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Abstract

This paper compares the first-order bias approximation for the autoregressive (AR) coeffi-
cients in stable AR models in the presence of deterministic terms. It is shown that the bias due to
inclusion of an intercept and trend is twice as large as the bias due to an intercept. For the AR(1)
model, the accuracy of this approximation is investigated by simulation.
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1 Introduction

Autoregressive (AR) models are widely used to model the dynamic properties of time series data.

Their popularity stems from the fact that (i) they are easy to estimate and (ii) they have the flexibility to

accurately approximate autoregressive moving average processes. Since many economic time series

exhibit trending behavior, deterministic terms like a trend are often incorporated in the estimation. In

this paper, we investigate the effect on the estimation bias for the AR coefficients when an intercept

and trend are added to the estimation model. Although the literature on bias in AR models has a

relatively long history going back to Barlett (1946), to the best of our knowledge, only the recent

paper by Kang et al. (2003) has focused on the bias effect of a linear time trend in stable AR models.
∗Helpful comments from Peter Boswijk are gratefully acknowledged.
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Consider the following stable AR(k) models

Mp : yt = ρ1yt−1 + . . .+ ρk yt−k + εt , (1a)

Mc : yt = ρ1yt−1 + . . .+ ρk yt−k + µ+ εt (1b)

Mct : yt = ρ1yt−1 + . . .+ ρk yt−k + µ+ γ t + εt (1c)

where εt ∼ NID(0, σ 2ε) for t = 1, ..., T . The roots of the characteristic polynomial

φ(z) ≡ 1− ρ1z − . . .− ρkzk (2)

are assumed to lie outside the unit circle. The parameters of interest are the ρi ’s or functions thereof.

In modelMc, the AR process is allowed to have a non-zero mean, while in modelMct the AR

process is stationary around a linear trend. Although normality of the innovations is stronger than

what is necessary for establishing the results, the assumption is made for ease of exposition; see for

instance Bhansali (1981) for a set of less restrictive assumptions. The starting values are assumed to

come from the asymptotic stationary distribution, although this is not a critical assumption since the

starting values do not influence the first-order bias (provided that they are finite).

As is well known, the estimation bias aggravates when an intercept is included to the estimation

model. For instance, in the AR(1) case, Kendall (1954) and Marriot and Pope (1954) have shown that

the first-order bias in the pure AR(1) model is equal to

E[ρ̂1 − ρ1|Mp] 1= −2ρ1
T

, (3)

while if an intercept is present the bias becomes

E[ρ̂1 − ρ1|Mc] 1= −2ρ1
T

− (1+ ρ1)
T

; (4)

here and elsewhere in the paper 1= indicates equality up to order op(T−1). We shall show that when
the models includes an intercept and linear trend, the bias is equal to

E[ρ̂1 − ρ1|Mct ] 1= −2ρ1
T

− 2(1+ ρ1)
T

. (5)

By comparing formula (5) to (4), we see that the estimation bias due to deterministic terms has

doubled by adding a trend to the estimation model. In Section 3 of this paper, it is shown that

this result carries over to higher-order AR models. The section after this introduction contains some

notation and the basic Nagar-type bias equation. Section 4 concludes, while all the proofs are provided

in Appendix A.
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2 Notation and Preliminary Analysis

The models in (1) can be written in matrix notation as

y = Zβ + ε, (6)

where y = (y1, . . . , yT ), ε = (ε1, . . . , εT ) and the content of the matrix Z and vector β depends on
the estimation model being used. The bias of the OLS estimator β̂ = (Z )Z)−1Z )y is given by

E[(β̂ − β)] = E[(Z )Z)−1Z )ε]. (7)

Since β̂ is invariant to σ 2ε , the variance is normalized to 1 without loss of generality. Furthermore,

we shall assume that µ = 0 (and γ = 0) in the analysis, since the elements of β̂ that refer to

ρ̂ = (ρ̂1, ..., ρ̂k)) are invariant with respect to µ (and γ ) in modelMc (Mct ).

To distinguish the various models, Z will be indexed as Zm for m ∈ {c, ct}. Let Zc denote the
regressor matrix in modelMc, so that β̂

c = (Zc)Zc)−1Zc)y, while Zct contains the regressors for

modelMct , so that β̂
ct = (Zct )Zct)−1Zct )y.

In order to distinguish the deterministic and stochastic part of the matrix of regressors Zm , de-

compose Zm = Z̄m + Z̃m , where Z̄m is defined as the mathematical expectation of Zm , so that

Zm = E[Zm]+ (Zm − E[Zm])
= Z̄m + Z̃m . (8)

For modelMc, the non-stochastic matrix Z̄m and stochastic matrix Z̃m are given by

Z̄ c = (0T×k : ι) and Z̃ c = (y−1 : ... : y−k : 0T ), (9)

where y−i = (y1−i , . . . , yT−i )) for 1 ≤ i ≤ k and ι = (1, . . . , 1)). For modelMct , we have

Z̄ ct = (0T×k : ι : τ) and Z̃ ct = (y−1 : ... : y−k : 0T : 0T ), (10)

where τ = (1/T, 2/T, ..., 1)). Note that the linear trend is divided by T , so that all the regressors
are of the same ‘magnitude’. This can be done without loss of generality since the elements of β̂ that

refer to ρ̂ are invariant to this transformation. The inverse of E[Z )Z] = Z̄ ) Z̄ + E[Z̃ ) Z̃] is denoted
by Q, i.e. Q = (Z̄ ) Z̄ + E[Z̃ ) Z̃])−1. Due to the scaling of the linear trend, we have Q = O(T−1) in
both models; see formulas (A.1) and (A.6) in the Appendix. The Nagar-type expansion, named after

Nagar (1959), that is utilized in this paper follows from the identity

(Z )Z)−1 = Q
K
I + (Z̄ ) Z̃ + Z̃ ) Z̄)Q + (Z̃ ) Z̃ − E[Z̃ ) Z̃])Q

L−1
, (11)
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where the stochastic terms (Z̄ ) Z̃ + Z̃ ) Z̄)Q and (Z̃ ) Z̃ − E[Z̃ ) Z̃])Q both are Op(T−1/2). The inverse
of the form (I + A)−1 with A = Op(T−1/2) can be approximated by

(I + A)−1 = I − A + A2 − A3..., (12)

see for instance Kiviet and Phillips (1993, p. 77). The bias in (7) together with formula (11) and the

approximation (I + A)−1 ≈ (I − A) gives

E[(β̂ − β)] = E[QZ̃ )ε − Q(Z̄ ) Z̃ + Z̃ ) Z̄)QZ̄ )ε − Q(Z̃ ) Z̃ − E[Z̃ ) Z̃])QZ̃ )ε]+ o(T−1). (13)

Of course, (Z̄ , Z̃ , Q) should be replaced by (Z̄ c, Z̃ c, Qc) for modelMc and by (Z̄ ct , Z̃ ct , Qct) for

modelMct respectively. Note that Z̃ )ε has zeros at the elements referring to µ̂ (and β̂), while Z̄ )ε has

zeros at all the elements referring to ρ̂. Hence, the first-order bias can be decomposed into two parts:

(i) the bias due to the lagged-dependent regressors (indicated by Er ), which is given by

Er [(β̂ − β)] 1= E[QZ̃ )ε − Q(Z̃ ) Z̃ − E[Z̃ ) Z̃])QZ̃ )ε], (14)

and (ii) the bias due to inclusion of deterministic term (indicated by Ed), which is equal to

Ed[(β̂ − β)] 1= −E[Q(Z̄ ) Z̃ + Z̃ ) Z̄)QZ̄ )ε]. (15)

Such a decomposition of the bias seems to hold more generally, see e.g. Cordeiro and Klein (1994).

3 Bias Approximations

In order to derive an explicit expression for the bias term, let P denote the covariance matrix of

(yt−1, ..., yt−k) and P−1 its inverse. The (i, j)-th element of P is denoted by Pi j , while Pi j denotes

the (i, j)-th element of P−1. Theorem 1 shows the first-order approximation of the estimation bias

when the model contains an intercept.

Theorem 1 The bias of ρ̂ci for 1 ≤ i ≤ k due to the inclusion of an intercept in the stable AR(k)

model as shown in (1b) is given by

Ed[(ρ̂ci − ρi )|Mc] 1= − Pi1 + ...+Pik
1− ρ1 − . . .− ρk T

−1. (16)

For the AR(1) model, we have P11 = 1 − ρ21, so that Ed[(ρ̂c1 − ρ1)|k = 1] 1= −(1 + ρ1)T−1,
which is in line with formula (4). Furthermore, we have the following approximations

Ed[(ρ̂c − ρ)|k = 2] 1= −(1+ ρ2, 1+ ρ2))T−1. (17a)

Ed[(ρ̂c − ρ)|k = 3] 1= −(1+ ρ3, 1− ρ1 + ρ2 + ρ3, 1+ ρ3))T−1. (17b)

Ed[(ρ̂c − ρ)|k = 4] 1= −(1+ ρ4, 1− ρ1 + ρ3 + ρ4, 1− ρ1 + ρ3 + ρ4, 1+ ρ4))T−1. (17c)
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These results are in line with Table 1 of Shaman and Stine (1988, p. 846).

The next theorem shows that the bias due to the deterministic terms in the AR(k) model with an

intercept and trend is twice the magnitude of the bias in the model with only an intercept.

Theorem 2 In the stable AR(k) model with intercept and trend as shown in (1c), we have for 1 ≤ i ≤
k

Ed[(ρ̂cti − ρi )|Mct ]
Ed[(ρ̂ci − ρi )|Mc]

1= 2. (18)

To assess the quality of the asymptotic result shown in (18), a small simulation study has been

carried out. All the simulations were done on a PC using Matlab. Observations were generated ac-

cording to an AR(1) process. All results are based on R = 50,000 replications and three sample sizes
were considered: T ∈ {25, 50, 100}. The AR(1) parameter was taken as ρ1 ∈ {−0.99, 0.98, ..., 0.99}.
Since the bias is invariant with respect to σ ε, µ in modelsMc andMct and γ in modelMct , we take

σ ε = 1 and µ = γ = 0 without loss of generality. The starting value was drawn from the station-
ary distribution, i.e. y0 ∼ N (0, 1/(1 − ρ21)). The bias due to inclusion of deterministic terms was
approximated by

R3
r=1
(ρ̂ct1,r − ρ̂ p1,r )

R3
r=1
(ρ̂c1,r − ρ̂ p1,r )

, (19)

where the subindex r denotes the r-th replication in the simulation. The estimated relative additional

bias due to the trend given in (19) is shown in Figure 1. From this figure, we conclude that the

approximation is reasonably accurate even for values of ρ1 close to 1. This is probably due to the fact

that we consider a ratio, since it is well known that the absolute bias shown in (4) and (5) can deviate

substantially from the actual bias as ρ1 approaches the value of 1. So, although the derivation is based

on a stable model, the approximation seems to be useful in the unstable case as well. To illustrate this

point, suppose that the shape of the distribution remains constant when adding deterministic terms.

Then the shift in the quantiles fromMp toMct should be twice as large as the shift fromMp toMc.

In case of a unit root and T = 100, the 5% quantiles of T (ρ̂1 − 1) are approximately −7.9 (Mp),

−13.7 (Mc) and −20.7 (Mct ), see Fuller (1976, p. 371), so that

−20.7− (−7.9)
−13.7− (−7.9) = 2.21,

which differs from 2 by 10% only .

Insert Figure 1 about here.
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4 Conclusion

In this paper, we have shown that the first-order bias for the AR coefficients due to deterministic terms

doubles when a linear trend is added to a stable ARmodel with intercept. The simulation results show

that the asymptotic approximation is relevant for sample sizes encountered in practice, at least for the

AR(1) model. Although outside the scope of this paper, it can be shown (using the same techniques)

that the bias due to deterministic terms triples when a quadratic trend is added to an AR model with

intercept and linear trend.

A Proofs

Proof of Theorem 1. For modelMc, we obtain (due to the block structure)

Qc =
r
Z̄ c) Z̄ c + E[Z̃ c) Z̃ c]

s−1

=


P11 · · · P1k 0
...

...
...

Pk1 · · · Pkk 0

0 · · · 0 1



−1

T−1 =


P11 · · · P1k 0
...

...
...

Pk1 · · · Pkk 0

0 · · · 0 1

 T
−1. (A.1)

since E[y)−iy− j ] = TPi j for i, j ∈ {1, . . . , k}. Furthermore,

(Z̄ c) Z̃ c + Z̃ c) Z̄ c) =


0 · · · 0 Sy−1
...

...
...

0 · · · 0 Sy−k
Sy−1 · · · Sy−k 0

 and Qc Z̄c)ε =
 0k

T−1Sε

 , (A.2)

where Sy−i ≡
3
yt−i and Sε ≡3 εt . Combining (A.1) and (A.2) leads to

E[Qc(Z̄ c) Z̃ c + Z̃ c) Z̄ c)Qc Z̄c)ε] 1= E




Sε(P11Sy−1 + ...+P1k Sy−k )

...

Sε(Pk1Sy−1 + ...+Pkk Sy−k )
0

 T
−2

 , (A.3)

so that the bias due to the inclusion of the intercept for ρ̂i is given by

Ed[(ρ̂ci − ρi )|Mc] 1= E[−Sε(Pi1Sy−1 + ...+Pik Sy−k )T−2]. (A.4)

Next, we make use of the fact that (for 1 ≤ i ≤ k)

E[T−1SεSy−i ] = E[(T−1/2
3
εt)(T−1/2

3
yt−i )]

1= 1
1− ρ1 − . . .− ρk

, (A.5)
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see formulas (A.11) and (A.12) for m = n = 0. Substitution of (A.5) into (A.4) give the desired

result. ¤

Proof of Theorem 2. For modelMct , the matrix Qct becomes

Qct =
r
Z̄ ct ) Z̄ ct + E[Z̃ ct ) Z̃ ct ]

s−1

1=



P11 · · · P1k 0 0
...

... 0 0

Pk1 · · · Pkk 0 0

0 0 0 1 1
2

0 0 0 1
2

1
3



−1

T−1 =



P11 · · · P1k 0 0
...

... 0 0

P1k · · · Pkk 0 0

0 0 0 4 −6
0 0 0 −6 12


T−1. (A.6)

The analogue of (A.2) becomes

(Z̄ ct ) Z̃ ct + Z̃ ct ) Z̄ ct) =



0 · · · 0 Sy−1 Sτ y−1
...

...
...

...

0 · · · 0 Sy−k Sτ y−k
Sy−1 · · · Sy−k 0 0

Sτ y−1 · · · Sτ y−k 0 0


(A.7)

and

Qct Z̄ ct )ε =


0k

4
T Sε − 6

T 2 Sτε

− 6
T 2 Sε + 12

T 3 Sτε

 , (A.8)

where Sτ y−i ≡
3
(t/T )yt−i and Sτε ≡ 3(t/T )εt . After carrying out the multiplication, the bias of

ρ̂cti due to the intercept and trend is equal to

Ed[(ρ̂cti − ρi )|Mct ] 1= −E[( 4T Sε − 6
T 2 Sτε)(P

i1Sy−1 + ...+Pik Sy−k )]T−1 +
−E[(− 6

T 2 Sε + 12
T 3 Sτε)(P

i1Sτ y−1 + ...+Pik Sτ y−k )]T−1. (A.9)

For approximating the bias, the following relationships are useful

E[(T−3/2Sτε)(T−1/2Sy−i )]
1= 1

2E[(T
−1/2Sε)(T−1/2Sy−i )], (A.10a)

E[(T−1/2Sε)(T−3/2Sτ y−i )]
1= 1

2E[(T
−1/2Sε)(T−1/2Sy−i )], (A.10b)

E[(T−3/2Sτε)(T−3/2Sτ y−i )]
1= 1

3E[(T
−1/2Sε)(T−1/2Sy−i )]. (A.10c)

These relationships follow from the observation that (for m, n ∈ N0)r
T−

1
2
3
(t/T )mεt , T−

1
2
3
(t/T )n yt−i

s
d−→
t= 1

0
rmdW (r), σ∞

= 1

0
rndW (r)

u
, (A.11)
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where σ∞ = φ−1(1) is the ‘long run’ standard deviation and W denotes a standard Wiener process

(note that σε was normalized to 1). Since rm and rn are of finite variation on the unit interval, we

obtain

E
v
σ∞
= 1

0
rmdW (r)

= 1

0
rndW (r)

w
= σ∞

= 1

0
rm+n+1dr = 1

(m + n + 1)φ(1) . (A.12)

Using the relationships shown in (A.10), we finally get for i ∈ {1, . . . , k}

Ed[(ρ̂cti − ρi)|Mct ] 1= 2E
d−Sε bPi1Sy−1 + ...+Pik Sy−k c T−2e

1= 2Ed[(ρ̂ci − ρi)|Mc], (A.13)

see formula (A.4) for the last equality. So, Ed[(ρ̂ct − ρ)] is approximately twice the magnitude of
Ed[(ρ̂c − ρ)]. ¤
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Figure 1: The bias due to the deterministic terms in the AR(1) model with trend and intercept relative

to bias in the AR(1) model with intercept; see equation (19).
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