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Abstract

This paper considers unbiased prediction of growth and levels when data
series are modelled as a random walk with drift after taking logs. The nonlin-
ear transformations involved cause standard symmetry arguments for showing
unbiasedness of predictors not to apply. We derive exact small sample unbiased
forecasts which are shown to be superior in terms of mean squared forcast error
to usual methods for obtaining level forecasts. For growth forecasts there is
little to be gained. Parameter estimates are highly correlated with the last ob-
servations, regardless of sample size. This causes conceptual problems in terms
of conditioning on endogenous variables and we show that no conditionally un-
biased estimator exists. On a practical level we show that the correlation is
quantitatively more important than uncertainty in parameter estimation and
future disturbances together.

JEL classi�cation: C20; C53.
Keywords: loglinear unit root models, stochastic growth, unbiasedness, pa-

rameter uncertainty.
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1 Introduction

Many macro- and other economic series appear to be stationary after applying
a log-transformation and taking �rst di¤erences. In the seminal paper of Nelson
and Plosser (1982), for instance, the natural logs of all the data are taken, except
for the bond yield, and they argue that with the exception of unemployment all
the series could well belong to the di¤erence stationary class. A common mod-
elling strategy found in many parts of empirical economics is therefore to model
the variables in log-di¤erence if the hypothesis of a unit root cannot be rejected.
In this paper we will assume that taking log-di¤erences is indeed correct and
renders the series stationary, but that interest is in predicting the growth and
level of the original, untransformed series. This leads to a number of interesting
issues not encountered in linear stationary settings, even when abstracting from
the complication of testing for a unit root. We allow for exogenous regressors
and the aim of the paper is to highlight the issues involved, provide solutions
for the problems encountered, and investigate the quantitative importance of
the results.
In order to set out the principal issues involved, we present a speci�c example

of the model we have in mind, which is the Cobb-Douglas production function
with time varying technology as proposed by Rosanna (1995):

Yt = ZtL
�1
t K

�2
t ;

ln[Zt] � zt = �0 + � t+ ut;

ut = ut�1 + "t;

with "t i.i.d. The term zt represents technological progress which is assumed
to grow deterministically over time, but also has a stochastic trend component.
The model was also used in Garderen, Lee, and Pesaran (2000) in comparing
various nonlinear aggregate and disaggregate models based on predictions of the
output level Y:
The central issue is predicting one or more step ahead output level YT+h,

and predicting growth Gh;T = 100(YT+h � YT )=YT based on observations up
to and including time T . We focus on unbiased predictors since in a prediction
and forecasting setting one often starts out with a square loss function and use
a Mean Squared Forecasting Error (MSFE) criterion function for determining,
or comparing the quality of predictors. It is easily shown that the conditional
mean given the available information at time t minimizes the MSFE. This the-
oretical result assumes the parameters are known, but if the parameters in this
conditional mean function are estimated, the predictions are no longer unbiased.
After taking log-di¤erences the model becomes:

�yt = � +�lt�1 +�kt�2 + "t;

where small letters indicate that logs have been taken. The transformed model
is easily estimated, forecasting is standard, and inference is straightforward.
The inverse transformation (exponentiation) is nonlinear and the nonstationary
nature of the log variable gives rise to further complications, mainly in predicting
the level Y . We want to highlight the following issues.
First, the current level yT is highly informative about future levels, but

it is also very informative about the parameter values. The nonstationarity
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causes the estimators associated with any variable trending in the levels to be
highly correlated with the current level of the dependent variable. In a weakly
dependent situation the in�uence of yT on the estimator would be of order 1=T
and dropping the last observation in a strict i.i.d. setting would actually make
estimator independent of yT . In the presence of a unit root this is no longer the
case. Current yT is correlated with all yt�s in the past and the covariance does
not go to zero due to the stochastic trend. The covariance between yT and the
estimator is of order 1 and the correlation does not disappear asymptotically.
Hence formulas like �YT+1 = YT expf�̂ + �lT+1�̂1 + �kT+1�̂2 + 1

2 �̂
2g; which

appear reasonable at �rst glance and are in common use (either with or without
the last term 1

2 �̂
2), are signi�cantly biased and not even consistent predictors

of the conditional expectation.
Second, the nonlinearity of the inverse transformation (taking exponentials)

causes the expectation to di¤er from the exponential of the mean. In linear
settings unbiasedness of predictors can be proved by symmetry arguments in
certain cases, but these arguments do not apply in the presence of nonlinear
transformations. Furthermore, the variance of the random walk component of
the log-series is increasing linearly over time and increasingly a¤ects the ex-
pected value of the levels of the original series. See also Granger and Newbold
(1976) who consider forecasting series that are non-linearly transformed, in-
cluding exponential transformations and consider quadratic transformations for
non-stationary variables. They also compare di¤erent predictors and the loss
involved, but do not consider estimation uncertainty (the optimal forecast is the
conditional mean) and no explanatory variables.
Third, and related to both previous issues, is that of parameter uncertainty

and the relation between the forecast horizon, h; and the number of observations
T . Sampson (1991) analyses, in a standard linear setting, the way in which
parameter uncertainty a¤ects the way conditional forecast variances grow as
the forecast horizon increases. He shows that parameter uncertainty causes
the conditional forecast variance to increase with the square of the forecast
horizon (when T increases as a multiple of h) in the unit root setting instead
of rate h. He actually shows that the same holds in a trend stationary setting,
where the forecast variance is bounded in the absence of parameter uncertainty.
See also Clements and Hendry (1999, p111 ¤.), stressing the importantance of
estimation uncertainty, but show that when T and h are both allowed to increase
proportionally, as in Sampson (1991) that the forecast variance of the di¤erence
stationary model outgrows that of the trend stationary model, the ratio of the
two going to in�nity. The exponential transformation only exacerbates the
situation and the variance increases even faster. Phillips (1979) also analyzes
the role of parameter estimation in forecasting from stable AR(1) models and
discusses conditioning on the last observation explicitly.
The sample size itself is an important issue, particularly in macro where short

time series are common place and structural breaks might lead to modelling
shorter periods of time. Our analysis applies to both large samples and small
samples.
The main fundamental issue in the paper concerns conditioning and unbi-

asedness, or how to de�ne unbiasedness when conditioning on past observations.
For prediction puposes we would like to condition on all information available
at time T . Conditioning on past observations, however, means that estimators
are �xed since they are deterministic functions of the conditioning variables.
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Probability statements such as median- or mean unbiasedness are therefore vac-
uous since the distribution is degenerate: �̂ is �xed and never equal to � in the
example above, irrespective of the estimator (function of the data) being used.
This causes the predicament that expressions are either conditional on past
observations and no statement about unbiasedness can be made, or we make
unconditional predictions and average over all possible sample paths. Uncondi-
tional statements are undesirable because, for example, in a basic random walk
model with zero initial value, the next observation will almost by de�nition be
close to the last observation, whereas the unconditional prediction is always zero
regardless of how far the process at time T has deviated from zero. Secondly, the
unconditional variance of the process is increasing linearly with T; whereas the
conditional variance does not depend on T (only on h). The issue becomes more
subtle in the case of a unit root model with drift (and other exogenous variables)
because of the correlation between the last observation and the estimator. If
yT is larger than the unconditional expectation, then the drift parameter will
be overestimated. Using this over-estimate leads to an over-prediction of future
yT+h and under-prediction when yT is small. With the exponential transforma-
tion these e¤ects do not average out, since over-prediction of the log variables
will lead to a larger contribution to the MSFE than under-estimation.
One possible solution is to condition only on those variables that enter the

conditional mean. In the leading example those are the exogenous variables and
the endogenous variable YT . This was also discussed and analyzed by Phillips
(1979) for the AR(1) case with stable parameter values. The appendix gives
the relevant conditional distributions for the present case with a unit root and
exogenous variables. The problem remains, however, that when a deterministic
linear trend is included, the conditional distribution of the parameter estimates
is still degenerate. E.g. if only a trend is included then �̂ = yT =T and the
di¢ culty is the same as when conditioning on the whole past, namely that �̂ is
�xed.
We show theoretically that when a linear trend is included no conditionally

unbiased estimator exists at all. This interesting result holds whether condi-
tioning on the whole past or just the last observation. We derive two exact
unbiased estimators, one unconditionally unbiased estimator i.e. by directly
solving the unconditional unbiasedness condition, and the second based on a
conditional expression using the last observation YT ; but taking into account
the correlation between the estimator and the last observation and requiring
unbiasedness unconditionally. It is interesting that, although both predictors
are derived from very di¤erent perspectives, they are actually identical, as will
be proved below.
Finally, a minor comment about assuming it is known that the model is

a unit root with drift. This has two important consequences. First, there is
no (pre-) testing for unit roots. Proper inference procedures should take the
value of the test-statistic and the outcome of the tests into account, and this
would obscure the issues we highlight here. Second, the drift parameter is more
accurately estimated in the �rst di¤erence model than in (log) levels. Estimating
a trend stationary model results in an estimator of the drift term that has the
same root-T order of convergence as the estimate of the constant in the �rst
di¤erence model, but the intercept estimator in the �rst di¤erence model has
a much smaller variance than estimator of the drift in the model where it is
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jointly estimated with the unit root of the lagged dependent variable. (In fact
it has the smallest variance in the class of unbiased estimators since it achieves
the Cramer-Rao lowerbound under the model assumptions entertained in this
paper). The parameter uncertainty is an important factor in adjusting the
predictions and using a less accurate estimator would lead to even larger e¤ects
than reported in this paper.

There are of course a number of issues the paper does not deal with, in-
cluding for instance dynamic forecasts of exogenous variables, as e.g. Schmidt
(1978). This additional uncertainty would increase the bias correction term and
would require the exact distribution of the vector autoregressive moving average
estimators, which is as yet an unsolved problem. Another issue we do not deal
with is heteroskedasticity in the transformed model, which is either trivial to
deal with if the exact form is known, or analytically very complicated when it
involves unknown parameters.
The remainder of the paper is organized as follows. The next section dis-

cusses the basic model. Section 3 deals with predicting growth and Section 4
deals with predicting future levels in this model. Section 5 compares our sug-
gestions with common solutions and Section 6 concludes. Proofs are given in
the appendices.

2 The Model

Consider the following loglinear unit root model, which includes the Cobb-
Douglass production function with stochastic technology in the introduction
as a special case:

lnYt = x0t� + ut; t = 1; 2; :::; (1)

ut = ut�1 + "t; "t � I:I:N(0; �2); (2)

where xt is a (k� 1) vector of regressors including a trend, � is a (k� 1) vector
of unknown parameters, and "t are i:i:d: normal with mean zero and variance
�2: The model implies that for the log-di¤erences

�yt = �x
0
t� + "t; (3)

where yt = lnYt;and we assume that the following conditions hold throughout:

Condition 1 yt =
Pt

i=1�yi and xt =
Pt

i=1�xi

Condition 2 The matrix �X = (�x1;�x2; :::;�xT )
0 has full column rank.

Assumption 1 is West�s (1988) condition (2.1) and avoids having to track
the e¤ects of the initial values on the mean, for instance. One could think of
this as having subtracted the initial values from every observation, or simply as
the initial values being zero in which case it is just an identity. Implicit in any
case is that we condition on the initial value.
Assumption 2 ensures that the OLS estimator in (3) is uniquely de�ned.

The assumption does imply that no constant term included in xt; but that is
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related to the fact that the constant cannot be identi�ed from the equation in
�rst di¤erences.
With these assumptions the parameters � and �2 are simply estimated using

OLS in (3). Predicting �yT is straightforward, as is the prediction of the
log-variable yt using Goldberger (1962). Using his result it is easily shown,
see Lemma (@@) in the appendix, that the optimal (minimal variance linear
unbiased) predictor is given by:

ŷ�T+1 = yT +�x
0
T+1�̂: (4)

Exponentiation of ŷt does, however, not lead to optimal predictors for levels
and growth of Yt. The �rst reason is that the transformation is non-linear
and results in a bias. Second, yT and �̂ are highly correlated as stated in the
following lemma and corollary, and this causes an additional bias term.

Lemma 3 The covariance between yT and �̂: Let b� be the OLS estimator of
the model in log-di¤erences, then:

Cov
�
yT ; b�� = �2x0T (�X 0�X)

�1
: (5)

Corollary 4 If xt includes a linear trend or is I(1), such that (�X 0�X) =
Op(T ) and xT = Op(T ), then the covariance between the covariance between
the last observation and the estimator �̂ does not go to zero as the sample size
increases

Cov
�
yT ; b�� = O(1) (6)

In particular if xt consists of only a linear trend then the correlation between
yT and the drift estimate is 1:

Corr
�
yT ;b�� = 1 (7)

The problem is that yT is very informative about the future levels yT+h;
while at the same time also containing much information about the parameter.
If yT is high, then the estimate is also high, and if yT is low than the estimate is
low. In a linear setting these e¤ects may cancel out but exponentiation destroys
the possible symmetry.

2.1 Predicting Growth

Growth per period in the model does not depend on the level Y . It is a
function only of the disturbance term, parameters, and exogenous variables:
GT = 100(exp

�
�x0T+1� + "T+1

	
� 1) and has expectation

E [GT ] = 100(exp
�
�x0T+1� +

1
2�

2
	
� 1): (8)

The term 1
2�

2 is due to taking the expectation of a nonlinear function of "T+1:
The expected growth can be estimated unbiasedly using a result in Van Garderen
(2001) where an unbiased estimate of the variance is also derived. This leads
to:
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Theorem 5 The Exact Minimum Variance Unbiased Predictor of growth
in period T is given by

ĜT = 100( expf�x0T+1�̂g 0F1(m;m�̂2 12 (1� aT+1))� 1) (9)

where �̂ and �̂2 are the OLS estimators of the model in �rst di¤erences, and
aT+1 = �x

0
T+1(�X

0�X)�1�xT+1.
An unbiased estimator for the variance is given by

dvar(ĜT ) = 1002 expf2�x0T+1�̂g(0F1(m; �̂2m 1
2 (1�aT+1))

2� 0F1(m;m(1�2aT+1)�̂2)
(10)

The proof essentially uses the result that E[0F1(m;m�̂
2z)] = expf�2zg, see

Van Garderen (2001). We can therefore attribute the term 1
2 �̂

2(1�aT+1) in ĜT
to the uncertainty in "T+1 which leads to the term 1

2�
2 in the expected growth

(8), and aT+1 to the uncertainty in the estimate �̂ , since E[expf�x0T+1�̂g] =
expf�x0T+1� + 1

2�
2aT+1g:

Theorem 1 is easily generalized to multi-period growth and growth at some
future date as follows:
(1) predicting growth from period T to period T + h by replacing

(a) �x0T+1by �hx
0
T+h where, in obvious notation, �hx

0
t = x

0
T+h � x0T ;

and
(b) (1 � aT+1) by (h � aT+h); and 2aT+1 by 2aT+h; where aT+h =

�hx
0
T+h(�X

0�X)�1�hxT+h:
(2) predicting growth in period T + h (given information at time T ) by

replacing �x0T+1by �x
0
T+h+1:

In practice, other predictors are in use and biased alternatives are available.
When T is su¢ ciently large, it turns out that the exact unbiased estimator and
its variance estimator are closely approximated by the Approximate Unbiased
predictor given below in the next de�nition.
A second alternative, the Consistent predictor, takes into account the un-

certainty in "T+1 and ignores the uncertainty in the estimation of � and �2;
but, since this goes to zero as the sample size increases, results in a consistent
estimator of the expected growth. The third alternative, the Naive predictor
ignores the uncertainty in both "T+1 and the estimation of �, and is biased and
inconsistent but it should be noted that the e¤ects work in opposite directions:
ignoring the uncertainty in leads to underestimation and ignoring uncertainty
in �̂ leads to overestimation. The naive predictor can in certain circumstances
be better in terms of MSFE than the other predictors.

De�nition 6 Alternative predictors
(A) Approximate Unbiased Predictor of Growth and its Variance:

~GT = 100( expf�x0T+1�̂ + 1
2 �̂

2(1� aT+1)g � 1); (11)gvar( ~GT ) = 1002 expf2�x0T+1�̂g(expf�̂2(1� aT+1)g � expf�̂2(1� 2aT+1)g);(12)

(B) Consistent Predictor:

�GT = 100( expf�x0T+1�̂ + 1
2 �̂

2g � 1): (13)
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(C) Naive Predictor

�GT = 100( expf�x0T+1�̂g � 1)

The approximate unbiased estimators appear much easier to calculate than
the exact ones, but it should be noted that many packages, such as Mathematica,
include the hypergeometric function as standard. There are exact expressions
and estimators available for the variance of the consistent and naive predictors,
but when using a biased estimator it is not clear why one would use an unbiased
estimator of the variance or MSFE.

2.2 Predicting Levels

Predicting growth is essentially straightforward, and is only complicated by the
nonlinear function involved as we have just seen. Predicting future levels is
more complicated because future levels are not simply a function of parameters
but also depend on the current level. This current level is highly correlated with
the parameter estimates, and ignoring this dependence leads to signi�cant bias.
For this reason the obvious estimator based on the unbiased growth predictor:

ŶT+1 = YT (ĜT =100� 1)

is not an unbiased predictor of the level. When the consistent growth estimator
is used this would lead to

�YT+1 = YT expf�x0T+1�̂ + 1
2 �̂

2g (14)

which makes it clear that the correlation between current level YT and �̂ will
cause problems. This predictor will in fact be inconsistent if xT includes a
trending variable.
Level predictors based on growth estimates are generally not unbiased for

three reasons. First, the nonlinear exponential transformation, second, the pa-
rameter uncertainty, and third, the fact that YT and the estimator �̂ are highly
correlated. We will therefore have to bias-correct such predictors or consider
di¤erent types of estimators, for example based directly on the expectation of
YT+h.
The unconditional expectation of period (T + h)�s level YT+h and the con-

ditional expectation YT+h given the current level YT are respectively:

E[YT+h] = expfx0T+1� + T+h
2 �2g; (15)

E[YT+hjYT ] = YT expf�hx0T+h� + h
2�

2g: (16)

It seems therefore that there are two di¤erent ways of constructing an un-
biased predictor for the level YT : The �rst is to note that the unconditional
expectation of YT+h depends only on parameters and to estimate this unbias-
edly using Van Garderen (2001).
The second is to estimate the conditional expectation of YT+h given YT and

adjust for the bias caused by the fact that �̂ and YT are correlated, to obtain a
predictor that is unbiased. This leads to two predictors which are both unbiased:
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Proposition 7 The unconditional level predictor

FT+h = expfx0T+h�̂g 0F1(m;m�̂2 zT+h)

with
zT+h =

1
2 (T + h� x

0
T+h (�X

0�X)
�1
xT+h);

is unbiased.

Proposition 8 The conditional level predictor

FT+hjT = YT expf�hx0T+h�̂g 0F1(m;m�̂2zT+hjT )

with

zT+hjT =
1
2 (h� 2x

0
T (�X

0�X)
�1
�hx

0
T+h ��hx0T+h(�X 0�X)�1�hxT+h);

is unbiased

The terms in zT+h and zT+hjT are easily attributed to sources of uncertainty.
In zT+h, the term (T +h) can be attributed to the total number of disturbances
up to and including period T + h, and the second term is correcting for the
parameter uncertainty when estimating x0T+h�: In zT+hjT : the term h derives
from the h disturbance terms "t in the future between time T and T + h; the
second term derives from the covariance between yT and �̂; and the third term
x0T+h (�X

0�X)
�1
xT+h is correcting for parameter uncertainty in the estimate

�hx
0
T+h�̂.
Although the predictors look principally di¤erent and are derived from very

di¤erent perspectives, they are very closely related. They are in fact identical
if a drift term is included as we prove in the appendix and state here as:

Proposition 9 If the model includes a deterministic trend, such that �X in-
cludes a constant term, then

FT+h = FT+hjT

This paradoxical equality between the conditional and unconditional predic-
tors can be explained in the two di¤erent ways.
The �rst explanation is by noting that the unconditional predictor FT+h

equals YT for the limiting case h = 0.1 So, although we are averaging over all
possible sample paths for fYtg; each prediction based on any realized sample
path still goes through (when varying h) the last observation YT . The only
di¤erence is that the conditional predictor FT+hjT is an explicit function of YT ,
but the unconditional predictor only depends implicitly on YT ; but it behaves
exactly the same.
The second explanation is via the unbiasedness condition imposed. Expec-

tations can only be evaluated by integrating over all possible sample paths, and
hence by varying YT , since conditioning on all past observations would leave
the estimators �xed: e.g. �̂ � � would be a �xed number di¤erent from 0 (with
probability 1). So the unbiasedness condition is essentially an unconditional

1x0T+0�̂ = {0�X(�X0�X)�1�X0�y = {0�y = yT and hence expfx0T �̂g = YT . zT =
1
2
(T � {0�X(�X0�X)�1�X0{)) = 0; and 0F1(m; 0) = 1 and hence FT+0 = YT
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requirement. The model density is complete with complete su¢ cient statistics
(�̂; �̂2) , (see e.g. Lehmann and Casella (1998, p.42)). This means that there is
a unique function of (�̂; �̂2) which has expectation equal to a function of (�; �2)
for all parameter values (see Appendix) and FT+hjT must equal FT+h:
It seems undesirable to average over all possible sample paths that Y can

take. Given that the process goes through YT we should want to condition on
the fact that, at time T , the process goes through YT . The appeal of the �rst
explanation is that the predictions do in fact go through YT ; although we do
not condition on this outcome.
An alternative approach is to condition only on the terms that enter the

conditional expectation, in this case YT . In this approach we consider the con-
ditional distribution given only YT and do not condition on previous values
fY1; :::; YT�1g. The problem is, however, that the conditional distribution of �̂
is still degenerate given only YT : For example, in the log-di¤erence model with
only a constant term, the estimated drift parameter is simply YT =T and hence
a deterministic function of YT and it is impossible to �nd for a predictor that
is conditionally unbiased given YT :

Proposition 10 If the model includes a deterministic trend, such that �X
includes a constant term, then no conditionally unbiased predictor of YT+h exists
given either (a) fY1; :::; YT g or (b) fYT g.

The proof is given in the Appendix, but (a) is obvious since the estimates
are constants given fY1; :::; YT g and not equal to the conditional expectation
of YT+h with probability 1. Part (b) also follows from a degeneracy in the
conditional distribution of �̂.
Other predictors for YT+h are of course available and, although they will

be biased, they need not necessarily be worse in terms of MSFE. Alternatives
include:

De�nition 11 Alternative predictors:
(A) Approximate unbiased predictor:

F auT+h = YT expf�hx0T+h�̂ + �̂2zT+hjT g; (17)

with

zT+hjT =
1
2 (h� 2x

0
T (�X

0�X)
�1
�hx

0
T+h ��hx0T+h(�X 0�X)�1�hxT+h):

(B) Consistent predictor:

F cT+h = expfx0T+h�̂ +
T + h

2
�̂2g (18)

(C) Naive predictor:

FnaivT+h = YT expf�hx0T+h�̂g (19)
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The consistent predictor is a consistent estimator of the (unconditional)
mean of YT+h: It was used in Garderen, Lee, and Pesaran (2000) in their pre-
diction based criterion for deciding between aggregate and disaggregate non-
linear models. This choice turns out not to be optimal as we will see below.
The approximate unbiased predictor is constructed by approximating the exact
unbiased predictor, i.e. using zT+hjT which corrects for uncertainty in YT+h;
�̂ and the correlation between YT and �̂. The naive predictor ignores all the
uncertainty and, similar to Proposition (@@), if a time trend is included in
xt then the conditional FnaivT+h = expfx0T+h�̂g; which can be regarded as the
unconditional version.

3 Comparing the Predictors: Sectoral Produc-
tion Forecasts

In this section we make a numerical comparison of the various predictors of
growth and levels. This serves not only as an illustration but is motivated by two
reasons. First, the unbiasedness was partly motivated by the choice of MSFE
as optimality criterion. Although the conditional mean minimizes the MSFE
when the parameters are known, this is not necessarily true if the parameters
are estimated, or if an exact unbiased estimator of the mean is found, that the
resulting predictors are best in terms of MSFE. Second, although there may
be important theoretical di¤erences between the various predictors, it might be
that the di¤erences in practice are not important.
In order to show the di¤erence we have applied the di¤erent predictors to the

same data set as in Garderen, Lee, and Pesaran (2000). The models include gen-
eral and sector speci�c productivity dummies for oil price shocks, major strikes,
etc. For a full explanation see the original article where also various speci�ca-
tion tests are reported including tests for normality and functional form which
do not reject the model. We then simulated the model with the estimated para-
meters. For observations after 1995 the regressors where dynamically generated
and Y was then generated according to the model.
We also use a simulated a log-linear unit root model with a trend, a random

walk with drift, and a stationary variable as explanatory variables with slightly
di¤erent parameter values similar to estimates based on the data in Nelson and
Plosser (1982) or Sampson (1991).

Results on growth.
The �rst two tables report the average actual and predicted values based on

the various predictors, the bias, and the MSFE .The individual sectoral results
are reported in the appendix. Note that the average value of the drift term, and
the average value of the standard deviation over the eight sectors are both very
small.

T = 25
1956-1980

Actual
Growth

Exact
Unbiased

Approximate
unbiased

Consistent Naive

Mean 11.39 11.38 11.38 11.61 11.38
Bias -0.01 -0.01 0.21 -0.01
MSFE 101.02 101.02 101.51 101.2
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Number of replications:100.000, h = 5; �� = 0:014 ��lnL = 0:241 ,��lnK =
0:430 ,�� = 0:027

T = 40
1956-1995

Actual
Growth

Exact
Unbiased

Approximate
unbiased

Consistent Naive

Mean 22.89 22.87 22.87 23.21 22.42
Bias -0.02 -0.02 0.26 -0.47
MSFE 236.1 236.1 236.6 235.9

Number of replications:100.000, h = 10; �� = 0:021 ��lnL = 0:296 ,��lnK =
0:173 ,�� = 0:035

The results show very little di¤erence between the various predictors for
growth. There is very little to choose between them in terms of bias or in terms
of MSFE. This is not unexpected because the approximate relation between
growth and logs cause the loglinear model to give a reasonable answers when
growth is not too large.
The following tables give the results for predicting growth over 4 periods

using parameter values similar to those of Sampson (1991) or based on the
data set used by Nelson and Plosser (1982). The MSFE is based on the actual
di¤erence between the realized growth and the predictions.

T = 25
Actual
Growth

Exact
Unbiased

Approximate
unbiased

Consistent Naive

Mean 45.84 46.05 46.05 45.37 46.18
Bias 0.2086 0.2088 -0.4706 0.3406
MSFE 271.1 271.1 270.9 271.2

T = 50
Actual
Growth

Exact
Unbiased

Approximate
unbiased

Consistent Naive

Mean 42.22 42.42 42.42 41.77 42.56
Bias 0.1914 0.1915 -0.4591 0.3297
MSFE 262.9 262.9 262.7 263.0
Number of replications:10.000, � = f 0:04; 0:6; 0:2g, � = 0:05267: h = 4

Results on levels
The following tables give the results for the level forecasts of sectorial pro-

duction based on the same model as for growth. The average results over all 8
sectors are reported and the detailed results per sector are given in the appen-
dix. The conditional unbiased predictor and unconditional unbiased predictor
are identical because a time trend is included in the model, and results are
given in column 3. For the growth based estimator YT Ĝunb the exact unbiased
growth predictor is used. This estimator ignores the correlation between YT and
the estimator. The last row gives the percentage di¤erence in MSFE from the
minimum MSFE.

T = 25
1956-1980

Actual
YT+h

Exact
Unbiased

Approximate
unbiased

YT Ĝunb Naive Consistent

Mean 2:629 2:629 2:629 2:641 2:640 2:646
Bias 0:000 0:000 0:012 0:011 0:017
MSFE 0:095 0:095 0:097 0:097 0:098

%diff from minimum 0% 0:0% 1:0% 0:98% 1:6%
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Number of replications:100.000, h = 5; �� = 0:014 ��lnL = 0:241 ,��lnK =
0:430 ,�� = 0:027

T = 40
1956-1995

Actual
YT+h

Exact
Unbiased

Approximate
unbiased

YT Ĝunb Naive Consistent

Mean 4:638 4:636 4:636 4:682 4:670 4:693
Bias �0:001 �0:001 0:032 0:055 0:044
MSFE 0:476 0:476 0:490 0:487 0:496

%diff from minimum 0 0:001% 3:5% 2:2% 4:4%

Number of replications:100.000, h = 10; �� = 0:014 ��lnL = 0:241 ,��lnK =
0:430 ,�� = 0:027

The small di¤erences between the prediction methods is due to small val-
ues of the variance and the non-linearity of the transformation is therefore less
important, and secondly the small value of the drift term. The following ta-
bles show the results from simulations using parameter values comparable with
estimates based on the data in Nelson and Plosser (1982) or Sampson (1991).

T = 25
Actual
YT+h

Exact
Unbiased

Approximate
unbiased

YT Ĝunb Naive Consistent

Mean 16:82 16:85 16:74 17:04 16:96 17:05
Bias 0:02 �0:08 0:21 0:13 0:23
MSFE 3:973 3:929 4:115 4:045 4:131

%diff from minimum 1:1% 0 4:7% 2:9% 5:1%

T = 50
Actual
YT+h

Exact
Unbiased

Approximate
unbiased

YT Ĝunb Naive Consistent

Mean 289:4 289:6 287:8 292:9 291:5 293:2
Bias 0:2 �1:6 3:5 2:1 3:8
MSFE 1273: 1260: 1314: 1294: 1319:

%diff from minimum 0:1% 0 4:2% 2:6% 4:6%

T = 100
Actual
YT+h

Exact
Unbiased

Approximate
unbiased

YT Ĝunb Naive Consistent

Mean 3:337e4 3:335e4 3:316e4 3:372e4 3:354e4 3:373e4
Bias �21:80 �213:7 349:4 171:2 357:4
MSFE 1:907e7 1:895e7 1:960e7 1:930e7 1:962e7

%diff from minimum 0:6% 0 3:4% 1:8% 3:5%

Number of replications:10.000, � = f 0:04; 0:6; 0:2g, � = 0:05267: h = 4

The results show that although the approximate unbiased predictor has some
bias, it actually has lower MSFE than the exact unbiased predictor due to
its lower variance. The di¤erence in MSFE is actually not more than 0.6%.
The di¤erence with predictors that ignore the correlation between YT and �̂
like the growth based predictors and the consistent predictor is considerably
more. There is an appreciable di¤erence of up to 5.1%. The naive predictor is
performing surprisingly better. It ignores the randomness in "; which increases
the expectation, and ignores the randomness in the estimator and correlation
between YT and �̂ which increase the expectation of the prediction. These two
e¤ects partly cancel. This can also be seen from the zT+hjT term which is used in
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the unbiased and approximate unbiased estimators. The numeric values for the
constituent parts of zT+hjT when T = 50 are for the uncertainty in " : h=2 = 2;
for the parameter uncertainty��hx0T+h(�X 0�X)�1�hxT+h=2 = �0:3, and for
the correlation between YT and �̂ -2x0T (�X

0�X)
�1
�hx

0
T+h=2 = �4; giving a

value of approximately zT+hjT = �2:3 as cumulative term for correction of the
bias due to uncertainty and the nonlinear transformation. The correlation term
is the largest term and, together with the term h=2; does not decrease as the
number of observations T increases. Only the parameter uncertainty term goes
to zero.

4 Conclusion

This paper shows that intuitive predictors for the level of macro- and other
economic series can be seriously biased in a loglinear unit root model. Not
only the nonlinearity of the transforms causes bias, but more importantly, there
is high correlation between the last observation and parameter estimates and
this correlation persists even asymptotically. We derive exact unbiased predic-
tors for growth and for levels that address both issues. We show that the two
exact predictors, one based on the conditional expectation but correcting for
covariance between the last observation and the estimator, and the other based
on the unconditional expectation, are identical if a linear trend is included in
the model. We have shown that a conditionally unbiased predictor does not
exist.We also derive a simple approximation to the exact unbiased estimator
that is for parameter values used here virtually indistiguishable from the exact
unbiased predictor.
The results showed that there is little di¤erence in the various predictors

for growth, but for predicting the levels our exact unbiased predictor can be
signi�cantly more accurate. The paper has investigated the e¤ect of parameter
estimation and one of the contributions of the paper is to highlight the corre-
lation between the level of the last observation and parameter estimates. It is
shown that this correlation is far more important than parameter uncertainty.
It is even more important than the forecast uncertainty itself in the sense that
the contribution to the mean correcting term zT+hjT , is much larger.

5 Appendix

5.1 Notation

Given initial values y0 = 0 and x0 = 0

yt = x0t� + ut; t = 1; 2; :::; T

ut = ut�1 + "t; "t � IIN(0; �2) (20)

Let {T = (1; :::; 1)0; a T � 1 vector of ones, and let L be the �rst di¤erencing
matrix,

L =

0BBBB@
1 0

�1 . . .
. . .

. . .

0 �1 1

1CCCCA
14



and y(t) = (y1; y2; :::; yt)0; i.e. the t� 1 column vector of observations from 1 up
to t and X(t) the associated t�k matrix of regressors. The full sample quantities
are written as y and X: Then Ly = LX� + Lu, and we have

y � N(X�; �2L�1L0�1)

�2L�1L0�1 = �2

0BBB@
1 1 � � � 1
1 2 � � � 2
...
...

. . .
...

1 2 � � � T

1CCCA
yt =

Pt
s=1�x

0
s� +

Pt
s=1 "s; (21)

= x0t� + St;

St =
Pt

s=1 "s = {
0
t"(t):

5.2 Proofs

Covariance between yT and �̂: Let b� be the OLS estimator of the model in
log-di¤erences, then:

Cov
�
yT ; b�� = �2x0T (�X 0�X)

�1
:

Lemma 12 Proof.

b� = (�X 0�X)
�1
�X 0�y

= � + (�X 0�X)
�1
�X 0" � N

�
�; �2 (�X 0�X)

�1
�

yT =
XT

s=1
�x0s� +

XT

s=1
"s

= x0T�|{z}
E[yT ]

+ ST|{z}
{0T "

Hence

Cov
�
yT ; b�� = E

�
ST

�
(�X 0�X)

�1
�X 0"

�0�
= E

h
{0T ""

0�X 0 (�X 0�X)
�1
i

= �2{0T�X
0 (�X 0�X)

�1

= �2x0T (�X
0�X)

�1

Covariance between yT and �x0T+1b�
Cov

�
yT ;�x

0
T+1

b�� = �2x0T (�X 0�X)
�1
�xT+1

Proof. of FT+h = FT+hjT if a time trend is included. According to Assump-
tion 1 we have xT = {0T�X. Now let P�X = �X (�X

0�X)
�1
�X 0 be the pro-

jection matrix onto the column space of�X; then, {0T�X (�X
0�X)

�1
�X 0{T =
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{0TP�X {T = {0T {T = T since �X includes a column of ones (i.e.{T ) associated
with the constant term (the drift term).

zT+h =
1

2

�
T + h� (xT+h � xT + {0T�X)

0
(�X 0�X)

�1
(xT+h � xT + {0T�X)

�
;

=
1

2

�
T + h� (xT+h � xT ) (�X 0�X)

�1
(xT+h � xT )� 2{0T�X (�X 0�X)

�1
(xT+h � xT )� {0T�X (�X 0�X)

�1
�X 0{T

�
;

=
1

2

�
h� (xT+h � xT ) (�X 0�X)

�1
(xT+h � xT )� 2{0T�X (�X 0�X)

�1
(xT+h � xT )

�
;

= zT+hjT :

Remains to show that x0t+h�̂ = lnYT +�hx
0
T+h�̂: By Assumption 1 x

0
T = {

0
T�X

and by de�nition of �h we have x0T+h = x
0
T +�hx

0
T+h and hence

x0T+h�̂ = x0T �̂ +�hx
0
T+h�̂; (22)

= {0T�X (�X 0�X)
�1
�X 0�y +�hx

0
T+h�̂; (23)

= yT +�hx
0
T+h�̂; (24)

since {0T�X (�X
0�X)

�1
�X 0 = {0T :

Proof. Of Lemma @@.

E[FT+h] = E�̂2E�̂j�̂2
h
expfx0T+h�̂g 0F1(m; 12m�̂

2 zT+h)j�̂2
i
;

= E�̂2

�
expfx0T+h� +

�2

2
x0T+h (�X

0�X)
�1
xT+hg 0F1(m; 12m�̂

2 zT+h)

�
;

= expfx0T+h� +
�2

2
x0T+h (�X

0�X)
�1
xT+hg exp

�
�2

2
(T + h� x0T+h (�X 0�X)

�1
xT+h)

�
;

= exp

�
x0T+h� +

T + h

2
�2
�
;

= E [YT+h] ;

Hence FT+h is unconditionally unbiased.
Proof. The conditional expectation, given YT ; of the conditional predictor

can be derived using the results on conditional distributions given in the next
subsection of this appendix. We obtain:

E[FT+hjT jYT ] = E�̂2jYT [E�̂j�̂2;YT

h
YT expf�hx0T+h�̂g 0F1(m;m�̂2zT+hjT )j�̂2; YT

i
jYT ];

= YT E�̂2jYT [expf�hx
0
T+h(� + (�X

0�X)
�1
xT
(yT � x0T�)

T
)

+ 1
2�

2�hx
0
T+h

�
(�X 0�X)

�1
�X 0M{�X (�X

0�X)
�1
�
�hxT+hg

� 0F1(m;m�̂
2zT+hjT ) j YT ]

= YT expf�hx0T+h� +�hx0T+h (�X 0�X)
�1
xT
(yT � x0T�)

T
+

+ 1
2�

2�hx
0
T+h (�X

0�X)
�1
�hxT+h

� 1

2T
�2�hx

0
T+h (�X

0�X)
�1
xTxT

0 (�X 0�X)
�1
�hxT+h +

+�2 12 (h� 2x
0
T (�X

0�X)
�1
�hx

0
T+h ��hx0T+h(�X 0�X)�1�hxT+h)g
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= YT exp f �hx0T+h� + �2 h2 +�hx
0
T+h (�X

0�X)
�1
xT
(yT � x0T�)

T
+

� 1

2T
�2�hx

0
T+h (�X

0�X)
�1
xTx

0
T (�X

0�X)
�1
�hxT+h � �2x0T (�X 0�X)

�1
�hx

0
T+h g

Note that this expectation is not equal to the conditional expectation E[YT+hjYY ]:
Now, using the fact that (yT � x0T�) � N(0; T�2) it follows that

E[expf�hx0T+h (�X 0�X)
�1 xT

T
(yT�x0T�)g = expf

1

2

T�2

T 2
�hx

0
T+h (�X

0�X)
�1
xTx

0
T (�X

0�X)
�1
�hxT+h

and

E[YT ] = E[expfyT g]

= expfx0T� +
T

2
�2g

Hence

E[expfyT +�hx0T+h� + �2 h2 +�hx
0
T+h (�X

0�X)
�1
xT
(yT � x0T�)

T
] =

E[exp

�
(yT � x0T�) (1 + �hx0T+h (�X 0�X)

�1 xT
T
) + x0T� +�hx

0
T+h�| {z }+�2 h2

�
] =

exp

�
T�2

2
(1 + �hx

0
T+h (�X

0�X)
�1 xT

T
)(1 + �hx

0
T+h (�X

0�X)
�1 xT

T
) + x0T+h� + �

2 h
2

�
=

exp

�
T�2

2
(1 + 2�hx

0
T+h (�X

0�X)
�1 xT

T
+�hx

0
T+h (�X

0�X)
�1 xT

T

x0T
T
(�X 0�X)

�1
�hxT+h) + x

0
T+h� + �

2 h
2

�
=

exp

�
�2

2
(T + 2�hx

0
T+h (�X

0�X)
�1
xT +

1

T
�hx

0
T+h (�X

0�X)
�1
xTx

0
T (�X

0�X)
�1
�hxT+h) + x

0
T+h� + �

2 h
2

�
=

exp

�
x0T+h� + �

2 T+h
2 +

1

T
�hx

0
T+h (�X

0�X)
�1
xTx

0
T (�X

0�X)
�1
�hxT+h) +

�2

2
(2�hx

0
T+h (�X

0�X)
�1
xT

�
=

consequently

E[FT+hjT ] = E[ YT exp f �hx0T+h� + �2 h2 +�hx
0
T+h (�X

0�X)
�1
xT
(yT � x0T�)

T
+

� 1

2T
�2�hx

0
T+h (�X

0�X)
�1
xTx

0
T (�X

0�X)
�1
�hxT+h � �2x0T (�X 0�X)

�1
�hx

0
T+h g ]

= expfx0T+h� +
T + h

2
�2g

and FT+hjT is unconditionally unbiased.

5.3 Conditional Distributions given YT
Lemma 13 (a) Conditional distribution of yT+h given yT

yT+hj yT � N
�
yT +�hx

0
T+h�;h�

2
�

(b) Conditional expectation of YT+h given YT

E[YT+hjYT ] = YT expf�hx0T+h� +
h

2
�2g
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(c) Unconditional expectation of YT+h

E[YT+h] = expfx0T+h� +
T + h

2
�2g

Proof. (a) follows from, see Section 7.1,

yT+h =
PT+h

s=1 �x
0
s� +

PT+h
s=1 "s

= yT +
Ph

s=1�x
0
T+s� +

Ph
s=1 "T+s;

= yT +�hx
0
T+h� +

Ph
s=1 "T+s;

and calculating the mean and variance. Part (b) and (c) follow from the moment
generating function of a normal distribution.

E[er
0z] = expf r0E[z] + 1

2
r0Cov(z) rg

Lemma 14 Conditional distribution of y(T�1) given yT

y(T�1) j yT � N

0BBB@X(T�1)� +
0BBB@

1
2
...

T � 1

1CCCA 1
T (yT � x

0
T�) ;�

2�

1CCCA
with �ij = �2

�
minfi; jg � 1

T i j
�
;

or � = �2

0BBB@
1 1 � � � 1
1 2 � � � 2
...
...
. . .

...
1 2 � � � T � 1

1CCCA��2 1

T

0BBB@
1
2
...

T � 1

1CCCA �
1 2 � � � T � 1

�
Proof. The proof uses the following standard result on conditional multi-

variate normal distributions (e.g. Muirhead (1982) Theorem 1.2.11)�
Y1
Y2

�
� N

��
�1
�2

�
;

�
�11 �12
�21 �22

��
where Y1 is (n1 � 1); Y2 is (n2 � 1), � and � partitioned accordingly, then

Y1jY2 � N
�
�1 +�12�

�1
22 (Y2 � �2); �11 � �12��122 �21

�
:

Since y(T ) � N(X 0
(T ) �;�

2
(T )) with


(T ) �

0BBBBBB@
1 1 1 � � � 1
1 2 2 � � � 2

1 2
. . .

...
...

... T � 1 T � 1
1 2 � � � T � 1 T

1CCCCCCA ;
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we have �21 = �012 = �
2 (1; 2; � � � ; T � 1), �22 = �2T; and hence

�12�
�1
22 (Y2 � �2) =

0B@ 1
...

T � 1

1CA yT � x0T�
T

; (25)

�12�
�1
22 �21 =

1

T
�2

0B@ 1
...

T � 1

1CA �
1 � � � T � 1

�
(26)

Finally, since �11 = �2
(T�1), the result follows.

Lemma 15 The conditional distribution of �y given yT is a degenerate normal
distribution:

�yj yT � Ndeg
�
�X � + {T

1

T
(yT � x0T�) ; �2M{T

�
; (27)

with M{T = (IT � 1
T {T {

0
T )

Proof. Using Lemma (@@) the conditional distribution of y(T ) given yT is
a degenerate normal distribution

y j yT � Ndeg

0BBB@
0BBB@ X(T�1)� +

0B@ 1
...

T � 1

1CA 1
T (yT � x

0
T�)

yT

1CCCA ;
�
�(T�1) 0
0 0

�1CCCA :
(28)

Since �y(T ) = L(T ) y(T ), we have that �y(T ) is normally distributed with mean

L(T )E[y j yT ] = �X � + {T
1

T
(yT � x0T�) ; (29)

L(T )

�
�(T�1) 0
0 0

�
L0(T ) = (IT �

1

T
{T {

0
T ) =M{T : (30)

Note that the distribution of �y(T )j yT is degenerate since by assumption
{0T�y(T ) = yT :

Theorem 16 Let b� = (�X 0�X)
�1
�X 0�y and b�2 = �y0M�X�y

n� k then, the

conditional distributions of b� and b�2 given YT are
(A) b� j YT � N(�;�) with
� = E

hb�jYT i = � + yT � x0T�
T

(�X 0�X)
�1
xT ;

� = V ar(b�jYT ) = �2�(�X 0�X)
�1 � 1

T
(�X 0�X)

�1
xTxT

0 (�X 0�X)
�1
�
;

(B) (T � k)b�2
�2
jYT � �2T�k ,

(C) b�2 and �̂ are conditionally and unconditionally independent.
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Proof. (A) b� = (�X 0�X)
�1
�X 0�y: The distribution of �y given yT

(or YT ) is given in the previous lemma. The result follows by noting that
�X 0{T = xT and the mean and variance follow by basic matrix multiplication
as follows:

E
hb�jYT i = (�X 0�X)

�1
�X 0E [�yjYT ] ;

= � � (�X 0�X)
�1
�X 0{T

(yT � x0T�)
T

;

= � � (�X 0�X)
�1
xT
(yT � x0T�)

T
:

V ar(b�jYT ) = �2 (�X 0�X)
�1
�X 0(IT �

1

T
{T {

0
T )�X (�X

0�X)
�1
;

= �2
�
(�X 0�X)

�1 � 1

T
(�X 0�X)

�1
xTxT

0 (�X 0�X)
�1
�
;

since xT = {0T�X by Assumption 1.
(B) and (C). We will use a conditional version of a theorem by Ogasawara and
Takahashi (1951), see Muirhead (1982) which states that if z � N(0;�), with �
possibly singular, then z0Az � �2rank(A�) if and only if A�A� = A�: Using the
conditional distribution of �y(T )j yT ; we see that M�XE[�y(T )j yT ] = 0; and
for the (degenerate) covariance matrix for M�X�y(T ) = �

2M�X M{TM�X =
�2M�X , since M�XM{T =M�X . We have therefore

M�X�y(T )j yT � Ndeg
�
0; �2 M�X

�
and hence with A =M�X = �; we have rank(A�) = T � k

�y0M�X�y � �2T�k

(C) Follows since �̂ =
�
(�X 0�X)�1�X 0��y andM�X�y are both linear func-

tions of the conditionally and unconditionally normally distributed �y and un-
correlated since M�X�X(�X

0�X)�1 = 0; and therefore independent. Hence
�̂ is also independent of �y0M�X�y=(T�k); conditionally and unconditionally.

Remark 17 If the model only includes a time trend such that xt = t; and
therefore �X = {T , then � =

yT
T . No � appears in the expectation and the

conditional variance is 0:

Remark 18 alternative: M{T = (IT � 1
T {T {

0
T ) = (IT � {T ({0T {T )�1{0T ), is a

projection matrix with M{T {T = 0 . This implies that if the model only includes
a time trend, and therefore �X = {T , that the conditional variance of b�jYT is
0; which is as it should be since in that case b� = ({0T {T )

�1
{0T�y =

1
T yT ; and

�xed for given YT :

Corollary 19 YT expfCb�g is conditionally independent of b�2; given YT ; for
any arbitrary, �xed matrix C:

This is important because it allows us to take expectations with respect to
�̂ �rst, before evaluating the expectation of a function of b�2:
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Lemma 20 If �X includes a constant term, then no conditionally unbiased

predictor based on the complete su¢ cient statistic
�
�̂; �̂2

�
of YT+h exists given

either (a) fY1; :::; YT g or (b) fYT g.

Proof. The conditional expectation E[YT+hjYT ] = YT expf�hx0T+h� +
h
2�

2g: The statistic
�
�̂; �̂2

�
given YT is a complete su¢ cient statistic for the

distribution of the distribution of Y(T�1)jYT ; X; which implies that any function
f
�
�̂; �̂2

�
with expectation g

�
�; �2

�
is essentially unique: if ~f

�
�̂; �̂2

�
is a func-

tion with the same expectation function g
�
�; �2

�
, then E�;�2

h
f
�
�̂; �̂2

�
� ~f

�
�̂; �̂2

�i
=

0 for all �; � 2 <k � <+; but the completeness of
�
�̂; �̂2

�
means by de�nition

that E�;�2
h
h
�
�̂; �̂2

�i
= 0 for all parameter values, implies that h

�
�̂; �̂2

�
= 0

a.e. and hence f = ~f a.e. Since b� j YT � N(�;�) and for a �xed vector a we
have E[expfa0b� gjYT ] = expfa0� + 1

2a
0�ag; we know that the function must be

proportional to expfa0b� g since the expectation function would otherwise not
be log-linear in �: Hence, to �nd a conditional unbiased estimator we �rst need
to solve

E�̂jYT

h
expfa0�̂g jYT

i
_ exp

�
�hx

0
T+h�

	
(31)

note that terms involving YT and �2 are imaterial at this stage, since they, by
the independence of �̂2 and �̂; can be taken account of via the 0F1-function.
Using the conditional distribution of �̂ we have

E�̂jYT

h
expfa0�̂g jYT

i
= exp

�
a0� + a0 (�X 0�X)

�1
xT
(�x0T )
T

�

�
�terms not involving �

(32)
Hence, we need to solve

a0(Ik � (�X 0�X)
�1
xTx

0
T

1

T
)� = �hx

0
T+h�; for all � 2 <k (33)

Let B = (Ik � (�X 0�X)
�1
xTx

0
T

1

T
) and let B+ denote its Moore-Penrose

generalized inverse (explicit expressions for B and B+ are given in the Lemma
below), then

a0(Ik � (�X 0�X)
�1
xTx

0
T

1

T
) = �hx

0
T+h

(Ik � (�X 0�X)
�1
xTx

0
T

1

T
)0a = �hxT+h

has general solution (as derived by Penrose, see e.g. Magnus and Neudecker �87,
p37)

a = B0+�hxT+h + (Ik �B0+B0)q
with q an arbitrary (k � 1) vector, if and only if:

B0B0+�hxT+h = �hxT+h (34)

Lemma (@@) below shows that B0B0+ =
�
0 0
0 Ik�1

�
: Since the �rst element

of�hxT+h equals h; and not 0; the consistency condition (34) cannot be satis�ed
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and no a exists such that a0B = �hx
0
T+h: This implies that no conditional

unbiased predictor based on the complete su¢ cient statistics exists.

Lemma 21 (BB+) The matrix B equals

B =

�
0 b0

0 Ik�1

�
with b = � 1

T xT;2:k where xT = (T; x
0
T;2:k)

0 and has Moore-Penrose inverse

B+ =
1

1 + b0b

�
0 0
b (1 + b0b)Ik�1 � bb0

�
Proof. First note that�X (�X 0�X)

�1
�X 0� = � since P�X = �X (�X 0�X)

�1
�X 0

is a projection matrix and � is the �rst column of �X: This implies that
(�X 0�X)

�1
�X 0� = (1; 0; :::; 0)0 since if we write

(�X 0�X)
�1
�X 0� =

�
a1
a2

�
=)

�X (�X 0�X)
�1
�X 0� =

0B@ a1 +�x
0
1;2:ka2
...

a1 +�x
0
T;2:ka2

1CA =

0B@ 1
...
1

1CA 8�xt;2:k 2 Rk�1;

which implies that a1 = 1 and a2 = 0: Hence B = Ik � (1; 0; :::; 0)0x0T
1

T
= Ik �

(1; 0; :::; 0)0(1; 1T xT;2:k). For the second part of the Lemma the four conditions

of the Moore-Penrose inverse are easily veri�ed: (a) B+B =
�
0 0
0 Ik�1

�
and

hence symmetric, (b) BB+ is symmetric, (c) BB+B = B; and (d) B+BB+ =
B+.

Lemma 22

E
h
YT expf�x0T+1b�g jYT i

= YT expf�x0T+1� ��x0T+1 (�X 0�X)
�1
xT
yT � xT�

T
+

1
2 �

2�x0T+1( (�X
0�X)

�1 � 1

T
(�X 0�X)

�1
xTx

0
T (�X

0�X)
�1
)�xT+1g

Lemma 23 Goldberger (1962). Let�
y(T )
yT+1

�
=

�
X(T )
x0T+1

�
� +

�
"(T )
"T+1

�
;

�
"(T )
"T+1

�
� N(0;

�

11 !12
!21 !22

�
then the Best Linear Unbiased Predictor of yT+1 is given by

ŷ�T+1 = x
0
T+1�̂GLS + !21


�1
11 eGLS;T
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Best in Goldberger (1962) means that the predictor minimizes E
h�
ŷ�T+1 � yT+1

� �
ŷ�T+1 � yT+1

�0i
;

subject to (i) linearity ŷ�T+1 = C
0y(T ) and (ii) unbiasedness E

�
ŷ�T+1 � yT+1

�
=

0:
Since in the unit root case !21


�1
11 = 1 we have for Model 1:

ŷ�T+1 = x
0
T+1�̂ + 1:(yT � x0T �̂)

and hence

Corollary 24 In Model 1, the Best Linear Unbiased Predictor of yT+1 is given
by

ŷ�T+1 = yT +�x
0
T+1�̂

5.4 Expectations involving exponentials and hypergeomet-
ric functions

De�nition 25 The hypergeometric function can be de�ned as the in�nite sum:

0F1 (m;x) �
1X
i=0

xi

i!(m)i
;

(m)0 = 1 and (m)i = m (m+ 1) ::: (m+ i� 1)

See e.g. Abadir (2001) who reviews the use of hypergeometric functions in
economics or Van Garderen (2001) who further proves:

Lemma 26 Let m
�̂2

�2
� �2m; then for any real constant z we have,

E
h
0F1(

m

2
; z
m

2
�̂2
i
= exp

�
z �2

	
E

�n
0F1(

m

2
; z
m

2
�̂2)
o2�

= exp
�
2 z �2

	
0
F1(

m

2
; z2�4)

5.5 Sectorial Results

drift dd72 d74 dd74 dd75 dd76 d80 dd84 dlL dlK �̂
Agriculture 0.029 -0.063 -0.135 -0.025 -0.147 0.035
Mining 0.002 -0.127 -0.116 0.329 0.262 0.030

Manufacturing -0.014 0.100 1.157 0.019
Energy 0.036 -0.319 0.715 0.040

Construction 0.006 -0.132 -0.061 0.518 0.387 0.027
Transport 0.020 -0.066 0.009 0.429 0.028

Communication 0.039 0.707 0.055 0.021
Other Services -0.004 -0.053 0.610 0.582 0.017

===============================================================================
Startdate = 1956 Enddate = 1980 Tobs = 25.000 Periods ahead: h = 5 Number

of MC replications:100.000
===============================================================================
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Average Actual and predicted GROWTHs
Actual exactunb apprunb Naive consist bias: exactunb apprunb Naive consist
15.998 15.966 15.966 15.802 16.153 0.000 -0.032 -0.032 -0.196 0.155
-5.395 -5.404 -5.404 -5.540 -5.330 0.000 -0.008 -0.008 -0.144 0.065
2.524 2.554 2.554 2.486 2.582 0.000 0.030 0.030 -0.038 0.058
30.465 30.411 30.411 30.263 30.783 0.000 -0.053 -0.053 -0.202 0.319
-0.258 -0.273 -0.273 -0.147 0.039 0.000 -0.015 -0.015 0.111 0.297
5.013 5.048 5.048 5.540 5.744 0.000 0.035 0.035 0.527 0.731
22.050 22.038 22.038 21.975 22.114 0.000 -0.012 -0.012 -0.075 0.064
20.744 20.725 20.725 20.660 20.751 0.000 -0.019 -0.019 -0.084 0.006
on average over all sectors : ===============================================
11.393 11.383 11.383 11.380 11.605 0.000 -0.010 -0.009 -0.013 0.212
===============================================================================
Average Actual and predicted LEVELs
Actual exactunb apprunb Naive consist grow-based bias exactunb apprunb Naive

consist grow-based
2.286 2.286 2.286 2.296 2.303 2.300 0.000 -0.001 -0.001 0.010 0.017 0.013
0.822 0.822 0.822 0.824 0.826 0.825 0.000 0.000 0.000 0.002 0.004 0.004
1.876 1.877 1.877 1.879 1.881 1.880 0.000 0.001 0.001 0.003 0.005 0.004
6.163 6.161 6.161 6.203 6.228 6.210 0.000 -0.002 -0.002 0.040 0.065 0.047
1.673 1.672 1.672 1.681 1.684 1.679 0.000 0.000 0.000 0.008 0.011 0.006
1.719 1.719 1.719 1.734 1.737 1.726 0.000 0.000 0.000 0.015 0.019 0.007
3.984 3.984 3.984 3.991 3.995 3.993 0.000 0.000 0.000 0.007 0.011 0.009
2.512 2.512 2.512 2.514 2.516 2.516 0.000 0.000 0.000 0.002 0.004 0.003
on average over all sectors : ===============================================
2.629 2.629 2.629 2.640 2.646 2.641 0.000 0.000 0.000 0.011 0.017 0.012
===============================================================================
======= MSE =======================
===============================================================================
MSE GROWTH predictions
exactunb apprunb Naive consist
125.564 125.564 125.472 125.742
53.621 53.621 53.596 53.651
25.602 25.602 25.596 25.608
233.089 233.089 232.906 233.761
99.316 99.316 99.487 99.804
190.350 190.350 191.996 192.835
52.619 52.619 52.604 52.649
28.003 28.003 28.002 28.005
on average over all sectors : ===============================================
101.020 101.020 101.207 101.507
MSE Y LEVEL predictions
exactunb apprunb Naive consist grow-based
0.051 0.051 0.051 0.052 0.052
0.004 0.004 0.004 0.004 0.004
0.009 0.009 0.009 0.009 0.009
0.548 0.548 0.557 0.564 0.559
0.029 0.029 0.029 0.029 0.029
0.052 0.052 0.053 0.054 0.053
0.057 0.057 0.057 0.057 0.057

24



0.012 0.012 0.012 0.012 0.012
on average over all sectors : ===============================================
0.095 0.095 0.097 0.098 0.097
===============================================================================
=== RELATIVE MSE ======================
===============================================================================
Relative: MSE GROWTH percentage relative to best
exactunb apprunb Naive consist
0.073 0.073 0.000 0.215
0.046 0.046 0.000 0.103
0.025 0.025 0.000 0.047
0.079 0.079 0.000 0.367
0.000 0.000 0.172 0.491
0.000 0.000 0.865 1.305
0.029 0.029 0.000 0.086
0.002 0.002 0.000 0.012
========= Average values over all sectors ===============================
0.032 0.032 0.130 0.328
===============================================================================
Relative: MSE Y LEVEL percentage relative to best
exactunb apprunb Naive consist grow-based
0.000 0.000 1.121 2.133 1.566
0.000 0.000 0.749 1.519 1.227
0.000 0.000 0.313 0.644 0.537
0.000 0.000 1.658 2.983 2.009
0.000 0.000 1.210 1.807 0.851
0.000 0.001 2.134 2.751 0.845
0.000 0.000 0.429 0.808 0.590
0.000 0.000 0.223 0.471 0.395
========= Average values over all sectors ===============================
0.000 0.000 0.980 1.640 1.003
===============================================================================

now 100k 40 obs h = 10
Startdate = 1956 Enddate = 1995 Tobs = 40.000 Periods ahead: h = 10.000

Number of MC replications: 100.000
parameter estimates per sector
inpt dd72 d74 dd74 dd75 dd76 d80 dd84 dlli dlki sigm
0.014 0.000 0.000 0.000 -0.072 -0.140 0.000 0.133 -0.378 -0.003 0.039
0.002 -0.144 0.000 -0.125 0.000 0.000 0.000 -0.480 0.261 0.028 0.053
0.050 0.000 0.000 0.000 0.000 0.000 0.000 -0.035 0.704 -0.706 0.038
0.028 0.000 0.000 0.000 0.000 0.000 0.000 -0.205 0.083 1.026 0.035
0.018 0.000 -0.119 0.000 0.000 0.000 -0.044 0.000 0.509 0.248 0.037
0.026 0.000 0.000 0.000 0.000 0.000 -0.056 0.000 0.303 -0.008 0.029
0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.395 0.172 0.025
-0.009 0.000 0.000 0.000 0.000 0.000 -0.026 0.000 0.487 0.626 0.021
Average over all sectors
0.021 -0.018 -0.015 -0.016 -0.009 -0.018 -0.016 -0.073 0.296 0.173 0.035
===============================================================================
Average Actual and predicted GROWTHs
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Actual exactunb apprunb Naive consist bias: exactunb apprunb Naive consist
22.934 22.958 22.958 22.294 23.210 0.000 0.023 0.023 -0.641 0.275
-18.703 -18.677 -18.677 -19.495 -18.345 0.000 0.025 0.026 -0.792 0.358
12.315 12.320 12.320 11.806 12.626 0.000 0.005 0.005 -0.509 0.311
21.137 20.999 20.999 20.912 21.672 0.000 -0.138 -0.138 -0.224 0.535
26.528 26.470 26.470 25.832 26.708 0.000 -0.059 -0.059 -0.696 0.180
26.164 26.189 26.189 25.829 26.345 0.000 0.025 0.025 -0.334 0.182
59.313 59.306 59.306 58.956 59.435 0.000 -0.006 -0.006 -0.357 0.122
33.416 33.412 33.412 33.229 33.521 0.000 -0.004 -0.004 -0.187 0.106
on average over all sectors : ===============================================
22.888 22.872 22.872 22.420 23.146 0.000 -0.016 -0.016 -0.468 0.259
===============================================================================
Average Actual and predicted LEVELs
Actual exactunb apprunb Naive consist grow-based bias exactunb apprunb Naive

consist grow-based
3.055 3.055 3.055 3.084 3.107 3.101 0.000 0.000 0.000 0.029 0.052 0.046
0.403 0.403 0.403 0.410 0.416 0.415 0.000 0.000 0.000 0.008 0.013 0.012
2.725 2.725 2.725 2.753 2.773 2.766 0.000 0.001 0.001 0.028 0.048 0.041
9.076 9.067 9.067 9.174 9.232 9.181 0.000 -0.010 -0.010 0.098 0.156 0.105
2.948 2.946 2.946 2.973 2.993 2.988 0.000 -0.001 -0.001 0.025 0.045 0.040
3.017 3.018 3.018 3.034 3.047 3.043 0.000 0.001 0.001 0.017 0.029 0.026
11.075 11.074 11.074 11.116 11.150 11.141 0.000 -0.001 -0.001 0.041 0.075 0.065
4.801 4.801 4.801 4.816 4.826 4.822 0.000 0.000 0.000 0.014 0.025 0.021
on average over all sectors : ===============================================
4.638 4.636 4.636 4.670 4.693 4.682 0.000 -0.001 -0.001 0.032 0.055 0.044
===============================================================================
======= MSE =======================
===============================================================================
MSE GROWTH predictions
exactunb apprunb Naive consist
287.942 287.942 287.685 288.285
245.229 245.230 244.732 245.840
253.951 253.951 253.567 254.446
346.668 346.668 346.465 348.796
283.509 283.510 283.352 283.790
170.841 170.841 170.721 170.979
193.266 193.266 193.203 193.355
107.424 107.424 107.373 107.489
on average over all sectors : ===============================================
236.104 236.104 235.887 236.622
MSE Y LEVEL predictions
exactunb apprunb Naive consist grow-based
0.193 0.193 0.198 0.203 0.201
0.007 0.007 0.007 0.008 0.008
0.161 0.161 0.165 0.169 0.167
2.079 2.079 2.139 2.182 2.143
0.166 0.166 0.169 0.173 0.172
0.102 0.102 0.104 0.105 0.105
0.962 0.962 0.971 0.981 0.978
0.142 0.142 0.143 0.144 0.144
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on average over all sectors : ===============================================
0.476 0.476 0.487 0.496 0.490
===============================================================================
=== RELATIVE MSE ======================
===============================================================================
Relative: MSE GROWTH percentage relative to best
exactunb apprunb Naive consist
0.089 0.089 0.000 0.209
0.203 0.203 0.000 0.453
0.151 0.151 0.000 0.346
0.059 0.059 0.000 0.673
0.055 0.055 0.000 0.154
0.071 0.071 0.000 0.151
0.033 0.033 0.000 0.079
0.048 0.048 0.000 0.109
========= Average values over all sectors ===============================
0.089 0.089 0.000 0.272
===============================================================================
Relative: MSE Y LEVEL percentage relative to best
exactunb apprunb Naive consist grow-based
0.000 0.000 2.319 4.880 4.111
0.000 0.002 4.603 9.652 8.063
0.000 0.001 2.551 5.120 4.092
0.000 0.001 2.875 4.941 3.091
0.000 0.000 2.141 4.512 3.807
0.000 0.000 1.346 2.771 2.304
0.000 0.000 0.937 1.968 1.666
0.000 0.000 0.756 1.509 1.207
========= Average values over all sectors ===============================
0.000 0.001 2.191 4.419 3.543
===============================================================================
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