simulation results on various designs show that based on a root mean squared criterion
bias-corrected LSDV estimators perform well against GMM estimators using the same
assumptions.
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Table 1: Cross-section heteroscedasticity, γ = ρ = 0.8 and β = 1

(N,T ) (300, 2) (200, 3) (150, 4) (100, 6) (60, 10) (40, 15)
bias γ

lsdv -0.363 -0.214 -0.142 -0.079 -0.038 -0.021
ac 0.003 -0.002 -0.002 -0.002 -0.002 -0.002
bc 0.007 0.001 0.001 0.000 -0.001 -0.000
gmm -0.003 -0.010 -0.012 -0.014 -0.017 -0.017

RMSE γ
lsdv 0.369 0.218 0.147 0.083 0.042 0.026
ac 0.075 0.047 0.035 0.024 0.017 0.014
bc 0.091 0.051 0.038 0.025 0.017 0.014
gmm 0.071 0.046 0.037 0.028 0.025 0.023

bias β
lsdv -0.101 -0.031 -0.004 0.015 0.021 0.019
ac 0.001 0.000 0.000 0.000 0.001 0.002
bc 0.002 0.001 0.000 -0.000 0.000 0.001
gmm -0.001 -0.001 -0.000 0.003 0.009 0.015

RMSE β
lsdv 0.124 0.066 0.051 0.047 0.043 0.040
ac 0.081 0.061 0.051 0.044 0.038 0.035
bc 0.083 0.061 0.051 0.044 0.038 0.035
gmm 0.081 0.061 0.051 0.044 0.039 0.038
Note: We assume σ2i ∼ χ2(1), σ2η = σ2ξ = 1
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Table 2: Time-series heteroscedasticity, γ = ρ = 0.8 and β = 1

(N,T ) (300, 2) (200, 3) (150, 4) (100, 6) (60, 10) (40, 15)
bias γ

lsdv -0.353 -0.203 -0.133 -0.072 -0.033 -0.018
ac 0.021 0.005 0.003 0.000 -0.001 -0.001
bc 0.035 0.010 0.006 0.002 0.000 -0.000
gmm -0.002 -0.008 -0.009 -0.010 -0.013 -0.014

RMSE γ
lsdv 0.356 0.206 0.136 0.075 0.036 0.022
ac 0.072 0.043 0.033 0.023 0.016 0.013
bc 0.084 0.047 0.034 0.023 0.016 0.013
gmm 0.072 0.046 0.036 0.026 0.021 0.020

bias β
lsdv -0.098 -0.029 -0.003 0.013 0.018 0.015
ac 0.006 0.002 0.001 -0.001 0.001 0.001
bc 0.010 0.003 0.001 -0.001 0.000 -0.000
gmm -0.000 0.001 0.001 0.001 0.007 0.012

RMSE β
lsdv 0.121 0.066 0.052 0.046 0.042 0.038
ac 0.082 0.061 0.052 0.044 0.038 0.034
bc 0.084 0.061 0.052 0.044 0.038 0.034
gmm 0.081 0.060 0.052 0.044 0.039 0.037
Note: We assume σ2t = 0.95− 0.05T + 0.1t, σ2η = σ2ξ = 1
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