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Abstract 
Accumulating empirical evidence indicates that stock volatilities are driven by more than one latent 
factor. In this paper we provide additional evidence by combining FTSE100 stock-index data and three 
at-the-money option series of various maturities in a Kalman filter-based QML estimation strategy of 
multifactor affine stochastic volatility option pricing models (see Van der Ploeg et al. (2003)). We find 
that the volatility dynamics can satisfactorily be described by three independent volatility factors. In 
line with the literature, the first factor is extremely persistent. The second factor is much quicker 
mean-reverting. Shocks to this factor have a half-life of 2.5 months. The third factor is very fast 
mean-reverting, with shocks that have a half-life of about 10 days. We interpret the volatility factors 
in two ways. One interpretation is that each determines the long-term, middle-long-term and short-
term trends in the stock volatility evolution respectively. We show how each of the factors influences 
the prices of options of different maturities. Our second interpretation concerns their impact on the 
shape and dynamics of the volatility term structure. The long-memory factor appears mainly 
responsible for changes in the general level of the term structure. Slope changes are mainly 
associated with the second (but also the third) factor. Changes in the curvature of the volatility term 
structure are surprisingly closely related to the third factor.  
 
JEL classification: C13, C33, C52, G10, G12, G13. 
 
Keywords: Multifactor affine stochastic volatility models, Derivative pricing, Kalman filter, State space 
models, Combining stock and option data for estimation. 
 
 
 
Volatility is an important concept in finance. It is central in, e.g., asset allocation 
decisions, risk management systems and asset pricing. Accumulating empirical 
evidence indicates that stock volatilities are driven by more than one factor 1. In 
this paper we provide further evidence by combining stock and option data in a 
Kalman filter-based QML estimation approach of multifactor affine stochastic 
volatility (SV) option pricing models (Van der Ploeg et al. (2003)). We analyze the 
major stock index from the UK, the FSTE100-index, and use both returns and 
three at-the-money (ATM) option series jointly for estimation.  
 
So far multifactor volatility models have mainly been estimated using stock return 
data only 2. However, an additional and rich source of information on volatility is 
evidently formed by option prices. Indeed, Tauchen (2004) points out that daily 
returns (even very long time series) are just not sufficiently informative to 
discriminate between different competing models, which appear to fit US stock-
index returns about equally well 3. The present paper is not on discriminating 

                                           
1 See, e.g., Engle and Lee (1999), Gallant et al. (1999), Barndorff-Nielsen and Shephard (2001, 2002), 
Alizadeh et al. (2002), Cont and Fonseca (2002), Pan (2002), Eraker et al. (2003) and Chernov et al. 
(2003). 
2 E.g., Engle and Lee (1999), Gallant et al. (1999) and Chernov et al. (2003). 
3 These are the (continuous-path) 2-factor logarithmic (i.e. exponential-linear) SV model considered in 
Chernov et al. (2003), the 1-factor affine SV model with price jumps considered in Andersen et al. 
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between different classes of models however. We focus on the affine class of SV 
models characterized by an arbitrary number of volatility factors (but without 
jumps). Using a large dataset on the underlying and its ATM options of various 
maturities for estimation, our main aim is to examine how many factors are 
needed to obtain an adequate description of the dynamics present in the joint 
data.  
 
The extension towards multiple volatility factors is well motivated. As Meddahi 
(2002), Chernov et al. (2003) and Tauchen (2004) for example argue, one of the 
reasons for the poor fit of 1-factor diffusion models is that this factor cannot 
simultaneously fit both the fat tails of the return distribution and the volatility 
persistence. Adding jumps or introducing a second volatility factor breaks this 
link. As volatility is so persistent Eraker et al. (2003) argue that 1-factor models 
do not permit fast enough changing volatility, which is unrealistic in times of 
increasing market stress. They advocate for adding jumps to volatility. A second 
volatility factor may alternatively be added. Evidence from option markets that 
points towards multiple factors comes from Cont and Fonseca (2002). These 
authors show that the daily fluctuations in the volatility surface of S&P500 and 
FTSE100-index options can satisfactorily be described by three underlying, 
abstract principal component processes. 
 
Among the various multifactor SV models that have recently been proposed are 
the 2-factor GARCH model of Engle and Lee (1999), the affine and non-affine 
(e.g. logarithmic) SV models considered by Gallant et al. (1999), Alizadeh et al. 
(2002), Chernov et al. (2003), and the Lévy process-driven models of Barndorff-
Nielsen and Shephard (2001, 2002). Most of these papers focus on the stock 
price dynamics and, as such, use stock data for estimation. In a more direct 
option-pricing context Bates (2000) proposes a 2-factor SV model with jumps in 
returns. Bates uses calibration to a cross-section of option prices for estimation. 
Duffie et al. (2000) introduce the very general class of affine jump diffusions for 
option pricing, of which the model considered here is a special case.  
 
Empirical implementations of multifactor models show the following. Engle and 
Lee (1999) decompose the volatility into a permanent and transitory component, 
of which the latter one is mean-reverting towards the former. US and Japanese 
stock market data support this decomposition and reinforce the common finding 
in the literature of persistent volatility. The empirical results in Gallant et al. 
(1999) of a 2-factor non-affine volatility model show an improvement in fit of 
S&P500 returns over a 1-factor model. Alizadeh et al. (2002) use the FX price 
range in Kalman-filter QML estimation of non-affine SV models. Using daily data 
on five major US dollar exchange rates they find strong evidence of two volatility 
factors, one very persistent and the other fast mean reverting. Chernov et al. 
(2003) find that a 2-factor logarithmic SV stock price model with leverage but 
without jumps yields a better fit of daily 1953-1999 DJIA stock-index data, than 
do 1 or 2-factor affine SV models, or SV models with jumps. They find the first 
factor to be very persistent and the second quickly mean-reverting. The 
persistent factor does not seem to feature volatility feedback, whereas the other 
does.  
 
Important additional evidence from option markets against 1-factor SV models 
comes from studies that combine stock and option data in the estimation of 
                                                                                                                         
(2002) and the 1-factor affine SV model with both jumps in prices and volatility as considered in Eraker 
et al. (2003).  
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option pricing models; see e.g., Chernov and Ghysels (2000), Pan (2002), Jones 
(2003) and Van der Ploeg et al. (2003). Besides time-series data on the 
underlying typically one additional short-maturity ATM option series is used for 
estimation. The estimated 1-factor models tend to overprice longer-dated options 
out of sample. Pan (2002) for example, mentions that multiple factors may be 
necessary to improve on the fit of the volatility term structure, a point also 
emphasized by Bates (1996b, 2000).  
  
Our main motivation is precisely that: Examining how many volatility factors are 
needed to obtain an adequate description of the joint dynamics of the underlying 
and the volatility term structure of ATM options. We are additionally interested in 
possible interpretations of the factors; both regarding their role in the evolution of 
the stock volatility, and their impact on option prices. 
 
Our main results are summarized as follows. We find that three volatility-driving 
factors are needed to represent the dynamics present in the data in a satisfactory 
way. The first factor is highly persistent with shocks that are virtually permanent. 
The second factor is much quicker mean-reverting. Shocks to this factor  have a 
half-life of about 2.5 months. The third volatility factor is fastest mean-reverting, 
with shocks that have a half-life of about 10 days and have moreover largest 
variance. The third factor clearly governs large volatility changes in relatively 
short time periods. A first interpretation of the volatility factors is that the first, 
second, and third factor determine the long-term, middle-long-term and short-
term trends in the stock volatility evolution respectively. As such, each factor 
impacts differently on option prices. We show that the first factor influences all 
options similarly, irrespective of maturity. The impact of the second factor 
gradually diminishes the longer the life of the option. The third factor virtually 
only affects short-maturity options. As this factor reverts so rapidly back to its 
mean, shocks tend to average out over a sufficiently long period of time. This 
results in very marginal impact on long-maturity options. Our second 
interpretation concerns the impact of each factor on the shape and dynamics of 
the volatility term structure. We show that the first volatility factor mainly 
governs movements in the general level of the term structure. Changes in the 
slope are largely associated with the second and third factor factors. However, 
the third volatility factor is very closely related to dynamic changes in the 
curvature of the volatility term structure.  
 
The remainder of this paper proceeds as follows. Sections 1 and 2 briefly review 
the multifactor affine SV option pricing model and associated state space 
estimation method as considered in Van der Ploeg et al. (2003). Section 3 
discusses the data. The various shapes and dynamics of the volatility term 
structure of at-the-money options is explored in detail. Section 4 presents 
estimation results for a 1-factor model, section 5 for a 2-factor model. Section 6 
extends to three factors and discusses the interpretations of the factors. Section 
7 summarizes and presents directions for future research. An appendix concludes.  
 
 
1.  Model 
 
Van der Ploeg et al. (2003) consider a member of the class of affine-jump 
diffusions (Duffie et al. (2000)). Here we only provide a brief review of their no-
arbitrage derivative pricing model. Under the market measure, the ex-dividend 
stock price tS  evolves as 
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,t t t t t S tdS S dt S dWµ σ= + .    (P)  (1.1) 

 
The instantaneous stock variance 2

tσ   is modeled as a sum of n  latent, possibly 
correlated, mean-reverting factors 1' ( ,.., )nx x=x , i.e.   
 

2 't tσ = 1 x ,  ,( )t d t t x td dt d= − +x K θ x ΣΛ W . (P)  (1.2) 

 
Uncertainty is resolved by the ( 1)n + -dimensional standard P-Brownian motion 

, ,( , ')'.t S t x tW=W W  Note that the leverage effect is not modeled (see our 
comments below in section 1.1). The vector ( 1)nx >θ 0  represents the mean of 
the factors, ( ) ,dnxn K Σ  are matrices of constants with 1diag[ ,.., ]d nk k= >K 0  
being diagonal, and tΛ  is a diagonal matrix given by 
 

 1 1 ndiag ' ,.., 't t n tα α = + + Λ β x β x ,    (1.3) 

 
in which 1( ,.., )'nα α=α  and 1( ,.., )'i i inβ β=β , 1,..,i n=  are ( 1)nx  vectors of 
positive real-valued constants. The matrix dK  governs the speed of adjustment of 
the factors towards their mean θ . We assume the dynamics of the factors to be 
well defined, which requires ' 0i i tα + ≥β x  for all i  and t  4. The specification 
allows for so-called level-dependent volatility-of-volatility or volatility feedback5: 
If the current volatility is high (low), then the volatility of the volatility is currently 
high (low). Fluctuations in the volatility level thus depend on the state of the 
volatility.  
 
The market price of stock risk is given by , ( ) /S t t t t tq Rγ µ σ= + − . Here tq  and  tR  
denote the deterministically time-varying dividend yield and short interest rate 
respectively. Following the interest rate literature (see e.g. Duffie and Kan 
(1996), de Jong (2000) and Dai and Singleton (2000)), the market price of risk of 
factor ix  -denoted by itγ - is modeled as being proportional to its instantaneous 
standard deviation, 
 

 'it i i i tγ γ α= + β x ,       (1.4) 
    
in which iγ ∈ R . The collective market price of volatility risk may thus be 
represented by the vector , 1( ,.., )'x t t ntγ γ= =γ tΛ γ  where 1( ,.., )'nγ γ=γ . 
Compensation for volatility risk is thus a fixed multiple of the volatility function of 
the risk source. It goes to zero if volatility risk goes to zero -as it should by no-
arbitrage requirements.  
 
From Girsanov’s theorem, changing from the market measure P to the risk-
neutral pricing measure Q is then governed by the transformation 

t t td d dt= +W W γ  where , ,( , ')'t S t x tγ=γ γ  is the vector of prices of risk. Here, 
{ ; 0}t t ≥W  with , ,( , ')'t S t x tW=W W  is an ( 1)n + -dimensional standard Brownian 
motion under Q. Under Q, the stock price follows ,( )t t t t t t S tdS r q S dt S dWσ= − + . 
One advantage of the assumed form for the market price of volatility risk is the 

                                           
4 Parameter restrictions that ensure a unique strong solution to the SDE (2.5) are in Duffie and Kan 
(1996) and Dai and Singleton (2000).  
5 Recent time series evidence that supports this assumption is in e.g. Pan (2002), Jones (2003), 
Chernov et al. (2003) and Van der Ploeg et al. (2003).  
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fact that it delivers the same type of mean-reverting SDE for the factors under Q 
as under P 6. Specifically, the risk-neutral dynamics of the factors are given by  
 

 ,( )t t t x td dt d= − +x K θ x ΣΛ W ,   (Q)  (1.5)  

 
where 'd≡ +K K ΣΓB , 1( )d

−≡ −θ K K θ ΣΓα , 1( ,.., )'nα α≡α , 1,.., n≡   β βB  and 

1diag[ ,.., ]nγ γ≡Γ  and where we assume existence of the inverse of K . 
 
Option price 
The model-implied time- t  value of a European call option C  written on the stock 
S  having strike price K and maturity T t>  is given by 
  

2( , , , , ) |t t t t t tC BS F K Rτ σ =  QE F ,     (1.6) 

 
where exp[( ) ]t t t t tF S R q τ= −  is the time- t  forward price written in the forward 
contract that has the same maturity t T tτ = −  as the option. tR  and tq  represent 
the average (deterministic) interest rate and dividend yield respectively, whereas 

2
tσ  is the average (random) stock variance, all over the remaining life of the 

option. (.)BS  stands for the Black-Scholes pricing function expressed in terms of 
the forward price, i.e.,  
 

 2
1 2( , , , , ) exp( ) ( ) ( )t t t t t t t t tBS F K R r F d K dτ σ τ= − Φ − Φ   ,  (1.7) 

with  

 

21
2

1 2 1

ln
,

t
t t

t t t t t
t t

F
Kd d d

σ τ
σ τ

σ τ

+
= = − .    (1.8)  

 
(Notice that if the forward price is known in practice, an estimate of tq  -which 
may be hard to obtain- is no longer needed.) Although we allow for a multifactor 
SV option pricing model, a similar pricing formula as in Hull and White (1987) 
results. This is due to the negligence of the leverage effect, and because the 
stock price follows a geometric Brownian motion-type SDE under Q. 
 
1.1 Comments on simplifications 
 
In order to dramatically facilitate estimation using four joint time series 
simultaneously, we do some sacrifices in the present paper.  
 
Multifactor OU SV 
Notice that if the factors follow a multifactor Gaussian Ornstein-Uhlenbeck (OU) 
process (i.e., if =α 1  and i i= ∀β 0 ) the stock variance is not guaranteed to stay 
positive at all times 7. Although this is theoretically inconsistent, the OU 
assumption yields large analytical tractability. In our estimations this tractability 

                                           
6 Chernov and Ghysels (2000), Pan (2002) and Jones (2003) make similar assumptions.  
7 In the interest rate literature the Gaussian OU assumption has often been used as a model for the 
(non-negative) short rate, see e.g. Vasicek (1977), Langetieg (1980), the continuous-time limit of the 
Ho-Lee (1986) and de Jong (2000).  Bakshi and Kapadia (2003) also assume an OU process for the 
stock volatility in their proposition 2. Barndorff-Nielsen and Shephard (2001) and Nicolato and Venardos 
(2002) discuss modeling the stock variance as a sum of independent non-Gaussian positive OU 
processes driven by positive-increment Lévy processes. Cont and Fonseca (2002) show that the 
autocorrelation structure of the three principal component processes extracted from daily volatility 
surface fluctuations is well approximated by OU processes.   
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is more than welcome. We will therefore exploit it in the present paper. The OU 
assumption should be considered as a first approximation. Notice that in that 
case there is no volatility feedback. Specifically, in case of multifactor OU SV the 
factors follow ,( )t d t x td dt d= − +x K θ x Σ W  under P and ,( )t t x td dt d= − +x K θ x Σ W  
under  Q. The risk-neutral parameters are then given by d=K K  and 

1
d
−= −θ θ K ΣΓ1 . The market price of volatility risk reduces to the constant vector 

γ . The factors and instantaneous stock variance are Gaussian 8,  
 
 ~ ; 't   x θ J ΣΣN ,  ( )2 ~ ' ; ' 'tσ   1 θ 1 J ΣΣ 1N , (1.9)  
 
where  is the Hadamard product, i.e., element-by-element multiplication. The 
correlation matrix of the factors is given by  
 
 

1 /2 1 /2
corr ' ' 't n n

− −
=              x I J ΣΣ J ΣΣ I J ΣΣP , (1.10) 

 
in which ( )nxn J  with [ ] 1 /( )ij i jk k= +J . Notice further that if Σ  is diagonal the 
volatility is driven by independent factors.  
 
No leverage 
As a second approximation we assume the Brownian motions SW  and xW  to be 
independent. Stock price movements thus occur independently from volatility 
movements in the present model. Modeling the leverage effect (Black (1976)) 
complicates matters dramatically, mainly with regard to our estimation method 9. 
Jones (2003) also assumes a number of approximations in his estimation strategy 
of combining stock and option data. To validate one of these approximations, 
Jones uses a Hull-White (1987)-type argument based on independence between 
the stock and volatility processes, though the models and resulting option prices 
he considers assume dependence. Given their specific option pricing model, the 
(mathematical) foundations and justifications for the estimation strategy in Van 
der Ploeg et al. (2003) are more solid. Jones (2003) does however argue that the 
leverage effect is an additional reason to invalidate his approximations, but 
mentions that the practical importance of the leverage effect is unclear for ATM 
options. Since we only consider such options in our analysis, ignoring the 
leverage effect may possibly lead to only mild biases, although further research 
should clarify this. We are mainly focused on the dynamics of volatility.  
 
 
2. Estimation method 
 
Van der Ploeg et al. (2003) develop a Kalman filter QML-based approach 10 to the 
estimation of the multifactor model. The benefits of Kalman filter QML are its 
relative simplicity and consistency of estimates; a drawback is inefficiency of the 
estimates. The advantages of their approach include the following. First, the state 
space framework is naturally suited for incorporation of the hidden volatility 
factors. Moreover, the joint simultaneous inclusion of time series on the 

                                           
8 E.g., Van der Ploeg (2003) examines the implied statistical properties of the general multifactor SV 
model in detail.  
9 Nevertheless, we aim at covering it in future research. Notice that although we are concerned with 
equity markets here, the model and estimation method seem particularly useful in foreign-exchange 
modeling contexts, in which the assumption of no leverage seems more justified.  
10 Kalman filter QML-based approaches for estimating SV models have been considered by e.g. Harvey 
et al. (1994) and recently by Alizadeh et al. (2002). Other Kalman filter-based approaches are 
considered in e.g. Kim et al. (1998) and Sandmann and Koopman (1998). Good textbook treatments on 
state space models include Durbin and Koopman (2001), Hamilton (1994) and Harvey (1989). 
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underlying and several options is easily dealt with due to the “panel-data” 
character of state space models. Third, the method circumvents simulation of 
option prices during estimation. Convergence is fairly rapidly achieved. 
Furthermore, the method naturally allows for measurement error in all series, 
which may be caused by e.g. market microstructure effects or differences in 
liquidity. The smoothed evolution of the factors and volatility is a direct by-
product of the estimation output. (E.g., in contrast, the efficient method of 
moments (EMM, Gallant and Tauchen (1996)) as considered in e.g. Chernov and 
Ghysels (2000) requires reprojection besides estimation, to filter the volatilities.) 
Finally, in the literature on the term structure of interest rates Kalman filter QML 
estimation methods have proven to be rather robust (Lund (1997), de Jong 
(2000) and Duffee and Stanton (2001)).  
 
Extracting information from stock prices 
The empirical data discussed in section 3 consists of four time series: a stock 
price series, a short-maturity (SM), a medium-maturity (MM) and a long-maturity 
(LM) ATM call option series; see section 3. The timing of the data  points is 
denoted by , 2 ,..,t t t T t= ∆ ∆ ∆  with 1 /260t∆ = ; i.e. we assume a year to consist 
of 260 trading days.  
 
Based on an Euler discretization 11 of the stock price SDE (2.1), Van der Ploeg et 
al. extract information from squared stock returns via  
 

 2 *1
( ) ' ' ;ˆt t t t t tr t

t
µ ω−∆ −∆− ∆ = + +

∆
1 θ 1 x    2~ (0, )t ωω σ  (1.11) 

 
with ( ) /t t t t t tr S S S−∆ −∆= −  the daily stock return, and *

t t= −x x θ  denoting the 
factors in deviation from their mean.  
 
Extracting information from option prices 
Extracting information from the ATM option series is via Black-Scholes implied 
variances: 
 

     2 *
,

( )'1
( ) ( )' it

implied it it it t it
it it

A
τ

σ τ τ ε
τ τ

= + + +  
B

B θ x ;  2~ (0, )it iεε σ    (1.12) 

 
for ,..,t t T t= ∆ ∆  and , ,i SM MM LM= . We allow for possible non-zero 
contemporaneous correlation between the error series ,{ }SM tε , ,{ }MM tε  and 

,{ }LM tε .  
 
The functions (1 1) (.)x A  and ( 1) (.)nx B  are deterministic functions of the time to 
maturity of the option. They satisfy the following system of Ricatti ordinary 
differential equations 
 

 
21

2
1

( )
' ' ( ) ' ( )

n

jj
j

dA
d
τ τ τ α
τ =

= +   ∑θ K B Σ B      (1.13) 

 
21

2
1

( )
' ( ) ' ( )

n

jj
j

d
d
τ τ τ
τ =

= − + +  ∑B
K B Σ B β 1 , 

 

                                           
11 Jones (2003) also uses an Euler approximation for information extraction, though in a Bayesian 
framework.  
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with boundary conditions (0) 0A = and (0) =B 0 . Notice that (.)A  and (.)B  
depend on the risk-neutral parameters K  and θ . The multifactor OU SV 
assumption yields closed-form expressions for these functions 12. Rewritten in 
terms of the P-parameters, they become 
  

 ( )1 1
2( ) ' ( ) ' ( ) 'n dA τ τ τ τ−= − − +      1 I D θ K ΣΓ1 1 N ΣΣ 1   (1.14) 

 ( ) ( )τ τ=B D 1 ,  

 
where 1( ) diag[ ( ),.., ( )]nd dτ τ τ=D  with ( ) [1 exp( )] / ; 1,..,j j jd k k j nτ τ= − − = , and  
matrix ( ) ( )nxn τN  has ij − th element equal to 
 

 
1 exp[ ( ) ]1

( ) ( ) ( ) i j
ij i j

i j i j

k k
N d d

k k k k

τ
τ τ τ τ

 − − +
= − − + 

+  
.   (1.15)  

 
Using these results, the options measurement equation can be rewritten as 
 

2 1
,

( ) 1
' ' ' ( ) '

2
it

implied it n d it
it it

τ
σ τ

τ τ
− 

= + − +     
 

D
1 θ 1 I K ΣΓ1 1 N ΣΣ 1  (1.16) 

*( )
' it

t it
it

τ
ε

τ
+ +

D
1 x ;  2~ (0, )it iεε σ .   

 
Without going too much into detail, the method for extracting information from 
call prices is based on the result that 2[exp( )| ] exp[ ( ) ( )' ]t t tAτ σ τ τ= + B xQE F  (see 
Duffie and Kan (1996) and Duffie et al. (2000)). Reconsider the call price formula 
(1.6). Van der Ploeg et al. first linearize the BS pricing function around the 
exponent of the integrated variance over the options life. They next take the Q-
expectation of this linearization such that they end up with a partly analytical 
expression for the call price. Some further manipulations then result in an 
equation that is linear in the latent factors. The point of linearization is taken 
equal to 2

,exp( )implied tτ σ  where 2
impliedσ  is the model-implied BS implied variance. 

They finally neglect the higher-order terms, introduce noise in the form of an 
additive error term, and then arrive at equation (1.12).  
 
The introduction of noise is well motivated. First, it serves as “compensation” for 
the negligence of higher-order terms. From an empirical-implementation point of 
view more important however, is that it recognizes that a model is never a 
complete description of reality. (See also Renault (1997) for a discussion on 
option pricing errors.) In contrast to Pan (2002) but in accordance with Jones 
(2003), we allow each option price on each day to be measured with error.  
 
Evolution of the factors in discrete time 
The exact discrete-time evolution of the hidden OU factors in-deviation-from-
their-mean is 
 
      * *exp[ ] ,t t d t t tt+∆ +∆= − ∆ +x K x u    ~ [ ; ( ) ']t t t+∆ ∆u 0 G ΣΣN   (1.17)  
 
where 1exp[ ] diag(exp[- ],..,exp[ ]]d nt k t k t− ∆ = ∆ − ∆K  and ( ) ( )nxn t∆G  with 
[ ( )] (1 exp[ ( ) ]) /( )ij i j i jt k k t k k∆ = − − + ∆ +G .  
 

                                           
12 See Van der Ploeg (2003).  
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The system matrices of the linear state space model are given in the appendix to 
this chapter. The model is estimated by Kalman filter QML.   
 
Parameter identification 
Not all parameters of the n -factor OU SV model can be identified by our state 
space estimation method. Van der Ploeg (2004b) considers the problem in detail. 
Here we summarize the results. The parameters 1,.., nθ θ  cannot separately be 
identified; only their sum. We therefore choose to leave 1θ  unrestricted and 
restrict  2 .. 0nθ θ= = =  prior to estimation. The parameters ; , 1,..,ij i j nσ =  which 
appear in matrix Σ  cannot all be identified either. This directly affects the 
identification of the remaining parameters. However, if Σ  is diagonal (i.e. 
independent factors), or if Σ  is either lower or upper diagonal (which means 
correlated factors), then all parameters can be identified. We consider both cases 
in the estimations below.  
 
2.1 Summary of Monte-Carlo results 
 
Van der Ploeg (2004a) presents Monte-Carlo simulation results for the 1-factor 
OU SV special case of the model. He considers information extraction from 
realized volatilities (RV) as well, though the empirical results presented below do 
not take RV (yet) into account. Van der Ploeg estimates the state space model 
using five different types of data: only squared return data, only RV data, only 
(short-maturity near-the-money) option data, the combination squared return-
option data, and the combination RV-option data. The realized volatilities were 
computed using 48 intraday returns (i.e. sampled every 10 minutes during a 
trading day.) 
 
An examination of the performance of the state space method in its ability to 
recover the true parameters and volatility paths underlying the simulated data 
reveals the following. The use of only squared return data for estimation performs 
worst: It leads to the biggest bias and MSEs of the estimates, especially with 
regard to the mean-reversion and volatility-of-volatility parameters. Moreover, 
the smoothed volatility series deviates most from the true underlying series. The 
results confirm that squared returns are generally considered as noisy estimators 
of the stock variance. A substantial improvement in bias, MSE and volatility 
evaluation criteria is obtained when using RV data instead. In turn, the use of 
option data alone outperforms RV data in general on all criteria: both the bias and 
MSE of the estimates are small, and the volatility evaluation criteria indicate that 
the smoothed and true volatility series are close. The results further indicate that 
combining squared return and option data performs in turn better than only 
option data. Not surprisingly, the use of both RV and option data results again in 
somewhat more favorable estimation results: The bias is small for all parameter 
estimates and it performs best on the MSE criterion. Moreover, the smoothed 
volatility series is particularly close to the underlying volatility series. This 
combination of data contains the most precise information. Thus, if RV data is 
available for estimation, its use in combination with option data is preferable.  
 
The results also indicate that the information in option data dominates the 
estimation results when using either both squared return-option data, or RV-
option data for estimation. Option data is clearly very informative.  
 
The Monte-Carlo results finally confirm that market prices of risk are difficult to 
estimate in practice; see e.g. Pan (2002) and Van der Ploeg et al. (2003). 
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although the bias in the estimates of the market price of volatility risk is small, 
the precision is very poor. This is irrespective of the data used for estimation.  
 
 
3.  Explorative data analysis 
 
We examine daily data on the most important stock index of the United Kingdom, 
the FTSE100 index, and the European option contract traded on that index. The 
original dataset covers 9 years of data for the period 4 Jan 1993 till 28 Dec 2001.  
As motivated below however, we only use data for the period 6 Oct 1997 – 28 
Dec 2001 for estimation. The input to the state space model consists of daily 
annualized squared returns (in deviation from their conditional mean) and three 
ATM Black-Scholes implied variance series; a SM, MM and LM series. Table 3.1 
presents summary statistics.  
 
 
Table 3.1: Summary statistics for the period Oct 1997 – Dec 2001 

 Returns Sq.returns SM series: MM series: LM series: 
   BS impl.vol. BS impl.vol. BS impl.vol. 
Mean 0.0000     0.0413 0.2325 0.2393 0.2389 
Median 0.0003     0.0151 0.2184 0.2296 0.2322 
Std.deviation 0.0126     0.0676 0.0573 0.0468 0.0435 
Skewness -0.14  4.23 1.33 1.36 1.28 
Kurtosis  3.67 37.73 4.94 5.18 4.68 

   Moneyness Moneyness Moneyness 
Mean   1.000 1.000 1.000 
Std.deviation   0.002 0.005 0.005 
   Maturity Maturity Maturity 
Mean   0.116 0.500 0.872 
Std.deviation   0.025 0.074 0.072 
Minimum   0.077 0.377 0.750   
Maximum   0.169 0.638 1.015 
The table reports summary statistics for the daily (prewhitened) FTSE100-index returns, the 
annualized squared daily (prewhitened) FTSE100-index returns, and the SM, MM, and LM option series 
for the period 6 Oct 1997 – 28 Dec 2001. Moneyness is defined here as the ratio of futures price and 
strike price. The maturity is reported in years.  
 
 
3.1  Details on data collection and construction 
 
Let us detail the data collection and construction. The source of the FTSE100-
index data is DataStream. Trading at the London Stock Exchange ends at 4.30 
pm. DataStream records the daily closing prices of the index, which we use to 
compute the daily index-return series tr . According to our model the FTSE100 
index evolves according to the SDE ,t t t t t S tdS S dt S dWµ σ= + , which implies that 
non-overlapping returns are virtually uncorrelated. We did not explicitly specify 
the drift process tµ  in our theoretical discussion. Our estimation method 
nevertheless requires a prior estimate of tµ  at each point in time; recall (1.11). 
We obtain such an estimate as follows. From the Euler discretization of the stock 
price SDE it holds by approximation that 2| ~ ( , )t t t t tr t tµ σ+∆ ∆ ∆F N . Hence, t tµ ∆  
basically represents the conditional mean daily index return. Estimating an AR(2) 
model for these returns results in residuals that are not significantly 
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autocorrelated 13. We estimate t tµ ∆  by the fitted returns from this AR(2) 
regression 14. The (uncorrelated) residuals of this regression are known as 
prewhitened or prefiltered returns 15. The squared prewhitened returns thus form 
the input to (1.11). 
 
The source of the option data is the London International Financial Futures and 
Options Exchange (LIFFE) 16. The full dataset consists of daily closing prices on a 
wide range of different call and put options for a total of 902,445 observations. 
Specifically, for each observation the dataset contains the date, call/put flag, 
strike price, option price, expiry month, open interest, volume, and the daily 
settlement price of the FTSE100-index futures contract that has the same 
maturity as the option contract. The daily settlement time of the futures contract 
is at 4.30pm; option trading ends at 4.30pm as well. As we select ATM options 
only as these are most liquid, we expect possible non-synchronicity between daily 
settlement times to be least a problem. For simplicity we assume non-
synchronicity biases between index-futures prices, the FTSE100 index, and the 
option prices to be negligible. (Recall however that the estimation method 
implicitly allows for such possible measurement error.) 
 
With regard to the available contracts, on any given trading day index options are 
traded with expiry months March, June, September, December, and additional 
months such that the 3 nearest calendar months are always available for trading. 
The options expire on the third Friday of the expiration month. On each day there 
are always 6 different-maturity contracts traded, so that the maximum maturity 
of all contracts on any given day ranges from 9 months to 12 months. For each of 
the available maturities a wide range of options trades that differ in strike prices.  
 
Extracting option series from the database 
We extract three close-to ATM call option series from the database of various 
maturities: a SM, a MM and a LM series. As the vega of an ATM option is maximal 
and as it is typically most liquid, we expect it to contain the most valuable 
volatility information. The maturity of the SM option series ranges from 20 to 44 
trading days with an average of 30 trading days, or 1.4 months. The maturity of 
the MM series ranges from 4.5 to 7.7 months and averages at 6 months. The 
maturity of the LM option series ranges from 9 to 12 months with an average of 
10.5 months. We refer to table 2.1 for details.  
 
Let us explain in more detail how we extracted the three option series from the 
database. Consider e.g. the SM series. We first separated the calls from the puts. 
For each day we next selected the calls with a maturity of at least -but at the 
                                           
13 The fact that we find the index returns to be significantly autocorrelated is generally believed to be 
caused by non-synchronous trading effects associated with the individual stocks that constitute together 
the FTSE100 index; see e.g. Campbell, Lo and MacKinlay (1997). 
14 Doing so, our estimation procedure thus essentially boils down to two-step estimation and volatility 
extraction of the parameters of the model 2

0 1 2| ~ ( , )t t t t t t tr r r tφ φ φ σ+∆ −∆+ + ∆F N  in which tσ  is 
the annualized stochastic volatility. In the first step we estimate the conditional mean parameters 

0 1 2, ,φ φ φ ; in the second step we estimate the parameters governing the stochastic volatility and 
moreover extract the latent volatility series. Notice the clear analogy with an AR(2)-GARCH(1,1) model 
for daily stock returns. But there is one  important difference: In our model we have true stochastic 
volatility, whereas in the GARCH model today’s volatility is a deterministic function of yesterday’s 
information set. 
15 E.g. Andersen et al. (2002) also prefilter the data prior to estimation to get rid of the autocorrelation.  
16 We thank Joost Driessen from the Finance Department of the University of Amsterdam for providing 
us the option data. For a complete description of the option data see http://www.liffe.com.  
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same time closest to- 20 trading days. Given these, we finally selected that call 
option each day that is closest ATM by minimizing | ln( / )|ti iF K , where iK  is the 
strike price of call i  and  tiF  is the current futures price of the index-futures 
contract that has the same maturity as call i . Following Hull (2003) we assume 
forward and futures prices to be equal. This procedure eventually left us with the 
SM-ATM call option series, which counts 2258 daily call observations. Its maturity 
range turned out to be 20 – 44 trading days. We extracted the MM-ATM and LM-
ATM option series in similar ways; both contain 2258 observations as well. We 
carefully ensured that the characteristic series (i.e. price, strike, maturity, 
interest rate (see below), FTSE100 index, index futures price etc.) associated 
with each of the option series contain as many observations, and that all 
observation dates exactly “match”; i.e. are fully synchronous 17.   
 
To compute the three associated BS implied volatility series we use equations 
(1.7) and (1.8). This requires for each option on each day an estimate of its 
associated average risk-free interest rate tR  over its remaining life. We obtain 
such an estimate by performing linear interpolation between the two nearest (in 
terms of maturity) continuously compounded LIBOR rates on that day. The daily 
LIBOR rates for terms of 1 month, 2 months up to 12 months are taken from 
DataStream. For our sample period they fluctuate in between 3.8% and 7.7%.  
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Figure 3.1:  Annualized squared daily (prewhitened) FTSE100 returns and the BS implied variances 
associated with the SM call option series.  
 
 
3.2 Data exploration and the volatility term structure 
 
Figure 3.1 displays the annualized squared daily (prewhitened) FTSE100-index 
returns 21 ( )ˆt t tt r tµ+∆∆ − ∆  and the BS implied variances 2

,implied tσ  of the SM option 
series in one graph. Notice the clear increase in both the level of the volatility and 

                                           
17 Data on 20 trading days are missing in the original database. Furthermore, the data for 1-10-1997 is 
incomplete and the data for 28-5-1998 contains obvious errors, such that we have discarded these 
dates. This leaves us with three option series of each 2258 observations, whose observation dates 
exactly match.  
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the volatility-of-volatility after notably the third quarter of 1997. The effects of 
both the Asian crisis and the near-collapse of hedgefund Long-Term Capital 
Management are apparent (fall 1997). Moreover, the impact of the crisis in the 
Soviet Union, the continuing Asian crisis, the uncertainty about the consequences 
of the European Monetary Union and the euro, and the uncertainty about 
president Clinton’s retreatment due to the Monica Lewinsky affair –which all 
started in the fall of 1998- is clearly visible. The influence of September 11, 2001 
and the subsequent war on terrorism is also very obvious 18. These events have 
led to increased fluctuations in financial markets in the last years.   
 
Figure 3.2 plots the SM, MM, and LM BS implied volatility series and confirms the 
augmented volatility and volatility-of-volatility from the fourth quarter of 1997 
onwards. The series look very different in the first and second part of the sample. 
To a priori avoid model misspecification as much as possible, we opt to use only 
data for the period 6 Oct 1997 – 28 Dec 2001 in all our estimations, for a total of 
1058 daily observations. For example, for the period till, respectively after, Oct 
1997 the estimate of the unconditional stock volatility based on the average of 
the annualized squared returns equals 11.4%, respectively 20.3%. If we assume 
the volatility to be driven by one-factor SV which has an unconditional volatility of 
θ , this would imply that θ  has more than tripled in the second part of the 

sample. Using all data would lead to obvious biases in that case 19.  
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Figure 3.2: The Black-Scholes implied volatility series associated with the short-maturity, medium-
maturity and long-maturity call option series.  

 
 

                                           
18 The peak of 0.86 in the annualized squared FTSE100 return at September 11, 2001 has been cut off 
at 0.6 to enhance the visual quality of the graph.  
19 Stated differently, although using the longer time series would probably (spuriously) increase the 
precision of the estimates, this is deceptive and hence not to be advocated. As it seems that the DGP 
has fundamentally changed from 1993:3 onwards (due to global developments), this increased 
“precision” is likely due to the false assumption (and hence misspecification) of the DGP being the same 
in both subsamples.  
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Notice from table 3.1 and figure 3.2 that the SM implied volatility series fluctuates 
most, whereas the LM series fluctuates least. As BS implied volatilities are often 
considered as forward-looking in practice (see e.g. Hull (2003)), and assuming 
there is mean reversion in the volatility, this makes sense.  
 
Volatility term structure 
In real-world financial markets one typically finds that BS implied volatilities of 
options written on the same underlying differ across strike prices and times to 
maturity (see e.g., Hull (2003)). If the Black-Scholes model were true the implied 
volatility surface should be flat at all times. Instead, for a given maturity one 
typically observes that the implied volatilities exhibit a smile, smirk or skewed 
pattern; i.e., the volatility smile or smirk. For given moneyness one may observe 
a variety of shapes of the so-called volatility term structure, which plots the BS 
implied volatilities against term to maturity of the options. The volatility surface 
serves an important function in practice: traders use it as a sophisticated 
interpolation tool for pricing vanilla options 20 consistently with the market. 
Moreover, option prices are generally quoted in terms of BS implied volatilities.  
 
In the present paper we focus on the volatility term structure of ATM options. 
Given the three option series, the (end-of-day) volatility term structure can have 
one of four possible shapes on each of the 1058 days in our sample. It may either 
be upward sloping, exhibit a hump shape, be downward sloping, or display an 
inverted hump shape. Table 3.2 reports the shape frequencies (in percents), and 
assigns each possible shape a number for later reference. Notice that the ATMF 
volatility term structure is upward sloping on almost 50% of the days. The 
inverted hump shape occurs rather seldom.   
 
 
 
Table 3.2: Shape frequencies volatility term structure ATMF options (Oct 1997 – Dec 2001) 

Shape of vol. 
term structure 

1: upward 
sloping 

2: hump 
shape 

3: downward 
sloping 

4: inverted 
hump shape 

Frequency 48.7% 27.5% 18.3% 5.5% 
 
 
 
To explore the daily dynamics in the ATMF volatility term structure, figure 3.3 
provides two matrices. The first matrix reports the number of volatility-term-
structure shape transitions as a percent of the total number (i.e. 1057) of 
transitions. For example, of all transitions 9.4% entailed a change in the shape of 
the volatility term structure from upward sloping to hump shape from one day to 
the next. The second matrix reports the empirical shape-transition “probabilities”; 
each row adds to 100%. Given that the volatility term structure has a particular 
shape today, it is most likely that it has equal shape tomorrow.  
 
 
 
 

                                           
20 That is, European call and put options. Exotic derivatives cannot be priced with the surface unless the 
exotic can be decomposed into a particular combination of vanilla options. Note that European call and 
put options written on the same underlying with the same strike and maturity have identical implied 
volatility (this follows from the put-call parity (see Hull (2003)), such that the surface can be used to 
price both call and put options.   
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Shape transition frequencies (in %)                Shape transition ‘probabilities’ (in %) 
     t+1 
t      

1 2 3 4 
 

 
 

      t+1 
t 

1 2 3 4 

1 37.2   9.4  0.9 1.2  1 76.4 19.3   1.8  2.5 
2   9.9 14.9  1.7 1.0  2 36.0 54.0   6.2  3.8 
3   0.4   2.1 14.4 1.5  3   2.1 11.3 78.4   8.2 
4   1.2   1.2   1.3 1.7  4 22.4 22.4 24.1 31.1 

Figure 3.3: Day-to-day dynamics in the shape of the ATMF volatility term structure (Oct 97 – Dec 01). 
Left: transition frequencies in % of total number of transitions. Right: empirical transition ‘probability’ 
matrix (in %). Shape codes are reported in table 3.2.     

 
 
The frequency of parallel shifts in the volatility term structure is of interest as 
well. We define a parallel shift to be one in which both the SM, MM and LM BS 
implied volatilities either jointly go up from one day to the next, or go down (but 
not necessarily by the same amount). Table 3.3 shows that parallel shifts occur 
66% of the time, whereas 34% of the shifts are non-parallel. It is clear that the 
volatility term structure evolves in complex manners. A realistic model must 
obviously be capable of reproducing these complex observed dynamics. Evidently, 
the question is if one SV factor is sufficient in this respect.   
 
 
Table 3.3: Daily shifts in the ATM volatility term structure (Oct 97 – Dec 01) 
 Upward  Downward Total 
Parallel shifts 31.9% 34.5% 66.4% 
Non-parallel shifts   33.6%  
  Total: 100% 
 
 
 
4.  Estimation results 1-factor OU 
 
The first set of estimation results we present is for the 1-factor OU case, for the 
period 6 Oct 1997 – 28 Dec 2001. In this case, the instantaneous stock variance 

2
t txσ =  evolves as ,( )t t x tdx k x dt dWθ σ= − +  under P,  and under Q  as 

,( )t t x tdx k x dt dWθ σ= − + . The risk-neutral parameters are given by ,k k=  
/ kθ θ σγ= − .The unconditional stock return volatility equals θ . The invariant 

distribution of the stock variance is given by 2 2~ ( , /2 )t kσ θ σN , such that the 
volatility-of-the-variance equals 2( /2 )kσ . The parameters k  and k  govern the 
volatility speed-of-adjustment towards its long-run mean under respectively P 
and Q. The persistence in the daily stock variance (see (1.17)) is given by 
exp[ ]k t− ∆  with 1 /260t∆ = . The half-life (measured in days) of a shock occurring 
in the stock variance equals ln2 /( )k t∆ . The market price of volatility risk is given 
by γ .  
 
As a benchmark, the first column of table 4.1 reports estimation results when 
only the squared returns are used for estimation. A Gaussian GARCH(1,1) model 
for the prewhitened returns is also estimated. As both our model and the GARCH 
model do not allow for the leverage effect, this permits a consistent comparison. 
The GARCH conditional stock variance follows 2 2 2

0 1 2( )t t t tr tσ ϕ ϕ µ ϕ σ+∆ = + − ∆ + . We 
find  

 
2 2 2

(4.78 06) (0.0281) (0.0496)

9.92 06 0.0861 ( ) 0.851ˆt t t t

e

e r tσ µ σ+∆

−

= − + − ∆ +
  (4.1) 
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with robust standard errors in parentheses. For this model the persistence in the 
daily variance is measured by 1 2ϕ ϕ+ . The half-life of a shock in the variance is 
given by 1 2ln2 / ln( )ϕ ϕ− + , whereas the per-annum unconditional stock-return 
volatility may be approximated by 0 1 2/[(1 ) ]tϕ ϕ ϕ− − ∆ . To obtain a rough 
estimate of the per annum volatility-of–the-variance, we compute the standard 
deviation of the constructed daily GARCH variance series after first having 
multiplied this series by 260. The second column of table 4.1. reports these 
quantities for the estimated GARCH model.  
 
The third column shows the results when the combination return - SM option data 
is used for estimation, as was similarly done in e.g. Chernov and Ghysels (2000), 
Pan (2002), and Jones (2003). The fourth column presents the results when all 
four series are jointly used for estimation. These latter results ought to be taken 
with much care since the model appears heavily misspecified in this case; see 
below.  
 
 
Table 4.1: Estimation results for Oct 1997 – Dec 2001 
 Return 

data 
GARCH Return & 

SM  
Return & 
SM+MM 

+LM 

  

θ  0.0409 
(0.0052) 

 0.0450 
(0.0317) 

0.0475 
(0.0408) 

  

k  16.3 
(6.93) 

 1.85 
(1.78) 

0.321 
(0.0714) 

  

σ  0.164 
(0.049) 

 0.151 
(0.022) 

0.0639 
(0.0063) 

  

γ     -  -0.967 
(0.527) 

0.00389 
(0.206) 

  

ωσ  0.0612 
(0.0056) 

 0.0657 
(0.0062) 

0.0704 
(0.0057) 

  

,SMεσ   -  0.0038 
(0.0018) 

0.0193 
(0.00124) 

, ,corr( , )SM t MM tε ε
 

0.950 
(0.0122) 

,MMεσ   -  - 0.00728 
(0.00089) 

, ,corr( , )SM t LM tε ε
 

0.895 
(0.0482) 

,LMεσ   -  - 0.00394 
(0.00071) 

, ,corr( , )MM t LM tε ε
 

0.781 
(0.0770) 

Vol. returns 20.2% 20.3% 21.2% 21.8%   
Vol-of-var. 0.0287 0.0175 0.0785 0.0799   
Persistence 0.939 0.937 0.993 0.9988   
Half-life 11 11 98 562   
Std.dev. tu  0.0099  0.0093 0.0040   
Loglikelih. 1394 3165 4761 13,135   
The table reports parameter estimates (boldface) with robust White (1982) QML standard errors (in 
parentheses), resulting from estimating the state space model using three types of data: only return 
data (first column), both return and SM option data (third column), and both return, SM, MM and LM 
option data (fourth column. The table also reports the unconditional volatility of returns θ , the 
volatility-of-the-variance 2 /2kσ , the persistence in the daily stock variance exp[ ]k t− ∆ , the half-
life (in days) of a shock in the stock variance, ln2 / k t∆ , the MLE of the standard deviation of tu , 
and the maximized loglikelihood value. The second column shows some comparable quantities for the 
estimated Gaussian GARCH(1,1) model (4.1).  
 
 
Let us therefore focus on the first three columns of table 4.1. The return volatility 
is estimated similar as the estimate of 20.3% computed as the root sample 
average of the squared returns. The persistence is estimated smallest when the 
model is estimated using return data only. When both return and option data are 
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used, the estimated persistence dramatically increases. (A value of 1 would imply 
that shocks have a permanent effect.) The market price of volatility risk is 
estimated at –0.967 and hence negative, which agrees with, e.g., Coval and 
Shumway (2001), Buraschi and Jackwerth (2001), Pan (2002), Jones (2003), 
Bakshi and Kapadia (2003), Driessen and Maenhout (2003) and Carr and Wu 
(2004)  21.    
 
Section 4.1 first considers diagnostic checking of the model estimated using 
return – SM data, as this is the typical dataset other researchers (e.g., Chernov 
and Ghysels (2000) and Jones (2003)) have used when combining stock and 
option data for estimating 1-factor SV option pricing models. Although in that 
case the dynamic misspecification may perhaps seem rather modest at first sight, 
we next confirm that the 1-factor model severely overprices the longer-dated 
options out of sample, as also reported in Chernov and Ghysels (2000) and Pan 
(2002). This is a first possible indication of the presence of multiple volatility-
driving factors. Section 4.2 next considers diagnostic checking when all four time 
series are jointly used for estimation. The tests clearly reveal a lack of dynamics 
in the 1-factor model.  
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Figure 4.1: Standardized innovations (1-factor OU estimated using return-SM option data). 

 
 
4.1 Specification tests of the 1-factor OU model estimated with 

return and SM option data 
 
Given the estimation output, the standardized prediction errors or innovations 22 
of the state space model can be computed. If the model is well specified these 

                                           
21 Although beyond the scope of the current paper, Van der Ploeg (2004b) shows that this estimate 
implies an expected return of –3.3% per week on SM-ATM FTSE100-index straddles. This is in close 
correspondence with the weekly empirical (i.e. “raw”) S&P500 SM-ATM straddle return of –3% reported 
in Coval and Shumway (2001), and the monthly empirical SM-ATM FTSE100-index straddle return of –
13.1% reported in Driessen and Maenhout (2003).  
22 See, e.g., Harvey (1989) and Durbin and Koopman (2001) for details on specification testing of state 
space models.  
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innovations ought to be white noise with a variance equal to 1. Figure 4.1 
displays the innovations associated with the squared-return equation (1.11) in 
the upper graph, and for the BS implied-variance equation (1.12) in the lower 
graph. Their standard deviations equal 0.993 and 1.000 respectively. Both series 
are clearly heteroskedastic.  
 
As evidenced by table 4.2, both innovation series are significantly autocorrelated 
23, though the autocorrelations do not seem particularly large. This is evidence of 
misspecification and may be interpreted as a  preliminary indication of neglected 
dynamics.   
 
 
Table 4.2: Autocorrelations in the standardized innovations 
 
Statistics for the standardized innovations Statistics for the standardized innovations  
in the squared returns:    in the SM BS implied variances: 

 
Order AC Q-Stat Prob    Order AC Q-Stat Prob  

1 0.080 6.835 0.009    1 0.039 1.582 0.208  
2 0.056 10.15 0.006    2 -0.151 25.89 0.000  
3 0.133 28.88 0.000    3 -0.107 38.09 0.000  
4 0.114 42.61 0.000    4 0.043 40.10 0.000  
5 0.050 45.24 0.000    5 0.005 40.13 0.000  

 
The table reports the autocorrelation coefficients (AC) up to order 5 and the Ljung-Box Q-statistics (Q-
stat) for testing the null of no autocorrelation up to a certain order with associated p-values (Prob).  
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Figure 4.2: Smoothed { }tω -series (upper plot) and smoothed ,{ }SM tε -series (lower plot). 

 
 
The so-called smoothed disturbances or auxiliary residuals of the state space 
model yield additional information with respect to model misspecification. They 

                                           
23 It should be noted that the Ljung-Box Q-test assumes homoskedasticity of the underlying series, 
which seems obviously violated in this case.  
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represent the best estimates of the disturbances given the data 24. Figure 4.2 
shows those belonging to the measurement equation. There is clear evidence of 
conditional heteroskedasticity. The asymmetric pattern in the smoothed { }tω -
series is a consequence of the course of the squared return series over time; 
recall figure 3.1. When an ARMA(1,1) model is fitted to the squared returns a 
similar residual picture results.  
 
Figure 4.3 displays the smoothed state *

t tx x θ= −  and the smoothed state 
disturbance tu  of the state space model. When the level of the state is high resp. 
low, the state disturbance is generally large resp. small (in absolute value). As 
the state governs the stock volatility this is clear evidence of volatility-feedback 
(see also, e.g., Jones (2003) and Chernov et al. (2003). We already mentioned 
that the 1-factor OU SV assumption does not allow for this effect, and is thus 
additionally misspecified in this sense.  
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Figure 4.3: Smoothed state *

tx  (upper graph) and smoothed state disturbance tu . 
 
 
Fit of the volatility term structure 
Let us next investigate to what extent the 1-factor model is capable of fitting the 
longer end of the volatility term structure out of sample; i.e. the MM and LM 
option series. Given the one-to-one correspondence between BS implied 
volatilities and prices, this fit is implicitly linked to option pricing errors. However, 
as traders typically quote prices in terms of BS implied volatilities, we choose to  
interpret the fit in terms of deviations between “observed” and fitted implied 
volatilities. Based on the measurement equation for the options 25 we can 
compute fitted implied volatilities by  
 

                                           
24 Durbin and Koopman (2001) point out that the smoothed disturbances are autocorrelated (in 
theory/population), but can be useful for detecting outliers and structural breaks, as they are the best 
estimators of the error terms given the data.  
25 Notice that we avoid computationally intensive Monte-Carlo simulations to first obtain the model-
implied call prices and then transform them to BS implied volatilities.   
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 *1 1
, 1( ) ( )' ( )'ˆ

it it
implied it it it it tAτ τσ τ τ τ= + +  B θ B x ,   (4.2) 

 
for ,..,t t T t= ∆ ∆  and , ,i SM MM LM= , in which we substitute the parameter 
estimates and smoothed *{ }tx -series. The “pricing” errors expressed in percents 
BS implied volatility are then given by  
 
 , ,error ˆit implied it implied itσ σ= − .      (4.3)  

 
The left panel of figure 4.4 shows the original and fitted SM, MM and LM BS 
implied volatility series; the right panel displays the error series.  
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Figure 4.4: Fit of the ATM volatility term structure: In-sample fit of the SM BS implied volatility series 
and out-of-sample fit of the MM and LM BS implied volatility series. The figure shows the original and 
fitted BS implied volatility series for each maturity, together with their difference. This difference may 
be interpreted as a pricing error.  

 
 
The 1-factor model generally overfits the MM and LM implied volatility series out 
of sample. Relative to the observed market values, the model thus overprices 
longer-dated ATM options, and the mispricing seems to get worse the longer the 
maturity. Table 4.3 reports the mean and standard deviation of each of the three 
error series. The overfitting can be substantial.  
 
 
Table 4.3: Summary statistics error series 
 Error in SM impl.vol. Error in MM impl.vol. Error in LM impl.vol. 
Mean   -0.0069% -3.38% -5.66% 
Std.deviation 0.31%  1.89%  2.38% 
The table reports the mean and standard deviation of the error series shown in figure 4.4. 



 21

 
Chernov and Ghysels (2000) reach a similar conclusion (irrespective of 
moneyness) when assessing the out-of-sample pricing performance of the Heston 
(1993) model. Pan (2002) also reports the severe out-of-sample overpricing of 
long-dated near-the-money options by the Heston model. Pan attributes this to 
the fact that her estimation results imply an explosive risk-neutral volatility 
process. Interestingly, our results imply a stationary volatility process under Q as 

1.85k =  and 0.124θ = , which are both positive.  
 
4.2 Specification tests of the 1-factor OU model estimated with 

return, SM, MM and LM option data 
 
We now turn to specification testing of the 1-factor OU model when all four series 
are jointly used for estimation (recall column 4 of table 4.1). As all data will be in 
used in subsequent multifactor estimations, a comparison with the results 
presented in this section proves useful in the contribution of each additional SV 
factor. 
 
Figure 4.5 plots the four standardized innovation series associated with the return 
and BS implied variance equations (1.11) and (1.12). Table 4.4 reports the 
relevant summary statistics. The misspecification is obvious. Notice in particular 
the severe autocorrelation 26 in each series. This seems confirmative of one 
volatility-driving factor not being sufficient to describe all dynamics present in the 
data.  
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Figure 4.5: Standardized innovations associated with the measurement equations for the squared 
returns (upper left), the SM (upper right), MM (lower left) and the LM (lower right) BS implied 
variances (1-factor OU).   
 

                                           
26 The p-values associated with Ljung-Box Q-test statistics for testing for zero-autocorrelation up to 
order 5 all equal 0.000.  
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Table 4.4: Summary statistics of the standardized innovations (1-factor OU; all data) 
 Std.inn.  

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.284 -0.209  0.049 -0.168 
Std.deviation  0.959  0.946  0.992  1.030 
AC(1)  0.138  0.395  0.617  0.433 
AC(2)  0.115  0.350  0.534  0.372 
AC(3)  0.179  0.301  0.443  0.264 
AC(4)  0.167  0.246  0.423  0.339 
AC(5)  0.107  0.275  0.373  0.328 
Cont.correlation  1.000  0.089  0.052  0.338 

matrix   1.000 -0.020 -0.042 
    1.000  0.033 
     1.000 
 AC(i) stands for the i-th order autocorrelation coefficient.   

 
 
Figure 4.6 shows the smoothed disturbance series of the state space model. The 
misspecification is most apparent from the graphs of the three { }tε − series, 
which ought to look like white noise approximately. They clearly do not.  
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Figure 4.6: Smoothed disturbances of the state space model (1-factor OU, all data). 
 
 
In-sample fit of the volatility term structure 
We also examine the extent in which the 1-factor model estimated with the full 
dataset fits the ATM volatility term structure in sample. (Obviously, figure 4.6 
already provide a clue but then in terms of less easy to interpret BS implied variances 
instead of volatilities.) Fitted SM, MM and LM BS implied volatilities are again 
computed by (4.2) and “pricing” errors by (4.3). Figure 4.7 shows the original 
and fitted series together with their difference. The errors can be substantial.  
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Figure 4.7: In-sample fit of the ATM volatility term structure (1-factor OU, all data). The figure shows 
the original and fitted BS implied volatilities for each maturity, together with their difference. This 
difference may be interpreted as a pricing error.  

 
 
Table 4.5 reports the mean and standard deviation of each of the (absolute) error 
series. On average, the 1-factor model predicts somewhat higher prices than 
observed in the market. Notice that the short end of the volatility term structure 
is generally fitted worst and the long end best.  
 
 
Table 4.5: Summary statistics error series (1-factor OU) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean -1.01% -0.22% -0.20% 2.62% 0.93% 0.53% 
Std.dev.  3.33%  1.31%  0.70% 2.30% 0.95% 0.51% 
The table reports the mean and standard deviation of the error series shown in figure 3.14. The error  
is defined as the difference between the true and fitted BS implied volatility. Both statistics are also 
reported for the absolute errors. 

 
 
1-factor OU SV: Summary of results 
When the 1-factor OU model is estimated using stock and SM option data jointly, 
the misspecification seems rather modest at first sight. Its main deficiency seems 
negligence of level-dependent volatility-of-volatility (apart from the leverage 
effect). However, subsequent out-of-sample valuation of longer-dated options 
generally leads to substantial overpricing. Given similar evidence in Chernov and 
Ghysels (2000) and Pan (2002) on the Heston (1993) model, this overpricing 
cannot be overcome by explicit modeling of volatility feedback and the leverage 
effect it seems.   
 
When the model is estimated using the four joint time series the misspecification 
of the 1-factor model is even more prominent. The model does not fit the 
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volatility term structure very well; especially not in the short end. Although its 
deficiency of not being able to describe volatility feedback is a matter of concern, 
the most important misspecification seems neglected dynamics. The 1-factor 
model is not able to adequately describe the complex movements of the term 
structure, as observed in section 3.2. The various tests strongly reject the 1-
factor assumption. We intuitively expect that fitting the Heston (1993) model to a 
similar dataset incorporating more than one option series would lead to similar 
conclusions 27. This point is also made by Cont and Fonseca (2002).  
 
 
Table 5.1: Estimation results 2-factor OU using return, SM, MM and LM option data jointly 

 Restrictions 
(a) 

Restrictions 
(b) 

 Restrictions 
(a) 

Restrictions 
(b) 

1θ  0.0431 
(0.0342) 

0.0408 
(0.0386) 

, ,corr( , )SM t MM tε ε  0 0.548 
(0.342) 

2θ  0 0 , ,corr( , )SM t LM tε ε  0 -0.089 
(0.548) 

1k  0.516 
(0.080) 

0.445 
(0.076) 

, ,corr( , )MM t LM tε ε  0 -0.516 
(0.658) 

2k  6.72 
(0.731) 

8.71 
(1.37) 

 
 

 
 

 
 

11σ  0.0602 
(0.0046) 

0.0669 
(0.0058) 

Vol. returns 20.8% 20.2% 

12σ  0 
 

0 Vol-of-var. 0.0804 0.0858 

21σ  0 0.0612 
(0.0216) 

Std.dev. 1tx  0.059 0.071 
 

22σ  0.199 
(0.018) 

0.146 
(0.035) 

Std.dev. 2tx  0.054 0.038 

1γ  0.116 
(0.258) 

0.090 
(0.241) 

1 2corr( , )t tx x  0 0.166 

2γ  -0.330 
(0.467) 

-0.661 
(0.595) 

Persistence 1x  0.9980 0.9983 

ωσ  0.0671 
(0.0057) 

0.0672 
(0.0056) 

Persistence 2x  0.9745 0.9671 

,SMεσ  1.59*10-5 

(2.10*10-5) 
0.00306 
(0.00158) 

Half-life 1x  349 405 

,MMεσ  0.00201 
(0.00016) 

0.00205 
(0.00069) 

Half-life 2x  27 21 

,LMεσ  0.00206 
(0.00027) 

0.00165 
(0.00038) 

Std.dev. 1tu  0.0037 0.0041 

 
Loglik. 

 
14,305 

 
14,363 

Std.dev. 2tu  0.0122 0.0097 

The table reports (restricted) parameter estimates (in boldface) with robust White (1982) QML 
standard errors in parentheses, resulting from estimating the state space model associated with the 
2-factor OU SV assumption using the combination of return, SM, MM and LM option data under two 
sets of restrictions (see main text), together with the MLEs of some other quantities of interest.  
 
 
 

5.  Estimation results 2-factor OU 
 
In this section we present estimation results for 2-factor OU SV. As it appears 
that the model is still not able to capture most dynamics observed in the data, we 
keep the discussion rather short.  
 

                                           
27 To the best of our knowledge this has not been pursued so far in the literature.   
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As not all parameters can be identified we consider two sets of a priori imposed 
restrictions. In Restrictions (a) we consider the case of two independent volatility-
driving factors and do not allow for contemporaneous correlation between the 
error series { }, , ,it i SM MM LMε = . Restrictions (a) imposes 2 0,θ =  12 21 0σ σ= = ,  
and , , , ,corr( , ) corr( , )SM t MM t SM t LM tε ε ε ε= =  , ,corr( , ) 0MM t LM tε ε = . In Restrictions (b) 
we allow both for correlation between the factors and contemporaneous 
correlation between the error series { }, , ,it i SM MM LMε = . In this case we impose 

2 120, 0θ σ= =  such that (2 2)x Σ  is lower diagonal. Table 5.1 presents the 
estimation results. 
 
Allowing for two OU factors instead of one raises the quasi-loglikelihood from 
13,135 to more than 14,300. Allowing for two correlated factors does not improve 
the fit dramatically as compared to the independent-factors case. The maximum 
likelihood estimate of the factor correlation equals 0.166, which, given that 21σ  
differs significantly from zero, seems significant. (The model is however 
misspecified.) The contemporaneous correlations between the { }itε  series do not 
seem to differ significantly from zero. The volatility of returns, '1 θ , is estimated 
near the 20.3% obtained from averaging the squared returns. The two volatility 
factors differ in their characteristics. The first factor has similar properties as the 
factor distilled from the joint data in the 1-factor case. Its persistence 1exp( )k t− ∆  
is close to the random walk value of 1, with a half-life 1ln2 / k t∆  of about 1.45 
years. Shocks in this factor die out very slowly. The second factor shows much 
quicker mean reversion with a half-life of about a month.  
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Figure 5.1: In-sample fit of the ATM volatility term structure (2-factor OU, Restrictions (b)). Left: 
original and fitted BS implied volatilities for each maturity. Right: their difference (i.e. “pricing” error).  
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In-sample fit of the volatility term structure 
For further investigation and diagnostic checking we concentrate on the least 
restricted model (Restrictions (b)). Consider the in-sample fit of the volatility 
term structure. The left panel of figure 5.1 shows the “observed” and fitted SM, 
MM and LM BS implied volatilities in one graph. The errors are displayed in the 
right panel. Compare this figure to figure 4.7. Notice that the error graphs have 
improved in the sense that they seem more randomly distributed.  
 
Table 5.2 reports the mean and standard deviation of each of the (absolute) error 
series. Compare this table to table 4.5. The substantial increase in fit achieved by 
allowing for two volatility factors instead of one is obvious. The biggest 
improvement is for the SM option series. The “pricing” errors concentrate around 
zero now, irrespective of maturity. The average fit is similar for all series, 
although the LM series is still fitted somewhat best.  
 
 
Table 5.2: Summary statistics error series (2-factor OU, Restrictions (b)) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00% 0.00% 0.00% 0.23% 0.24% 0.19% 
Std.dev. 0.34% 0.33% 0.28% 0.25% 0.24% 0.20% 
The table reports the mean and standard deviation of the error series shown in figure 5.1. Both 
statistics are also reported for the absolute errors. 
 
 
Specification tests 
We now turn to specification testing. The upper panel in figure 5.2 shows the 
smoothed factors in deviation from their mean, * ; 1,2.it it ix x iθ= − =  The lower 
panel shows the smoothed transition equation errors 1tu  and 2tu . Volatility 
feedback is present in both series; a feature not accounted for by the OU SV 
models. Interestingly, analyzing daily 1953-1999 data on the DJIA stock index, 
Chernov et al. (2003) find one very persistent and one quickly mean-reverting 
factor in a 2-factor logarithmic (i.e. exponential linear) SV stock price model. The 
persistent factor does not seem to feature feedback, whereas the other does.  
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Figure 5.2: Smoothed factors in deviation from their mean ( *

1tx  and *
2tx ), and smoothed state 

equation errors 1tu  and 2tu  (2-factor OU, Restrictions (b)). 
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Figure 5.3 shows the standardized innovations. Table 5.3 reports summary 
statistics for these series.  
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Figure 5.3: Standardized innovations (2-factor OU, Restrictions (b)).   

 
 
Recalling figure 4.5 and table 4.4 for the 1-factor OU case, it is clear that the 2-
factor assumption provides a much better description of the data. The innovations 
are closer to behaving as unit-variance white noise than in the 1-factor OU case. 
Especially prominent is the dramatic reduction in autocorrelation in three of the 
four series. The dynamics in the medium-maturity option series are however still 
not well captured by this model 28.  
 
 
Table 5.3: Summary statistics standardized innovations (2-factor OU; Restrictions (b)) 
 Std.inn. 

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.193  -0.008 -0.006  0.010 
Std.deviation  0.983   0.995  1.012  0.992 
AC(1)  0.086   0.075   0.399  0.045 
AC(2)  0.059  -0.016  0.231  0.021 
AC(3)  0.136  -0.025  0.200 -0.100 
AC(4)  0.113  -0.016   0.186  0.070 
AC(5)  0.050   0.014  0.212  0.024 
Cont.correlation 1.000    0.074   0.004  0.221 

matrix    1.000 -0.004  0.015 
    1.000  0.022 
     1.000 
AC(i)) stands for the i-th order autocorrelation coefficient.  

 

                                           
28 Based on the Ljung-Box Q-statistic we reject the null hypothesis of zero autocorrelation up to order 5 
at 5% significance for each innovation series, except for the SM series.  
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Figure 5.4 shows the smoothed disturbances of the state space model. A 
comparison with figure 4.6 confirms the much improved data description once 
more. Nonetheless, like table 5.3, figure 5.4 still seems to indicate a lack of 
dynamics.   
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Figure 5.4: Smoothed disturbances of the state space model; , ,, ,t SM t MM tω ε ε  and ,LM tε  (2-factor 
OU, Restrictions (b)). 

 
 
6.  Estimation results 3-factor OU 
 
In this section we therefore extend to three OU volatility factors. As not all 
parameters can be identified we consider two sets of a priori imposed restrictions, 
which are similar as in the 2-factor case. In Restrictions (a) we consider the case 
of three independent factors and do not allow for contemporaneous correlation 
between { }, , ,it i SM MM LMε = . Restrictions (a) imposes 2 3 0,θ θ= =  

11 22 33diag[ , , ]σ σ σ=Σ  and , ,corr( , )SM t MM tε ε =  , ,corr( , )SM t LM tε ε =  

, ,corr( , ) 0MM t LM tε ε = . In Restrictions (b) we allow both for correlation between the 
factors and contemporaneous correlation between { }, , ,it i SM MM LMε = . In this 
case we impose 2 3 0,θ θ= =  12 13 23 0σ σ σ= = =  such that (3 3)x Σ  is lower 
diagonal. Table 6.1 presents the estimation results. 
 
Allowing for three factors instead of two increases the quasi-loglikelihood from 
more than 14,300 to more than 14,500. Permitting for correlated factors and 
contemporaneous correlation between the { }; , ,it i SM MM LMε =  series does not 
raise the loglikelihood very much. It does however introduce additional 
uncertainty in most parameter estimates, as evidenced by the increased standard 
errors (relative to the estimates). There are clear opportunity costs associated 
with the increased flexibility obtained from an extra introduction of six additional 
parameters when going from Restrictions (a) to (b). We feel most confident with 
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the results of Restrictions (a), the independent-factors case, such that in the 
remainder we focus on those 29.  
 
 
 
Table 6.1: Estimation results 3-factor OU using return, SM, MM and LM option data jointly 

 Restrictions 
(a) 

Restrictions 
(b) 

 Restrictions 
(a) 

Restrictions 
(b) 

1θ  0.0392 
(0.0417) 

0.0412 
(0.0990) 

, ,corr( , )SM t MM tε ε  0 0.59 
(0.47) 

2θ  0 
 

0 , ,corr( , )SM t LM tε ε  0 0.14 
(0.50) 

3θ  0 
 

0 , ,corr( , )MM t LM tε ε  0 -0.16 
(0.84) 

1k  0.023 
(0.029) 

0.167 
(0.388) 

   

2k  3.32 
(0.29) 

1.22 
(3.40) 

Vol. returns 19.81% 20.30% 

3k  15.7 
(2.5) 

13.6 
(2.98) 

Vol-of-var. 0.2000 0.2355 

11σ  0.0402 
(0.0036) 

0.171 
(0.626) 

Std.dev. 1tx  0.189 0.295 

12σ  0 
 

0 Std.dev. 2tx  0.057 0.181 

13σ  0 
 

0 Std.dev. 3tx  0.031 0.041 

21σ  0 
 

-0.266 
(0.679) 

1 2corr( , )t tx x  0 -0.61 

22σ  0.147 
(0.013) 

0.097 
(0.132) 

1 3corr( , )t tx x  0  0.13 

23σ  0 
 

0 2 3corr( , )t tx x  0 -0.27 

31σ  0 
 

0.129 
(0.149) 

Persistence 1x  0.9999 0.9994 

32σ  0 
 

0.047 
(0.185) 

Persistence 2x  0.9873 0.9953 

33σ  0.176 
(0.035) 

0.161 
(0.037) 

Persistence 3x  0.9413 0.9490 

1γ  -0.034 
(0.177) 

-0.165 
(0.231) 

Half-life 1x  7990 1080 

2γ  0.266 
(0.481) 

  0.243 
(0.475) 

Half-life 2x  54 147 

3γ  -1.47 
(0.77) 

-1.29 
(0.73) 

Half-life 3x  11 13 

,SMεσ  0.00096 
(0.00090) 

0.00274 
(0.00151) 

Std.dev. 1tu  0.0025 0.0106 

,MMεσ  0.00140 
(0.00013) 

0.00129 
(0.00095) 

Std.dev. 2tu  0.0090 0.0175 

,LMεσ  0.00182 
(0.00024) 

0.00137 
(0.00043) 

Std.dev. 3tu  0.0106 0.0128 

ωσ  0.0669 
(0.0059) 

0.0673 
(0.0059) 

Loglikelihood 14,500 14,560 

The table reports (restricted) parameter estimates (boldface) with robust White (1982) QML standard 
errors in parentheses, resulting from estimating the state space model associated with the 3-factor 
OU SV assumption using the combination of return, SM, MM and LM option data under two sets of 
restrictions (see main text), together with the MLEs of some other quantities of interest.  

 
 

                                           
29 The outcome and interpretation of the diagnostic checks only marginally differ for both cases. 
Moreover, the evidence in Cont and Fonseca (2002) seems to support this choice further. 
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6.1   Decomposing stock volatility: long-memory, middle-long- 
term and short-term movements 

 
We start with an examination of the stock volatility. The upper graph of figure 6.1 
plots the smoothed stock volatility obtained from the 3-factor model. In the 
middle graph this series is plotted again, together with the smoothed stock 
volatility obtained from the 1-factor model estimated using return - SM option 
data. The lower graph shows that their difference can be substantial. A close 
inspection reveals that, e.g., in times of sudden rises in the volatility (i.e. around 
the third quarter of 1997 and September 11, 2001), the volatility extracted from 
the 3-factor model responds quicker than the volatility obtained from the 1-factor 
model. This is as expected. The unconditional volatility of returns, '1 θ , is 
estimated around 20% as was previously the case.  
 
The 3-factor model models the dynamics of the stock variance as a sum of three 
hidden processes. The evolution of the stock volatility is thus decomposed into 
three different dynamic components. Table 6.1 shows that the three volatility-
driving factors distilled from the data differ greatly in their features. The first two 
factors behave more or less similar as the ones obtained from the 2-factor model, 
although each has further increased persistence. The first factor is extremely 
persistent and almost behaves like a random walk; it has very long memory. 
Shocks to this factor have close-to-permanent effects on its future values (which 
also explains why the MLE of the standard deviation of 1tx  is much larger than for 
both other factors). Although the second factor reverts much faster to its mean 
with a half-life of around 54 days or 2.5 months, the third factor is quickest 
mean-reverting. It takes about 11 days for a shock in this factor to lose half its 
impact.  
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Figure 6.1: The upper graph shows the smoothed stock volatility obtained from 3-factor OU, 
Restrictions (a). The middle graph plots this series again, together with the smoothed stock volatility 
obtained from 1-factor OU estimated using return – SM option data. Their difference is plotted in the 
lower graph. 
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Figure 6.2: Smoothed factors in deviation from their mean *

1tx , *
2tx  and *

3tx , and smoothed state 
equation errors 1tu , 2tu  and 3tu  (3-factor OU, Restrictions (a)). 

 
 
The estimates indicate that the first factor may be interpreted as determining the 
long-term trend in the stock-volatility evolution. The second factor seems more 
associated with middle-long-term movements. The third factor determines the 
very short-term volatility fluctuations.  
 
The left panel of figure 6.2 plots the smoothed factors *

ix . The right panel plots 
the daily shocks to these factors, i.e., the smoothed disturbances iu . Notice the 
scales on the vertical axes, and in particular the graph of 3u . The third factor is 
clearly responsible for large changes in the volatility in short periods of time. This 
is confirmed by the fact that its instantaneous standard deviation, 33σ , is largest, 
and the fact that the daily shocks to this factor, 3u , have largest variance 30.  
 
6.2   Another interpretation: Level, slope and curvature factors 
 
Our first interpretation of the hidden factors concerned an interpretation in terms 
of what each factor contributes to the dynamic evolution of the stock volatility. 
Our second interpretation concerns the impact of each factor on the prices of  
options; that is, on the shape and dynamics of the volatility term structure.   
 
Reconsider the measurement equation for the options in the general multifactor 
model; i.e.,  
 

                                           
30 If one is willing to believe that there are true jumps in volatility present in the data (see, e.g., Eraker 
et al. (2003)), then this (continuous-path) factor is clearly trying to accommodate these jumps. 
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 2 * 2
,

( )'1
( ) ( )' ; ~ (0, )t

implied t t t t t t
t t

A ε
τ

σ τ τ ε ε σ
τ τ

= + + +  
B

B θ x    (6.1) 

 
The functions (.) /(.); 1,..,jB j n=  can be interpreted as reaction coefficients or 
factor loadings. Each measures the instantaneous ceteris-paribus response of the 
BS implied variance to a change in one of the factors, i.e., 

2
, / ( ) /implied t jt j t tx Bσ τ τ∂ ∂ = . These reaction coefficients depend on the maturity of 

the option. Options of different maturity (and hence the volatility term structure) 
respond differently to changes in each of the volatility-driving factors. To 
investigate how a certain shock affects each option, it seems natural to take into 
account the fact that the factors have different variances. Since 
var [ ] 't =x J ΣΣP , the direct impact of a one-standard-deviation shock in each of 
the factors on the BS implied variance of an option with maturity τ  is given by 
the vector 1 /2( 1) ( ') ( ) /nnx τ τI J ΣΣ B . In the n − factor OU case, the factor 
loadings are given by ( ) / (1 exp[ ]) /j j jB k kτ τ τ τ= − −  for 0τ ≥ . If the OU factors 
are independent, then 2var [ ] /2jt jj jx kσ=P .  
 
The upper graph of figure 6.3 shows the reaction coefficients as a function of 
maturity, as implied by our estimation results. The lower graph displays the 
instantaneous ceteris-paribus response of the BS implied variances of all 
maturities to one-standard-deviation shocks to each of the factors. The pictures 
yield clear insight in how the volatility term structure is affected by such shocks.  
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Figure 6.3. Upper plot: Reaction coefficients 1 2(.), (.)B B  and 3(.)B  as a function of option maturity 
(in years). Lower plot: Instantaneous responses of the BS implied variances to one-standard-deviation 
shocks in each of the factors, as a function of maturity.  

 
 
A shock to the first factor has similar impact on all options, irrespective of 
maturity. Ceteris paribus, this factor seems to cause parallel shifts in which all 
implied volatilities increase with approximately the same amount. This is 
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attributed to the fact that this factor is so highly persistent with inherent shocks 
that die out very slowly. As such it mainly influences the general level of the 
volatility term structure. Therefore, the first factor may be interpreted as a level 
factor. A shock to the second factor affects options of all maturities as well, but 
by different amounts. Short-maturity options respond most, and the response 
gradually diminishes the longer the maturity of the option. Shocks to the third 
factor have biggest impact on the implied volatilities (and hence  prices) of short-
maturity options. The effect quickly wears off as the maturity of the option 
increases. These shocks do not virtually affect options with a maturity longer than 
half a year. As this factor is so quickly mean-reverting this makes sense: The 
longer the maturity, the more often this factor will have reverted back to its 
mean, the closer its average value over the lifetime of the option will be to this 
mean. As this average value is a major determinant of the option price (i.e. recall 
equation (1.6) where 2

1 2 3t t t tx x xσ = + + ), it is clear that shocks to this factor 
have virtually no effect on sufficiently long-dated options.  
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Figure 6.4. Left panel: Evolution of level, slope and curvature of the volatility term structure through 
time. Right panel: Smoothed * *

2,tx x−  and *
3x .  

 
 
Level, slope and curvature of the volatility term structure 
Given this analysis, and given that the first factor seems mainly associated with 
fluctuations in the general level, it makes intuitively sense that both the second 
and third factor will largely be responsible for dynamic changes in the slope and 
curvature (or convexity) of the volatility term structure over time. Let us examine 
if this is indeed the case, and what contribution each factor makes to these 
dimensions of the volatility term structure. First, define the level of the term 
structure at time t  as the average of the SM, MM and LM BS implied volatilities: 

tlevel ≡  , , , , , ,( ) /3implied SM t implied MM t implied LM tσ σ σ+ + . Next, define the slope as the 
difference between the LM and SM BS implied volatility, divided by the maturity 



 34

difference; i.e. tslope ≡  , , , , , ,( ) /( )implied LM t implied SM t LM t SM tσ σ τ τ− − . We expect a 
negative correlation between the second and third factors, and the slope. Finally, 
define the curvature of the volatility term structure at time t  as  
 
 , , , , , ,t t implied LM t t implied MM t t implied SM tcurvature a b cσ σ σ≡ + + , (6.2) 
 
where 1 1 2 2 1 22 /[ ( )], 2 /[ ( )],t t t t t t t t t t ta h h h c h h h b a c= + = + = − − , 1 , ,t LM t MM th τ τ= −  
and 2 , , .t MM t SM th τ τ= −  As explained in the appendix, this curvature measure 
essentially represents a numerical approximation of the second-order derivative 
of a smooth function in a certain point computed using three coordinate pairs.  
 
The left panel of figure 6.4 plots the dynamic evolution of the level, slope and 
curvature of the volatility term structure through time. The right panel shows the 
smoothed factors * *

1 2,x x−  and *
3x . (Notice that we have multiplied the second 

factor with –1 due to the expected negative relation.) The first factor may indeed 
be interpreted as mainly being a level factor: the correlation between 1x  and the 
general level of the term structure equals 0.86. Given that the impact of a shock 
to the second factor only gradually becomes less the longer the option maturity 
(recall figure 6.3), it is not surprising that 2tx  and tlevel  are also rather 
correlated; their correlation coefficient equals 0.68. In contrast, the correlation 
between 3tx and tlevel  is only –0.08. The second factor tracks changes in the 
slope of the term structure rather well. As expected, the slope is negatively 
correlated with 2x : their correlation equals –0.60. In contrast, the correlation 
between 1tx  and tslope  is only –0.02. Not surprisingly, the correlation between 

3tx  and our slope measure is also rather large, -0.62. However, the third factor 
even more closely follows the movements of the curvature of the volatility term 
structure. The correlation between tcurvature  and 3tx  is substantial, 0.82, 
whereas the  correlation between tcurvature  and 1tx  (resp. 2tx ) is only –0.07 
(resp. 0.19). 
 
We may conclude the following. The first, most persistent factor is mainly 
responsible for the dynamics of the general level of the volatility term structure. 
The dynamics of the second (but also the third) factor are largely associated with 
changes in the slope. Dynamic changes in the curvature of the term structure are 
mainly driven by the third, quickest mean-reverting factor 31 32.  
 
6.3   Fit of the volatility term structure 
 
We next consider the in-sample fit of the ATM volatility term structure obtained 
by allowing for three OU SV factors. Figure 6.5 shows the original and fitted 
implied volatilities together with their difference, the “pricing” errors. Compare 
this figure to figures 4.7 and 5.1 for the 1 and 2-factor models respectively, and 
notice the subsequent improvement. In contrast to the earlier pictures, there 
does not seem any systematic pattern left in the error series.  

                                           
31 It should be noted that analogical findings are found in empirical implementations of affine models of 
the term structure of interest rates (Duffie and Kan (1996), Dai and Singleton (2000)). Recall that the 
term structure of interest rates plots the yield on default-free zero-coupon bonds as a function of the 
maturity of the bonds. Empirical studies towards these models show that more than one short-interest-
rate-driving factor is necessary to obtain a good fit of empirical zero-coupon bond data. Three 
(correlated) factors seem needed; see e.g. de Jong (2000), Dai and Singleton (2000) and Andersen and 
Lund (1997). These factors have similar interpretations as in our stock-option-pricing setting under SV. 
32 Cont and Fonseca (2002) attach a level, slope and curvature interpretation to the shapes of the three 
eigenmodes (i.e., “principal component surfaces”) extracted from the daily implied volatility-surface 
fluctuations.  
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Figure 6.5: In-sample fit of the ATM volatility term structure (3-factor OU, Restrictions (a)). Left: 
original and fitted BS implied volatilities for each maturity. Right: their difference (i.e. “pricing” error). 
 

 
The improvement in fit is also apparent from table 6.2. All pricing errors 
concentrate around zero and are typically small. The average absolute errors 
seem small as well. The SM option series is now fitted best. If we subsequently 
compare the mean absolute errors in table 4.5 with table 5.2 and table 6.2, the 
observed pattern is logically understood given our previous analysis and 
interpretation of the factors.  
 
 
Table 6.2: Summary statistics error series (3-factor OU, Restrictions (a)) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00% 0.00% 0.00% 0.03% 0.15% 0.19% 
Std.dev. 0.05% 0.19% 0.29% 0.03% 0.13% 0.22% 
The table reports the mean and standard deviation of the error series shown in figure 6.5. Both 
statistics are also reported for the absolute errors. 
 

 
Fitting the 1-factor model to the joint data results in distillation of the overall 
volatility movement from the data; i.e., the long-memory or volatility-term-
structure level factor. As this factor is so highly persistent it cannot respond 
quickly enough to sudden changes in short periods of time, which (given the 
knowledge from figure 6.3 which indicates that it is especially SM derivatives that 
are prone to these changes), results in the SM series fitted worst. Not 
surprisingly, the LM series if fitted best: Intuitively, short-term fluctuations tend 
to “average out” the further one looks into the future.  
 
Moving from one factor to two factors yields the biggest improvements in fit for 
the MM and especially the SM option series. The second factor in the 2-factor 
model is much quicker mean-reverting, and therefore more easily picks up 
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sudden changes. The increase in fit of the LM series was rather modest, which 
may again be explained by the averaging-out effect. Going from two to three 
factors resulted in distillation of an additional, very fast mean-reverting factor. It 
will be clear why we observe the biggest improvement for the SM series. Taking 
the averaging-out effect into account once more, it also makes sense why the fit 
of the LM series remained virtually constant when going from two to three 
factors.  
 
6.4   Diagnostic checking  
 
Figure 6.6 shows the standardized innovation series obtained from the estimated  
3-factor model. Compare this figure to figures 4.5 and 5.3 from the 1 and 2-
factor models respectively. The innovations seem to resemble white noise closest 
in the 3-factor case. However, conditional heteroskedasticity is still present in all 
series with biggest fluctuations in times of largest volatility (recall figure 6.1). 
This may well be attributed to the fact that OU stochastic volatility does not 
model level-dependent volatility-of-volatility. Other evidence that supports the 
presence of volatility feedback is in figure 6.2: Fluctuations in the smoothed 
disturbances ju  are generally largest when the (absolute) levels of the volatility 
factors jx  are largest. If the model were correctly specified these smoothed 
disturbance series ought to (more or less) look like white noise instead.  
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Figure 6.6: Standardized innovations (3-factor OU, Restrictions (a)), 

 
 
Table 6.3 provides the mean, standard deviation and autocorrelation coefficients 
of each innovation series. Allowing for three factors removes most autocorrelation 
from the innovations. (Compare to tables 4.4 and 5.3.) Notice the substantial 
decrease in correlation in the MM series as compared to the 2-factor case. 
Although most autocorrelations are close to zero, the Ljung-Box Q-test still 
rejects the null hypothesis of no serial correlation up to order 5 for all but the SM 
series, with respective p-values of 0.00, 0.40, 0.00 and 0.00. Keep in mind 



 37

however that a proper application of this test requires homoskedasticity of the 
underlying series, and this is clearly violated.  
 
 
Table 6.3: Summary statistics standardized innovations (3-factor OU Restrictions (a)) 
 Std.inn. 

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.132 -0.009 -0.001  0.003 
Std.deviation  0.995  0.968  1.043  0.985 
AC(1)  0.099  0.043  0.130  0.086 
AC(2)  0.064 -0.006 -0.016  0.015 
AC(3)  0.141 -0.033 -0.044 -0.101 
AC(4)  0.114 -0.041 -0.037  0.063 
AC(5)  0.053 -0.013  0.031  0.022 
Cont.correlation  1.000   0.085  0.022  0.195 

matrix   1.000 -0.064  0.098 
    1.000 -0.026 
     1.000 
AC(i) stands for the i-th order autocorrelation coefficient.  

 
 
Figure 6.7 draws the smoothed disturbances , ,, ,t SM t MM tω ε ε  and ,LM tε  of the state 
space model. Again, their sample paths resemble white-noise sample paths more 
closely than in the 1 and 2-factor cases. Nonetheless, also in these pictures some 
effect of neglected level-dependent volatility-of-volatility seems present.  
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Figure 6.7: Smoothed disturbances of the state space model; , ,, ,t SM t MM tω ε ε  and ,LM tε  (3-factor 
OU, Restrictions (a)). 
 
 
Let us finally examine the possible presence of a leverage effect in the FTSE100-
index data. Recall that the model outlined in section 1 does not account for it. If 
we compute the correlation between daily FTSE100-index returns and daily 
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smoothed stock-variance changes (obtained from the 3-factor model), we find a 
correlation of –0.6. The presence of the leverage effect seems evident. 
Nevertheless, given that our analysis concerns the maturity dimension of ATM 
options (and hence does not regard the cross-sectional option dimension), it 
seems unlikely that this misspecification invalidates most of our findings. 
 
 
7. Summary and directions for further research 
 
In this paper we provide further empirical evidence on the existence of multiple 
stock volatility-driving factors. Moreover, we attach interpretations to these 
factors; both in terms of their contribution to the evolution of the stock volatility 
and their impact on option prices, and to the dynamics of the volatility term 
structure. Using the estimation strategy of multifactor affine SV option pricing 
models considered in Van der Ploeg et al. (2003), we find that the volatility 
dynamics present in daily FTSE100 stock-index and option data can satisfactorily 
be explained by three factors.  
 
An explorative analysis of the data shows that both the level and fluctuations in 
the FTSE100-index volatility have substantially increased from the third quarter 
of 1997 onwards. To mitigate misspecification, we therefore only use data for Oct 
97 - Dec 2001 in the estimations. An examination of the term structure of ATM 
implied volatilities shows that it can have very different shapes. Moreover, it 
evolves over time in complex manners. 34% of all shifts is non-parallel. A realistic 
model must obviously be able to reproduce these complex dynamics.  
 
We start off with assuming that there is only one SV factor that drives the 
volatility which follows an OU process. Although the in-sample fit of the 1-factor 
model estimated using return-SM option data seems reasonable, the out-of-
sample pricing performance of longer-dated options is bad: The model severely 
overfits MM and LM option prices. Similar results for the Heston (1993) model are 
known in the literature. Estimating the 1-factor model using stock returns and 
data on a SM, MM and LM option series jointly, indicates that the main 
misspecification of the 1-factor model is that it neglects important dynamics. The 
1-factor model is not capable of describing the observed rich dynamics in the 
joint data. The volatility term structure is fitted worst at the short end, and best 
at the long end.    
 
These results naturally motivate an empirical investigation of multifactor volatility 
models. Although allowing for two factors yields a considerable increase in fit, 
dynamic misspecification still remains. The average fit of the three option series is 
now similar, with the LM series fitted somewhat best.   
 
Extending to three independent OU factors seems sufficient to satisfactorily 
describe the dynamics observed in the four joint time series. Comparing the 
smoothed stock volatilities obtained from the 1-factor model (estimated using 
return-SM option data) with the volatilities obtained from the 3-factor model, 
reveals that especially in times of sudden increases in financial-markets 
uncertainty, the latter ones react quicker. This makes sense: decomposing the 
volatility in different dynamic components allows the volatility to respond quicker.  
 
The three factors distilled from the data differ greatly in their characteristics. The 
first factor is extremely persistent. It has a daily persistence of 0.9999 with 
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shocks that have close-to permanent effects on its future evolution; they seem to 
last for years. The second factor is much quicker mean-reverting (persistence 
0.9873) with shocks that have a half-life of about 2.5 months. The third factor is 
very fast mean-reverting (persistence 0.9413). Shocks to this factor lose half 
their impact in 11 days, and have moreover largest variance. The third factor 
clearly governs large volatility changes in relatively brief periods of time.  
 
We interpret the factors in two ways. The first interpretation is that the first, 
second, and third factor determine the long-term, middle-long-term and short-
term trends in the evolution of the stock volatility respectively. As such, they 
influence the prices of options in different ways. We show that the first, long-
memory factor similarly impacts on all options, irrespective of maturity. The 
second factor affects all options as well, but gradually by smaller amounts the 
longer the life-time of the option. Short-maturity options are especially prone to 
shocks in the third factor. The impact of this factor quickly diminishes as the 
option maturity increases. As this factor is so quickly mean-reverting, its shocks 
tend to average out over a sufficiently long time span, resulting in an only 
marginal impact on long-dated options.  
 
Our second interpretation of the factors concerns their impact on the shape and 
dynamics of the volatility term structure. We show that the first factor is mainly 
responsible for changes in the general level of the term structure. The second 
factor (but also the third) factor is largely associated with changes in the slope. 
The third factor is surprisingly closely related to dynamic changes in the convexity 
of the volatility term structure.  
 
The fit of the volatility term structure obtained by allowing for three factors is 
good. The pricing errors concentrate around zero, are typically small and there 
does not seem any systematic pattern left in the errors over time. The SM series 
is fitted somewhat best. A subsequent comparison of the pricing errors from the 
1-factor model with the errors of the 2-factor and 3-factor models yields a 
pattern that is logically understood given our previous analysis.  
 
Specification tests of the 3-factor OU SV model reveal that the dynamics 
observed in the data are satisfactorily captured by the model. Nonetheless and 
not surprisingly, we also find evidence of level-dependent volatility-of-volatility 
and the leverage effect. These features of the data are not modeled by the 
multifactor OU SV model considered in this paper. In future research we aim at 
explicitly allowing for e.g. volatility feedback in the SV-driving processes. We then 
resort to a related but different estimation method: Extended Kalman filter QML.  
 
Nonetheless, despite these deficiencies, our findings are clearly supportive and 
confirmative of the existence of multiple volatility-driving factors in practice.  
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Appendix 
 
 
I. System matrices state space model for multifactor OU SV  
 
The state space model associated with the n − factor affine OU SV derivative pricing model 
in which both the squared returns and the three option series are jointly used for 
estimation reads:  
 
Measurement equation:  
 
 't t t t t= + +y a H ξ w ; ~ ( , )t 0w R      ,...,t t T t= ∆ ∆  (I.1) 
 
Transition equation 
  
 t t t t t+∆ +∆= + +ξ d Fξ v ; ~ ( , )t t+∆ 0v Q .   (I.2) 
 
Here the error series { }tw  and { }t t+∆v  are both serially and mutually uncorrelated at all 
points in time. The system matrices read 33 
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13 1 3 23 2 3 3

0 0 0 0

0
(4 4)

0

0

x ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

σ ρ σ σ ρ σ σ

ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ

 
 
 ≡  
 
  

R ,  

 

'
( 1 1)n x

 
+ ≡  

 

1 θ
0

d ,          
0 '

( 1 1)
exp[ ]d

n x n
t

 
+ + ≡  − ∆ 

1
0 K

F ,   

 

( 1 1) t t
t t

t t
n x

ω +∆
+∆

+∆

 
+ ≡  

 u
v ,         

2 '( 1 1)
( ) '

n x n
t

ωσ 
+ + ≡  

∆ 

0
0 G ΣΣ

Q .   

 
 
The matrix ( ) ( )nxn t∆G  has ij − th element  equal to 
[ ( )] (1 exp[ ( ) ]) /( )ij i j i jt k k t k k∆ = − − + ∆ +G . The state space model is estimated using 
Kalman filter QML . For more details see Van der Ploeg et al. (2003).   
 
 
 

                                           
33 For notational convenience we index the option series with 1, 2 and 3 instead of SM, MM, and LM. 



 41

II. Curvature measure of the volatility term structure 
 
In this appendix we provide a rationale for our convexity or curvature measure (6.2) of the 
volatility term structure. Recall first that the volatility term structure plots the BS implied 
volatilities as a function of maturity, and that on each day we observe three BS implied 
volatilities: SM, MM and LM. The way these volatilities are located with respect to each 
other determines the shape and hence curvature of the volatility term structure. (Think 
about 3 points on the graph of a smooth function.) 
 
Now, consider some at least twice differentiable function (.)f . Our aim is to obtain an 
approximation of the curvature of this function in a certain point y , given only the three 
coordinate-pairs 1 1[ , ( )], [ , ( )],y h f y h y f y+ +  and 2 2[ , ( )]y h f y h− − , with 1 2, 0h h > . 
The second-order derivative of (.)f  evaluated in the point y , ''( )f y , determines this 
curvature.  
 
Our goal is then to determine the coefficients ,a b  and c  such that 
 
 1 2''( ) ( ) ( ) ( )f y a f y h b f y c f y h≈ + + + − .    (II.1) 
 
Second-order Taylor series approximations lead us to 
 
 21

1 1 12( ) ( ) '( ) ''( )f y h f y h f y h f y+ ≈ + +     (II.2) 
 
 21

2 2 22( ) ( ) '( ) ''( )f y h f y h f y h f y− ≈ − + .    (II.3) 
 
Substitution into (II.1) followed by rewriting gives  
 
 2 21

1 2 1 22''( ) ( ) ( ) ( ) '( ) ( ) ''( )f y a b c f y ah ch f y ah ch f y≈ + + + − + + . (II.4) 
 
This leads us to the following restrictions 
  
 2 21

1 2 1 220; 0; ( ) 1a b c ah ch ah ch+ + ≡ − ≡ + ≡ ,   (II.5) 
 
which yield 

 
1 1 2 2 1 2

2 2
; ; .

( ) ( )
a c b a c

h h h h h h
= = = − −

+ +
    (II.6) 

 
These coefficients together with (II.1) determine the approximate curvature in the point 
[ , ( )]y f y . Notice in particular that if 1 2( ) ( ) ( )f y h f y f y h+ = = −  such that the function is 
flat, then the curvature is zero, which is as expected. Notice moreover that in case of 

1 2h h h= = , the convexity approximation reduces to the commonly-known formula  
 

2

( ) 2 ( ) ( )
''( )

f y h f y f y h
f y

h

+ − + −
≈ .     (II.7) 

 
In our application the role of the function (.)f  is played by the BS implied volatilities seen 
as a function of maturity; i.e., by the volatility term structure. The maturity of the MM 
series ,MM tτ  is associated with y , 1h  equals the maturity difference between the LM and 
MM series, and 2h  equals the maturity difference between MM and SM series. As these 
differences are not equal (and moreover vary over time as well) we approximate the 
curvature of the volatility term structure by equations (II.1) and (II.6) leading to equation 
(6.2) in the main text.  
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