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Abstract

Researchers still estimate a dynamic linear probability model (LPM) with fixed effects when

analyzing a panel of binary choices. Setting aside the possibility that the average marginal effect

may not be point-identified, directly applying IV estimators to this dynamic LPM delivers incon-

sistent estimators for the true average marginal effect regardless of whether the cross-sectional

or time series dimensions diverge. I also show through some examples that these inconsistent

estimators are sometimes outside the nonparametric bounds proposed by Chernozhukov et al.

(2013). Although there are no analytical results for GMM estimators using Arellano-Bond mo-

ment conditions, I show through an empirical example that the resulting GMM estimate of the

average treatment effect of fertility on female labor participation is outside the nonparametric

bounds under monotonicity.

1 Introduction

Many researchers still use the dynamic linear probability model (LPM) with fixed effects when an-

alyzing a panel of binary choices. Several applications of the dynamic LPM with fixed effects can

be found in papers published in top journals. Applications include assessing the magnitude of state

dependence in female labor force participation (Hyslop, 1999), examining the factors that affect

exporting decisions (Bernard and Jensen, 2004), determining the effect of income on transitions in

and out of democracy (Acemoglu et al., 2009), and determining how overnight rates affect a bank’s
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uations. Comments from Maurice Bun, Geert Dhaene, Frank Kleibergen, and Jeffrey Wooldridge are greatly appreciated.
I also thank participants of the 21st Panel Data Conference and seminar participants at the University of Amsterdam,
Monash University, and the University of Passau. All errors remain mine. Updated versions, if available, can be found in
http://andrew-pua.ghost.io.
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decision to provide loans (Jiménez et al., 2014). A more suitable approach, however, is to use lim-

ited dependent variable (LDV) models when analyzing discrete choice. Unfortunately, the inclusion

of fixed effects creates an incidental parameter problem that complicates the estimation of aver-

age marginal effects, especially when the time dimension is small (see the survey by Arellano and

Bonhomme (2011)). Resorting to a random effects or correlated random effects approach requires

specifying the distribution of the fixed effects and initial conditions – something that researchers

may be unwilling to do because of the lack of specific subject matter knowledge to construct such

a distribution. Linear dynamic panel data methods present an alternative that allows for fixed ef-

fects, dynamics, predetermined regressors, fewer functional form restrictions, and even allow for

heteroscedasticity. Therefore, using methods intended for linear dynamic panel data models seems

to be an attractive alternative in this setting.

In contrast, my results provide arguments against a commonly held sentiment among researchers

expressed quite forcefully in Angrist and Pischke (2009, p.107):

The upshot of this discussion is that while a nonlinear model may fit the CEF for LDVs more closely than

a linear model, when it comes to marginal effects, this probably matters a little. This optimistic conclusion

is not a theorem, but, as in the empirical example here, it seems to be fairly robustly true.

Why, then, should we bother with nonlinear models and marginal effects? One answer is that the

marginal effects are easy enough to compute now that they are automated in packages like Stata. But

there are a number of decisions to make along the way (e.g., the weighting scheme, derivatives versus finite

differences), while OLS is standardized. Nonlinear life also gets considerably more complicated when we

work with instrumental variables and panel data. Finally, extra complexity comes into the inference step

as well, since we need standard errors for marginal effects.

In this paper, I explain why usual dynamic panel data methods, specifically instrumental variable (IV)

estimation, are inappropriate for estimating average marginal effects if the conditional expectation

function (CEF) is truly nonlinear. In particular, I show that the large-n limit of the Anderson-Hsiao

(1981; 1982) IV estimator (henceforth AH) is an average marginal effect but subject to incorrect

weighting. Given that the AH estimator is a special case of GMM, estimators in the spirit of Arellano

and Bond (1991) may be subject to the same problem. I also show that the effect of this incorrect

weighting does not disappear even when T is large. Furthermore, I give examples to show that there

are certain parameter configurations and fixed effect distributions for which the large-n limit of the

AH estimator is outside the nonparametric bounds derived by Chernozhukov et al. (2013).

Much research has been done on whether using the LPM is suitable. A particularly eye-catching

example was provided by Lewbel, Dong, and Yang (2012). They show, in a toy example, that OLS
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applied to the LPM cannot even get the correct sign of the treatment effect even in the situation

where there is just a binary exogenous regressor and a high signal-to-noise ratio. Horrace and

Oaxaca (2006) show that the linear predictor for the probability of success should be in [0, 1] for all

observations for the OLS estimator to be consistent for the regression coefficients because the zero

conditional mean assumption does not hold when there are observations (whether in the sample or

in the population) that produce success probabilities outside [0, 1]. On the other hand, Wooldridge

(2010) argues that "the case for the LPM is even stronger if most the regressors are discrete and

take on only a few values". Problem 15.1 of his book asks the reader to show that we need not

worry about success probabilities being outside [0,1] in a saturated model. If we specialize the

results in Wooldridge (2005) and Murtazashvili and Wooldridge (2008) to the LPM with strictly

exogenous regressors, then they show that fixed-effects estimation applied to the LPM can be used

to consistently estimate average marginal effects under a specific correlated random coefficients

condition.

I organize the rest of the paper as follows. In Section 2, I present an example to show that it

is possible to use the LPM to recover an average treatment effect under very special assumptions

that researchers are unwilling to make. In Section 3, I derive analytically the consequences of not

meeting these special assumptions when interest centers on the average marginal effect of state

dependence for the cases of T = 3 and T →∞. Next, I examine the practical implications of these

results using a numerical example and an empirical application on female labor force participation

and fertility in Section 4. The last section contains concluding remarks followed by a technical

appendix.

2 A situation where the LPM is a good idea

Suppose we have a two-period panel binary choice model with a strictly exogenous binary regressor:

Pr (yi t = 1|x i ,αi) = Pr (yi t = 1|x i t ,αi) = H (αi + β x i t) , (1)

where H : [0, 1]→ R is some inverse link function that is increasing, yi t ∈ {0,1} and x i = (x i1, x i2) =

(0,1) for all i = 1, . . . , n and t = 1,2. Assume that for all i, we have yi1⊥yi2|x i ,αi .

The regressor x is a strictly exogenous treatment indicator such that all individuals are treated

in the second period but not in the first period. In other words, specification (1) is basically a

before-and-after analysis. In this setting, αi is an individual-specific fixed effect drawn from some
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unspecified density g (α).

Suppose one ignores the binary nature of the outcome variable yi t and one starts with an LPM

with fixed effects, i.e., yi t = αi +β x i t + εi t instead. The within estimator for β , which is equivalent

to the first-difference estimator for T = 2, is then given by

bβ =

1
n

n
∑

i=1

(yi2 − yi1) (x i2 − x i1)

1
n

n
∑

i=1

(x i2 − x i1)
2

=
1
n

n
∑

i=1

(yi2 − yi1)1 (yi1 + yi2 = 1) =
1
n
(n01 − n10) ,

where 1 (·) is the indicator function. The second equality follows from the definition of x and the

implication that yi2 − yi1 = 0 for all i such that yi1 = yi2. The third equality follows from defining

nab =
∑n

i=1 1 (yi1 = a, yi2 = b) as the number of observations for which we observe the sequence

ab. Thus, only those i for which yi1 6= yi2 enter into the calculation of bβ .

When we calculate the large-n limit of the within estimator, we have

bβ
p
→
ˆ

Pr (yi2 = 1|x i ,α)Pr (yi1 = 0|x i ,α) g (α) dα

−
ˆ

Pr (yi2 = 0|x i ,α)Pr (yi1 = 1|x i ,α) g (α) dα

=
ˆ
[(1−H (α))H (α+ β)−H (α) (1−H (α+ β))] g (α) dα

=
ˆ
[H (α+ β)−H (α)] g (α) dα

In the situation I have described, the average marginal effect ∆ = E [yi2 − yi1|x i = (0, 1)] can be

written as:

∆ = E [E (yi2|x i = (0,1) ,α)−E (yi1|x i = (0, 1) ,α)]

= E [E (yi2|x i2 = 1,α)−E (yi1|x i1 = 0,α)] (2)

= E [H (α+ β)−H (α)] (3)

Despite the inability of the within estimator to consistently estimate β ,1 the within estimator does

coincide with ∆ even if the true model is nonlinear. In addition, the sample analog of ∆ is exactly

the within estimator.
1Incidentally, Chamberlain (2010) shows that β is not even point identified in this example unless H is logistic. The

result of Manski (1987) does not apply here. He shows that β is identified up to scale when one of the strictly exogenous
regressors has unbounded support.
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Notice that the result arises because of a lucky coincidence of factors – (a) the strict exogeneity

of x (allowing us to obtain (2)), (b) the independence of αi and x i (allowing us to obtain (3)), and

(c) the time homogeneity assumption because H does not depend on time (which follows from (1)).

Despite starting from a fixed effects treatment of αi , one has no choice but to assume independence

of αi and x i in order to obtain (3). This already violates the need to allow for arbitrary correlation

between αi and x i . It is as if an omniscient Nature did not use the knowledge of αi to assign a

corresponding treatment vector x i to every unit.

Hahn’s (2001) discussion of Angrist (2001) has already pointed out the special conditions under

which the within estimator is able to estimate an average treatment effect. In addition, he empha-

sizes that the simple strategies suggested by Angrist (2001) require knowledge of the "structure of

treatment assignment and careful reexpression of the new target parameter". Chernozhukov et al.

(2013) also make the same point and further show that the within estimator converges to some

weighted average of individual difference of means for a specific subset of the data. They also show

that this weighted average is not the average marginal effect of interest.

Despite all these concerns, researchers still insist on estimating LPMs with fixed effects. One may

argue that the example above does not really arise in empirical applications but the example already

gives an indication that complicated binary choice models estimated through an LPM are unlikely

to produce intended results. In particular, the lucky coincidence of factors mentioned earlier does

not hold at all for the dynamic LPM which I discuss next.

3 Main results

3.1 The case of three time periods

Consider the following specification of a dynamic discrete choice model with fixed effects and no

additional regressors:

Pr
�

yi t = 1|y t−1
i ,αi

�

= Pr
�

yi t = 1|yi,t−1,αi , yi0

�

= H
�

αi +ρ yi,t−1

�

, i = 1, . . . , n, t = 1, 2,3, (4)

where y t−1
i is the past history of y , αi is an individual-specific fixed effect, yi0 is an observable

initial condition, and H : R→ [0,1] is some inverse link function. Assume that (yi0, yi1, yi2, yi3,αi)

are independently drawn from their joint distribution for all i. I leave the joint density of (αi , yi0),

denoted by f , unspecified. This data generating process satisfies Assumptions 1, 3, 5, and 6 of
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Chernozhukov et al. (2013).

If H is the logistic function, then ρ can be estimated consistently using conditional logit (Cham-

berlain, 1985). If H happens to be the standard normal cdf, then ρ is not even point-identified

(Honoré and Tamer, 2006).2 In both these cases, we also cannot point-identify the average marginal

effect ∆:

∆=
ˆ
�

Pr
�

yi t = 1|yi,t−1 = 1,α, y0

�

− Pr
�

yi t = 1|yi,t−1 = 0,α, y0

��

f (α, y0) dαd y0 (5)

even if we know H but leave the density of (yi0,αi) unspecified. This average marginal effect is of

practical interest because it measures the effect of state dependence in the presence of individual-

specific unobserved heterogeneity.

Despite these negative results, researchers still insist on using a dynamic LPM on the grounds

that linearity still provides a good approximation even if the true H is nonlinear.3 I use this as a

starting point and determine the large-n limit of IV estimators for the dynamic LPM. The linear

model researchers have in mind can be expressed as:

yi t = αi +ρ yi,t−1 + εi t , i = 1, . . . , n, t = 1, 2,3,

where εi t = yi t − E
�

yi t |y t−1
i ,αi

�

. We now take first-differences to eliminate αi:

∆yi t = ρ∆yi,t−1 +∆εi t , i = 1, . . . , n, t = 2, 3.

Because the differenced regressor ∆yi,t−1 is correlated with the differenced error ∆εi t , IV or GMM

estimators have been used to estimate ρ. Using lagged differences as instruments, the AH estimator

can be written as

bρAHd =

∑n
i=1∆yi1∆yi3

∑n
i=1∆yi1∆yi2

.

Because of the binary nature of the sequences {(yi0, yi1, yi2, yi3) : i = 1, . . . , n}, it is certainly possible

for some of the first differences to be equal to zero. Therefore, there are only certain types of

sequences that enter into the expression above. If we enumerate all these 16 possible sequences,

2Honoré and Tamer (2006) actually show that the sign of ρ is identified for any strictly increasing cdf H and unre-
stricted distribution of (yi0,αi).

3The dynamic LPM is really a special case of (4), where H is the identity function.
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we can rewrite the estimator as

bρAHd =
n0110 + n1001 − n1010 − n0101

n0100 + n1010 + n0101 + n1011
,

where nabcd =
∑n

i=1 1 (yi0 = a, yi1 = b, yi2 = c, yi3 = d) denotes the number of observations in the

data for which we observe the sequence abcd.4

It can be shown5 that the large-n limit of bρAHd is

bρAHd
p
→

ˆ
H (α) (1−H (α+ρ)) (H (α+ρ)−H (α)) g (α) dα

ˆ
H (α) (1−H (α+ρ)) g (α) dα

(6)

=
ˆ

wd (α,ρ) (H (α+ρ)−H (α)) dα

=
ˆ ˆ

wd (α,ρ)
�

Pr
�

yi t = 1|yi,t−1 = 1,α, y0

�

− Pr
�

yi t = 1|yi,t−1 = 0,α, y0

��

dα d y0

where

wd (α,ρ) =
H (α) (1−H (α+ρ)) g (α)ˆ
H (α) (1−H (α+ρ)) g (α) dα

.

Note that the weighting function wd (α,ρ) depends on the true value of ρ and the marginal distri-

bution of the fixed effects g (α). The correct weighting function should have been the joint density

of (y0,α) as in (5). Therefore, bρAHd is inconsistent for ∆ because of the incorrect weighting of the

individual marginal dynamic effect H (α+ρ)−H (α).

It is difficult to give a general indication of whether we overestimate or underestimate∆, because

the results depend on the joint distribution of (y0,α). If it happens that ρ = 0 (so that ∆= 0), then

bρAHd is consistent for ∆.

The analysis above can be extended to the AH estimator which uses levels as the instrument set.

It can be shown that this AH estimator has the following form:

bρAHl =

∑n
i=1

∑3
t=2 yi,t−2∆yi t

∑n
i=1

∑3
t=2 yi,t−2∆yi,t−1

4Note that we cannot just drop those sequences for which yi1 + yi2 6= 1, like in conditional logit. If we do this, the
resulting AH estimator becomes

eρAHd =
−n1010 − n0101

n0100 + n1010 + n0101 + n1011
,

which is always negative regardless of the sign of ρ or∆. Observe that identification arguments based on the conditional
logit do not necessarily translate to other inverse link functions, including that of the identity function.

5A part of the derivation can be found in the appendix.
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=
n0110 − n0101 + n1110 − n1010 + n1100 − n1011

n1010 + n1000 + n1001 + n1011 + n0100 + n1100 + n0101 + n1101
.

Calculations similar to (6) allow us to derive the large-n limit of bρAHl , i.e.

bρAHl
p
→

ˆ
(1−H (α+ρ)) (1+H (α+ρ)) (H (α+ρ)−H (α)) f (α, 1) dα

ˆ
[(1−H (α+ρ)) (1+H (α+ρ)) f (α, 1) + (1−H (α+ρ))H (α) f (α, 0)] dα

+

ˆ
(1−H (α+ρ))H (α) (H (α+ρ)−H (α)) f (α, 0) dα

ˆ
[(1−H (α+ρ)) (1+H (α+ρ)) f (α, 1) + (1−H (α+ρ))H (α) f (α, 0)] dα

=
ˆ ˆ

wl (α,ρ, y0) (H (α+ρ)−H (α)) d y0dα

=
ˆ ˆ

wl (α,ρ, y0)
�

Pr
�

yi t = 1|yi,t−1 = 1,α, y0

�

− Pr
�

yi t = 1|yi,t−1 = 0,α, y0

��

dα d y0,

where

wl (α,ρ, 0) =
(1−H (α+ρ))H (α) f (α, 0)ˆ

[(1−H (α+ρ)) (1+H (α+ρ)) f (α, 1) + (1−H (α+ρ))H (α) f (α, 0)] dα
,

wl (α,ρ, 1) =
(1−H (α+ρ)) (1+H (α+ρ)) f (α, 1)ˆ

[(1−H (α+ρ)) (1+H (α+ρ)) f (α, 1) + (1−H (α+ρ))H (α) f (α, 0)] dα
,

I denote f (α, 0) = Pr (y0 = 0|α) g (α) and f (α, 1) = Pr (y0 = 1|α) g (α). Note that the weighting

function wl (α,ρ, y0) depends on the true value ofρ and the joint distribution of (y0,α). Once again,

we have an incorrect weighting function wl (α,ρ, y0) instead of the joint distribution of (y0,α). As

a result, bρAHl is inconsistent for ∆.6

I was able to obtain neat analytical expressions because there are no other regressors aside from

the lagged dependent variable. However, the results above can be extended to the case where we

have a predetermined binary regressor (at the cost of more complicated notation). Furthermore,

the results can also be extended to regressors with richer support. But these exercises will also point

to the same inconsistency of IV estimators for the average marginal effect.

3.2 Large-T case

A natural question to ask is whether the inconsistency results extend to the case where the number

of time periods T is large. An intuitive response would be to say that as T →∞, the fixed effects

αi can be estimated consistently. Therefore, we should be able to estimate average marginal effects

6For the case where we have one less time period, i.e. we observe sequences of the form {(yi0, yi1, yi2) : i = 1, . . . , n},
the large-n limit of bρAHl depends only on f (α, 1).
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consistently. Unfortunately, this intuition may be mistaken.

To address this issue, I use sequential asymptotics where I let T →∞ and then n →∞ (see

Phillips and Moon (1999)).7 I first derive the large-T limits of the two AH estimators (bρAHd and

bρAHl) and the first-difference OLS estimator bρF D for the dynamic LPM:

yi t = αi +ρ yi,t−1 + εi t , i = 1, . . . , n, t = 1, . . . , T.

Recall that these estimators are given by the following expressions:

bρAHd =

∑n
i=1

∑T
t=3∆yi,t−2∆yi t

∑n
i=1

∑T
t=3∆yi,t−2∆yi,t−1

, bρAHl =

∑n
i=1

∑T
t=2 yi,t−2∆yi t

∑n
i=1

∑T
t=2 yi,t−2∆yi,t−1

, bρF D =

∑n
i=1

∑T
t=2∆yi t∆yi,t−1

∑n
i=1

∑T
t=2

�

∆yi,t−1

�2 .

It can be shown that as T →∞,8

1
T

T
∑

t=3

∆yi,t−2∆yi t
p
→ −

ˆ
(1−H (α+ρ))H (α) (H (α+ρ)−H (α)) g (α) dα,

1
T

T
∑

t=3

∆yi,t−2∆yi,t−1
p
→ −

ˆ
(1−H (α+ρ))H (α) g (α) dα,

1
T

T
∑

t=2

yi,t−2∆yi t
p
→ −

ˆ
(1−H (α+ρ))H (α)
1−H (α+ρ) +H (α)

(H (α+ρ)−H (α)) g (α) dα,

1
T

T
∑

t=2

yi,t−2∆yi,t−1
p
→ −

ˆ
(1−H (α+ρ))H (α)
1−H (α+ρ) +H (α)

g (α) dα,

1
T

T
∑

t=2

∆yi t∆yi,t−1
p
→ −

ˆ
(1−H (α+ρ))H (α) g (α) dα,

1
T

T
∑

t=2

�

∆yi,t−1

�2 p
→ −2

ˆ
(1−H (α+ρ))H (α)
1−H (α+ρ) +H (α)

g (α) dα.

Notice that the limiting quantities above do not depend on i. Therefore, as n→∞, we must have

bρAHd
p
→
ˆ

wd (α,ρ) (H (α+ρ)−H (α)) dα, (7)

bρAHl
p
→
ˆ

wl (α,ρ) (H (α+ρ)−H (α)) dα, (8)

bρF D
p
→

1
2

�

1−
ˆ

wl (α,ρ) (H (α+ρ)−H (α)) dα
�

, (9)

7The results also apply to the case where we have fixed n and T →∞.
8Some of the calculations can be found in the Appendix.
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where the weighting functions are given by

wd (α,ρ) =
H (α) (1−H (α+ρ)) g (α)ˆ
H (α) (1−H (α+ρ)) g (α) dα

,

wl (α,ρ) =

(1−H (α+ρ))H (α)
1−H (α+ρ) +H (α)

g (α)
ˆ
(1−H (α+ρ))H (α)
1−H (α+ρ) +H (α)

g (α) dα
.

The result (9) is very troubling. When ρ = 0 (so that the true average marginal effect is 0), bρF D

converges to 0.5, grossly overstating the true ∆. In contrast, the other two AH estimators are avail-

able to consistently estimate ∆ when ∆ = 0. Unfortunately, for all other values of ρ, these two

AH estimators still cannot consistently estimate the correct ∆ because of incorrect weighting in (7)

and (8). The appropriate weighting function is now the marginal distribution of the fixed effects

g (α), because the effect of the initial condition disappears as T → ∞. Moreover, just as in the

fixed-T case considered earlier, it is still not possible to determine the direction of inconsistency.

Finally, Chernozhukov et al. (2013) show in their Theorem 5 that the identified set for ∆ shrinks as

T →∞. Thus, it becomes more likely that the large-T limits in (7), (8), and (9) are outside the

identified set.

4 Practical implications

Based on the results of the previous section, we should not be using IV estimators for the dynamic

LPM. Despite these negative results, the IV estimators are able to estimate a zero average marginal

effect, if it were the truth. This observation may allow us to construct a test of the hypothesis that

∆ = 0. Unfortunately, this may not be so straightforward since the appropriate standard errors for

the AH estimators still depend on the unknown joint distribution of (y0,α). Although of practical

interest, testing the hypothesis ∆= 0 may be infeasible.

To further persuade researchers not to use IV for the dynamic LPM, I adopt the example in Cher-

nozhukov et al. (2013) to show that, even in the simplest of cases, we cannot ignore the distortion

brought about by the incorrect weighting function. Chernozhukov et al. (2013) consider a data

generating process where H is the standard normal cdf, yi0⊥αi , Pr (yi0 = 1) = 0.5, and T = 3.

I use four distributions for the fixed effects, as described in Table 1. The first is the standard

normal distribution which is a usual choice in Monte Carlo simulations and serves as a benchmark.
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The second is a mixture of a standard normal and a normal distribution with mean 2 and variance

0.52. This mixture makes it more likely for cross-sectional units to have yi t = 1 across time. The

third is a distribution which favors the LPM because the support of αi is on a bounded set (0, 1).

Finally, the fourth is a mixture of two normals with negative means. This mixture achieves the

opposite effect compared to the second mixture.

Table 1: Distribution of fixed effects for computations

0.5N (0, 1)+ 0.5N (−2, 0.1)+
N (0,1) 0.5N (2,0.5) Beta (4, 2) 0.5N (−1,1)

Mean 0 1 0.667 -1.5
Variance 1 1.625 0.032 0.755
Skewness 0 -0.543 -0.468 1.132
Kurtosis 3 2.402 2.625 4.070

Multimodal? Unimodal Bimodal Unimodal Bimodal

In Figure 1, I calculate9 the large-n limits of the AH estimators (in blue for bρAHd and green for

bρAHl) and large-n limits of the nonparametric bounds proposed by Chernozhukov et al. (2013) (in

red for the lower bound ∆̂l and orange for the upper bound ∆̂u) evaluated at different values of

ρ ∈ [−2, 2]. I also calculate the true ∆ (in black) using the true distribution of (y0,α).

Even in the benchmark case where αi ∼ N (0,1), both the large-n limits of the AH estimators

are larger than ∆ when ρ > 0. Further note that when ρ < −0.510, both these large-n limits are

outside the identified set. For αi ∼ 0.5N (0,1) + 0.5N (2,0.5), both the large-n limits of the AH

estimators nearly coincide and are much larger than ∆ even for less persistent state dependence.

For αi ∼ Beta (4, 2), the large-n limits of the AH estimators are practically the same as ∆ and both

can be found in the identified set. The key seems to be that the bounded support for the fixed effect,

which is (0,1). Finally, the large-n limit of the AH estimator using levels as the instrument set is

smaller than ∆ for αi ∼ 0.5N (−2, 0.1) + 0.5N (−1, 1).

Although I do not have analytical results for GMM applied to the dynamic LPM, I illustrate why

GMM may not be a good idea using the empirical application by Chernozhukov et al. (2013) on

female labor force participation and fertility. They estimate the following model using complete

longitudinal data on 1587 married women selected from the National Longitudinal Survey of Youth

9A Mathematica notebook containing the calculations is available at http://andrew-pua.ghost.io.
10Negative state dependence has been found in the literature on scarring effects (see references in Torgovitsky (2015)).
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1979 and observed for three years – 1990, 1992, and 1994:

LF Pi t = 1 (β · kidsi t +αi ≥ εi t) .

The parameter of interest is the average marginal effect of fertility on female labor force partic-

ipation. The dependent variable is a labor force participation indicator, the regressor is a fertility

indicator that takes the value 1 if the woman has a child less than 3 years old, and αi is the individual-

specific fixed effect.

Chernozhukov et al. (2013) compute nonparametric bounds for the average marginal effect un-

der the assumption that the fertility indicator is strictly exogenous (called static bounds) and that

the average marginal effect is decreasing11 in the fertility indicator. I replicate their bounds and

they can be found in row (2) of Table 3. I also include static bounds without monotonicity for com-

parison in row (1).12 In addition, I compute two other nonparametric bounds with and without the

monotonicity assumption under the assumption that the fertility indicator is predetermined (called

dynamic bounds) in rows (3) and (4).

Table 3: Female LFP and fertility (n= 1587, T = 3)

Avg. Marginal Effect 95% CI
(1) Static NP bounds [−0.40, 0.09]
(2) Static NP bounds under monotonicity [−0.40,−0.04]
(3) Dynamic NP bounds [−0.39, 0.11]
(4) Dynamic NP bounds under monotonicity [−0.39,−0.19]
(5) Random effects probit −0.11 [−0.13,−0.08]
(6) Fixed effects OLS −0.08 [−0.11,−0.06]
(7) First-difference OLS −0.08 [−0.09,−0.04]
(8) AH (differences) −0.01 [−0.14, 0.13]
(9) AH (levels) −0.02 [−0.07, 0.03]
(10) Arellano-Bond −0.02 [−0.07, 0.03]

I also report estimates based on the linear probability model along with the usual 95% asymptotic

confidence intervals. Both the fixed effects and first-differenced estimates (rows (6) and (7)) can

be found inside the static bounds. This is no longer the case when static bounds are computed

under the monotonicity assumption. In contrast, the estimated average marginal effect from the

random effects probit (row (5)) is inside the static bounds with or without monotonicity, despite

11Details as to how to construct the bounds under monotonicity can be found in the Supplemental Material to Cher-
nozhukov et al. (2013).

12A Stata do-file is available for replication at http://andrew-pua.ghost.io.
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the very incredible assumption where the fixed effects are independent of the fertility indicator.

Finally, note that the AH and Arellano-Bond estimates (rows (8) to (10)), which actually assume

predeterminedness, are outside the dynamic bounds under monotonicity.

5 Concluding remarks

I show that using IV methods to estimate the dynamic LPM with fixed effects is inappropriate even in

large samples (whether n or T diverge). The analytical results indicate that incorrect weighting of

the individual treatment effect is the source of the problem. The numerical results indicate that the

estimators may be outside the identified set in both finite and large samples. Therefore, it is more

appropriate to use the nonparametric bounds proposed by Chernozhukov et al. (2013), especially

if one is unwilling to specify the form for the inverse link function and the joint distribution of the

initial conditions and the fixed effects.

The large-n, large-T results I obtain are based on sequential asymptotics. I conjecture that we

should obtain similar inconsistency results based on joint asymptotics. It is also unclear whether

bias corrections that are derived under large-n, large-T asymptotics can be directly applied to the

dynamic LPM with fixed effects. The results in the paper point out that the direction of the asymptotic

bias of the estimator for the average marginal effect cannot be obtained. This is in stark contrast

with the direction of the asymptotic bias derived by Nickell (1981). Although the Monte Carlo

experiments of Fernandez-Val (2009) indicate good finite sample performance when we apply the

large-T bias corrections, future work should study what exactly these corrections are doing.

It would also be interesting to derive similar analytical results for correlated random effects

models so that the results in Wooldridge (2005) and Murtazashvili and Wooldridge (2008) can be

extended to the dynamic case. In the empirical application, I find that the average marginal effect

from the usual random effects probit under strict exogeneity can be found in the static nonparametric

bounds. Respecting the inherent nonlinearity of a discrete choice model may be responsible for this

finding. Future work on this will be of practical interest.
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Appendix

Some calculations for (6)

We calculate E [1 (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0)] in detail since the other expressions follow sim-

ilarly. This expression is equal to

Pr (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0)

=
ˆ

Pr (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0|α) g (α) dα

=
ˆ

Pr (yi3 = 0|yi0 = 0, yi1 = 1, yi2 = 1,α)Pr (yi2 = 1|yi0 = 0, yi1 = 1,α)×

Pr (yi1 = 1|yi0 = 0,α)Pr (yi0 = 0|α) g (α) dα

=
ˆ

Pr (yi3 = 0|yi2 = 1,α)Pr (yi2 = 1|yi1 = 1,α)Pr (yi1 = 1|yi0 = 0,α) f (α, 0) dα

=
ˆ
(1−H (α+ρ))H (α+ρ)H (α) f (α, 0) dα, (10)

where f is the joint density of (α, y0). Similarly, we have the following:

E [1 (yi0 = 1, yi1 = 0, yi2 = 0, yi3 = 1)] =
ˆ

H (α) (1−H (α)) (1−H (α+ρ)) f (α, 1) dα

E [1 (yi0 = 1, yi1 = 0, yi2 = 1, yi3 = 0)] =
ˆ
(1−H (α+ρ))H (α) (1−H (α+ρ)) f (α, 1) dα

E [1 (yi0 = 0, yi1 = 1, yi2 = 0, yi3 = 1)] =
ˆ

H (α) (1−H (α+ρ))H (α) f (α, 0) dα

E [1 (yi0 = 0, yi1 = 1, yi2 = 0, yi3 = 0)] =
ˆ
(1−H (α)) (1−H (α+ρ))H (α) f (α, 0) dα

E [1 (yi0 = 1, yi1 = 0, yi2 = 1, yi3 = 1)] =
ˆ

H (α+ρ)H (α) (1−H (α+ρ)) f (α, 1) dα

Assembling these expressions together in the expression for the large-sample limit of bρAHd gives (6).

Some calculations for the large-T case

Note that ∆yi,t−2∆yi t = yi,t−2 yi t − yi,t−3 yi t − yi,t−2 yi,t−1 + yi,t−3 yi,t−1. Observe that the binary

nature of y allows us to write

1
T

T
∑

t=3

yi,t−2 yi t
p
→ lim

T→∞

1
T

T
∑

t=3

Pr
�

yi t = 1, yi,t−2 = 1
�

.
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By the law of total probability, the definition of conditional probability, and calculations similar to

(10), we are able to express Pr
�

yi t = 1, yi,t−2 = 1
�

as

Pr
�

yi t = 1, yi,t−2 = 1
�

= Pr
�

yi t = 1, yi,t−1 = 0, yi,t−2 = 1
�

+ Pr
�

yi t = 1, yi,t−1 = 1, yi,t−2 = 1
�

=
ˆ

H (α) (1−H (α+ρ))Pr
�

yi,t−2 = 1|α
�

g (α) dα+
ˆ

H (α+ρ)2 Pr
�

yi,t−2 = 1|α
�

g (α) dα.

As a result, we have

1
T

T
∑

t=3

yi,t−2 yi t
p
→
ˆ
�

H (α+ρ)2 +H (α) (1−H (α+ρ))
�

�

lim
T→∞

1
T

T
∑

t=3

Pr
�

yi,t−2 = 1|α
�

�

g (α) dα.

Finally observe that Pr
�

yi,t−2 = 1|α
�

obeys a first-order nonhomogeneous difference equation. In

particular, note that

Pr (yi1 = 1|α) = Pr (yi1 = 1|yi0 = 1,α)Pr (yi0 = 1|α) + Pr (yi1 = 1|yi0 = 0,α)Pr (yi0 = 0|α)

= [H (α+ρ)−H (α)]Pr (yi0 = 1|α) +H (α)

Pr (yi2 = 1|α) = Pr (yi2 = 1|yi1 = 1,α)Pr (yi1 = 1|α) + Pr (yi2 = 1|yi1 = 0,α)Pr (yi1 = 0|α)

= [H (α+ρ)−H (α)]Pr (yi1 = 1|α) +H (α)

...

Pr (yi t = 1|α) = [H (α+ρ)−H (α)]Pr
�

yi,t−1 = 1|α
�

+H (α)

The solution to the above difference equation can be written as

Pr (yi t = 1|α) = [H (α+ρ)−H (α)]t Pr (yi0 = 1|α) +
t−1
∑

s=0

[H (α+ρ)−H (α)]s H (α) .

Note that |H (α+ρ)−H (α)| < 1. As a result, the effect of the initial condition disappears as T →

∞:

lim
T→∞

1
T

T
∑

t=3

Pr
�

yi,t−2 = 1|α
�

=
H (α)

1−H (α+ρ) +H (α)
.

Thus, we have

1
T

T
∑

t=3

yi,t−2 yi t
p
→
ˆ
�

H (α+ρ)2 +H (α) (1−H (α+ρ))
�

�

H (α)
1−H (α+ρ) +H (α)

�

g (α) dα.
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Following similar calculations, we can derive the large-T limits of the other components. In partic-

ular,

1
T

T
∑

t=3

yi,t−2 yi,t−1
p
→ lim

T→∞

1
T

T
∑

t=3

Pr
�

yi,t−1 = 1, yi,t−2 = 1
�

=
ˆ

H (α+ρ)
�

H (α)
1−H (α+ρ) +H (α)

�

g (α) dα.

1
T

T
∑

t=3

yi,t−3 yi t
p
→ lim

T→∞

1
T

T
∑

t=3

Pr
�

yi t = 1, yi,t−3 = 1
�

=
ˆ

H (α+ρ)3
�

H (α)
1−H (α+ρ) +H (α)

�

g (α) dα

+
ˆ

2H (α+ρ)H (α) (1−H (α+ρ))
�

H (α)
1−H (α+ρ) +H (α)

�

g (α) dα

+
ˆ

H (α) (1−H (α)) (1−H (α+ρ))
�

H (α)
1−H (α+ρ) +H (α)

�

g (α) dα.

Observe that the last term 1
T

∑T
t=3 yi,t−3 yi,t−1 has the same probability limit as 1

T

∑T
t=3 yi,t−2 yi,t as

T →∞. Assembling all the results together, we have as T →∞,

1
T

T
∑

t=3

∆yi,t−2∆yi t
p
→−
ˆ
(1−H (α+ρ))H (α) (H (α+ρ)−H (α)) g (α) dα.

The other large-T results now follow similar computations.
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