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Abstract

Limited-information methods are commonly used to estimate forward-looking models with

rational expectations, such as the “New Keynesian Phillips Curve” of Gaĺı and Gertler (1999). In

this paper, we address issues of identification that have been overlooked due to the incomplete-

ness of the single-equation formulation. We show that problems of weak instruments may arise,

depending on the properties of the ‘exogenous’ variables, and that they are empirically relevant.

We also uncover a link between identification and dynamic mis-specification, and examine the

(lack of) power of Hansen’s (1982) J test to detect invalid over-identifying restrictions. With

regards to the New Phillips curve, we find that problems of identification cannot be ruled out,

and they deserve further attention.

JEL classification: C22, E31

Keywords: Weak instruments, Rational Expectations, GMM, New Phillips Curve.

1 Introduction

Forward-looking Rational Expectations (RE) models are common in the macroeconomic literature.

These models are typically of the form:

yt = β E(yt+1|Ft) + γ yt−1 + dt (1)

where yt is a decision variable, dt is a ‘driving’ or ‘forcing’ variable, usually thought of as ‘exogenous’,

and E(yt+1|Ft) is the expectation of yt+1 conditional on the information set Ft. The popularity of

∗An earlier version of this paper was entitled “Identification and mis-specification issues in forward-looking mod-

els”. I am grateful to David Hendry and Adrian Pagan for numerous comments and insightful discussions. I also

benefited greatly from comments by Jean Boivin, Peter Boswijk, Maurice Bun, Guillaume Chevillon, Kees Jan van

Garderen, Massimo Guiliodori, Eilev Jansen, Søren Johansen, Frank Kleibergen, George Konaris, Sebastiano Man-

zan, John Muellbauer, Hashem Pesaran, Hugo Rodriguez, Jim Stock, Jan Tuinstra, Ken West and two anonymous

referees.
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such models derives from the fact that they make the notion of forward-lookingness in economic

decisions explicit and address the so-called Lucas (1976) critique.

The estimation of those models has been the subject of considerable research (see Hansen

and Sargent 1991 or Binder and Pesaran 1995 for reviews). The various methods proposed in

the literature can be divided into full and limited information methods, such as Full Information

Maximum Likelihood (FIML) and Generalized Method of Moments (GMM), respectively. The

former require the specification of a completing model for the forcing variables and the derivation

of the solution to the model, the restricted reduced form. Their implementation is computationally

more demanding and their results are not robust to mis-specification of the completing model. In

contrast, limited information methods obviate the need to model the forcing variables, and are

generally robust to alternative distributions for them, at the cost of being less efficient than full

information methods.

However, there is a substantive condition that must be satisfied for any estimation method to

provide consistent estimates and reliable inference on the parameters of interest β and γ. Namely,

these parameters must be identified on the available information. The question of identifiability of

such RE models has been originally studied by Pesaran (1981). A thorough analysis of the order

and rank conditions for the identification of RE models is given in Pesaran (1987). In that book,

Pesaran warns against the “indiscriminate application of the Instrumental Variable (IV) method to

rational expectation models”, stressing that the necessity of the identification condition “is often

overlooked in the literature”. Pesaran also urges that the conditions for identification of the RE

model under consideration must be checked prior to estimation by limited information methods.

Unfortunately, this problem appears to have been overlooked in the recent monetary economics

literature, where it has become common practice to estimate forward-looking RE models by GMM.

One example is the use of single-equation GMM for the estimation of forward looking monetary

policy rules, popularized by Clarida, Gaĺı, and Gertler (1998). Another important example is the

influential paper of Gaĺı and Gertler (1999) (henceforth GG), which uses the same econometric

methodology in estimating the New Keynesian Phillips curve, a forward-looking model for inflation

dynamics (see also Batini, Jackson, and Nickell 2000 and Gaĺı, Gertler, and López-Salido 2001).

The main objective of the present study is to raise some methodological points regarding the

identification analysis of forward-looking rational expectation models. We show that good use of

limited-information methods, such as GMM, requires a structural identification analysis, which

is typical of a full information approach. This analysis requires modelling the forcing variables

explicitly, solving the model, and using the restrictions implied by rational expectations to assess

the identifiability of the parameters.

Furthermore, we examine the problem of identification of the forward-looking model (1), in the

light of the recent weak instruments literature (see Stock, Wright, and Yogo 2002 for a review).

We distinguish between the problem of under-identification (the failure of the usual rank condition

for identification), and weak identification (when the rank condition is satisfied, but GMM remains

unreliable). Problems of weak identification have been well-documented across the spectrum of

applied econometrics (Stock, Wright, and Yogo 2002). This paper contributes to this literature by

addressing these issues in the context of the New Keynesian Phillips curve.

The specification of the Phillips curve proposed by GG consists of a term in expected future

inflation, a term in lagged inflation and a term in the labor share. Using conventional GMM esti-
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mation GG report that forward dynamics dominate backward-looking behavior, with a coefficient

on future inflation equal to 0.6 relative to less than 0.4 for the coefficient on lagged inflation. In this

paper we show that the identification of those parameters depends on the dynamics and variability

of the labor share. When we calibrate these to US data we find that the model of the Phillips

curve proposed by GG is weakly identified. In this case, simulations indicate that one would tend

to estimate a substantially positive coefficient on expected inflation irrespective of what the popu-

lation value of that coefficient is. More specifically, GMM estimates would tend to find dominant

forward looking behavior even when the Phillips curve is purely backward looking. This means

that existing estimates of the GG model are not reliable evidence that the Phillips curve has a

significant forward looking component.

In fact, it seems that the GG model is mis-specified because it does not adequately capture

the dynamics of inflation. If the model is mis-specified, then we find that its parameters will

be spuriously identified in the following sense: the instruments will correlate strongly with the

endogenous regressors (future inflation and the labor share) but they will not be exogenous. This

has implications for standard pretests of identification that are based on the unrestricted covariance

between the endogenous regressors and the instruments (e.g., Gaĺı, Gertler, and López-Salido 2001).

Such tests do not impose the restrictions on the dynamics that are implied by the model, and they

can be very misleading because they have power to detect identification even when the model is

mis-specified.

In principle, mis-specification can be tested using Hansen’s (1982) J test of overidentifying

restrictions. We conduct a simulation experiment, calibrated to match the observed inflation dy-

namics in the data, in order to study the power of the J test in this context. We find that the

common practice of using a very large number of instruments, and unnecessarily general correc-

tions for serial correlation (based on a Newey and West 1987 GMM weighting matrix), virtually

annihilates the power of the J test to detect this mis-specification in finite samples of order less

than 1000. The power of the test can be increased substantially by using fewer instruments and

a different weighting matrix proposed by West (1997), which is more appropriate for inference on

forward-looking models.

The structure of the paper is as follows. Section 2 introduces the hybrid Phillips curve model of

GG and defines the relevant concepts of identification. Section 3 analyzes the identifiability of the

model, assuming it is correctly specified. Section 4 relaxes the assumption of correct specification

and studies the implications of dynamic mis-specification. Finally, section 5 concludes. Algebraic

derivations are given in the appendix at the end. An unpublished additional appendix is available

on request.

2 Preliminaries

The model

‘Phillips curve’ is the name economists use to refer to an equation that describes the evolution of

prices (or of the inflation rate) in a macroeconomic system. The New Keynesian Phillips curve is

a pure forward-looking model of inflation dynamics, which typically takes the form:

πt = λxt + β E(πt+1|Ft) (2)
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where xt is a forcing variable, usually a measure of the output gap or marginal costs. The set

Ft contains, in principle, all of the information that is available to the agents at time t, which is

usually more than a handful of macroeconomic variables that the econometrician may have at their

disposal. Following the convention in the literature (Binder and Pesaran 1995), we assume that Ft

contains at least current and past values of the endogenous variable πt, and the forcing variable xt,

namely Ft = (πt, πt−1, . . . ;xt, xt−1, . . . ; . . .).

Model (2) can be seen as a limiting case of a more general model that accommodates both

forward- and backward-looking price-setting behavior. This prompted a number of researchers to

put forward a hybrid version of new and old Phillips curves (Fuhrer and Moore 1995 and Buiter

and Jewitt 1989):

πt = λxt + γE(πt+1|Ft) + (1− γ)πt−1 (3)

GG proposed a new hybrid version, which is motivated by the idea of combining both forward-

and backward-looking price-setting behavior. This leads to:

πt = λ st + γfE(πt+1|Ft) + γbπt−1 + εt (4)

where εt is an exogenous inflation shock, which is an innovation w.r.t. Ft−1 with variance σ2ε , and

st is a measure of real unit labour costs in deviations from their steady state, which is used as a

proxy for marginal costs following Sbordone (2002).1

GMM estimation

Model (4) cannot be estimated directly due to the fact that E(πt+1|Ft) is a latent variable. There-

fore, we replace it by πt+1 in order to derive the GMM estimating equation:

πt = λst + γfπt+1 + γbπt−1 + et (5)

where et = εt − γf ηt+1 is the ‘GMM residual’, and ηt+1 ≡ πt+1 − E(πt+1|Ft) is the forecast error

in predicting future inflation, and hence a mean innovation process with respect to Ft. Note that

et exhibits up to first-order serial correlation by construction, since ηt and εt may be correlated.

Equation (5) is a linear GMM regression, with valid moment conditions of the form:

E
[
(πt − λst − γfπt+1 − γbπt−1)Z̄t

]
= 0 (6)

where Z̄t is a vector of instruments. The choice of admissible instruments Z̄t depends on the

properties of the GMM residual εt − γfηt+1. Rational expectations together with E(εt|Ft−1) = 0

imply that any Z̄t ∈ Ft−1 is admissible. If we further assume that st is exogenous, namely E(εtst) =

0, then st is also an admissible instrument.

The estimator used by GG is a 2-step GMM estimator with a 12-lag Newey and West (1987)

Heteroscedasticity and Autocorrelation Consistent (HAC) estimate of the variance of the moment

conditions. Their instrument set includes only lagged variables, which means that they implicitly

treat st as endogenous.
2 All the empirical results in this paper are based on the original data set of

GG. The data is quarterly, and the sample spans from 1960:Q1 to 1997:Q4. The variable definitions

and measurement are given in the appendix.
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Concepts of identification

Although the linear GMM regression (5) differs from a prototype linear IV regression model, the

latter provides useful insights into the relevant identification issues. Identification depends on the

correlation between the endogenous regressors and the instruments: under-identification occurs

when this correlation is zero and weak identification arises when it is small. Also, the strength

of identification can be studied using the so-called concentration parameter, which is defined in

Appendix A.2.

The concentration parameter is a matrix of dimension equal to the number of endogenous

variables in the model and can be thought of as a multivariate signal-noise ratio in the first-

stage regression of the endogenous variables on the instruments. This matrix characterizes the

finite-sample distributions of IV estimators and test statistics and their departure from the first-

order asymptotic approximations (see Staiger and Stock 1997). Moreover, as argued by several

authors, the minimum eigenvalue of the concentration parameter matrix can serve as a scalar

unitless measure of identification, or even used to develop a test for weak instruments (Stock and

Yogo 2003). Hereafter, we will refer to the concentration parameter as the minimum eigenvalue of

the conventional concentration matrix, denoted µ2.

The usual rank condition for identification is equivalent to µ2 > 0, and when satisfied, we say

that the model is generically identified. In contrast, when µ2 = 0, the model is partially or under -

identified. As the weak instruments literature has shown, generic identification is not sufficient

for GMM estimation and inference to be reliable. Identification is deemed weak when inferences

based on conventional normal approximating distributions are misleading (Stock, Wright, and Yogo

2002).

To be more precise, it is useful to have a working definition of weak identification. Stock and

Yogo (2003) offer such a definition in the context of the prototype IV regression, where weak

identification is synonymous to weak instruments. Instruments are deemed weak if µ2 is below

some threshold, which varies according to the chosen tolerance criteria for expected bias of any

given IV estimator or maximum size distortion of tests based on it. Typically, a value of µ2 less

than 10 would be considered indicative of weak identification.3

3 Identification analysis

To examine the identification of the forward-looking model (4) using GMM, we need to look at the

first-stage regression for the endogenous regressors, πt+1 and possibly st, given a set of instruments

Z̄t. The nature of the endogenous regressors and the instruments means that the first-stage regres-

sion can be derived upon knowledge of the reduced form of the system (πt, st). It is well-known that

the RE assumption in model (4) implies restrictions on this reduced form. To derive the restricted

reduced form, we need to specify a completing model for the forcing variables and solve the model.

This approach will be referred to as structural identification analysis.

Alternatively, we can perform a pretest of identification based on the unrestricted first-stage

regression, that is, ignoring the restrictions implied by the structural model. This approach is

standard in IV regressions. However, such pretests can be misleading in the case of the forward-

looking model (4), because they have power even when the model is spuriously identified through

mis-specification, as we explain below.
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In contrast, by conditioning on the structural model being correctly specified, structural iden-

tification analysis avoids conflating identification and mis-specification issues and therefore, it is

more reliable than standard identification pretests.

3.1 Under-identification

We start by examining the pathological cases of under-identification, and offer a result that can be

used to derive a simple test of the under-identification hypothesis.

For the analysis of this section, we consider a generalized version of the baseline equation (4),

allowing for more dynamics of πt and st in the model, namely

πt =

n∑

j=0

λjst−j + γfE(πt+1|Ft) +
m∑

i=1

γiπt−i + εt (7)

To discuss identification, we need a completing model for st. We consider the following linear

specification:

st =

p∑

i=1

ρist−i +

q∑

j=1

ϕjπt−j + vt (8)

where vt is a mean innovation process w.r.t. Ft−1, with E(v2t ) = σ2v and E(vtεt) = σvε. The

parameters of the completing process {ρi}pi=1, {ϕj}
q
j=1, σ

2
v and σvε, are the nuisance or auxiliary

parameters.

Appendix A.3 discusses the conditions for existence and uniqueness of a solution and derives

the backward and forward solutions to the model. The latter takes the form

πt =

κπ∑

i=1

δiπt−i +

κs∑

j=0

αjst−j + αεεt (9)

where κπ = max(q−1,m) and κs = max(p−1, n). The coefficients {δi}, {αj} and αε, are functions

of the structural and nuisance parameters (see Appendix A.3). The condition for uniqueness of the

solution (determinacy) depends on the values of the structural and nuisance parameters. Thus, the

parameter space can be partitioned into a determinacy region, in which the forward solution (9) is

the unique solution to the model (7); and an indeterminacy region in which several other solution

are possible. These other solutions, which we refer to as backward solutions, are characterized by

richer dynamics and the possibility of sunspot shocks (see Appendix A.3).

We focus on the forward solution for various reasons. First, because it is more relevant for many

important applications of the forward-looking model (7), like the New Phillips curve example that

we consider here, but also many other linear quadratic adjustment cost models (e.g., the inventory

models in West and Wilcox 1996), where the underlying economic theory restricts the parameters

of the model to lie in the determinacy region a priori. Second, because the objective of this study is

to expose pathological situations of weak identification, and these are more likely to occur when the

model has a forward solution (see Mavroeidis 2004). Third, backward solutions make identification

analysis more involved since it is necessary to address the issue of the indeterminacy of the reduced

form.

The following result characterizes pathological cases of under-identification, and generalizes

Pesaran (1987, Proposition 6.2).
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Proposition 3.1. When the forcing variable follows (8) and the reduced form of the structural

model (7) is given by the forward solution (9), the structural parameters are under-identified if

ρi = 0 for all i > n+ 1 and ϕj = 0 for all j > m+ 1.

This result follows by noting that, if the dynamics of the forcing variable are limited by q ≤ m+1

and p ≤ n + 1 in (8), then κπ = m and κs = n in the reduced form (9). So the reduced from is

nested within the structural model (7), and therefore, there are more structural than reduced-form

parameters. Since the latter determine the data generating process (DGP), this means there are

infinitely many observationally equivalent structures, i.e. there are infinitely many values of the

structural parameters consistent with the same DGP.4

Note that Proposition 3.1 applies not only to cases in which the structural model has a unique

(determinate) solution, but also in the case of indeterminacy, provided the reduced form is char-

acterized by a forward solution.5 This is arguably a special case that rules out sunspots. Under

indeterminacy, the possibility of sunspot equilibria introduces additional considerations for the iden-

tification analysis of the model, which are beyond the scope of the present study. Interested readers

are referred to Pesaran (1987) and the recent important contribution of Lubik and Schorfheide

(2004) who propose a test for indeterminacy and discuss some relevant identification issues.

Proposition 3.1 suggests a simple test of the null hypothesis that the structural model (7) is

under-identified, based on the completing model (8). However, it must be emphasized that the

converse of this proposition does not hold, i.e., higher order dynamics in st are necessary but not

sufficient for the generic identification of the structural model. A simple counter-example will be

given in the context of the GG model below.

3.1.1 Application to the baseline model

The result of the previous section can be applied to the GG model (4), which is a special case of

(7) with m = 1 and n = 0. Proposition 3.1 suggests the under-identification hypothesis

H0 : ρi = ϕj = 0, for all i > 1 and j > 2, against

H1 : ρi 6= 0, for some i > 1 or ϕj 6= 0 for some j > 2.
(10)

Provided the residuals in the completing model (8) are homoscedastic and serially uncorrelated,

the above hypothesis can be tested by a standard F-test of exclusion restrictions in that regression.

Upon estimating model (8) with p = q = 4 by OLS, standard diagnostic tests on v̂t show no

evidence of heteroscedasticity, serial correlation, or non-normality (details are in the unpublished

additional appendix). Hence, the standard F-test is appropriate.

Using p = q = 4 the F-statistic does not reject H0 even at the 70% level of significance. This

means that if model (4) has a forward solution, as it is conventionally believed (see GG section

4.4), it will be under-identified.6 This conclusion is robust to using more lags of πt and st under

the alternative, i.e., varying p and q from 5 to 8. In fact, even the more restrictive hypothesis

that st follows a simple first-order autoregression, AR(1), cannot be rejected at the same level of

significance. Thus, the completing model (8) admits a very simple parsimonious representation in

this case.
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3.2 Empirical identification

Even if the previous under-identification hypothesis (10) were rejected, this would be insufficient

evidence to conclude the model is empirically identified on that information set. This is because

the strength of identification still remains an issue that can be studied using the concentration

parameter.

Equations (8) and (9) constitute the reduced form of the system (πt, st), that can be used to

derive the first-stage regression for the endogenous variables (πt+1, st) in the structural model (4).

We conform with the common practice of treating the forcing variable st as endogenous.

For tractability and clarity, we consider the simplest completing model for st that could yield

generic identification, namely

st = ρ1st−1 + ρ2st−2 + vt. (11)

The forward solution to the model is a special case of (9)

πt = α0st + α1st−1 + δ1πt−1 + αεεt (12)

where the reduced-form parameters (α0, α1, δ1, αε) are functions of the structural and nuisance

parameters (see Appendix A.4).

Leading (12) one period and taking expectations conditional on Ft−1, the forecasting equation

for πt+1 is

πt+1 = α̃1st−1 + α̃2st−2 + δ21πt−1 + η̃t+1 (13)

where α̃1, α̃2 and η̃t+1 are given in Appendix A.4.

The GMM regression (5) consists of the two endogenous regressors Yt = (πt+1, st)
′ and one

exogenous regressor Xt = πt−1. The first-stage regression for the endogenous regressors Yt consists

of equations (13) and (11). It can be written in the generic form

Yt = Π′Zt +Φ′Xt + Vt (14)

where, in this case, the only relevant instruments are Zt = (st−1, st−2)
′ and Xt = πt−1. The

coefficient matrix Π is given in Appendix A.5, while Φ = (δ21 , 0), and the residual is Vt = (η̃t+1, vt)
′.

Let us now turn to the concentration parameter µ2, in order to investigate the potential sources

of weak identification. A description of µ2 is given in Appendix A.5, where it can be seen that

µ2 is analytically intractable even in this simple case. Some insight about µ2 can be gained if we

look at a restricted version of the model, where an analytical expression for µ2 is available, see

equation (27) in Appendix A.5. In order to understand the interplay of the structural and nuisance

parameters in µ2, we point out the following properties.

First, µ2 is a function not only of the nuisance parameters ρ1, ρ2, σv, σvε but also of the structural

ones λ, γf , γb and σε. By definition, µ2 is a function of the reduced-form parameters α0, α1, δ1, αε
(see Appendix A.5), and these are linked to the structural parameters through the solution to the

model (see equation (24) in the appendix). Contrast this with a model that has no forward-looking

components, e.g., a traditional backward-looking Phillips curve, with γf = 0 in (4). In that case,

the only endogenous variable would be st, and the first-stage regression would coincide with the

completing model for st, equation (11), whose coefficients are the nuisance parameters. So µ2 would

not depend on the structural parameters λ, γb or σε.
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Second, the limiting case of under-identification that we discussed in section 3.1 (µ2 = 0) arises

when either ρ2 = 0 or λ = 0 (see Appendix A.5). This shows that ρ2 6= 0 is necessary but

not sufficient for generic identification. That is, the model will be under-identified when λ = 0,

irrespective of the dynamics of the forcing variables. It is obvious that if λ is zero in the model (4),

then inflation is driven solely by the structural shock εt, and it is independent of the dynamics of

st. Third, µ
2 is invariant to re-scaling of the data. This means that it only depends on σ2

ε , σ
2
v and

σvε through σ2v/σ
2
ε and σvε/σ

2
ε .

Fourth, since µ2 = 0 when ρ2 = 0, we expect it to be small when ρ2 is ‘close’ to zero, when

holding all other parameters fixed. However, since ρ2 is not the only parameter governing the

strength of identification, it does not follow that identification will be strong when ρ2 is significantly

different from zero (both in a quantitative, as well as in a statistical sense). In order to illustrate this

point, we explore numerically how µ2 varies with the nuisance parameters ρ2 and σv/σε, holding

the structural parameters (λ, γf , γb) fixed at the values reported by GG (see GG Table 2) and

calibrating the remaining nuisance parameters to the GG data. In particular, ρ1 is allowed to vary

with ρ2 so as to keep the first autocorrelation of st, ρ1/(1 − ρ2), fixed at the value 0.9 which is

estimated from the data.7 This value is typical of many other persistent macroeconomic time series.

The results are given in Table 1. We see that most of the values of the concentration parameter

Table 1: The concentration parameter for the New Keynesian Phillips curve as a function of ρ2
and σv/σε.

ρ2 σv/σε: 1/2 1 2 4 8

0.65 0.122 0.484 1.880 6.807 20.375

0.45 0.022 0.086 0.337 1.251 3.818

0.25 0.002 0.007 0.029 0.105 0.316

0.05 0.000 0.000 0.000 0.000 0.000

-0.05 0.000 0.000 0.000 0.000 0.000

-0.25 0.002 0.008 0.029 0.103 0.269

-0.45 0.023 0.092 0.354 1.239 3.187

-0.65 0.135 0.535 2.064 7.250 19.333

Note: This table reports the concentration parameter µ2, which is a

measure of empirical identification of a structural model estimated by

GMM. Typically, µ2 < 10 indicates weak identification. The structural

model is πt = λst+γfE(πt+1|Ft)+γbπt−1+εt; the forcing variable follows

st = 0.9(1 − ρ2)st−1 + ρ2st−2 + vt; (εt, vt) are uncorrelated innovations

with variances σ2
ε and σ2

v respectively. The instruments are st−1, st−2

and πt−1. The table shows numerically how µ2 varies as a function of

ρ2 and σv/σε, when the remaining parameters are fixed at (λ, γf , γb) =

(0.015, 0.591, 0.378). In bold is the value of µ2 that corresponds to the

actual parameter estimates ρ̂2 = −0.05 and σ̂v/σ̂ε = 1/2 from the data.

reported in Table 1 are small. That is, even when ρ2 is considerably different from zero, identifica-

tion may still be weak, depending on the value of the remaining parameters. We also see that µ2

is increasing in σv/σε, or, equivalently it is decreasing in the variability of the exogenous inflation
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shock σ2ε , other things equal.

The value of the concentration parameter that is implied by the estimates from the GG data

(highlighted in Table 1) is indistinguishable from zero to 4 decimal places. Nonetheless, it must be

emphasized that this is not a formal test of weak identification. Such a test would have to account

for the uncertainty in estimating µ2, along the lines of Stock and Yogo (2003). The discussion

here aims at highlighting the potential sources of weak identification, and shows that, for plausible

values of the model’s parameters, weak identification cannot be ruled out.

Although it would be useful to have a formal test of weak identification, such a test is not

yet available for forward-looking models like (4). The test of weak instruments proposed by Stock

and Yogo (2003) is not applicable here because it does not account for autocorrelation and possible

heteroscedasticity of the residuals in the linear GMM regression (5). A more important complication

in deriving such a test arises from the fact that µ2 also depends on the structural parameters, which

cannot be consistently estimated under the null hypothesis of weak identification.

Finally, it is worth asking whether identification would get stronger if the forcing variables had

additional dynamics. To investigate this, we generalized the completing process (11) to a third-

order autoregression, by adding the term ρ3st−3. We set ρ3 = 0.1 and repeated the analysis of

this section to derive µ2 for all the cases reported in Table 1. Although for the cases ρ2 > 0 the

concentration parameter increased slightly, for ρ2 < 0 it decreased substantially (see Appendix A.5

for an explanation). This shows that it is not, in general, true that higher order dynamics in the

forcing variables will improve the empirical identification of the forward-looking model.

3.3 Implications of weak identification

In this section, we illustrate the devastating implications of weak identification for GMM estima-

tion of the GG model (4) by means of some Monte Carlo experiments. The Monte Carlo setting

requires the specification of values for all of the model’s parameters. We perform two experi-

ments. In the first one, we set the parameters of interest θ = (λ, γf , γb) to values reported by

GG, (0.015, 0.591, 0.378), which suggest that forward looking behavior is dominant. The remaining

parameters are calibrated to the GG data.

We simulate the GMM estimator used by GG for the three parameters of interest θ. The results

are reported in Table 2. The experiment in the top panel is based on the estimated parameters, and

reveals weak identification, whereas the lower panel contrasts the results with a situation of strong

identification (corresponding to the bottom right-hand corner of Table 1). Figure 1 compares the

simulated distributions under weak and strong identification.

The simulation results reveal the following. When identification is weak, the GMM estimator θ̂

remains biased even in what would be conventionally thought of as large samples. The estimates

of the forward and backward looking coefficients γ̂f , γ̂b are on average equal to 0.42, but the

distribution of γ̂f exhibits considerably more variability and skewness.

The most important feature of these results is that the dispersion of the estimators does not fall

with the sample size when identification is weak. The estimators are biased at all sample sizes, and

they show no tendency to converge to the true values of the parameters. This is in sharp contrast

to the strongly identified case, where the bias disappears even in samples of moderate size, the

GMM estimator is much more accurate and converges to the true value of the parameters at the

usual rate
√
T .
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Table 2: Simulation of the finite sample moments of the 2-step GMM estimator for the New

Keynesian Phillips Curve.

(a) Weak identification.

γb γf λ

Sample mean st. dev. mean st. dev. mean st. dev.

50 0.410 0.120 0.421 0.330 0.044 0.297

100 0.421 0.099 0.429 0.322 0.039 0.164

150 0.425 0.093 0.428 0.298 0.038 0.119

300 0.428 0.094 0.426 0.305 0.039 0.084

500 0.430 0.092 0.425 0.291 0.037 0.063

1000 0.429 0.094 0.429 0.293 0.036 0.052

(b) Strong identification.

γb γf λ

Sample mean st. dev. mean st. dev. mean st. dev.

50 0.379 0.095 0.461 0.209 0.029 0.024

100 0.379 0.060 0.524 0.151 0.021 0.015

150 0.379 0.047 0.552 0.117 0.018 0.011

300 0.378 0.030 0.578 0.074 0.016 0.007

500 0.378 0.022 0.583 0.053 0.015 0.005

1000 0.378 0.015 0.588 0.036 0.015 0.003

Note: This table reports the mean and standard deviation of the GMM estimators for the New Keynesian

Phillips curve πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt. The instrument set contains four lags of πt and st

and a 12-lag Newey-West (1987) estimate of the covariance matrix was used. The data is generated using

st = 0.9(1− ρ2)st−1 + ρ2st−2 + vt; (εt, vt) are independent normally distributed innovations with variances

0.2 and σ2
v respectively. The true values of the parameters are γb = 0.378, γf = 0.591, λ = 0.015. For weak

identification, ρ2 = −0.05, σv = 0.1. For strong identification, ρ2 = −0.65, σv = 1.6.

This simulation appears to indicate relatively modest problems in the estimation of the forward

looking coefficient γf when the population value of that coefficient is set at the value estimated by

GG. However, this interpretation is incorrect. When the model is weakly identified, the estimator

would give similar results for any other population value of γf . The estimator tends to find a

substantially positive γf , irrespective of what the true value of γf is. The GG estimates are

roughly consistent with this tendency of the estimator. This explains why the above simulation

underrates the seriousness of the problem. We demonstrate this point by means of a second

simulation experiment.

In our second experiment, we compare the behavior of the GMM estimator for different true

values of the parameters in model (4) and show that the distribution of the estimator is roughly

invariant to changes in the true values of those parameters. In particular, we compare the previous

setting, in which the data was generated from a process with dominant forward-looking dynamics,

to one in which the true inflation process is purely backward-looking. For simplicity, we refer to the
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Figure 1: Simulated densities of the 2-step GMM estimator for the parameters of the New Keynesian Phillips

Curve πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt at various sample sizes (denoted by T ). The instrument set

contains four lags of πt and st and a 12-lag Newey-West (1987) estimate of the covariance matrix was used.

The data is generated using st = 0.9(1− ρ2)st−1 + ρ2st−2 + vt; (εt, vt) are independent normally distributed

innovations with variances 0.04 and σ2
v respectively. The true parameters are γb = 0.378, γf = 0.591, λ =

0.015 (shown by vertical lines). For weak identification, ρ2 = −0.05, σv = 0.1. For strong identification,

ρ2 = −0.65, σv = 1.6.

two settings as ‘new’ and ‘old’ Phillips curves respectively. The old Phillips curve is nested in (4)

with γf = 0. For the simulation experiment, we set the remaining parameters such that the reduced

form dynamics of inflation would be identical in both settings if model (4) was under-identified (see

Appendix A.6).

Figure 2 shows the distribution of the estimators in four different cases. For every parameter

estimator, we plot the two densities corresponding to simulations from the new and the old Phillips

curves (solid and dashed lines respectively), and we do that both when the model (4) is weakly

identified (left panels) and when it is well identified (right panels).

Under weak identification, the distributions of the estimators are almost indistinguishable for

both DGPs (this is especially true for the estimator of γf in the middle left panel of Figure 2).

In view of the discussion in the previous subsection, this should come as no surprise, since the

concentration parameter µ2 is in the order of 10−5 in both settings. When ρ2 and σv/σε are

calibrated to the data, instruments are so weak that the two different population values for the
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parameter vector (λ, γf , γb, σε) are almost observationally equivalent. As explained in Appendix

A.6, these two population values are chosen so as to be exactly observationally equivalent in the

limiting case of ρ2 = 0, where µ2 is identically zero and the model is under-identified. This

remarkable similarity of the estimator distributions is therefore not a coincidence, but a consequence

of weak identification and is entirely consistent with the findings of the weak instruments literature,

see Stock, Wright, and Yogo (2002). Unreported results show that the same conclusions arise for a

wide range of the nuisance parameters over which µ2 is small, see Table 1.8

For the simulations in the right panels of Figure 2 we set ρ2 and σv/σε such that µ2 is large

(around 40), see also Appendix A.6. Note that the second order dynamics and variability of st that

are necessary to achieve strong identification are much higher than what is found in the data. In

contrast to the case of weak identification, the GMM estimators clearly track the true values of the

parameters when the model is well identified.9

This experiment demonstrates how unreliable GMM estimators are for all the parameters of the

model when identification is weak. When the data is generated from a purely backward-looking

Phillips curve, γf will be overestimated and γb will be underestimated. The direction of the biases

is reversed when the true model is the new Phillips curve reported by GG. In both cases, the GMM

estimators of γf and γb are on average equal to 0.42, and the skewness of their distributions implies

that the outcome γ̂f > γ̂b occurs more often than the opposite outcome. Thus, GMM estimation

of model (4) is biased in favor of a hybrid specification with apparently dominant forward-looking

behavior, irrespective of the true nature of forward and backward-looking dynamics of inflation.

Weak identification also renders conventional tests on the parameters completely misleading,

as it is well-known from the weak instruments literature (see Stock, Wright, and Yogo 2002). To

illustrate this point, we consider the standard t-test on γf , which is often interpreted as a test of

the significance of forward-looking behavior. The t statistic is the ratio of the GMM estimator

to its estimated standard error, and it is assumed to have a standard normal distribution in large

samples. However, when the model is weakly identified, the t-test may reject a true null hypothesis

much more often than the chosen level of significance. In the present setting, when the data is

generated from the old Phillips curve, a 5%-level t-test rejects the null hypothesis that γf = 0 more

than 60% of the time. This profound over-rejection means that the test would report evidence of

forward-looking behavior even when this is not warranted by the data.

The above simulations demonstrate why it is dangerous to rely solely on the rank condition

for identification, before proceeding with conventional estimation and inference. Even when the

forcing variables have enough dynamics which would guarantee generic identification, e.g., a nonzero

concentration parameter, the possibility of weak identification remains a serious issue.

3.4 Naive pretests of identification

The analysis of section 3.1.1 showed that st follows an AR(1) and so the only relevant instruments

must be st−1 and πt−1 if the model is correctly specified. We now re-examine instrument relevance

by looking at an unrestricted version of the first stage-regression (14). We consider a k dimensional

instrument vector Z̄t, that contains lags of st and πt, and let the k × 2 coefficient matrix Π be

unrestricted. The null hypothesis of under-identification is H0 : rank(Π) ≤ 1 against the alternative

H1 : rank(Π) = 2.

In the prototype IV model, where the first-stage regression residuals Vt are homoscedastic and
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serially uncorrelated, this could be tested using, say, the canonical correlations rank test of Anderson

(1951). Here, Vt in equation (14) is serially correlated, and potentially heteroscedastic, so we apply

a generalized reduced rank test proposed by Kleibergen and Paap (2003), the rk-statistic, using the

Newey and West (1987) estimator to account for the autocorrelation and heteroscedasticity in Vt.

Using four lags of πt and st as instruments, the value of the test statistic is 29.13, with a p-value of

0.000, showing that the under-identification hypothesis is strongly rejected (details of the test can

be found in the unpublished additional appendix).

Thus, the evidence on identifiability is mixed. On the one hand, the structural identification

analysis suggested that the model must be partially or at best weakly identified. In other words,

when the Phillips curve (4) is correctly specified, lagged values of πt and st cannot be informative

instruments for the endogenous variables. On the other hand, the unrestricted identification pretest

suggests that those instruments are relevant. How can we reconcile these two contradictory findings?

The answer lies in the fact that the structural model (4) may be mis-specified, in the sense

that the orthogonality conditions (6) are violated, i.e. at least some of the instruments in the

information set Ft−1 are not valid. Such invalid instruments could correlate with future inflation,

thus giving rise to spurious identification of the model. This possibility is explored in the next

section.

4 Mis-specification

The objective of this section is twofold: (i) to explain the problem of spurious identification caused

by mis-specification, and (ii) to examine why such mis-specification may be hard to detect.

By mis-specification of the model (4) we mean the violation of the moment conditions (6).

Recall that the GMM residual in equation (5) is et = εt − γfηt+1, where εt is the structural error

in the model (4) and ηt+1 is the forecast error in predicting πt+1 at time t. Hence, violation of the

moment conditions admits two interpretations. It could be seen as a failure of rationality if it arises

from E(ηt+1Z̄t) 6= 0. Alternatively, when E(εtZ̄t) 6= 0, it could be thought of as an omitted variable

problem. For instance, we may express the assumed structural error as εt = εt + ξ′wt, where εt is

an innovation w.r.t. Ft−1, that is, E(εt|Ft−1) = 0, wt is a vector of variables that correlate with

the instruments and are incorrectly omitted from the model, and ξ is a vector of coefficients.10

Of course, in the absence of independent data on expectations, it is impossible to distinguish

between those two interpretations. All we can observe is that the (unrestricted) reduced form

dynamics of inflation are inconsistent with the rational expectations solution to the model. In the

ensuing discussion, we maintain the assumption of rational expectations, following the approach in

the literature, but this is inconsequential for our results.

In particular, we focus on the case where the omitted variables wt consist of lags of πt and st.

In this case, the model is dynamically mis-specified, as in the pure forward-looking Phillips curve

(2) relative to the hybrid model (4), where ξ ′wt = γbπt−1. We look at this type of mis-specification

for various reasons. First, it is well-suited for raising a number of methodological points of general

interest. Second, it follows the approach in the literature, where the hybrid Phillips curve (4) was

developed as an extension to the pure forward-looking model (2). Third, it nests other explanations,

such as autocorrelated structural errors (e.g., Smets and Wouters 2003).11 Finally, it is consistent

with the data in the present example, and enables us to resolve the conflicting results of the
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identification analysis in the previous section.

4.1 Omitted dynamics and spurious identification

To examine the implications of dynamic mis-specification in the Phillips curve, we consider a

particular generalization of the GG model (4) that would be consistent with the observed inflation

dynamics in the data. This generalization is derived as follows. We first estimate a parsimonious

reduced-form model for inflation, of the form (9), and then ‘invert’ this to find a forward-looking

specification of the form (7) that has this reduced form as its solution.

The estimated reduced-form equation for inflation is of the form

πt = α0st + α2 st−2 + δ1 πt−1 + δ3 πt−3 + ut, (15)

(estimates are given in Appendix A.7). Equation (15) together with an AR(1) specification for

st enable us to derive E(πt+1|Ft) = (α0ρ1)st + α2st−1 + δ1πt + δ3πt−2. Then, given any value for

the forward-looking parameter γf , we can subtract γf/(1 − γfδ1) × E(πt+1|Ft) from both sides of

equation (15) to get an isomorphic forward-looking specification

πt = λst + λ1st−1 + λ2st−2 + γfE(πt+1|Ft) + γ1πt−1 + γ2πt−2 + γ3πt−3 + εt (16)

where the structural parameters (λ, λ1, λ2, γ1, γ2, γ3) are functions of the reduced-form parameters

(see Appendix A.7). When γf is set such that the lag polynomial 1− γfL
−1 − γ1L− γ2L

2 − γ3L
3

has exactly one explosive root, equation (15) is the unique solution to model (16). For clarity, we

base our discussion on this particular model, but note that the analysis generalizes. We can make

the following observations.

First, the generalized forward-looking model (16) is obviously under-identified, since there is

an infinity of observationally equivalent values for the structural parameters for different arbitrary

choices of γf . For instance, (16) is consistent with no ‘forward-looking behavior’ γf = 0. Conse-

quently, as we discussed in section 3, the parameters in (16) cannot be estimated consistently, and

GMM-based inference will be misleading.

In fact, by applying Proposition 3.1 we see that for model (16) to be identified, the labour share

st must have at least fourth order autoregressive dynamics, or receive feedback from at least the

fifth lag of inflation. This condition is more restrictive than for the simpler specification (4), see

section 3.1.1. In other words, the more general the dynamic specification of the forward-looking

model, the more restrictive is the condition on the dynamics of the forcing variable for identification.

Second, the generalized specification (16) shows that the GG model (4) is mis-specified because

the variables st−1, st−2, πt−2, πt−3 have been incorrectly omitted from that model. These variables

remain in the error term of the GMM regression (5), which can be written as

et = εt − γfηt+1 + γ2πt−2 + γ3πt−3 + λ1st−1 + λ2st−2 = εt − γfηt+1 + ξ′Z̄t

where Z̄t is the instrument vector, that includes the variables st−1, st−2, πt−2, πt−3 and ξ is a vector

of parameters depending on the choice of instruments. For instance, when Z̄t consists of four lags

of πt and st, ξ = (0, γ2, γ3, 0, λ1, λ2, 0, 0)
′. It follows immediately that the GMM moment conditions

are violated since E(Z̄tet) = E(Z̄tZ̄
′
t)ξ 6= 0 unless ξ = 0.

15



Third, the mis-specified model (4) is apparently identified in the sense that the rank condition

for identification is satisfied. This can be seen clearly from the forecasting regression for πt+1 given

Ft−1:

E(πt+1|Ft−1) = δ̃1πt−1 + δ̃2πt−2 + δ̃3πt−3 + α̃1st−1 + α̃2st−2 (17)

where δ̃i and α̃j are given in Appendix A.7. Equation (17) shows that the variables st−1, st−2,

πt−2, πt−3 that are incorrectly omitted from the model are relevant instruments for future inflation

πt+1. Thus, the rank condition for the identification of model (4) is satisfied (see Appendix A.7 for

details).

This explains why the naive under-identification pretest reported in section 3.4 found evidence of

identification. When applied to the correctly specified model (16), the result of that identification

pretest becomes consistent with the structural identification analysis. Namely, the unrestricted

reduced rank test (using the rk-statistic) does not reject the hypothesis that model (16) is under-

identified.

The question that naturally arises is: how detectable is this type of mis-specification by a test

of over-identifying restrictions? In principle, mis-specification is detectable insofar as the over-

identifying restrictions of the model are violated. We can define a scalar measure of detectable

mis-specification ν2, as the distance of the over-identifying restrictions from zero (see Appendix

A.2). Like the concentration parameter µ2, the mis-specification parameter ν2 is a function of

the second moments of the data, and can only be computed when the parameters of the DGP

are known. As we see below, ν2 is useful in understanding the power of tests of over-identifying

restrictions, such as Hansen’s (1982) J test.

Using the GMM estimator and data of GG, the p-value of the J test for the hybrid model (4)

is 0.97. Thus, the mis-specification is not detected.12 This motivates us to study the finite sample

power of the J in this context, with particular emphasis on the implications of ‘over-instrumenting’

and ‘over-correction’ for serial correlation.

4.2 The power of the J test

Under the null hypothesis that the over-identifying restrictions hold (ν2 = 0), and provided the

model is empirically identified (µ2 large), the J test statistic follows approximately a chi-squared

distribution with degrees of freedom equal to the degree of over-identification (Hansen 1982). Under

the alternative hypothesis (ν2 > 0), the power of the J test is driven, in principle, by the degree of

mis-specification ν2 and the degree of over-identification.

However, in finite samples, the power of the test may also be affected by the type of HAC

estimator used to account for serial correlation and heteroscedasticity in the residuals. Different

HAC estimators, albeit asymptotically equivalent, can differ substantially in finite samples, thus

imparting substantial distortions to GMM-based inference (den Haan and Levin 1997).

We investigate the finite-sample power of the test by means of a Monte Carlo experiment. The

DGP is described by the estimated reduced-form model for πt, equation (15), and a first-order

autoregression for st. We compare the power of four different versions of the test statistic: using

two different numbers of instruments (k= 8 and 24); and two different types of HAC estimators to

correct for serial correlation: MA-l refers to the parametric estimator of West (1997) allowing only

up to first-order residual autocorrelation, as suggested by the model, and HAC(12) refers to the

nonparametric Newey and West (1987) estimator with lag-truncation parameter 12.
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Table 3 reports the rejection frequencies of the test statistic at the 5% level, under this fixed

alternative. Notably, the concentration and mis-specification parameters are increasing (linearly)

with the sample size, reflecting stronger ‘identification’ and mis-specification of the model. Several

conclusions can be drawn from those results.

Table 3: Rejection frequencies of Hansen’s (1982) J test of over-identifying restrictions for the New

Keynesian Phillips Curve at the 5% level.

k= 8 k=24

T µ2 ν2 HAC(12) MA-l Asympt. HAC(12) MA-l Asympt.

50 4.5 1.444 0.000 0.091 0.124 0.000 0.020 0.081

150 13.5 4.333 0.000 0.349 0.315 0.000 0.142 0.166

300 27.0 8.667 0.308 0.637 0.604 0.000 0.411 0.335

1000 90.0 28.888 0.988 0.994 0.994 0.602 0.947 0.928

This table reports the rejection frequencies of Hansen’s J test of over-identifying restrictions for the New

Keynesian Phillips curve πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt. The data generating process is πt =

0.68πt−1 + 0.24πt−3 + 0.55st − 0.48st−2 + 1.4εt, and st = 0.9st−1 + vt; (εt, vt) are independent normally

distributed innovations with variances σ2
ε = 0.04 and σ2

v = 0.01; T denotes the sample size; µ2 measures

instrument relevance; ν2 measures the degree to which the over-identifying restrictions are violated; k is the

number of instruments, comprising lags of πt and st. The J test is based on the 2-step GMM estimator.

HAC(12) denotes the Newey and West (1987) HAC estimator with lag truncation 12; MA-l denotes West’s

(1997) HAC estimator. The critical value is the 95th percentile of the χ2 distribution with k − 3 degrees

of freedom. Asymptotic power is based on a non-central χ2 distribution with degrees of freedom k − 3 and

non-centrality parameter ν2. 105 Monte Carlo replications used.

First, the omitted dynamics contribute more towards spurious identification of the model (µ2 >

0) than towards detectable mis-specification (ν2 > 0). This is a significant factor explaining the

low power of the test. Second, the addition of a large number of irrelevant instruments reduces the

power of the test, as anticipated. Intuitively, the same degree of mis-specification ν2 is diluted over

many instruments, thus reducing the test’s power to detect it. In other words, ‘over-instrumenting’

unambiguously reduces power.

Third, we notice a marked difference in the behavior of the test using different autocorrelation

corrections. The MA-l-based test exhibits relatively small deviations from its asymptotic power,

even at small samples. In contrast, the HAC(12)-based version suffers a severe downward bias in

all cases. This is in line with extensive Monte Carlo evidence on the small sample properties of the

various HAC estimators (e.g., den Haan and Levin 1997), and points out the potentially serious

costs of ‘over-correction’ for serial correlation. A partial explanation of the poor performance of

the HAC(12)-based test may be that the nonparametric HAC(12) estimator converges at a slower

rate to the true asymptotic variance of the moment conditions than the parametric MA-l estimator

(see West 1997).13
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5 Conclusion

In this paper, we studied the conditions for identification of a forward-looking rational expectations

model, which are often overlooked when this model is estimated by limited information methods.

Our analysis was based on the New Keynesian Phillips curve model of Gaĺı and Gertler (1999) but

the results have wider applicability. Our main findings can be summarized as follows.

The rank condition for identification is not sufficient for a forward-looking model to be reliably

estimated. Even when the rank condition is satisfied, identification may be weak, depending on the

nature of the dynamics of the forcing variables and the true values of the structural parameters.

The possibility of weak identification cannot be ruled out a priori, and renders conventional GMM

estimation completely unreliable. We demonstrated this in the context of the New Keynesian

Phillips curve, where we found that when the model is weakly identified, GMM estimation will

be biased in favor of a hybrid specification with apparently dominant forward-looking behavior,

irrespective of the true nature of the forward and backward-looking dynamics of inflation.

If weak identification could be detected using a formal statistical test, then the problem exposed

above would not be that severe. However, we show that existing tests for weak instruments (Stock

and Yogo 2003) are not applicable to forward-looking models, and the development of a formal

diagnostic test for weak identification in such models remains an important challenge for future

research. A partial solution to the problem is to use inferential methods that are robust to weak

identification, such as the tests proposed by Kleibergen (2001) and Stock and Wright (2000). These

tests yield reliable inference even in the case of weak identification.

Standard identification pretests that are based on the unrestricted covariance between the en-

dogenous regressors and the instruments can be very misleading because they have power even

when the model is mis-specified. Dynamic mis-specification generates spurious identification and

is only partly detectable by a test of the over-identifying restrictions such as Hansen’s (1982) J

test. Moreover, the common practice of using too many instruments and too general corrections

for serial correlation seriously impairs the power of the J test in finite samples and obscures speci-

fication problems. Thus, looking at the reduced form of the complete system may prove a valuable

alternative to the single-equation approach, as it may help uncover that mis-specification.

These findings have important implications for applied work. GMM should not be applied

indiscriminately to forward-looking models and inference on those model should be conducted using

methods that are robust to weak identification. Our analysis also suggests that full information

methods, such as FIML, may be a preferable alternative to GMM (see Jondeau and Le Bihan

2003), since good use of GMM requires a structural identification analysis that is typical of the full

information approach.

Finally, with regards to the estimation of the New Phillips curve of Gaĺı and Gertler (1999)

using US data, our analysis reveals the following. On the one hand, if we assume that the model

is correctly specified, we find no evidence that it is empirically identified. On the other hand, if we

allow for the possibility of dynamic mis-specification, we find evidence of spurious identification.

These findings cast some doubts on the reliability of existing results, and suggest they need to be

re-examined using methods that are robust to identification problems.
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Notes

1 Note that the exogenous inflation shock εt has been appended to the original model (GG Equation 26).

Absence of this shock is implausible, since, amongst other things, it would imply that the resulting GMM

regression residual, et in Equation (5), is serially uncorrelated, which is at odds with the data.
2 This could be justified by measurement error in st, when the latter is a proxy for the true relationship

being driven by marginal costs. In fact, the exogeneity status of st is inconsequential for the analysis of

generic identification, as we will see below.
3Note that this threshold rises with the number of instruments.
4 Note that the reduced-form parameters in the solution (9) are independent from the covariance between

the structural error and the forcing variable, σvε, which determines whether the latter is endogenous or not

in the model (7). Thus, proposition 3.1 holds irrespective of the endogeneity status of st.
5An example of this is the minimum state variable (MSV) solution, which has recently received renewed

attention because it was shown to be E-stable under learning (see McCallum 2003).
6The parameter estimates reported by GG are such that γf , γb > 0 and γf + γb < 1, in line with the

underlying theory in their paper. These restrictions imply that the forward solution to the model is unique

(see Appendix A.4).
7We are thankful to Ken West for this suggestion. When, instead, ρ1 is kept fixed to 0.9 and ρ2 varies

between 0 and -0.8, the values of µ2 are very similar to those reported in Table 1.
8So these results are not an artefact of µ2 being practically zero. For instance, the results in the left

panels of Figure 2 would be very similar even when ρ2 and σv/σε are set substantially higher so that µ2 = 1,

say, instead of 10−5.
9 The results are shown only for a sample of 300 observations for brevity. They are essentially the same

when the sample size is 1000.
10 Yet another example is parameter instability, which can be formulated as an omitted variable problem

in the usual way. For instance, when λ changes over the sample, wt = Dtst where Dt = 1 in the subsample

over which λ is different, and 0 otherwise.
11 The case of other autocorrelated forcing variables being omitted from the model is similar to an au-

tocorrelated structural error, since this error represents information known to the agents but not to the

econometrician.
12 This is also the case even for the pure forward-looking model (2), despite the fact the analysis in GG

suggests that it is dynamically mis-specified, since some degree of backwardness (γb 6= 0) is found to be

statistically significant.
13Using the MA-l HAC estimator, with five lags of inflation and st as instruments, the J test applied

to the GG model (4) rejects the validity of the over-identifying restrictions at the 5% level of significance.

However, this result is not to be taken at face value, since it is not robust to changes in the instrument set.

A Appendix

A.1 GG data description

Quarterly inflation rate: πt = 100×∆log(GDP deflator).

Labor share (in deviation from steady state): st = c× 100 log unit labour cost
unit price .

c is a correction factor due to Sbordone (2002): c = n(m−1)/(m2−n), where n is the share of labour in the

Cobb Douglas production function Y = AK1−n Ln, and m is the average markup of prices over unit costs.

GG set n = 2/3 and m = 1.1, so c = 0.12.
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A.2 Some definitions

The concentration parameter Consider a prototype linear IV regression model yt = β′Yt +

γ′Xt + ut, where Yt and Xt are endogenous and exogenous regressors respectively, with first-stage

regression Yt = Π′Zt + Φ′Xt + Vt. Suppose that Xt, Zt and Vt all have finite second moments

denoted by ΣXX , ΣXZ , ΣZZ and ΣV V and let Ω = ΣZZ − Σ′
XZΣ

−1
XXΣXZ . The concentration

parameter matrix is TΣ
−1/2
V V Π′ Ω ΠΣ

−1/2
V V , and its minimum eigenvalue µ2 is the smallest root of

the polynomial det(TΠ′ΩΠ− zΣV V ) = 0, where det(A) denotes the determinant of a matrix A.

The 2-step GMM estimator Stack the T observations on the endogenous and exogenous

variables in the matrices y, Y , X, and Z of dimensions T × 1, T × n, T × K1 and T × K2

respectively, with K2 ≥ n. Let X̄ = (Y,X), Z̄ = (X,Z), θ = (β′, γ′)′, and define the K = K1 +K2

sample moments gT (θ) = Z̄ ′(y − X̄θ)/T .

The 2-step efficient GMM estimator of θ is defined as follows. Obtain an initial estimate of θ by

two stage least squares, θ̂1 = (X̄ ′PZ̄X̄)−1X̄ ′PZ̄y, where PZ̄ = Z̄(Z̄ ′Z̄)−1Z̄ ′. Let WT (θ) denote the

inverse of a consistent HAC estimator of the variance of gT (θ). The 2-step efficient GMM estimator

minimizes the objective function QT (θ) = gT (θ)
′WT gT (θ), where WT = WT (θ̂1), and is given by

θ̂ = (X̄ ′Z̄WT Z̄
′X̄)−1X̄ ′Z̄WT Z̄

′y.

Assume that Z̄ ′y/T
p→ ΣZ̄y and Z̄ ′X̄/T

p→ ΣZ̄X̄ where
p→ denotes convergence in probability.

(This is satisfied in the GG model when πt and st are weakly stationary). It follows that gT (θ)
p→

g(θ) = ΣZ̄y − ΣZ̄X̄θ, uniformly in θ. Whenever there exists a θ0 such that the orthogonality

conditions g(θ0) = 0 hold, the model is correctly specified, and θ0 is the true value of θ. Otherwise,

if there is no θ that solves g(θ) = 0, the orthogonality conditions are violated and the model is

mis-specified. Obviously, for this to be possible there must be more instruments than endogenous

regressors in the model.

Pseudo-true values To see what happens to θ̂ when the model is mis-specified, assume that

WT (θ)
p→ W (θ) uniformly in θ, where W (θ) is a positive definite matrix. Then, provided ΣZ̄X̄ is

of full rank, the GMM estimator θ̂ converges to θ∗ = (Σ′
Z̄X̄

W ∗ΣZ̄X̄)−1Σ′
Z̄X̄

W ∗ΣZ̄y, where W
∗ =

W (θ∗1) and θ∗1 is defined as θ∗ with W ∗ replaced by Σ−1
Z̄Z̄

. This θ∗ is the pseudo-true value of θ, and

differs for different HAC estimators WT , or different choice of instruments Z . In contrast, when

the model is correctly specified, θ∗ = θ∗1 = θ0.

Mis-specification parameter Under the above assumptions, QT (θ)
p→ Q(θ) = g(θ)′W (θ)g(θ),

uniformly in θ. Whenever the moment conditions are not satisfied, Q(θ) > 0 for all θ. Hansen’s

(1982) J test of over-identifying restrictions is based on the statistic TQT (θ̂), which, under the

null hypothesis of correct specification, is asymptotically distributed as a chi-squared distribution

with degrees of freedom equal to the number of over-identifying restrictions K2 − n. Under the

alternative QT (θ̂)
p→ Q(θ∗) > 0, and the power of the test can be characterized by the scalar

ν2 = TQ(θ∗), which we will refer to as the mis-specification parameter.
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A.3 Solution of model (7)

By a solution to the RE model (7) we mean a non-explosive distribution for πt that satisfies

equation (7). For convenience, we use the lag polynomial notation γ(L) = 1 − γ1L − γ2L
2 − . . .,

λ(L) = λ0+λ1L+λ2L
2 + . . ., ρ(L) = 1− ρ1L− ρ2L

2− . . ., and ϕ(L) = ϕ1L+ϕ2L
2+ . . ., where L

is the lag operator, such that Lxt = xt−1, and γi = 0 for i > m, λi = 0 for i > n, ρi = 0 for i > p

and ϕi = 0 for i > q.

Recall the forecast error ηt+1 = πt+1 − πt+1|t, which is a MDS. Substitute πt+1 − ηt+1 for πt+1|t

in (7), lag one period and then divide through by −γf and re-arrange to get

[
1− γ−1

f γ(L)L
]
πt = −γ−1

f λ(L)L st − γ−1
f εt−1 + ηt (18)

For this reduced-form equation to be a solution to the RE model (7) it must not be explosive.

The stability conditions can be checked as follows. Premultiply equation (7) by ρ(L) and

substitute ρ(L)st from (8) to get

ρ(L)
[
1− γ−1

f γ(L)L
]
πt = −γ−1

f λ(L)L [ϕ(L)πt + vt]− γ−1
f ρ(L)εt−1 + ρ(L)ηt

Since vt, εt and ηt are innovation processes, the stability of the system is only determined by the

characteristic roots of the autoregressive polynomial

ρ(z) (1− zγ(z)/γf ) + zλ(z)ϕ(z)/γf = 0. (19)

By Blanchard and Kahn (1980), a solution exists if at most one root of equation (19) is explosive,

i.e., lies inside the unit circle. If the polynomial (19) has no explosive roots, the RE model (7) has

infinitely many solutions. To characterize this indeterminacy, the MDS ηt in the general solution

(18) can be decomposed linearly by projection onto vt and εt

ηt = αvvt + αεεt + ζt (20)

where αv, αε are free parameters and ζt is an indeterminate MDS, uncorrelated with vt and εt
by construction. ζt is sometimes referred to as a sunspot shock. Then, using (20) in (18) and

substituting for vt ≡ st − st|t−1 from (8), the solution(s) can be expressed as

[
1 + αvϕ(L)− γ−1

f γ(L)L
]

︸ ︷︷ ︸
a(L)

πt =
[
αvρ(L)− γ−1

f λ(L)L
]

︸ ︷︷ ︸
b(L)

st + (αε − γ−1
f L)

︸ ︷︷ ︸
c(L)

εt + ζt (21)

This is an autoregressive distributed lag model whose residual can be represented as an unrestricted

first-order moving average process (see Pesaran 1987). The lag polynomial a(L) is at most of order

max(q,m+ 1), since ϕ(L) is of order q and γ(L) is of order m. Similarly, the order of b(L) cannot

exceed max(p, n+ 1).

Backward and forward solutions We will refer to the class of solutions (21) as backward

solutions. When the characteristic polynomial (19) has no explosive roots, there is an infinite

number of possible backward solutions, since we can choose αε, αv and the MDS ζt freely.
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A special solution arises if we remove the sunspot shock ζt and set αε and αv such that the lag

polynomials a(L), b(L) and c(L) in (21) have a common factor. Let z0 be a root of (19) such that

ρ(z0) 6= 0. Then, it can be easily checked that

αε =
z0
γf

and αv = αε
λ(z0)

ρ(z0)
, (22)

imply that a(z0) = b(z0) = c(z0) = 0, i.e., all three polynomials share the factor (1 − L/z0).

Hence, we can find lag polynomials δ(L) = 1 − ∑κπ
i=1 δiL

i and α(L) =
∑κs

j=0 αjL
j , of orders

κπ = max(q − 1,m) and κs = max(p − 1, n) respectively, such that a(L) = δ(L)(1 − L/z0),

b(L) = α(L)(1− L/z0). Substituting these expressions and c(L) = αε(1− L/z0) into (21) together

with ζt = 0 and cancelling from both sides the common factor (1 − L/z0), we get the forward

solution (9). The coefficients of the forward solution are derived by matching coefficients in the

identities

1 +

(
αvϕ1 −

1

γf

)
L+

κπ+1∑

i=2

(
αvϕi +

γi−1

γf

)
Li ≡

(
1− 1

z0
L

)(
1−

κπ∑

i=1

δiL
i

)

αv −
κs+1∑

j=1

(
αvρj +

λj−1

γf

)
Lj ≡

(
1− 1

z0
L

) κs∑

j=0

αjL
j .

After some algebraic manipulations (details are in the unpublished additional appendix), they can

be written recursively as follows:

δ1 = 1/γf − 1/z0 − αvϕ1, δi = δi−1/z0 − γi−1/γf − αvϕi, i = 2, . . . ,max(q − 1,m)

α0 = αv, αj = αj−1/z0 − λj−1/γf − αvρj , j = 1, . . . ,max(p− 1, n).
(23)

When the characteristic polynomial (19) has exactly one explosive root z0, the forward solution is

the unique solution to model (7).

A.4 Solution of the GG model (4)

When the forcing variable follows (11), the characteristic polynomial (19) simplifies to 1− z/γf −
z2γb/γf = 0. Under the restrictions γf , γb ≥ 0 and γf + γb ≤ 1 implied by the underlying economic

theory in GG, there is at most one explosive root z0 = (1−
√

1− 4γfγb)/(2γb). Unless γf + γb = 1

and γf > γb, |z0| < 1 and the model (4) has the unique forward solution (12) (details are in the

unpublished additional appendix).

Coefficients of equation (12) The solution parameters α0, α1, δ1 and αε can be derived by ap-

plying the formulae (22) and (23), with m = 1, n = 0, p = 2, q = 0 and γ1 = γb. By straightforward

algebraic manipulations, they can be written as:

α0 =
λz0

γfρ(z0)
, α1 =

λρ2z
2
0

γfρ(z0)
, δ1 =

1−
√

1− 4γfγb

2γf
, αε =

1

1− δ1γf
(24)

where z0 = (1−
√

1− 4γfγb)/(2γb) is the explosive root, derived above. By (23), δ1 = 1/γf − 1/z0,

so that z0 = γf/(1− δ1γf ), and z0 6= 0 for all γf 6= 0.
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Coefficients of equation (13)

α̃1 = (α0ρ1 + α1 + δ1α0)ρ1 + α0ρ2 + δ1α1, α̃2 = (α0ρ1 + α1 + δ1α0)ρ2,

and η̃t+1 = αεεt+1 + δ1αεεt + α0vt+1 + (α0ρ1 + α1 + δ1α0)vt
(25)

A.5 The concentration parameter in the GG model

µ2 is defined in section A.2, above. In the example of section 3.2, Π, ΣV V and Ω are as follows.

From equation (14)

Π =

(
α̃1 ρ1
α̃2 ρ2

)
. (26)

From the definition of η̃t+1 in (25), Vt = A(εt, vt)
′ + B(εt+1, vt+1)

′, so that ΣV V = AΣA′ + BΣB′,

where

A =

(
δ1αε α0(δ1 + ρ1) + α1

0 1

)
B =

(
αε α0

0 0

)
and Σ =

(
σ2ε σvε
σvε σ2v

)
.

Finally, Ω is defined above as ΣZZ − ΣZXΣ−1
XXΣ′

ZX , and since Zt = (st−1, st−2)
′ and Xt = πt−1,

and assuming πt, st are weakly stationary,

ΣZZ =

(
E(s2t ) E(stst−1)

E(stst−1) E(s2t )

)
ΣZX =

(
E(stπt)

E(st−1πt)

)
and ΣXX = E(π2t ).

µ2 = 0 occurs if and only if Π is of reduced rank. Π is of reduced rank if and only if its

determinant is zero. From equation (26), det(Π) = α̃1ρ2 − ρ1α̃2 = α1ρ2 + δ1α2 = λρ2z0(1 +

δ1z0)/(γfρ(z0)), where the second equality follows by substituting for α̃1 and α̃2 from equation (25),

and the third by substituting for α0 and α1 from equation (24). Also, 1+δ1z0 = 1+δ1γf/(1−δ1γf ) =
1/(1− δ1γf ) 6= 0. So, det(Π) = 0 if and only if ρ2 = 0 or λ = 0.

The concentration parameter in a model without lagged inflation If γb is set to 0 in (5),

and st is assumed to be exogenous, then µ2 can be solved analytically:

µ2 =
a22 σ

2
v/σ

2
ε(

1− ρ22
) (

a21 σ
2
v/σ

2
ε + 2a1 σvε/σ2ε + 1

) , (27)

where a1 = λ(ρ1+γfρ2)/(1−γfρ1−γ2fρ2) and a2 = λρ2/(1−γfρ1−γ2fρ2) [adapted from Mavroeidis

2004, Equation (18)]. It follows that µ2 = 0 if and only if λ = 0 or ρ2 = 0, µ2 is homogeneous in

σ2ε , σ
2
v , σvε, and is increasing in σv/σε when σvε = 0.

Effect of higher order dynamics on µ2 If the completing model (11) is generalized to an

AR(3), then st−3 becomes a relevant instrument. The direct impact of this on µ2 is positive.

However, the change of ρ3 will alter the dynamics of the system through the solution to the model.

The matrices Π, ΣZZ and ΣZX will be altered, and it is possible that the contributions of the

other two instruments st−1, st−2 to µ2 is reduced. Hence, the overall effect of the change in ρ3 is

ambiguous.
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A.6 Simulation settings

If ρ2 = 0 in (11), the model (4) is under-identified (Proposition 3.1). The reduced form is given

by (12) with δ1 and αε as in (24) but α1 = 0 and α0 = λ/(1 − γf (δ1 + ρ1)). The reduced form

parameters are (α0, δ1, σu) where σ2u denotes the variance of the reduced form residual ut = αεεt.

There are infinite possible combinations of (λ, γf , γb, σε) consistent with the same (α0, δ1, σu). If we

treat α0, δ1 and σu as given, for any choice of γf , the remaining structural parameters must satisfy

γb = δ1(1 − γfδ1), λ = α0(1 − γf (δ1 + ρ1)) and σε = (1 − γfδ1)σu. It is easy to check that the

following two values (λ, γf , γb, σε) = (0.015, 0.59, 0.38, 0.2) and (0.114, 0, 0.57, 0.3), yield identical

reduced form dynamics for πt.

For the simulations reported in Figure 2, the nuisance parameters ρ2, σv, σvε are set as follows.

For weak identification, they are calibrated to the GG data. For strong identification, for setting

1 (new Phillips curve), they are set as in Table 2 and Figure 1. For setting 2 (old Phillips curve),

they are set slightly differently so as to ensure a similar degree of empirical identification (µ2) and

similar variability in the estimators to facilitate the comparison.

A.7 Models of section 4.1

OLS estimates for equation (15) α̂0 = 0.55 (0.16), α̂2 = 0.48 (0.16), δ̂1 = 0.68 (0.06),

δ̂3 = 0.24 (0.06), and σ̂u = 0.26. (standard errors in parentheses)

Coefficients of equation (16) λ = α0[1 − γf (δ1 + ρ1)], λ1 = −α2γf , λ2 = α2(1 − γfδ1),

γ1 = δ1(1− γfδ1), γ2 = −δ3γf , γ3 = δ3(1− γfδ1) and εt = (1− γfδ1)ut.

Derivation of equation (17) This is derived from Equation (15) and st = ρ1st−1 + vt. The

coefficients are δ̃1 = δ21 , δ̃2 = δ3, δ̃3 = δ1δ3, α̃1 = (α0(ρ1 + δ1) + α2)ρ1, α̃2 = δ1α2.

Spurious identification Equation (17) together with st = ρ1st−1 + vt suffice to derive the first-

stage regression for the model (4), in the form (14). Apart from the exogenous regressor Xt = πt−1,

the other relevant instruments are Zt = (πt−2, πt−3, st−1, st−2). The coefficient matrix

Π′ =

(
δ̃2 δ̃3 α̃1 α̃2

0 0 ρ1 0

)

is clearly of full rank 2, so the rank condition for identification is satisfied. This would not be true

if the model (4) was correctly specified, because in that case δ̃2 = δ̃3 = α̃2 = 0.
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Figure 2: Comparison of the finite sample densities of the 2-step GMM estimator for the parameters of the

New Keynesian Phillips Curve πt = λst+γfE(πt+1|Ft)+γbπt−1+ εt. The sample size is 300, the instrument

set contains four lags of πt and st, and a 12-lag Newey-West (1987) estimate of the covariance matrix was

used. Data is generated using st = 0.9(1−ρ2)st−1+ρ2st−2+vt; (εt, vt) are normally distributed innovations

with variances σ2
ε and σ2

v respectively and covariance σvε. Each panel plots two densities for the respective

parameter estimator when data is simulated from two different settings. Setting 1 (solid curves) is a new

Phillips curve with (λ, γf , γb, σε) = (0.015, 0.59, 0.38, 0.2) (these replicate the T = 300 curves in Figure 1).

setting 2 (dotted curves) is an ‘old’ Phillips curve with (λ, γf , γb, σε) = (0.11, 0, 0.57, 0.3). Left and right

panels differ in the specification of (ρ2, σv, σvε): left panels (weak identification) (−0.05, 0.1, 0); right panels
(strong identification) (−0.65, 1.6, 0) for setting 1 and (0.65, 4.8, 0.14) for setting 2. Vertical lines show the

true values of the parameters in each setting.
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