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Abstract

An affine equivariant version of the nonparametric spatial conditional median (SCM) is con-

structed, using an adaptive transformation-retransformation (TR) procedure. The relative

performance of SCM estimates, computed with and without applying the TR—procedure, are

compared through simulation. Also included is the vector of coordinate conditional, kernel-

based, medians (VCCMs). The methodology is illustrated via an empirical data set. It is

shown that the TR—SCM estimator is more efficient than the SCM estimator, even when the

amount of contamination in the data set is as high as 25%. The TR—VCCM- and VCCM

estimators lack efficiency, and consequently should not be used in practice.
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1 Introduction

Let {(X1,Y 1), . . . , (Xn,Y n)} be independent replicates of a random vector (X,Y ) ∈ IRp× IRs

where p > 1, s > 2, and n > p + s. “Classical” nonparametric regression analysis focuses on

the problem of estimating the conditional mean function of the s-variate response variables Y

given values X = x of the explanatory variables. However, it is well-known that outliers can

have an arbitrarily large effect on estimates of the conditional mean. The conditional median

is an obvious alternative since it is quite resistant to outliers. Interestingly, as compared to the

many papers published on the multivariate unconditional median (see, e.g., Small (1990) for

a survey), relative little attention has been paid to the estimation of multivariate conditional

medians. One approach is to generalize the notion of univariate conditional median to the

multivariate case in the same manner as some authors (e.g. Bickel (1964) and Barnett (1976))

consider the vector of unconditional medians formed by the coordinate univariate medians.

It is known that the resulting estimator, called vector coordinate conditional median (VCCM),

satisfies two fundamental properties, namely: (i) it has a breakdown point of 50%; and (ii) under

suitable regularity conditions it is
√
n-consistent and asymptotically normally distributed. But

the VCCM, like its unconditional counter-part, suffers from obscurity with respect to a third

important property, namely (iii) the estimator is not affine equivariant. Thus, when the scales of

the data vectors are measured in different units, or when they have different degrees of statistical

variation, the resulting VCCM estimates cannot be easily interpreted.

An alternative notion of multivariate conditional median has been proposed by Berlinet,

Cadre and Gannoun (2001a, b). These authors generalized a notion of spatial median originally

given by Weber (1909) and studied by, among others, Haldane (1948), and Kemperman (1987),

to the conditional case; see Subsection 2.1 for some details. Following Chaudhuri (1992) it can

be shown that the resulting estimator, called spatial conditional median (SCM), is equivariant

under orthogonal transformations, but that it is nonequivariant under arbitrary affine transfor-

mations. A solution to this problem follows from the work of Chakraborty and Chaudhuri (1996).

They use a data-driven transformation and retransformation (TR) procedure for converting a

nonequivariant multivariate unconditional median into an equivariant estimate of multivariate

location. Within this context, Gannoun, Saracco, Yuan and Bonney (2003) introduced a TR—

SCM estimator and studied its asymptotic properties. Our objective is to explore the efficiency

of VCCM and SCM estimates, obtained with- and without the use of the TR—procedure, in

moderately sized sample situations through real and simulated data.
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The plan of the paper is as follows. In Section 2, we introduce the SCM estimator. Also,

we consider briefly the VCCM estimator. In Section 3, we describe the TR—procedure when

applied to multivariate conditional medians. Section 4 contains results of the simulation study.

To motivate the need of the TR—procedure a real-data example is given in Section 5.

2 Multivariate Conditional Median

2.1 Spatial conditional median (SCM)

Let k · k denote a strictly convex norm on IRs, i.e. k α + β k<k α k + k β k whenever α and
β are not proportional. For a fixed x ∈ IRp, denote by Q(·|x) the probability measure of Y
conditionally on X = x, and assume that the support of Q(·|x) is not included in a straight
line. Given this set-up, Berlinet et al. (2001a, b) define the SCM of Y given X = x as the

vector θ(x) which assumes the infimum

ϕ(θ(x)) = inf
θ∈IRs

ϕ(θ,x) (1)

where for θ ∈ IRs,

ϕ(θ,x) = E(k Y − θ k − k Y k |X = x)

=

Z
IRs

³
k y − θ k − k y k

´
Q(dy|x)

exists and is unique; see, e.g., Kemperman (1987).

A consistent nonparametric estimator of θ(x) can be introduced as follows. First define

Fn(·|x), a nonparametric estimate of F (·|x) the conditional distribution function of Y given

X = x, by

Fn(y|x) =
nX
i=1

1(Y i6y)K{(x−Xi)/hn}
. nX

i=1

K{(x−Xi)/hn}, y ∈ IRs, (2)

where 1
(Y i6y) = 1(Yi,16y1)× . . .×1(Yi,s6ys), if y = (y1, . . . , ys) ∈ IRs, with 1A the indicator function

for set A. K(·) is a strictly positive density function on IRp (the kernel), and hn (the bandwidth)

is a sequence of real positive numbers such that as n→∞, hn → 0 and nhpn →∞. Let Qn(·|x)
be the estimate of Q(·|x), defined for any Borel set V ⊂ IRs by Qn(V |x) =

R
V Fn(dy|x). Then,

for θ ∈ IRs, the natural estimate of ϕ(θ,x), denoted by ϕn(θ,x), can be defined as

ϕn(θ,x) =

Z
IRs

³
k y − θ k − k y k

´
Qn(dy|x)

=
nX
i=1

³
k Y i − θ k − k Y i k

´
K{(x−Xi)/hn}

. nX
i=1

K{(x−Xi)/hn}.
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Finally, if we minimize ϕn(θ,x) instead of ϕ(θ,x), the minimizer is an estimator of θ(x).

Denoted by θn(x), such an estimator is given by

θ∗n(x) = argmin
θ∈IRs

nX
i=1

³
k Y i − θ k − k Y i k

´
K{(x−Xi)/hn}. (3)

In the rest of the paper it is assumed that E(k Y k) <∞. Then (3) becomes

θn(x) = argmin
θ∈IRs

nX
i=1

³
k Y i − θ kk

´
K{(x−Xi)/hn}. (4)

Berlinet et al. (2001a, b) studied the asymptotic properties of (4). It is shown that if the norm

used in the definitions of ϕ(·|x) and ϕn(·|x) is the Euclidean norm, θn(x) exists and is unique.
These authors also show that θn(x) converges to θ(x) on a compact subset C ⊂ IRp. Cadre and

Gannoun (2000) proved the asymptotic normality of (4) in the case the data are independently

and identically distributed (i.i.d.).

2.2 Vector coordinate conditional median (VCCM)

Let X = (X1, . . . , Xp)
T and Y = (Y1, . . . , Ys)

T denote a p × 1 and an s × 1 column vector,
respectively. Then, the vector of coordinate conditional medians (VCCMs) is defined as

µ(x) = (µ1(x), . . . , µs(x))
T ,

where µj(x) = F−1(1/2|x) with F (·|x) the conditional distribution function of Yj (j = 1, . . . , s)
given X = x, i.e. the one-dimensional conditional median. An estimator µ̂j(x) of µj(x) can be

obtained by estimating the conditional marginal median obtained from the set of observations

(Xi, Yi,j)i=1,n. Note that, for ease of notation, we omitted the subscript n from µ̂j(x). Then the

VCCM estimator is given by µ̂n(x) = (µ̂1(x), . . . , µ̂s(x))
T . In a nonparametric setting several

methods exist for estimating conditional distributions. Here we will adopt the local constant

(Nadaraya-Watson) kernel smoother of F (·|x) which is given by

Fn(yj|x) =
nX
i=1

1(Yi,j6yj)K{(x−Xi)/hn}
. nX

i=1

K{(x−Xi)/hn}, yj ∈ IR. (5)

The motivation for using (5) stems from the fact that asymptotic properties of the resulting

conditional median µ̂j(x) are well-established. For instance, under mixing assumptions, the

convergence of nonparametric estimates of the conditional median µj(x) was proved by Gannoun

(1990) and Boente and Fraiman (1995). Sufficient conditions for the asymptotic normality

of convergent estimates of µj(x), using (5) as an estimate of F (·|x) and irrespective of data
dependence, are given by Berlinet, Gannoun and Matzner-Løber (2001).
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3 TR Multivariate Conditional Median

3.1 TR—spatial conditional median (TR—SCM)

The basic principle of the data-driven TR—procedure goes as follows. Suppose that (Y i)i=1,n ∈
IRs, and let Sn be the collection of all subsets of size s + 1 of {1, 2, . . . , n}. For a fixed α =

{i0, i1, . . . , is} ∈ Sn, consider the s×smatrix Y (α) defined by Y (α) = [Y i1−Y i0 , . . . ,Y is−Y i0 ],

where Y i0 determines the origin and the lines joining that origin to the remaining s data points

Y i1 , . . . ,Y is . The matrix Y (α) transforms all observations Y j (1 6 j 6 n, j 6∈ α) into terms

of the new coordinate system as Z
(α)
j = {Y (α)}−1Y j . Since the vectors Y i happen to be i.i.d.

with a common probability distribution, which is assumed to be absolutely continuous w.r.t.

the Lebesgue measure on IRs, the invertibility of the matrix Y (α) is ensured with probability

1 for any choice of α ∈ Sn. Clearly, if it is assumed that the SCM is a linear function of the

regressors, the TR-procedure should be applied on both X and Y .

Now, given the new coordinate system, one can compute quantities like the VCCM and the

SCM. For ease of exposition consider the latter estimator, i.e. given (4) the transformed SCM

is given by

θ(α)n (x) = argmin
θ∈IRs

nX
j 6∈α

³
k Z(α)j − θ k

´
K{(x−Xj)/hn}. (6)

Then, transforming all observations back in the original coordinate system, the TR—SCM esti-

mator is given by

θ̂
(α)
n (x) = {Y (α)}θ(α)n (x). (7)

With an obvious modification in notation, the TR—procedure can also be applied to the VCCM

estimator µ̂n(x). In Section 4, the resulting TR—VCCM will be denoted by µ̂(α)n (x). For i.i.d.

observations, and a fixed α /∈ Sn, Gannoun et al. (2003) show that θ̂
(α)
n (x) exists, unless the

support of {Y j, j /∈ α} given X = x is included in a straight line. Moreover, these authors

obtain the following results: (i) the TR—SCM estimator is affine equivariant; (ii) it is a consistent

estimator of θ(x) if the common conditional distribution of Y i given Xi = x has an elliptically

symmetric density function; (iii) θ̂
(α)
n (x)→ θ(x) a.s. (pointwise convergence); and (iv) θ̂

(α)
n (x)

is asymptotically normally distributed.

3.2 Selection of Y (α) and hn

Different choices of the subsets of indices αmay result in different estimates of θ̂
(α)

n (x). Let ΣYY

denote the s × s positive definite variance-covariance matrix of Y . In the case of i.i.d. obser-
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vations, and using the asymptotic normality of the unconditional spatial median, Chakraborty

and Chaudhury (1966) suggest to choose α such that {Y (α)}TΣ−1YYY (α) ≈ λI, where λ > 0 is

a constant and I is the s×s identity matrix. In practice, ΣYY is replaced by an affine equivari-

ant estimate (up to a scalar multiple), say Σ̂YY, obtained from the data. For instance, in a

linear regression context, Σ̂YY may be taken as the variance-covariance matrix of the regression

residuals. Chakraborty (2003, Appendix A) provides an adaptive algorithm for computing the

TR matrix Y (α̂) as an estimate of Y (α).

Note that, when nÀ s, the search for an optimal transformation matrix can become compu-

tationally intensive. Moreover, Chakraborty’s adaptive algorithm cannot be applied to non-i.i.d.

data. A general method of selecting Y (α) can be based on a training sample of size n0 ¿ n.

Assume that Y i is k-Markovian. Then, let Y 0 be an alternative matrix of Y (α) defined by

Y 0 =
1

(k + 1)m

m−1X
u=0

kX
v=0

³
Y u(s+1)(k+1)+v+k+2 − Y u(s+1)(k+1)+v+1,Y u(s+1)(k+1)+v+2k+3 −

Y u(s+1)(k+1)+v+k+2, . . . ,Y u(s+1)(k+1)+v+sk+s+1 − Y u(s+1)(k+1)+v+(s−1)k+s
´
, (8)

where m = [n0/(s + 1)(k + 1)] with [·] denoting the integer part. Thus, Y 0 is an average of

(k + 1)m i.i.d. random vectors, each with the same distribution as Y (α) for all α ∈ Sn. This

implies that Y 0 has approximately the same distribution as Y (α). Obviously, for i.i.d. data, k

should be set equal to zero in (8).

Also, the choice of the bandwidth hn is a matter of concern. Various existing bandwidth

selection techniques can be adapted for selecting hn. The optimal bandwidth depends on x, i.e.

the amount of smoothing required to estimate different parts of F (·|x) may differ from what is

optimal to estimate the whole conditional distribution function. Therefore a unique bandwidth

is chosen for each multivariate conditional median. For simplicity, we employ a special case of

the practical rule-of-thumb given by Yu and Jones (1998) for bandwidth selection in quantile

regression estimation. In particular, first a primary bandwidth hmean, suitable for conditional

mean estimation, is selected. Then, it is adjusted according to the formula hmean(π/2)
1/(p+4).

4 Simulations

4.1 Design

All simulation results will be based on 500 replications. For the kernel K(·) we choose the
bivariate standard normal density. The sample sizes are fixed at n = 100, and 200. For visual
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purpose, we restrict the choice of the dimensions to the case p = 1 and s = 2. Observations

(Y i,Xi)i=1,n will be generated from the following distributions:

(a) Two centrally symmetric trivariate normal distributionsN3(0,Σi) (i = 1, 2) with variance-

covariance matrices

Σ1 =


1 σY1,Y2 0.4

σY1,Y2 1 0.2

0.4 0.2 1

 , Σ2 =


1 σY1,Y2 0.5

σY1,Y2 1 0.1

0.5 0.1 1

 , (9)

and with σY1,Y2 = −0.8,−0.7, . . . , 0.8;

(b) Two β% contaminated asymmetric trivariate normal distributions ANi = (1−β)N3(0,Σi)+

βN3(2, I), with 2 = (2, 2, 2)T , and β = 0.10, 0.25. The variance-covariance matrices Σi

(i = 1, 2) are given by (9) with σY1,Y2 = −0.8,−0.4, . . . , 0.8.

Let T n(x) be a bivariate conditional median estimator of θ(x), where T n(x) is either θ̂
(α)
n (x),

θ̂n(x), µ̂
(α)
n (x), or µ̂n(x). Then, the variance-covariance matrix of T n(x) is given byΣ(T n(x)) =

(E[T n(x)]−θ(x))(E[T n(x)]−θ(x))T . It is well-known that for multivariate normal distributions,
the conditional mean coincides with the conditional median. Thus, under (a), θ(x) can be readily

expressed in terms of the bivariate vectors x×(0.4, 0.2)T and x×(0.5, 0.1)T , respectively. Similar
expressions for the ANi (i = 1, 2) distributions cannot be established. However, if we adopt

the point of view that contamination is an uncontrollable disturbance in the estimation of the

conditional medians, it is natural to use the above expressions for θ(x) also in the case the

observations are generated by the ANi distributions specified under (b). This implies that in

both cases (a) and (b), an estimate of Σ(T n(x)), will be computed as

S(T n(x)) =
1

500

500X
j=1

(T j
n(x)− θ(x))(T j

n(x)− θ(x))T , (10)

where T j
n(x) denotes the value of T n(x) for the jth replication (j = 1, . . . , 500).

In the final evaluation, the performance of the conditional median estimators will be assessed

by the following three relative errors (REs), as functions of (10):

RE
(1)
n (x) =

[tr{S(µ̂(α)n (x))}]1/2
[tr{S(µ̂n(x))}]1/2

, RE
(2)
n (x) =

[tr{S(θ̂(α)n (x))}]1/2
[tr{S(θ̂n(x))}]1/2

, RE
(3)
n (x) =

[tr{S(µ̂n(x))}]1/2
[tr{S(θ̂n(x))}]1/2

.

Values of RE
(1)
n (x) (RE

(2)
n (x)) less than one indicate that TR—VCCMs (TR—SCMs) are more

efficient than VCCMs (SCMs). Similarly, values of RE
(3)
n (x) less than one provide an indication

that VCCMs are more efficient than SCMs.
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a)  x = -1; n = 100
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c) x = 1; n = 100
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f)  x = 1; n = 200
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Figure 1: RE-values for the centrally symmetric N3(0,Σ1) distribution; black triangles are

RE
(1)
n (x)-values, black squares are RE

(2)
n (x)-values, and black dots are RE

(3)
n (x)-values; 500

replications.
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f)  x = 1; n = 200
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Figure 2: RE-values for the centrally symmetric N3(0,Σ2) distribution; black triangles are

RE
(1)
n (x)-values, black squares are RE

(2)
n (x)-values, and black dots are RE

(3)
n (x)-values; 500

replications.
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4.2 Results

Figures 1 and 2 show RE-values for the centrally symmetric distributions N3(0,Σi) (i = 1, 2).

We see from the RE
(1)
n -values, plotted as black triangles, that the TR—VCCM estimator µ̂(α)n (x)

behaves badly as opposed to the VCCM estimator µ̂n(x), irrespective of the sample sizes n,

domain values x, and covariance values σY1,Y2. In contrast, the TR—SCM estimator θ̂
(α)
n (x)

estimator is very efficient as opposed to the SCM estimator θ̂n(x), as can be noted from the

RE
(2)
n -values (black squares). In particular, this is the case for the domain points x = −1 and

x = 1 with values of RE
(2)
n given by approximately 0.5 (n = 100) and 0.4 (n = 200). At the

true center x = 0, the efficiency of the TR—SCM estimator seems to decrease slightly. However,

note that for all domain points the improvement in efficiency of the TR—SCM estimator over

the SCM estimator remains almost constant over the whole range of values σY1,Y2 . Clearly, for

conditional median estimation, the presence and size of the correlations among the responses

are of less importance than deviations of the covariates from the true center of the distribution.

Further, note that the RE
(3)
n -values (black dots) are approximately equal to unity. Hence, both

the estimators µ̂n(x) and θ̂n(x) seem to perform equally well in terms of RE-values.

The question which arises is what price we have paid for the increase in efficiency. One

would expect an increase in bias of the TR—SCM estimator. However, we observed that the

differences in bias between TR—SCM and SCMs were negligible. Also, in almost all cases, the

empirical standard deviations of the TR—SCMs turned out to be smaller than the corresponding

estimated standard deviations for SCMs. Thus, the lack of affine behavior of the SCMs, may be

the sole problem for its relative poor performance.

Table 1 shows RE
(1)
n - and RE

(2)
n -values for AN1 with n = 100, 200. The RE-values for AN2

showed qualitatively similar patterns, and hence have been omitted. At all domain points x the

RE
(1)
n -values tend to decrease as β increases, with the largest reduction occurring at x = −1

and x = 1. The TR—VCCM estimator performs poorly as opposed to the VCCM estimator with

all values larger than one. In general, the RE
(2)
n -values increase as the amount of contamination

increases from 10% to 25%. This is particularly the case for x = 1. Clearly, this is due to the fact

that the right-tail of the symmetric N3(0,Σ1) distribution is corrupted by i.i.d. observations of

the N3(2, I) distribution. Still, in all cases, the TR—SCM estimator is more efficient that the

SCM estimator. Chakraborty and Chaudhuri (1999) showed that the finite-sample breakdown

point of the TR—multivariate unconditionalmedian estimator is as high as n−1[(n−(p+s)+1)/2],
where [·] denotes the integer part. This result also seems to hold for the TR—SCM estimator.
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Table 1: RE
(1)
n - and R

(2)
n -values for different values of σY1,Y2 .

x = −1 x = 0 x = 1

σY1,Y2 β × 100% RE
(1)
n RE

(2)
n RE

(1)
n RE

(2)
n RE

(1)
n RE

(2)
n

n = 100
-0.8 10 3.079 0.466 3.012 0.693 2.916 0.405

25 1.901 0.442 1.429 0.437 1.659 0.468
-0.4 10 1.359 0.478 2.386 0.787 1.757 0.413

25 2.578 0.471 4.120 0.547 4.120 0.547
0.0 10 1.818 0.477 2.142 0.848 2.075 0.435

25 1.722 0.473 1.340 0.589 1.340 0.589
0.4 10 1.857 0.465 3.178 0.856 2.500 0.461

25 1.671 0.455 1.434 0.644 1.434 0.644
0.8 10 1.081 0.433 2.050 0.784 1.316 0.452

25 1.429 0.437 1.345 0.707 1.345 0.707

n = 200
-0.8 10 1.902 0.401 1.684 0.643 1.978 0.341

25 1.402 0.381 1.784 0.942 1.417 0.478
-0.4 10 1.455 0.381 2.350 0.940 1.607 0.439

25 1.948 0.434 2.644 0.995 2.172 0.574
0.0 10 4.304 0.402 2.437 0.857 3.944 0.334

25 1.465 0.406 2.603 0.960 1.499 0.577
0.4 10 1.453 0.381 3.035 0.917 1.440 0.362

25 1.214 0.377 2.267 0.927 2.685 0.682
0.8 10 1.959 0.361 1.969 0.810 1.987 0.388

25 1.308 0.386 1.957 0.966 1.419 0.680

Hence, in summary, the simulation results indicate that both the TR—VCCM and VCCM

estimators lack efficiency and therefore should not be used in practice. The data-driven TR—

procedure is recommended for obtaining affine equivariant SCMs. In Section 5 the TR-procedure

will be taken out of the controlled but unrealistic environment of simulated observations and

tried on a real data set. However, before closing this section, it is interesting to note that

the results on the SCM- and VCCM estimators are similar to results reported by Massé and

Plante (2003) for the spatial unconditional median and the vector of coordinate unconditional

medians. Using a Monte Carlo study, these authors show that the unconditional spatial median,

in terms of accuracy and robustness, outperforms four other bivariate medians, with the vector

of coordinate unconditional medians ranking fourth.

5 An Example

To illustrate the use of the TR—procedure in estimating multivariate conditional medians, we

consider a data set analysed by Cheng and De Gooijer (2003) as a part of a study of diabetes

among U.S. African-Americans. For n = 378 respondents, the response variables Y1 and Y2 are

systolic and diastolic blood pressure, denoted by respectively BPS and BPD. Two covariates

X were selected: Age with values in the range from 19 to 92 years, and the body mass index

(BMI) with values ranging from 16.04 to 55.9 kg/m2. To assess the efficiency of the TR—SCM
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Table 2: Di(θ̂
(α)

, θ̂)-values (i = 1, 2) for the TR—SCM estimator relative to the SCM estimator.

Covariates D1(θ̂
(α)

, θ̂) D2(θ̂
(α)

, θ̂)

Age 0.953 0.908

BMI 0.995 0.989

estimator relative to the SCM estimator, we compute the following two ratios of errors

D1(θ̂
(α)

, θ̂) =
378X
i=1

nqP2
j=1(θ̂

(α)
j (xi)− Yj(xi))2qP2

j=1(θ̂j(xi)− Yj(xi))2

o
, D2(θ̂

(α)
, θ̂) =

378X
i=1

nP2
j=1 |θ̂(α)j (xi)− Yj(xi)|P2
j=1 |θ̂j(xi)− Yj(xi)|

o
,

where θ̂
(α)

= (θ̂
(α)
1 (xi), θ̂

(α)
2 (xi))

T , θ̂ = (θ̂1(xi), θ̂2(xi))
T , and Yj(xi) (i = 1, . . . , 378; j = 1, 2)

denotes the value of the jth response variable observed at the ith value of the covariate.

In Table 2 Di(θ̂
(α)

, θ̂)-values are reported for the covariates Age and BMI. We see that the

TR—SCM estimator is more efficient than the SCM estimator with all values less than one.

However, the improvement is modest. The reason is that the covariates have relatively low

sample correlations with the response variables: 0.452 (0.000) for Age and BPS, 0.063 (0.220)

for Age and BPD, 0.114 (0.026) for BMI and BPS, and 0.153 (0.003) for BMI and BPD, with

p-values in parentheses. On the other hand, the sample correlation coefficient between BPS

and BPD is large: 0.608 (0.000). Thus, when Age is a covariate the reduction in efficiency of

the TR—SCM estimator is solely due to the association between Age and BPD. When BMI is

a covariate both the association between BMI and BPS, and BMI and BPD contribute, albeit

very little, to the better performance of the TR—SCM estimator.
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