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Abstract

The Bartlett correction is derived for testing hypotheses about the autoregressive parameter ρ
in the stable: (i) AR(1) model; (ii) AR(1) model with intercept; (iii) AR(1) model with intercept
and linear trend. The correction is found explicitly as a function of ρ. In the models with deter-
ministic terms, the correction factor is asymmetric in ρ. Furthermore, the Bartlett correction is
monotonic increasing in ρ and tends to infinity when ρ approaches the stability boundary of 1.
Simulation results indicate that the Bartlett corrections are useful in controlling the size of the LR
statistic in small samples.
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1 Introduction

Of the three main test principles (likelihood ratio, Lagrange multiplier and Wald), the likelihood ratio

(LR) approach is fortunately endowed with some general theory initiated by Bartlett to improve its

finite-sample performance. Barlett (1937) has shown that the finite-sample distribution (at least its

cumulants to the order T−2) of a Barlett-corrected test statistic is closer to the χ2-distribution than the

original test statistic; see also Lawley (1956) and Barndorff-Nielsen and Hall (1988) for the general

i.i.d. case. The reader is referred to Cribari-Neto and Cordeiro (1996) for an econometric oriented

review about Bartlett corrections.

Recently, Bartlett-type corrections in unstable autoregressive models have attracted much atten-

tion, see inter alias Bravo (1999), Larsson (1998), Nielsen (1997) and Johansen (2003), although

Jensen and Wood (1997) have shown that the usual conditions for a Bartlett correction are not ful-

filled in the unstable first-order autoregressive –AR(1)– model. However, it appears that a Bartlett-like

factor can be calculated and that the use of this factor leads to a reduction of size distortions when

testing the unit root hypothesis.

In this paper, we analyse the stable AR(1) model, which was also considered by Taniguchi (1988,

1991) and Omtzigt (2003). Stable AR models are of interest, since they arise as models for first

differences, say yt , when it is known that a time series yt can be characterised as an autoregressive

process containing a unit root. Although in the stable case the inclusion of deterministic components

like intercept and trend does not change the asymptotic distributions, these components highly affect

the finite-sample behaviour of the LR statistic. Hence, in contrast to the work of Taniguchi, we

consider the AR(1) model with intercept (and linear trend). Anticipating the results, we can say

that the correction factor in models with deterministic components is considerably different from the

factor obtained in the pure AR(1) model. Besides extending the results to a slightly more general

model, the method used in this paper is totally different from the rather technical approach used by

Taniguchi. Hence, this paper provides an alternative andmuch simpler proof, which basically involves

only summations of geometric series. Although a number of exact inference techniques are available

for the AR(1) model, see inter alias Andrews (1993) and Kiviet and Dufour (1997), these methods

are based on numerical (Monte Carlo) procedures that do not give sufficient analytical insight into the

structure of the finite-sample problem.

The paper is organised as follows. In Section 2, the Bartlett correction is determined in the pure

AR(1) model. In Section 3, the results are generalised to the AR(1) model with intercept. The model

with intercept and trend is considered in Section 4. Section 5 presents some simulation results to
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shed some light on the small-sample properties of the Bartlett-corrected tests. The conclusions can be

found in the Section 5. Finally, three appendices contain some intermediate results, which are heavily

used in the proofs of this paper.

A word on notation. Throughout the paper, the symbol 1= will indicate that we have kept terms of
order T−1, i.e. if the stochastic expansion is of the form

V = V0 + T−1V1 + T−2V2 + ...,

then

V 1= V0 + T−1V1,

where Vi ∈ Op(1) are random variables. Furthermore, we use to indicate summation over t =
1, ..., T .

2 AR(1) model without intercept1

Consider the stable Gaussian AR(1) model

yt = ρyt−1 + εt , εt ∼ NID(0, σ 2), |ρ| < 1, (1)

where the starting value y0 is finite and t = 1, ..., T . In deriving an expression for the LR statistic for
testing the null hypothesis ρ = ρ0 against the two-sided alternative ρ = ρ0, model (1) can be treated
as just any other (linear) regression model. Therefore, the likelihood ratio (to the power 2/T ) is equal

to

LR2/T = SSRU
SSRR

, (2)

where SSR denotes the sum of squared residuals and the subindex indicates whether the restricted

(R) or unrestricted (U ) residuals are used. Under the null hypothesis, the restricted SSR is equal to

SSRR = (yt − ρ0yt−1)2 = ε2t = Sεε, (3)

where Sεε ≡ ε2t . Using Syε ≡ yt−1εt and Syy ≡ y2t−1, the unrestricted SSR can be written as

SSRU = (yt − ρ̂yt−1)2 = Sεε −
S2yε
Syy
. (4)

1This section, dealing with the AR(1) model without intercept, draws heavily on the unpublished manuscript "Notes on

the Bartlett correction of AR(1) processes" by Pieter Omtzigt, although the results in this paper are obtained in a totally

different way.
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Substituting (3) and (4) in (2), we get

LR2/T = 1− S2yε
Syy Sεε

≡ 1− Q, (5)

where Q is the squared sample correlation coefficient between εt and yt−1 assuming zero means, i.e.

Q ≡ S2yε
Syy Sεε

= T−1/2Syε
2

T−1Syy Sεε
. (6)

The LR test statistic is equal to

−2 log(LR) = −T log(1− Q)
= T Q + 1

2
T Q2 + Op(T−2), (7)

since Q = Op(T−1). Note that Q and therefore the LR statistic is scale invariant, i.e. Q based on

zt = yt/σ is the same as Q based on yt . Hence, we shall continue the analysis assuming σ = 1.
In order to calculate the Bartlett correction, we have to determine the expectation of the LR test

statistic, i.e.

E[−2 log(LR)] 1= E[T Q]+ E[1
2
T Q2]. (8)

The right-hand side of (8) consists of two terms. The last term is easily calculated, since

T Q2 = 1
T
S4yε
S2yy

1
(T−1Sεε)2

and T−1Sεε
0= 1. (9)

This allows us to write

E[
1
2
T Q2] 1= 1

2T
E

S4yε
S2yy

. (10)

Furthermore, it is known for a stable AR(1) process that

Syε
Syy

= T−1/2Syε
T−1Syy

d→ N (0, 1), (11)

so that

E[
1
2
T Q2] 1= 3

2T
. (12)

The first term on the right-hand side of (8) is somewhat more difficult to determine. First, the two

factors in the denominator are written in deviation from the expected values, i.e.

T Q = 1√
T
Syε

2

1− (1− 1
T
Sεε)

−1
τ 2 − (τ 2 − 1

T
Syy)

−1
, (13)

where τ 2 = (1 − ρ2)−1 denotes the (asymptotic) unconditional variance of yt . Next, the use of the
series approximation (where a denotes a constant and x is small) for the two terms in the denominator

(a − x)−1 = a−1 + a−2x + a−3x2 + ..., (14)
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results in the following approximation

T Q 1= 1√
T
Syε

2

1+ (1− 1
T
Sεε)+ (1− 1

T
Sεε)2

× τ−2 + τ−4(τ 2 − 1
T
Syy)+ τ−6(τ 2 − 1

T
Syy)2 . (15)

Expanding this expression would lead to nine terms. Making use of the fact that

(1− 1
T
Sεε)2 = Op(T−1) and (τ 2 − 1

T
Syy)2 = Op(T−1), (16)

three of the nine terms are smaller than Op(T−1). Hence, we get

E[T Q] 1= E τ−2
1√
T
Syε

2

+ (C1)

E τ−2
1√
T
Syε

2

1− 1
T
Sεε + (C2)

E τ−4
1√
T
Syε

2

τ 2 − 1
T
Syy + (C3)

E τ−4
1√
T
Syε

2

τ 2 − 1
T
Syy 1− 1

T
Sεε + (C4)

E τ−2
1√
T
Syε

2

1− 1
T
Sεε

2

+ (C5)

E τ−6
1√
T
Syε

2

τ 2 − 1
T
Syy

2

(C6)

≡
6

i=1
Ci (17)

The Bartlett correction in the pure AR(1) model is stated in Theorem 1.

Theorem 1 In the stable Gaussian AR(1) model, given in (1), the expectation of the likelihood ratio

test for the null hypothesis ρ = ρ0 has the expansion

E[−2 log(LR)] = 1− 2
T
+ 3
2T

= 1− 1
2
1
T
. (18)

Proof of Theorem 1. In the proof, the six terms shown in (C1)-(C6) will be referred to as C1 through

C6. Using formula (C.3) in Appendix C, i.e. E[S2yε]
1= τ 2T , the first term C1 can be approximated by

C1 ≡ E τ−2
1√
T
Syε

2

= 1
τ 2T

E[S2yε]
1= τ

2T
τ 2T

= 1. (19)

The second term can be approximated by

C2 = 1
τ 2T

E S2yε −
1

τ 2T 2
E S2yεSεε

1= − 4
T

(20)
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using formulae (C.3) and (C.4) in Appendix C. The third term can be written as

C3 = 1
τ 2T

E S2yε −
1

τ 4T 2
E S2yεSyy

1= −4(1+ 2ρ
2)τ 2

T
(21)

using (C.3) and (C.5). The fourth term can be approximated by

C4 = 1
τ 2T

E[S2yε]−
1

τ 4T 2
E[S2yεSyy]−

1
τ 2T 2

E[S2yεSεε]+
1

τ 4T 3
E[S2yεSyy Sεε]

1= −4(1+ 2ρ
2)τ 2

T
− 1− 4

T
+ 1+ 6+ 4(1+ 2ρ

2)τ 2

T
= 2
T

(22)

using the results (C.3) to (C.6). The fifth term can be written as

C5 = 1
τ 2T

E[S2yε]−
2

τ 2T 2
E[S2yεSεε]+

1
τ 2T 3

E[S2yεS
2
εε]

1= 1− 2 (1+ 4
T
)+ 1+ 10

T
= 2
T

(23)

using (C.3), (C.4) and (C.7). The sixth term can be approximated by

C6 = 1
τ 2T

E[S2yε]−
2
τ 4T 2

E[S2yεSyy]+
1
τ 6T 3

E[S2yεS
2
yy]

1= 1− 2(1+ 4(1+ 2ρ
2)τ 2

T
)+ (1+ 2(5+ 13ρ

2)τ 2

T
)

= 2(1+ 5ρ2)τ 2
T

(24)

due to (C.3), (C.5) and (C.8).

Carrying out the summation completes the proof. ¤

The Bartlett correction agrees with the factor calculated by Taniguchi (1988, 1991), although

his results are based on a different technique. Contrary to the first-order bias expansion of the OLS

estimator ρ̂ that is given by

E[ρ̂]− ρ 1= −2ρ
T
, (25)

see e.g. Marriot and Pope (1954), the Bartlett correction turns out to be independent of the AR(1)

parameter ρ. Furthermore, the factor is always smaller than 1. Hence, the Bartlett correction pre-

dicts that the uncorrected LR statistic tends to underreject a correct null hypothesis, i.e. its rejection

probability tends to be lower than the nominal level.

3 AR(1) model with intercept

In this section, a constant is added to the statistical model. Consider the AR(1) model with an intercept

yt = ρyt−1 + µ+ εt , εt ∼ NID(0, σ 2), |ρ| < 1, (26)
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where the starting value y0 is finite. First, we derive an expression for the LR statistic, which is based

on the ratio of the two sums of squared residuals. After some lengthy but not very difficult algebra,

the following two expressions for the SSRs under the null hypothesis ρ = ρ0 are obtained

SSRR = Sεε − T−1S2ε (27)

and

SSRU =
SεεS2y − 2SεSySyε + S2ε Syy + S2yεT − SεεSyyT

S2y − SyyT
. (28)

Simplifying the ratio of the two SSRs, the likelihood ratio can be written as

(LRτ )2/T 1= 1− (Scyε)2

Scyy Scεε
≡ 1− Qc, (29)

where

Scyε ≡ Syε − T−1SεSy, (30a)

Scyy ≡ Syy − T−1S2y, (30b)

Scεε ≡ Sεε − T−1S2ε . (30c)

As before, Qc in formula (29) can be interpreted as a squared sample correlation coefficient between

εt and yt−1, but now corrected for non-zero means. The LR statistic is given by

−2 log(LRc) = −T log(1− Qc). (31)

Adding a constant to the AR(1) model, makes the LR statistic invariant with respect to location

and scale. To verify this, suppose that zt = φyt + ψ , for some constants φ and ψ . Obviously, Scεε
remains unaffected by the transformation, whereas

Sczε = φScyε and Sczz = φ2Scyy, (32)

so that

1− (S
c
zε)
2

Sczz Scεε
= 1− (Scyε)2

Scyy Scεε
. (33)

Choosing φ = σ−1 and ψ = −µ/((1− ρ)σ), shows that the distribution of the LR statistic does not
depend on the nuisance parameter µ and σ . Hence, the analysis is carried out under the assumption

that µ = 0 and σ = 1.
As before, the Bartlett correction of the LR statistic can be determined by

E[−2 log(LRc)] 1= E[T Qc]+ E[1
2
T (Qc)2]. (34)
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The right-hand side of (34) consists of two expectations. Analogous to the analysis in the previous

section, the last expectation can be approximated by

E[
1
2
T (Qc)2] 1= 3

2T
. (35)

The first term on the right-hand side of (34) is somewhat more difficult to determine. Since

E
1
T
Scεε

0= E 1
T
Sεε and E

1
T
Scyy

0= E 1
T
Syy ,

the expansion of T Qc is analogous to the expansion of T Q, but now in terms of Scyε Scyy and Scεε. As

before, we are left with six relevant components and we can write

E[T Qc] =
6

i=1
Cci =

6

i=1
Ci + Dci , (36)

where Dci ≡ Cci − Ci denotes the difference between the coefficients derived in the AR(1) model
with intercept and the AR(1) model without intercept. Next, the Bartlett correction factor is given in

Theorem 2.

Theorem 2 In the stable Gaussian AR(1) model with intercept, given in (26), the expectation of the

likelihood ratio test for the null hypothesis ρ = ρ0 has the expansion

E[−2 log(LRc)] 1= 1− 1
2T
+ 1+ 3ρ
(1− ρ)T = 1+

1+ 7ρ
2(1− ρ)

1
T
. (37)

Proof of Theorem 2. In the proof, each of the components Dci and Cci will be discussed. Using (C.9)

and (C.10) from Appendix C, we get

Dc1 ≡ 1
τ 2T

E Scyε
2 − S2yε

= − 4θ
2

τ 2T
+ 3θ2

τ 2T
= − θ2

τ 2T
and Cc1 = 1−

θ2

τ 2T
, (38)

where θ ≡ 1/(1− ρ). The second component Dc2 can be decomposed in 7 terms

Dc2 ≡ E[S4ε S2y]
τ 2T 5
(1)

− 2E[S
3
ε SyεSy]
τ 2T 4
(2)

+ E[S
2
ε S2yε]
τ 2T 3
(3)

+

E[S2ε S2y]
τ 2T 3
(4)

− E[S
2
ε SεεS2y]
τ 2T 4
(5)

+ 2E[S
2
ε SεεSyεS2y]
τ 2T 3
(6)

− 2E[SεSyεSy]
τ 2T 2
(7)

. (39)

The first two terms are ‘too small’ to contribute to the first-order expansion since

S4ε S2y
T 5

= T−2 Sε√
T

4 Sy√
T

2

= Op(T−2) (40)
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and
S3ε SyεSy
T 4

= T−3/2 Sε√
T

3 Syε√
T

Sy√
T

= Op(T−3/2). (41)

Furthermore, using the fact that T−1Sεε → 1, we get

S2ε SεεS2y
T 4

= Sεε
T
S2ε S2y
T 3

1= S2ε S2y
T 3

(42)

and
S2ε SεεSyεS2y

T 3
= Sεε
T
S2ε SyεS2y
T 2

1= S2ε SyεS2y
T 2

, (43)

from which we deduce that the net contribution of the last four terms is negligible for the first-order

expansion. This leaves us with only one contributing component, viz the third term. Making use of

formula (C.11) in Appendix C shows that

Dc2
1= E[S2ε S2yε]

τ 2T 3
1= τ

2T 2

τ 2T 3
= 1
T

and Cc2 = −
3
T
. (44)

For components Dc3 to D
c
6, we will only give the terms that make a non-zero contribution to the

first-order expansion. Just like Dc2, D
c
3 consist of 7 terms. Only 3 of these are interesting, namely

Dc3
1= E[S2yεS2y]

τ 4T 3
+ 2E[SεSyεSySyy]

τ 4T 3
− 2E[SεSyεSy]

τ 2T 2
. (45)

Applying the three approximations (C.12)-(C.14) in Appendix C gives

Dc3
1= θ

2τ 2T 2

τ 4T 3
+ 2(2θ

2τ 2 + 2ρθτ 4)T 2
τ 4T 3

− 2(2θ
2T )

τ 2T 2
= θ

2 + 4ρθτ 2
τ 2T

(46)

so that

Cc3
1= θ

2 + 4ρθτ 2 − 4(1+ 2ρ2)τ 4
τ 2T

. (47)

Components Dc4 up to D
c
6 consist of sums of 23, 15 and 15 terms respectively, although none of them

contribute to the first-order expansion. This leads to

Dci
1= 0 and Cci

1= Ci for i = 4, 5, 6. (48)

The total additional term is equal to

6

i=1
Dci

1= 1+ 4ρθ
T |θ=(1−ρ)−1

= 1+ 3ρ
(1− ρ)T . (49)

Adding (49) to (18) completes the proof. ¤

Contrary to the case when there is no intercept, i.e. formula (18), we now see that the factor de-

pends on the AR(1) parameter ρ. For ρ > −1/3, the Bartlett correction in the model with intercept is
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larger than the Bartlett correction in the model without intercept. Furthermore, the factor is increasing

in ρ and hence it is asymmetric with respect to the origin; it even has an asymptote for ρ ↑ 1; see
Figure 1 for a graph when T = 20. This is in contrast to the bias expression of the OLS estimator ρ̂,
which is given by

E[ρ̂]− ρ 1= −1+ 3ρ
T

, (50)

see Kendall (1954).

Insert Figure 1 about here.

4 AR(1) model with intercept and Trend

In this section, the AR(1) model with an intercept and a linear trend is considered, i.e.

yt = ρyt−1 + µ+ βt + εt , εt ∼ NID(0, σ 2), |ρ| < 1, (51)

where the starting value y0 is finite. After some lengthy and tedious but not very difficult algebra, the

SSR under the null hypothesis ρ = ρ0 can be written as

SSRR = SεεS2τ − 2SεSτ Sτε + S2ε Sττ + (S2τε − SεεSττ )T
S2τ − SττT

, (52)

where Sτ ≡ t , Sττ ≡ t2 and Sτε ≡ tεt . Although an explicit expression for the unrestricted

SSR can be found, the lengthy formula does not reveal any insight and is not shown here. To shorten

the formulae considerably, the following two approximations are used

Sτ = 12T
2 + O(T ) and Sττ = 13T

3 + O(T 2), (53)

without effecting the first-order correction. Using (53) and subsequently simplifying the ratio of the

two SSRs, the likelihood ratio can be written as follows

(LRτ )2/T 1= 1− (S
τ
yε)

2

Sτyy Sτεε
≡ 1− Qτ , (54)

where

Sτyε ≡ Syε − 12SτεSτ yT 3
+ 6(SεSτ y + SτεSy)

T 2
− 4SεSy

T
, (55a)

Sτyy ≡ Syy −
12S2τ y
T 3

+ 12SySτ y
T 2

− 4S
2
y

T
, (55b)

Sτεε ≡ Syy − 12S
2
τε

T 3
+ 12SεSτε

T 2
− 4S

2
ε

T
. (55c)

The structure of the likelihood ratio shown in (54) is very similar to the expressions obtained in the

pure AR(1) model, cf (5), and AR(1) model with intercept, cf (29). In line with the previous section,
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the Bartlett correction will be derived under the assumptions µ = β = 0 and σ 2 = 1. In model (51),
the expected value of the LR statistic can be decomposed into

E[−2 log(LRτ )] 1= E[T Qτ ]+ E[1
2
T (Qτ )2]. (56)

The right-hand side of (56) consists of two terms of which the latter term can be approximated by

E[
1
2
T (Qτ )2] 1= 3

2T
. (57)

The first term on the right-hand side of (56) can be further decomposed into the following six com-

ponents

E[T Qτ ] =
6

i=1
Cτi =

6

i=1
Ci + Dτi . (58)

The coefficients Dτi will be calculated explicitly in the proof of Theorem 3. This theorem gives an

expression for the Bartlett factor in the AR(1) model with intercept and trend.

Theorem 3 In the stable Gaussian AR(1) model with intercept and linear trend, given in (51), the

expectation of the likelihood ratio test for the null hypothesis ρ = ρ0 has the expansion

E[−2 log(LRτ )] 1= 1− 1
2T
+ 4+ 8ρ
(1− ρ)T = 1+

7+ 17ρ
2(1− ρ)

1
T
. (59)

Proof of Theorem 3. We have to determine the appropriate approximations of the ‘additional’ com-

ponents Dτi (i = 1, ..., 6) of formula (58). Component Dτ1 consists of 13 distinct terms,

Dτ1 ≡ 1
τ 2T

E Sτyε
2 − S2yε (60)

= 144E[S2τεS2τ y]
τ 2T 7

− 144E[SεSτεS
2
τ y]

τ 2T 6
− 144E[S

2
τεSτ y Sy]

τ 2T 6
+ 36E[S

2
ε S2τ y]

τ 2T 5
+

168E[SεSτεSτ y Sy]
τ 2T 5

+ 36E[S
2
τεS2y]

τ 2T 5
− 48E[S

2
ε Sτ y Sy]
τ 2T 4

− 48E[SεSτeS
2
y]

τ 2T 4
−

24E[SτεSτ y Syε]
τ 2T 4

+ 16E[S
2
ε S2y]

τ 2T 3
+ 12E[SεSτ y Syε]

τ 2T 3
+ 12E[SτεSySyε]

τ 2T 3
− 8E[SεSySyε]

τ 2T 2
,

which are all of order T−1. To evaluate these terms, we make use of various relationships that exist

between expectations involving sums of Sτε, Sτ y , etcetera and expectations involving only Sε, Sy . For

example, we can approximate E[S2τεS2τ y] by
1
9E[S

2
ε S2y]T 4 + O(T 5); see (C.15) in Appendix C for an

overview of such relationships. Using (C.15) and simplifying gives

Dτ1
1= 8E[S

2
ε S2y ]

3τ 2T 3
− 4E[SεSySyε]

τ 2T 2
1= 0, (61)

where the last approximation uses (C.10) and (C.9).
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The second component Dτ2 consists of 52 distinct terms of which 26 terms remain after the use of

T−1Sεε → 1. Only 3 terms make a contribute to the first-order correction, which is given by

Dτ2
1= 12E[S2τεS2yε]

τ 2T 5
− 12E[SεSτεS

2
yε]

τ 2T 4
+ 4E[S

2
ε S2yε]

τ 2T 3

1= 2E[S2ε S2yε]
τ 2T 3

1= 2
T
, (62)

since E[S2τεS2yε] = 1
3E[S

2
ε S2yε]T 2 + O(T 3) and E[SεSτεS2yε] = 1

2E[S
2
ε S2yε]T + O(T 2).

Expanding Dτ3 leads to 52 distinct terms of which 29 are of order T−1. After using the relation-

ships shown in (C.15) and (C.16), only 5 different terms remain

Dτ3
1= −8E[S

2
ε S2y Syy]
3τ 4T 4

+ 2E[S
2
y S2yε]

τ 4T 3
+ 4E[SεSySyεSyy]

τ 4T 3
+ 8E[S

2
ε S2y]

3τ 2T 3
− 4E[SεSySyε]

τ 2T 2

1= − 8θ
2

τ 2T
+ 2θ2

τ 2T
+ 4(2θ

2τ 2 + 2ρθτ 4)
τ 4T

+ 8θ2

τ 2T
− 8θ2

τ 2T
1= 2(θ2 + 4ρθτ 2)

τ 2T
. (63)

Components Dτ4 up to Dτ6 consist of sums of 206, 129 and 129 different terms respectively,

although none of them contribute to the first-order expansion. This leads to

Dτi
1= 0 for i = 4, 5, 6. (64)

The total additional term is equal to
6

i=1
Dτi

1= 2(θ
2 + τ 2)
τ 2T |θ=(1−ρ)−1

= 4+ 8ρ
(1− ρ)T . (65)

Adding (65) to (18) completes the proof. ¤

The Bartlett correction in the AR(1) model with intercept and trend has the same functional form

as in the model with only an intercept. As before, the factor is increasing in ρ and goes to infinity for

ρ ↑ 1; see Figure 1 for a graph. For ρ > −3/5, the correction factor in the model with trend is larger
than the factor in the model without a trend. Hence, for this range, the finite-sample problems in the

model with trend are expected to be more server than in the model without trend. Using Theorem 1

of Kiviet and Phillips (1993), the estimation bias of the AR(1) coefficient estimator can be shown to

be

E[ρ̂]− ρ 1= −2+ 4ρ
T

. (66)

Note that the absolute value of the estimation bias of ρ̂ in the model with trend, which is shown in

(66), is uniformly (in ρ) larger than the estimation bias in the model without a trend, which is shown

in (50).
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5 Monte Carlo Results

To assess the quality of the asymptotic expansions, a small simulation study has been carried out. All

the simulations were done on a PC using Matlab.

Observations were generated according to an AR(1) process. All reported results are based on

105 replications and four sample sizes were considered: T ∈ {20, 40, 80, 100}. The AR(1) parameter
was taken as ρ ∈ {−0.99, 0.98, ..., 0.99}. Since the LR statistic is invariant with respect to σ (and
µ in the model with intercept), we set σ = 1 (and µ = 0) without loss of generality. In addition,

β = 0 in the model with a trend. The starting value was set to the expected value of the stationary
distribution, i.e. y0 = 0. In this way, the variance of y0 remains constant as ρ varies. The simulations
were also carried out for y0 ∼ N (0, 1/(1− ρ2)), which did not change the results significantly. The
nominal significance level was taken to be 5%. Results remain qualitatively the same for the 1% and

10% level.

Figure 2 shows the rejection frequencies for the pure AR(1) model. In this model, the LR test

based on the asymptotic χ2-distribution seems to perform reasonably well. Only when |ρ| is very
close to 1, the rejection frequencies rise to around 6.5%. Note that the reject error seems to be an

even function of ρ. Since the Bartlett correction is constant for a given sample size, the whole curve

of rejection frequencies is clearly shifted towards the nominal significance level for T = 20.

Insert Figure 2 about here.

Figure 3 shows the rejection frequencies when an intercept is added to the AR(1) model. As

expected, the discrepancy between the rejection frequencies and the nominal level is larger than in

Figure 2. Furthermore, the reject error is more pronounced for ρ close to +1 than for ρ close to −1.
The Bartlett correction seems to work well for ρ ∈ (−0.9, 0.7) when T = 20. In case T = 100, the
frequencies are only 1% different from the nominal level for ρ < 0.92. Since the Bartlett factor tends

to infinity for ρ ↑ 1, the corrected test becomes very conservative for values of ρ close to 1.
The rejection frequencies for the AR(1) model with intercept and trend are shown in Figure 4.

When T = 20, the ordinary LR test massively rejects the true null hypothesis for large positive values
of ρ (its empirical size is higher than 20% for ρ > 0.7). The Bartlett-corrected LR test, however,

becomes very conservative for these parameter values. For T = 100, the rejection frequencies are

within 1 percentage point of the nominal significance level for ρ < 0.83.

Overall, we conclude that the Bartlett correction works well within a reasonable range of the

parameter space. However, the ability to control the size depends critically on the deterministic terms

13



included in the estimation model.

Insert Figures 3 and 4 about here.

6 Conclusion

In this paper, the Bartlett correction is derived for testing hypotheses about the autoregressive parame-

ter ρ in the stable AR(1) model with and without an intercept and linear trend. In case deterministic

components are present, it is found that the correction factor is asymmetric in ρ. Furthermore, the

Bartlett correction is monotonic increasing in ρ and tends to infinity when ρ approaches the stability

boundary of +1. Hence, the Bartlett factor overcorrects for large positive values of ρ.
The simulation results indicate that the Bartlett corrections are useful for controlling the size of

the LR statistic in the models considered. The empirical size is close to the nominal significance

level (only 1 percentage point deviation) for a large part of the parameter space, although the range

of the parameter space critically depends upon the deterministic components in the estimation model.

Hence, these Bartlett corrections are not the ultimate panacea for the finite-sample problems that

exists in autoregressive models.

Since the models analysed in this paper are too simple to be useful in describing many economic

time series, allowing for more dynamics seems highly desirable.
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Appendix A: Some auxiliary results

Let A1, ..., A4 be real symmetric T × T matrices. In addition, let the T × 1 random vector ε be
such ε ∼ N (0, IT ). In a paper by Magnus (1978), the following expressions were derived for the
expectations of the form s

j=1 ε A jε when s ≤ 4:

E[
2

i=1 ε Aiε] = a1a2 + 2a12, (A.1)

E[
3

i=1 ε Aiε] = a1a2a3 + 2(a1a23 + a2a13 + a3a12)+ 8a123, (A.2)

E[
4

i=1 ε Aiε] = a1a2a3a4 + 8(a1a234 + a2a134 + a3a124 + a4a123),
+4(a12a34 + a13a24 + a14a23)+ 16(a1234 + a1243 + a1324)
+2(a1a2a34 + a1a3a24 + a1a4a23 + a2a3a14 + a2a4a13 + a3a4a12), (A.3)

where ai = Tr(Ai ), ai j = Tr(Ai A j), ai jl = Tr(Ai A j Al), ai jkl = Tr(Ai A j Al Ak) and Tr(·) denotes
the trace operator.

Appendix B: Some intermediate results

In calculating the various terms, it will be convenient to write the expectations in vector-form. Hence,
define

ε = (ε1, ..., εT )
and

y−1 = (y0, ..., yT−1) and y = (y1, ..., yT ) ,
so that Sεε = ε ε, Syε = ε y−1 and Syy = y−1y−1. In matrix notation, the pure AR(1) model can be
written as y = ρy−1 + ε. To express y−1 in terms of the innovations, define the T × T matrix and
T × 1 vector

C =



0 0 · · · · · · 0

1 0
...

ρ 1 0
ρ2 ρ 1 0
...

. . .
. . .

...

ρT−2 · · · ρ2 ρ 1 0


and F =



1
ρ

ρ2

ρ3

...

ρT−1


.

The vector y−1 may be decomposed as

y−1 = Cε + Fy0. (B.1)

Although the second-order estimation bias is likely to involve the starting value y0, see for instance
Kiviet and Phillips (1998) for the ARX(1) model with fixed regressors, the first-order bias does not
depend on y0 (provided that y0 is finite). Hence, we shall ignore y0 in the remainder of the analysis
and we simply have that y−1 = Cε.
Even though the following trace results can be obtained by using the properties of geometric

series, we have used the computer algebra system Mathematica c 4.0 for computation; see Wolfram
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(1991).

Tr(CC ) =
T−2

j=0

j

i=0
ρ2i

=
T−2

j=0

1− ρ2( j+1)
1− ρ2 = (1− ρ

2)T + ρ2T − 1
(1− ρ2)2

=
0

1
1− ρ2 T = τ

2T, (B.2)

where τ 2 ≡ (1 − ρ2)−1 and =
0
indicates that terms of order O(T 0) or smaller are neglected. Note

that the results in Appendix A only apply to symmetric matrices. Hence, let A = (C + C )/2. Using
(B.2), we find

Tr(AA) = 1
4
Tr(CC)+ Tr(CC )+ Tr(C C)+ Tr(C C )

= 1
2
Tr(CC ) =

0

1
2
τ 2T, (B.3)

since Tr(CC) = Tr(C C ) = 0 and Tr(CC ) = Tr(C C).

Tr(AAC C) = 1
4
Tr(CCC C)+ Tr(CC C C)+ Tr(C CC C)+ Tr(C C C C)

=
0

1
4
[2ρ2 + 2(1+ ρ2)]τ 6T = 1

2
(1+ 2ρ2)τ 6T, (B.4)

since

Tr(CCC C) = Tr(C C C C) =
0
ρ2τ 6T,

Tr(CC C C) =
0
Tr(C CC C) =

0
(1+ ρ2)τ 6T .

Furthermore,

Tr(AC C) = 1
2
Tr(CC C)+ 1

2
Tr(C C C)

=
0
ρτ 4T, (B.5)

since Tr(CC C) = Tr(C C C) =
0
ρτ 4T .

For the AR(1) model with intercept, the following results are interesting

Tr(Aιι C) =
0
Tr(C ιι C) =

0
Tr(ιι AA) =

0
θ2T, (B.6)

Tr(C ιι Cιι ) =
1
θ2T 2, (B.7)

where θ2 ≡ (1− ρ)−2 and =
1
indicates that terms of order O(T 1) or smaller are neglected Finally,

Tr(AAC ιι C) =
0
Tr(ιι CAC A) =

0
θ4T . (B.8)
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Appendix C: Some expectations

We are interested in calculating expectations such as

E[S2yε] = E[ε Cεε Cε]. (C.1)

To apply the results of Magnus (1978) as reproduced in Appendix A, define A = (C + C )/2. For
quadratic forms, it is well known that ε Cε = ε Aε. From (A.1) using A1 = A2 = A, we get

E[ε Cεε Cε] = E[ε Aεε Aε] = Tr(A)2 + 2Tr(AA). (C.2)

Note that Tr(A) = 0, since all elements on the diagonal are zero. Using result (B.3), we finally get
the desired first-order approximation

E[S2yε] =
1
τ 2T

Tr(CC ) =
0
τ 2T, (C.3)

where =
0
indicates that terms of order O(T 0) or smaller are neglected. Again using (B.3), it follows

that

E S2yεSεε = E[ε Aεε Aεε Iε]

= 2Tr(I )Tr(AA)+ 8Tr(AA) =
0
τ 2T 2 + 4τ 2T . (C.4)

With the use of (B.2) to (B.4), we find

E S2yεSyy = E[ε Aεε Aεε C Cε]
= 2Tr(C C)Tr(AA)+ 8Tr(AAC C)
=
0
τ 4T 2 + 4(1+ 2ρ2)τ 6T . (C.5)

Application of (A.3) and (B.2) to (B.4) shows that

E[S2yεSyy Sεε] = E[ε Aεε Aεε C Cεε Iε]
= 8 Tr(C C)Tr(AA)+ Tr(I )Tr(AAC C) + 4 Tr(AA)Tr(C C)+

2 Tr(C C)Tr(I )Tr(AA)+ 3 · 8 Tr(AAC C)
=
1
τ 4T 3 + (6τ 4 + 4(1+ 2ρ2)τ 6)T 2. (C.6)

By applying (A.3) and using (B.3), we get

E[S2yεS
2
εε] = E[ε Aεε Aεε Iεε Iε]

= 2 · 8 Tr(I )Tr(AA)+ 4 Tr(AA)Tr(I )+ 2 Tr(I )2Tr(AA)+ 3 · 8 Tr(AA)
=
1
8τ 2T 2 + 2τ 2T 2 + τ 2T 3 + 12τ 2T = τ 2T 3 + 10τ 2T 2. (C.7)

For the component C6, we need

E[S2yεS
2
yy] = E[ε Aεε Aεε C Cεε C Cε]

= 2 · 8 Tr(C C)Tr(AAC C)+ 4[Tr(AA)tr(C CC C)+ 2Tr(AC C)2]+
2Tr(C C)2Tr(AA)+ 16[2Tr(AAC CC C)+ Tr(AC CAC C)]

= 8(1+ 2ρ2)τ 8T 2 + 4[1
2
(1+ ρ2)τ 8T 2 + 2ρ2τ 8T 2]+ τ 6T 3 + O(T )

=
1
τ 6T 3 + 2(5+ 13ρ2)τ 8T 2, (C.8)
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since Tr(AAC CC C) and Tr(AC CAC C) are only of order O(T ).
Using (B.6) and (B.7), we get

E[SyεSεSy] = E[ε Aεε ιι Cε] = 2Tr(Aιι C) =
0
2θ2T, (C.9)

E[S2ε S
2
y ] = E[ε ιι εε C ιι Cε]

= Tr(C ιι C)Tr(ιι )+ 2Tr(C ιι Cιι ) =
1
3θ2T 2, (C.10)

E[S2ε S
2
yε] = E[ε ιι εε Aεε Aε]

= 2Tr(ιι )Tr(AA)+ 8Tr(ιι AA)
= 2T 12τ

2T + 8θ2T =
1
τ 2T 2. (C.11)

For approximating Dc3, we have to determine the following three expectations

E[S2yεS
2
y] = E[ε Aεε Aεε C ιι Cε]

= 2Tr(C ιι C)Tr(AA)+ 8Tr(AAC ιι C)
=
0
2θ2T 12τ

2T + 8θ4T =
1
θ2τ 2T 2, (C.12)

E[SεSyεSySyy] = E[ε ιι Cεε Aεε C Cε]
= 2[Tr(ιι C)Tr(AC C)+ Tr(C C)Tr(ιι CA)]+ 8Tr(ιι CAC A)
=
0
2[θT τ 4ρT + τ 2T θ2T ]+ 8θ4T =

1
(2θ2τ 2 + 2ρθτ 4)T 2, (C.13)

E[SεSySyε] = E[ε ιι Cεε Aε] = 2Tr(ιι CA) =
0
2θ2T . (C.14)

For approximating Dτ1 and Dτ3 , we the following relationships are useful

E[S2τεS
2
τ y Sχ ] =

5

1
9
E[S2ε S

2
y Sχ ]T

4, (C.15a)

E[SεSτεS2τ y Sχ ] =
4
E[S2τεSτ y Sy Sχ ] =4

1
6
E[S2ε S

2
y Sχ ]T

3, (C.15b)

E[S2ε S
2
τ y Sχ ] =

3
E[S2τεS

2
y Sχ ] =3 E[SεSτεSτ y Sy Sχ ] =3

5
18
E[S2ε S

2
y Sχ ]T

2, (C.15c)

E[S2ε Sτ y Sy Sχ ] =
2
E[SεSτεS2y Sχ ] =2

1
2
E[S2ε S

2
y Sχ ]T, (C.15d)

E[SτεSτ y SyεSχ ] =
2

1
3
E[SεSySyεSχ ]T 2, (C.15e)

E[SεSτ y SyεSχ ] =
1
E[SτεSySyεSχ ] =

1

1
2
E[SεSySyεSχ ]T, (C.15f)

where Sχ ∈ {1, τ−2T−1Syy}. The coefficients 1
2 ,
1
3 ,
1
6 = 1

2
1
3 and

1
9 = 1

3
2 are recognizable as

(combinations of) the leading coefficients in the approximations t ≈ 1
2T

2 and t2 ≈ 1
3T

3. The
coefficient 518 in (C.15c), however, is somewhat unexpected. Hence, we shall derive this relationship
explicitly.

E[S2ε S
2
τ y] = E[ε ιι εε C ππ Cε]

= tr(ιι )tr(C ππ C)+ 2tr(ιι C ππ C)
=
3
T · 1
3
θ2T 3 + 2 · 1

4
θ2T 4 = 5

6
θ2T 4,
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where π = (1, 2, ..., T ). Due to (C.10), we thus have that E[S2ε S2τ y] = 5
3·6E[S

2
ε S2y]T 2 + O(T 3). The

following additional relationships are useful for approximating Dτ3

E[S2τ y S
2
yε] =

3

1
3
E[S2y S

2
yε]T

2, (C.16a)

E[Sτ y Sy S2yε] =
2

1
2
E[S2y S

2
yε]T . (C.16b)
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Figure 1: The Bartlett correction factor for the AR(1) model with intercept (and trend).
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Figure 2: Rejection frequencies in the pure AR(1) model: yt = ρyt−1 + εt . The (gray) LR line is
based on the asymptotic χ2-distribution, while the (black) LR* line is based on the Bartlett corrected
critical values.
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Figure 3: Rejection frequencies in the AR(1) model with intercept: yt = ρyt−1 + µ+ εt . The (gray)
LR line is based on the asymptotic χ2-distribution, while the (black) LR* line is based on the Bartlett
corrected critical values.
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Figure 4: Rejection frequencies in the AR(1) model with intercept and trend: yt = ρyt−1+µ+βt+εt .
The (gray) LR line is based on the asymptotic χ2-distribution, while the (black) LR* line is based on
the Bartlett corrected critical values.
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