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Abstract

This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model
where the density of the yield curve factors and thereby the density of the
yields are estimated along with other model parameters. This is accomplished
by modeling the error distributions of the factors according to a Dirichlet
process mixture. An efficient and computationally tractable algorithm is im-
plemented to obtain Bayesian inference. The semiparametric structure of the
factors enables us to capture various forms of non-normalities including fat
tails, skewness and nonlinear dependence between factors using a unified ap-
proach. The potential of the proposed framework is examined using US bond
yields data. The results show that the model can identify two different pe-
riods with distinct characteristics. While the relatively stable years of late
1980s and 1990s are comprising the first period, the second period captures
the years of severe recessions including the recessions of 1970s and 1980s and
the recent recession of 2007-9 together with highly volatile periods of Federal
Reserve’s monetary policy experiments in the first half of 1980s. Interestingly,
the results point out a nonlinear dependence structure between the factors
contrasting existing evidence.
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1 Introduction

Modeling the evolution of large cross sections of treasury bond yields has been an

intensive area of econometric research for many decades. Examining the patterns

of bond yields is of key importance for many reasons including understanding the

expectations of economic agents, managing fiscal dept, pricing bonds and related

derivatives, pricing sovereign risk, and portfolio allocation. Typically, the common

patterns observed in bond yields can be summarized using a few key factors. Not

surprisingly, models that exploit this factor structure have been the major workhorse

in modeling the common variation of treasury bond yields.

While the cross section of bond yields or put differently, the dependence structure

of the yields on the underlying factors is well studied, the precise density of bond

yields is not sufficiently explored yet. Typically, error distributions of the factors are

assumed to be Gaussian in order to facilitate the econometric inference. However,

relaxing the assumption of the Gaussianity and estimating the density explicitly is of

crucial importance for various reasons. On the one hand, treasury bonds constitute

an important class of financial assets. It is well known that the (joint) distribution

of returns on many financial assets exhibits non-Gaussian behavior including fat-

tails, excess skewness and nonlinear dependence structures. On the other hand,

estimating the density of the multivariate bond yields explicitly is of key importance

for uncovering the uncertainty around the point predictions and understanding the

entire distribution of the bond yields with varying maturities.

In this paper, I propose a Bayesian semiparametric alternative to the assumption

of Gaussianity for yield curve factors estimated using a popular class of yield curve

models, the dynamic Nelson-Siegel model. Specifically, I specify the distribution of

the factors using a Dirichlet process mixture that is proved to be very useful in many

applications of econometrics, see for example Chib and Hamilton (2002); Hirano

(2002); Griffin and Steel (2004); Jensen (2004); Conley et al. (2008); Jensen and
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Maheu (2010), among others. The resulting model does not rely on the assumption

of Gaussianity of the factors nor I presume a specific distribution for the factors.

Instead, using the semiparametric structure I estimate the factor density along with

the factors. I propose an efficient and computationally tractable algorithm to obtain

Bayesian inference. I analyze the potential of the Bayesian semiparametric dynamic

Nelson-Siegel model using the panel time-series of US zero-coupon bond yields.

Traditional approaches of modeling the dynamics of the yield curve mostly focus

either on the no-arbitrage relations in equilibrium to model the yield curve1 or focus

on functions that can approximate the observed yield curve well (see McCulloch,

1975; Nelson and Siegel, 1987, for example). For the latter, Nelson and Siegel (1987)

(adjusted in Siegel and Nelson (1988)) provide a parsimonious three-component ex-

ponential approximation to the yield curve. This model has been heavily used in

fitting and predicting the large cross sections of bond yields (see Svensson, 1994;

Gurkaynak et al., 2007; Nyholm and Rebonato, 2008, for example).

However, the framework of Nelson and Siegel (1987) concerns only with fitting

the yield curve of bonds for a given point in time. Diebold and Li (2006) extend this

framework by imposing a first order autocorrelation structure on each component

and thereby adding a time dimension. Diebold et al. (2006) show that the resulting

dynamic model can be cast in a dynamic factor model (as a subclass of state-space

models) framework with three factors where these factors can be interpreted as the

level, slope and curvature of the yield curve.2 The ‘dynamic’ Nelson-Siegel model

1See Vasicek (1977); Cox et al. (1985); Hull and White (1990) for example. Duffie and Kan
(1996) provide a multifactor affine (yields are affine functions of underlying factors) term structure
model in this vain. Dai and Singleton (2000) classify the canonical representation of the affine no-
arbitrage term-structure models and focus on three factor models. However, many issues plague
the estimation of these models including the existence of local maxima each having a different
economic interpretation, see Orphanides and Kim (2005), and overparametrization. Indeed, Dai
and Singleton (2002) and Duffee (2002), among others, impose some further restrictions on model
parameters to alleviate these problems.

2The interpretation of the yield curve factors as level, slope and curvature is due to the seminal
paper of Litterman and Scheinkman (1991). They use principle component analysis to extract the
three common factors from a large set of US treasury bond yields and they interpret these factors
as level, slope and curvature.
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(DNS) can jointly capture both the cross sectional variation of the yields due to

varying maturities and the dynamic evolution of the yield curve well, see the analysis

in De Pooter (2007) among others. Consequently, the DNS model constitutes an

extremely attractive class of yield curve models with desirable statistical properties,

while still preserving a parsimonious model structure.

While the main focus in the DNS model is on modeling the dynamic evolution of

the yields using the point predictions of Gaussian factors, the density of the factors

is usually neglected. However, many studies document evidence of deviations from

the Gaussian factor distributions due to several reasons. Interestingly, these studies

focus mostly on a specific reason in isolation of potential other aspects. First, for

US bond yields the volatility before the Great Moderation3 had been much higher

than the succeeding period. Indeed, Hautsch and Ou (2009) and Koopman et al.

(2010) for the U.S. and Bianchi et al. (2009) for the U.K., among others, document

the time variation in the volatility of the yields and/or factors. These studies mostly

employ stochastic volatility (Jacquier et al., 2004; Omori et al., 2007) or GARCH

(Bollerslev, 1986) type approaches to model fat tails and the time variation in the

volatility, which may not be efficient for the typical monthly data of yields as these

approaches are mostly suitable for higher frequency data. On top of this, for the US,

beginning of 1980s are subject to aberrant observations and quite irregular dynamics

of bond yields due to the monetary policy experiments. Second, these approaches

usually do not take nonlinear dependencies into account; hence, correlations are

typically assumed to be constant. Junker et al. (2006), for example, use asymmetric

copulas to model the nonlinear dependencies between the factors extracted from an

arbitrage-free affine term structure model. Third, distributions of yields are likely to

be skewed as nominal interest rates cannot be negative. On the one hand, evidence

from the recent global financial crises 2007-9 and the aftermath of it indicates that

3Persistent decline in the volatility of many US macroeconomic and financial indicators after
mid 1984 is referred as Great Moderation.
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the ‘zero bound’ is likely to be a binding constraint for nominal yields as treasury

bond yields in many countries fell essentially to their zero bound. From a statistical

perspective, existence of the zero lower bound as a binding constraint leads to a

skewed distribution for bond yields. On the other hand, extremely high bond yields

observed in the beginning of 1980s (and never observed again) indicate that an upper

bound for nominal yields does not exist and extreme shocks are more likely to occur

in the right tail of the yields’ distribution.

Unfortunately, it is not a straightforward task to model the non-Gaussianity or to

estimate the density of the yields due to the large cross section of the yields. When

the non-Gaussianity is modeled for each bond yield separately, overparametrization

is a potential problem that may complicate econometric inference.4 One elegant

and natural way to model this non-Gaussianity and to estimate the density of the

series is exploiting the factor structure, i.e. estimating the density of the factors

instead of the density of the individual yields. This facilitates econometric inference

substantially by-passing the problem of the curse of dimensionality without loosing

much explanatory power.5 This is especially the case for the DNS model where a

few key factors explain the variation in the entire cross section of the yields quite

successfully.

By estimating the distribution of the dynamic factors along with other model pa-

rameters the Bayesian semiparametric DNS model provides a unified approach that

can take all features of bond yields into account. In the empirical application using

US yield data, I show that the Bayesian semiparametric DNS model captures two

different periods of high and low volatility. While the period with low volatility co-

4For some specific cases the model may still remain parsimonious. For example, when the
true data generating process follows a multivariate t distribution, the model only requires a single
additional parameter to estimate. Here I do not follow this approach as I explicitly focus on the
density estimation without assuming a specific density for the yields.

5Indeed, using a similar intuition Patton and Oh (2011) model the nonlinear dependence in
high dimensional models using factor copulas where factors are modeled using some non-Gaussian
distributions.
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incides with the times of Great Moderation, the period with high volatility captures

the times of severe recessions of 1970s together with the recent recession of 2007-9

and the period of Federal Reserve’s monetary experiments in the beginning of 1980s

(see Friedman, 1984, for details about these experiments). An interesting finding is

that the model identifies the two historical peak points of the yields in the beginning

of 1980s as outliers in a separate cluster leading to more precise estimates of the pa-

rameters. Moreover, estimates of the correlations reveal an interesting pattern in

the sense that estimates using the models with the semiparametric structure gener-

ally reveal a higher degree of correlation compared to the benchmark with Gaussian

innovations. However, during turbulent times correlation coefficients decrease sub-

stantially or switch signs indicating a nonlinear pattern. Finally, I perform several

sensitivity analyses regarding to prior specifications and the model structure that

confirm the robustness of the results.

The remainder of the paper is organized as follows. Section 2 describes the

Bayesian semiparametric dynamic Nelson-Siegel model. I discuss the Bayesian esti-

mation methodology together with the prior and posterior specifications in Section 3,

with full details being provided in Appendix A. Section 4 displays and discusses the

results of the model using US data.6 Finally, Section 5 concludes.

2 Model specification

2.1 Dynamic Nelson-Siegel model

Fitting a parametric curve on the large set of yields that can approximate the ob-

served yield curve successfully using only a few key parameters facilitates the analysis

of the entire space of the yields. Following this idea, Nelson and Siegel (1987) pro-

6I examine the potential of the model and the algorithm using two simulated datasets. The
results related to these simulated dataset are provided in the web appendix in my website
http://people.few.eur.nl/cakmakli/.
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vide a parsimonious yet flexible specification that can accommodate various forms

of observed yield curves.

Explicitly, let yt(τ) be the yield of a zero-coupon bond at time t with the maturity

date t+ τ . Nelson and Siegel (1987) (extended by Siegel and Nelson (1988)) specify

the forward curve using an exponential approximation, which translates into the

following specification of the yield curve with only three components7 as

yt(τ) = f1,t + f2,t

(
1− eλτ

λτ

)
+ f3,t

(
1− eλτ

λτ
− eλτ

)
. (1)

Altough (1) is governed by only four parameters; (λ, f1,t, f2,t, f3,t)
′, the main ad-

vantage of this parsimonious specification is its flexibility to accommodate different

forms of the yield curve successfully. The parameter λ in (1) governs the exponential

decay rate determining the maximum loading of the third coefficient. Once the decay

rate is determined, the key parameters (f1,t, f2,t, f3,t)
′ act as the main determinants

of the cross section of yields.

The framework of Nelson and Siegel (1987), however, concerns only with fitting

the yield curve of bonds for a given point in time. As a result, while in the classical

specification of Nelson and Siegel (1987), (f1,t, f2,t, f3,t)
′ are interpreted as static

coefficients to be estimated at a given point in time, Diebold and Li (2006) interpret

these parameters as factors governing the evolution of the cross section of yields

over time. The first factor loads on each yield equally and it can be interpreted as

a level factor. Additionally, as τ → ∞ the loadings of the second and third factors

approach to zero leaving only the first factor to determine the long end. Hence, this

factor can also be interpreted as long-term factor. The loading on the second factor

starts with 1 at the short end. As τ → ∞ it decays quickly to 0, thus, the effect

of the second factor is mostly on the short end leading to the interpretation of this

7There is a one-to-one mapping between the forward curve and the yield curve as the yield is
an equally weighted average of the forward rates.
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factor as short-term factor. Furthermore, this factor is closely related to the yield

curve slope as the change of it affects the short end more than the long end changing

the slope of the yield curve. The loading on the third factor starts at 0 as τ → 0 and

increases as the maturity increases. After some maximum level it again decreases

to 0 as τ → ∞. This implies that the third factor affects mostly the medium term

maturities leading to the interpretation as a medium-term factor. Moreover, this

effect in the medium term determines the curvature of the yield curve.

Given this interpretation of the Nelson-Siegel factors, the evolution of these fac-

tors shapes the evolution of the entire yield curve over time. Indeed, to explore this

time variation Diebold and Li (2006) and Diebold et al. (2006) extend this framework

by imposing a first order autocorrelation structure to these factors. The resulting

state-space specification for time period t is given by



yt(τ1)

yt(τ2)

...

yt(τN)


=



1 1−eλτ1
λτ1

1−eλτ1
λτ1

− eλτ1

1 1−eλτ2
λτ2

1−eλτ2
λτ2

− eλτ2

...
...

...

1 1−eλτN
λτN

1−eλτN
λτN

− eλτN




f1,t

f2,t

f3,t

+



ηt(τ1)

ηt(τ2)

...

ηt(τN)


, (2)

and the evolution of the factors (state equation) takes the following form


f1,t

f2,t

f3,t

 =


µ1,t

µ2,t

µ3,t

+


ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33




f1,t−1

f2,t−1

f3,t−1

+


ε1,t

ε2,t

ε3,t

 . (3)

In the standard dynamic Nelson-Siegel model the error terms in both equations are

distributed according to a multivariate Gaussian distribution. The resulting model
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can be written in the compact notation as

yt = Hft + ηt ηt ∼ N(0, R)

ft = Fft−1 + εt εt ∼ N(θt) where θt = (µt, Qt)
(4)

where ηt follows a multivariate normal distribution with mean zero and the covari-

ance matrix R. The error distribution of the factors, εt, also follows a multivariate

normal distribution (independent of ηt) conditional on the model parameters θt,

where θt includes the mean8 and the variance of the factor error distribution in

period t.

The key ingredient of the semiparametric model that differs from the conventional

DNS model is the prior distribution used for the parameters θt. In the standard case

the use of a conjugate (Gaussian) or uninformative prior ensures the system to re-

main Gaussian. However, to estimate the density of the factors semiparametrically,

I exploit Bayesian density estimation techniques, specifically, Dirichlet process mix-

tures by assuming an unknown prior distributionG for θt whereG itself is distributed

according to a Dirichlet process.

2.2 Diriclet process (prior) and Dirichlet process mixture

In this section, I introduce the semiparametric specification of the distribution of

θt using the Dirichlet process mixture, which leads to the estimation of the error

distribution of factors. When the aim is estimation of a density using Bayesian

inference, a prior distribution that spans a space of probability distribution functions

that is large enough to capture all possible candidates is required. Consequently,

Ferguson (1973) proposed Dirichlet process (prior) that is flexible enough to provide

a prior specification satisfying this condition successfully.

Let G0 be a probability distribution function over some parameter space Θ such

8The constant term in the state equation is suppressed in the error distribution as the mean of
the error distribution.
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that θ ∈ Θ and let α be a positive scalar. A distribution G is distributed with Dirich-

let process DP (G0, α) with base distribution G0 and precision parameter α if for any

measurable J partition of the parameter space, θ1:J = (θ1, θ2, . . . , θJ), the distribu-

tionG = G(θ1:J) follows a Dirichlet distributionDir (αG0(θ1), αG0(θ2), . . . , αG0(θJ)).

To clarify the underlying intuition and to demonstrate the functional form of the

DP, I resort to the so-called Polya’s urn representation of the DP, see Blackwell and

MacQueen (1973). Let us have an urn filled with a continuous sample of colored

balls of size α with the distribution of the colors of these balls denoted as G0(Λ)

that depends on the hyperparameters Λ. Suppose a ball is sampled from the urn

and upon observing the color of the sampled ball another ball of exactly the same

color is added the urn along with the sampled ball. Putting back the drawn ball in

the urn keeps the initial sample size α and the color distribution G0(Λ) unchanged.

However, as one more ball with identical color is added the urn the sample size

increases by one. This implies that for the next round, either a ball with a new

color from the initial sample of α will be drawn (given that the base distribution

G0(Λ) is continuous) or the ball that is identical to the previously drawn ball will

be drawn. Repeating this T times results in a T sample of balls (ignoring the initial

sample size) with J different colors, where the distribution of this combination of J

colors are distributed according to a Dirichlet distribution, see Ferguson (1973) for

a formal proof.

When the state equation in the DNS model is considered, the parameters of the

factor error distribution, θt, are analogous to the balls of size T in the urn and the J

partition of the parameters space, θ1:J = (θ1, θ2, . . . , θJ), is analogous to the resulting

J colors. The resulting Polya’s urn scheme suggests that the conditional DP prior

f(θt|θ−t)|G = G ∼ DP (G0(Λ), α) has the following form

f(θt|θ−t)|G = G =
α

α + T − 1
G0(Λ) +

T∑
i=1,i̸=t

δj(θi)

α + T − 1
, (5)
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where δ(.) is the Dirac function indicating the point mass such that δ(θ) = 1 if

θ ∈ θj. (5) indicates that at each step either a new θt will be drawn from G0(Λ)

with probability proportional to α or θt will be a member of an existing cluster j

with probability proportional to
∑T

i=1,i̸=t δ
j(θi).

As a flexible specification, Dirichlet process spans the entire distribution of the

discrete probability functions with probability 1. This can be seen from the stick

breaking representation of the DP, see Sethuraman (1994). The stick breaking rep-

resentation corresponds to the following scheme. Suppose a part of Wj% of a stick

with a unit initial length is being constantly broken j times where Wj ∼ Beta(1, α).

Let denote the length of the broken parts as π1 = W1, π2 = W2(1 − W1) and

πj = Wj

∏j−1
1 (1 −W1)(1 −W2), . . . , (1 −Wj−1). As j → ∞ the unit length of the

stick can be written as 1 =
∑∞

j=1 πj. Since any partition can be the result of this

stick breaking process, Dirichlet process spans the entire distribution of the discrete

probability functions with probability 1. As the functional form also suggests, the

length of the broken parts is analogous to the probabilities of each partition. Sup-

pose each part of the stick, i.e. each partition, is denoted as θj, which is a draw from

the base distribution G0. Accordingly, a draw of distribution G from the DP can be

written as

G =
∞∑
j=1

πjδ(θj). (6)

(6) points out the DP as an infinite mixture of point mass functions. Unfortunately,

as the DP spans the entire distribution of the discrete probability functions with

probability 1, the space of continuous probability functions is excluded. Although

any distribution over θ can be approximated arbitrarily accurately in the pointwise

sense by a sequence of draws from the DP, the smoothness of the distribution is still

of concern. Dirichlet process mixture model remedies this drawback by convolving

the DP with a continuous kernel. This is accomplished by replacing the point mass

function δ(θj) in (6) with a continuous function f(·|θj) which is a continuous kernel
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function conditional on the parameters θ with the DP prior. This leads to a spec-

ification that does span the entire set of continuous probability distributions with

probability 1, which is denoted as the Dirichlet process mixture (DPM) model (see

Antoniak, 1974, for details). The DPM takes the form of

∞∑
j=1

πjf(·|θj). (7)

This implies that (7) corresponds to an (countably) infinite number of mixtures

of underlying distributions and it provides a very intuitive and tractable way of

estimation of unknown distributions.

Notice that, in practice the sample size is finite. This implies that the number

of mixtures is limited with the sample size. Moreover, the discrete nature of the

DP prior often results in a low number of mixture components that can successfully

approximate the target density. This suggests the DPM as a very flexible yet par-

simonious modeling approach (as the DNS model) to estimate an unknown density

and to model the non-Gaussianities observed in the bond yields data.

2.3 Semiparametric Bayesian dynamic Nelson-Siegel model

When the distribution of the factors in (4) is of an unknown form, DPM struc-

ture provides a convenient and tractable way of estimation of this distribution. By

assigning a DP prior for the parameters θt in (4), the error distribution in state equa-

tion (factor evolution) is estimated along with other parameters by estimating the

number of mixtures and mixture components. The resulting full model specification

takes the following hierarchical form

yt = Hft + ηt ηt ∼ N(0, R)

ft = Fft−1 + εt εt ∼ N(θt) θt|G ∼ G G ∼ DP (G0(Λ), α).
(8)
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The hierarchical representation indicates that the prior distribution G is distributed

according to DP (G0(Λ), α) and together with the multivariate Gaussian density

of the data conditional on θt it forms the posterior distribution of θt as a DPM.

The standard DNS model with Gaussian innovations is a special case of the above

specification with a single mixture component.

Without specifying the autoregressive coefficient matrix F and the covariance

matrix of the measurement error R the model is not complete. One of the most

prominent stylized facts of the yield curve models is the persistence in the factors.

In many applications of the dynamic Nelson-Siegel model estimates of the autore-

gressive coefficient matrix F indicate uniformly this persistence with diagonal values

above 0.9 or around it regardless of the model specification or estimation technique.9

Following this evidence, I keep F out of the set of the parameters with DP prior.

Another parameter that I do not assign a DP prior is the covariance matrix of

the measurement error, R. In fact, specifying a DPM structure in the measurement

error distribution is a straightforward extension of my modeling approach. However,

as the dimension of the yields is much higher than the dimension of the underlying

factors such an approach would require many parameters to estimate and identifica-

tion of the densities could be difficult. Alternatively, the semiparametric structure

could be imposed only in the measurement equation rather than the state equa-

tion. My strategy, however, is to estimate the density of the yields and to model

the observed non-Gaussianities in a parsimonious yet flexible specification using the

underlying factors as discussed previously. Given that factors can explain the bulk

of the variation in a large set of yields, I follow the approach of estimating the factor

density.

9See for example Diebold and Li (2006); Diebold et al. (2006); Christensen et al. (2011); Koop-
man et al. (2010); Hautsch and Yang (2010), among others, for a comparison of the estimates of
the autoregressive coefficient matrix.
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3 Bayesian inference

In this section I provide details on econometric inference of the Bayesian semipara-

metric dynamic Nelson-Siegel model. The joint posterior distribution of the param-

eters with DPM distribution is constructed by the product of the DP prior together

with the likelihood. In Section 3.1, I discuss the prior distributions. In Section 3.2,

I discuss the full conditional posterior distributions related to the DPM and the

resulting simulation scheme together with the DPM sampler. I discuss the posterior

conditional distributions which do not follow a DPM distribution in Appendix A

as these distributions are identical with the parameter distributions in the standard

DNS model with Gaussian innovations. The Bayesian model selection procedures

for model comparison are discussed in Section 3.4.

3.1 Prior distributions

I start to the specifications of the prior distributions with the specifications related

to the DP. This includes the specification of the base prior and the specification of

the hyperprior for the precision parameter α. For the base prior G0 I use a normal

inverse Wishart distribution as follows

G0(µ0, a, ν, S) = N − IW (µ0, a, ν, S) 7→ µ|Σ ∼ N(µ0,
Σ

a
) and Σ ∼ IW (ν, S), (9)

where E(µ) = µ0 and E(Σ−1) = νS−1. Moreover, S can be decomposed further

into S = νvI3 where In is the identity matrix of the dimension n. This implies

that a priori I assume uncorrelated errors. With limited information on the corre-

lation structure among the mixture parameters this is a natural assumption, see for

example Conley et al. (2008) for a similar specification.

For the precision parameter of the DP, α, I use the hyperprior distribution of the
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form

f(α) ∝
(
1− α− αmin

αmax − αmin

)p

. (10)

I take the power parameter p = 0.8 and α ∈ [0.1, 3], see Conley et al. (2008) for

details about this hyperprior. The power value implies that the prior has more

probability mass on more parsimonious specifications. I prefer such a hyperprior

specification since I want to keep a balance between the estimation of the density

and model overfitting. As a high value of α implies a high number of clusters, a

more flexible specification could easily result in model overfitting.

The remaining model parameters do not involve a DP prior. For the prior distri-

bution of the autoregressive parameters in (3), I assume the standard multivariate

normal distribution as

f(vec(F )) = N(09, I9), (11)

where vec(F ) is the vec operator stacking each columns of F into a single column

vector. 09 is a vector of zeros of dimension nine. Unreported results of prior sensi-

tivity analysis suggests that the likelihood information dominates prior information

for F and thus, the prior specification is of limited importance for this parameter.

For the covariance matrix of the measurement error R in (2), I assume a nonin-

formative diagonal structure as all cross sectional dependence is cast to the factor

structure. For each individual elements a noninformative diagonal structure on the

prior distribution of R implies

f(σ2
n) ∝

1

σ2
n

for all n = 1, 2, . . . , N, (12)

where σ2
n’s are the diagonal elements of R and N is the number of the cross sections

of yields, i.e number of the maturities.
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3.2 Posterior simulation

The fact that the number of mixtures as well as the mixture components of the

distribution of the factors are unknown leads to an intractable likelihood function.

Instead, I set up an MCMC algorithm to sample from the full conditional posterior

distributions. Specifically, I use Gibbs sampling together with data augmentation

(see Geman and Geman, 1984; Tanner and Wong, 1987) to obtain posterior results.

The resulting simulation scheme is as follows

1. Initialize the parameters by drawing θt from the base prior G0 and ft from

standard normal distribution for t = 0, 1, . . . , T . At step (m) of the iteration

2. Sample F (m) from p(F |f (m−1)
0:T , θ

(m−1)
1:T ).

3. Sample R(m) from p(σ2
n|y1:T , f

(m−1)
1:T , θ

(m−1)
1:T ) for n = 1, 2, . . . , N .

4. Sample θ
(m)
1:T from p(θt|f (m−1)

0:T , θ
(m−1)
−t , F (m)) for t = 1, 2, . . . , T .

5. Sample f
(m)
0:T from p(f0:T |y1:T , θ(m)

1:T , F
(m)).

6. Sample α(m) from p(α|θ(m)
1:T ).

7. Repeat (2)-(6) M times.

Alternatively, steps (3) and (4) can be replaced by sampling θ
(m)
t from p(θt|y1:T , θ(m−1)

−t , F (m))

which will be discussed in detail in the next section. Steps (2),(3), and (5) are com-

mon to many models in the Bayesian state-space framework, see for example Kim

and Nelson (1999). Details of the full conditional distributions for these parameters

are given in Appendix A. Here I focus on the DPM sampler in step (4) and on the

posterior simulation of the precision parameter α in step (6).
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3.2.1 Sampling of error distribution parameters in the transition equa-

tion, θt

Sampling the parameters with DPM distribution is not an easy task as both the

factors and these parameters are unobserved, and θ1:T relates to the observed data

through the unobserved factors. First, I start with the general idea of the DPM

sampler as proposed in Escobar and West (1995) and then I show how this can

be integrated into the state-space framework to obtain inference in the Bayesian

semiparametric dynamic Nelson-Siegel (DNS-DPM) model.

The posterior distribution of the parameters with the DPM distribution, p(θt|y1:T )

does not have a closed form solution. This is due to the fact that obtaining the pos-

terior distribution requires the integration of the all remaining parameters out as

p(θt|y1:T ) =
∫
p(θt, θ−t|y1:T )dθ−t. Unfortunately this is not possible except for some

trivial cases or for very low dimensions. Instead, MCMC samplers can be exploited

using the conditional distributions, see Escobar and West (1995). Notice that, the

joint posterior distribution can be defined in terms of the conditionals as

p(θ1:T |y1:T ) = p(θ1|y1:T )p(θ2|θ1, y1:T ) . . . p(θT |θ1:T−1, y1:T ). (13)

Equation (13) implies that each of the parameters at time t can be sampled from a

distribution conditional on the parameters sampled sofar as implied in (5) replacing

T with t. Moreover, as the sequence of these parameters are exchangeable, each

of the parameters can be treated as if it were the last observation and an efficient

Gibbs sampler can be used to obtain a sample from the joint posterior distribution

p(θ1:T |y1:T ) by replacing the conditionals with p(θt|θ−t, y1:T ).

In the resulting simulation scheme, iteration (m) of the sampler to obtain p(θ
(m)
1:T |y1:T )

can be implemented by sequentially sampling from p(θt|θ−t, y1:T ) for t = 1, 2, . . . , T
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with each posterior being

p(θt|θ−t, y1:T ) ∝ p(y1:T |θt, θ(m−1)
−t )p(θt|θ(m−1)

−t )

= p(y1:T |θ1:T )p(θt|θ(m−1)
−t ).

(14)

The estimation of θt implies to draw from (14) conditional on the θ−t and the data.

More explicitly, (14) corresponds to the following specification

p(y1:T |θ1:T )×

(
α

α + T − 1
G0(Λ) +

T∑
i=1,i̸=t

δjθi
α+ T − 1

)
. (15)

A generic way to sample from the distribution in (15) is to setup a Metropolis-

Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) with the condi-

tional prior as the candidate distribution, see Neal (2000). This would require to

evaluate the following acceptance probability ρ(m) at iteration (m) of the MCMC

sampler

ρ(m) = min

(
1,

p(y1:T |θ1:T )p(θ∗t |θ−t)q(θ
∗
t |θ−t)

p(y1:T |θ1:T )p(θ(m−1)
t |θ−t)q(θ

(m−1)
t |θ−t)

)
. (16)

Note that both p(θ∗t |θ−t) and p(θ
(m−1)
t |θ−t) are identical as

α
α+T−1

G0(Λ)+
∑T

i=1,i̸=t

δjθi
α+T−1

and independent across draws. Hence, (16) corresponds to an independence chain

MH algorithm with the following acceptance probability

ρ(m) = min

(
1,

p(y1:T |θ∗t , θ−t)

p(y1:T |θ(m−1)
t , θ−t)

)
, (17)

see Caron et al. (2008). The acceptance probability indicates that for sampling θt

a full Kalman filter step is required to evaluate the likelihood. This implies that

drawing a single θt requires O(T ) operations. As θt is sampled for t = 1, 2, . . . , T ,

a full sweep requires O(T 2) operations. To solve this problem Caron et al. (2008)

suggest a decomposition based on Doucet and Andrieu (2001) to decrease the number
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of operations.10

A drawback of this procedure, however, is that the behavior of the MH algorithm

may differ substantially from the Gibbs sampling algorithms with conjugate priors,

see Neal (2000) for a discussion. One reason is that while other methods consider all

mixture components when deciding for a new draw, for MH method it is more likely

to consider changing the draw to a component with many observations rather than

with few observations, because the candidate density is the DP prior. Changing

a draw to a new component is proportional to α; hence, with small values of α

the probability of a new cluster may be inefficiently low. Notice that, even if a new

cluster is sampled from the candidate density whether it will be accepted depends on

the acceptance probability. This may dramatically slow down the mixing capability

of the chain further unless a high value for α is chosen.

Closely related, the choice of the base prior plays a crucial role in the sense that

the efficiency of the independence chain algorithm depends on the appropriate choice

of the DP prior (candidate density) for the posterior distribution in (15). The reason

is that convolving the DP prior with the data likelihood may result in a posterior

that is quite different from the prior. For example, in (17) while a base prior that

has fat tails compared to the likelihood density would result in frequent rejections,

a base prior that covers the parts of the likelihood with high probability mass may

result in clusters that are very close to each other even if the acceptance rate is high.

In this paper, I depart from this algorithm based on MH step and propose another

algorithm that is computationally more tractable and depend on the Gibbs sampling

using the posterior distribution directly by exploiting the state-space structure of the

model. The intuition stems from the fact that the dependence of the θt to the data

is trough the unobserved states. Hence, the likelihood function can be decomposed

into the distribution of the yields conditional on the factors and the distribution of

10This decomposition and the resulting algorithm is described in detail in the web appendix in
my website http://people.few.eur.nl/cakmakli/.
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the factors conditional on the parameters with the DP prior. During the steps of the

Gibbs sampler the states are estimated for each round of the sampler, and thus, for

estimation of the θt, these estimated states can be treated as observed data. That

would facilitate the estimation of the θt greatly as in this case posterior distribution

has a closed form solution and MH algorithm is not required.

Formally, the conditional likelihood of the observation in period t can be decom-

posed as

p(yt|θt, θ−t) =
∫
p(yt|ft, θt, θ−t)p(ft|θt, θ−t)dft

=
∫
p(yt|ft)p(ft|θt)dft.

(18)

Using (18) the posterior distribution conditional on yields in (14) takes the following

form

p(θt|θ−t, y1:T ) =

∫
p(yt|ft)p(ft|θt)p(θt|θ−t)dft. (19)

Equation (19) suggests that at each step of the Gibbs sampler the posterior dis-

tribution of the parameters with the DP prior can be evaluated using the part

p(ft|θt)p(θt|θ−t) by treating the factors as observed data. The resulting posterior

distribution conditional on the factors becomes

p(θt|θ−t, f1:T ) ∝ p(ft|θt)p(θt|θ−t)

∝ αq0,f
α+T−1

p(ft|θt)G0(θt) +
∑T

i=1,i̸=t δ
j
θi

α+T−1
p(ft|θj),

(20)

where q0,f =
∫
p(ft|θt)G0(θt)dθt, p(ft|θt)G0(θt) is the posterior distribution using

the factor likelihood and the base prior, and p(ft|θj) is the factor density conditional

on the parameters in the jth cluster. Fortunately, as I use factors instead of the

observed yields the integral in q0,f has a closed-form solution. As θt = (µt, Qt), q0,f
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takes the following form

q0,f =
∫
p(ft|µt, Qt)G0(µt, Qt|Λ)dµtdQt

= p(εt|µt,Qt)p(µt|Qt)p(Qt)
p(µt|εt,Qt)p(Qt|εt)

= 2
3
2 (2π)−

3
2 ( a

a+1
)
3
2
Γ3( ν+1

2 )
Γ3( ν

2 )
|V |

ν
2

|V+ a
a+1

(εt−µ0)(εt−µ0)′|
ν+1
2
.

(21)

where Γ3(.) is the multivariate Gamma function of dimension 3 (the dimension of

the factors) and εt = ft−Fft−1, see, for example, Escobar and West (1995); Conley

et al. (2008). Since in the first equation I implicitly condition on the estimates of

F and ft−1, I switch from ft to εt when proceeding from the first equation to the

second.

Plugging (20) together with (21) into (19) results in the following posterior dis-

tribution conditional on the observed yields

p(θt|θ−t, y1:T ) ∝
∫
p(yt|ft)

(
α

α+T−1
q0,fp(ft|θt)G0(θt)

)
dft

+
∫
p(yt|ft)

∑T
i=1,i̸=t δ

j
θi

α+T−1
p(ft|θj)dft

=
∫
p(yt|ft)

(
α

α+T−1
q0,fp(ft|θt)G0(θt) +

∑T
i=1,i ̸=t δ

j
θi

α+T−1
p(ft|θj)

)
dft.

(22)

(22) implies that one more step can be added to the MCMC sampler by treating

the estimated factors from the previous step as the observed data and sampling

of the DPM distributed parameters using these factors. To obtain a sample from

the posterior distribution (20), let ct be the indicator function taking the value j if

observation in period t belongs to the jth cluster. Following this, at step (m) of the

iteration, conditional on the factors, fm−1
0:T , θmt for t = 1, 2, . . . , T can be sampled

using the following steps

1. For t = 1, 2, . . . , T sample c = (c1, c2, . . . , cT )
′ from p(ct|c(m−1)

−t , f
(m−1)
1:T ) for

t = 1, 2, . . . , T using the Dirichlet process mixture posterior using (20),

2. For all c = cj sample θj from p(θj|c(m), f
(m−1)
0:T ) ∝

∏
i:ct=j [f(ft|θj)]G0(θj).
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The second step of the algorithm is often called as the ‘remix’ step and it is to

ensure that the values of θj can change using all of the observations in that cluster

rather than a single observation. This is accomplished by drawing it from an equiv-

alent distribution to p(θ1, . . . , θT |f1:T ) as in the second step, see West et al. (1994);

MacEachern and Müller (1998).

3.3 Sampling DP precision parameter, α

The posterior for the α, p(α|J), is the product of the hyperprior in (10) and the

likelihood function p(J |α) where J is the number of clusters. The resulting posterior

is

p(α|J) ∝ p(α)T !αJ Γ(α)

Γ(α + T )
, (23)

see Antoniak (1974). Given (23) the griddy Gibbs sampler approach of Ritter and

Tanner (1992) can easily be implemented, see also Conley et al. (2008). Given that

α ∈ [0.1, 3] a grid in this interval can be setup based on the desired precision about

the value of α.

Escobar (1994) shows that the expected number of clusters for a given α, E(J |α) =∑T
i=1

α
α+i−1

approaches to α ln
(
α+T
α

)
as T → ∞. This implies that the interval for

α corresponds to the number of clusters to be between 1 and 16 with more support

for lower values.11

3.4 Model selection

The Bayesian semiparametric dynamic Nelson-Siegel model encompasses the stan-

dard DNS model with Gaussian innovations as a specific case. Hence, comparison

of the standard model as a restricted version of the semiparametric model with

11West (1992) shows that the distribution of α conditional on the number of clusters can be cast
as a mixture of two Gamma distributions with the mixing proportion distributed according to Beta
distribution. Hence, a Gamma prior for α also leads to a tractable posterior distribution of mixture
of two Gamma distributions and a sample from α can be obtained by sequentially sampling first
the mixing proportion from the Beta distribution and then α from the Gamma distribution.
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the unrestricted semiparametric model would indicate whether there is a need for

the semiparametric structure. Following this aim, in this section I discuss several

Bayesian model comparison techniques.

Since the key task in my methodology is the density estimation I use predictive

density as a first metric for model comparison. I, therefore, use the in-sample pre-

dictive density to measure the fit of the predicted densities by the competing models

to the data. The in-sample predictive posterior density can be computed as

f(yt|y1:T ) =
∫
p(yt|ft, θ1:T , α)p(ft|θ1:T , α, y1:T )dftdθdα

f(yt|y1:T ) =
∫
p(yt|ft)p(ft|θ1:T , α, y1:T )dftdθdα

f(yt|y1:T ) ≈ 1
M

∑M
m=1 p(yt|fm

t ),

(24)

see Gelfand and Mukhopadhyay (1995); Jensen and Maheu (2010). The density of

the data conditional on the factors is a multivariate normal distribution implied in

(8).

As a second metric for evaluation of the models, I use the posterior predictive

p-value (ppp). The ppp provides a framework to examine whether the data simulated

using the estimated model can replicate various features of the actual data. These

features of the data can usually be formulated as functions of data, g(y), such as

the skewness or the kurtosis measures. If this is the case, it implies that indeed the

model specification can approximate the underlying data generating process of the

actual data well. As my aim is to capture the non-Gaussian features of the bond

yields data, this metric is very suitable for comparison of the competing models.

The posterior predictive p-value can be computed as

p (g(ysim)|yt) =
∫
p(g(ysim)|yt,Γ)p(Γ|yt)

=
∫
p(g(ysim)|Γ)p(Γ|yt),

(25)

where Γ denotes the parameter space. Computing (25) requires to generate simulated
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data, ysim, using the posterior distribution of model parameters. Specifically, I use

the distributions

ft ∼ N(µt + Fft−1, Qt)

yt ∼ N(Hft, R),
(26)

successively to generate simulated data. The second equation in (25) stems from

the fact that conditional on the model parameters, observations do not provide

additional information for the simulated data. The ppp can be computed as

ppp = p (g(ysimt ) ≥ g(yt))

≈ 1
S

∑S
i 1 [g(y

sim
t ) ≥ g(yt)] .

(27)

A ppp value close to 0.5 indicates that the model can generate the features of the

actual data well while a ppp value close to 0 implies the opposite.

4 Empirical results using US yield data

In this section I examine the potential of the semiparametric framework using a real

bond yields dataset. Following this aim, in my empirical investigation I use the US

treasury bond data and accordingly, I investigate the US yield curve. This dataset

is analyzed extensively in many applications of the dynamic Nelson-Siegel model,

and thus, it provides ample opportunities to compare my results with the standard

applications of dynamic Nelson-Siegel model. The data consists of all Treasury bills,

noncallable notes and bonds over the period January 1970 through December 2009

from the CRSPMonthly Treasury Cross-Sectional File. The instruments with special

liquidity problems, which are the bills with less than one month to maturity and

all notes and bonds with less than one year to maturity are eliminated, see Diebold

and Li (2006) for details. Forward rates are computed using the unsmoothed Fama-

Bliss method (see Fama and Bliss (1987)). These forward rates are converted into
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unsmoothed Fama-Bliss zero yields.12 The resulting dataset consists of 22 yields

with maturities 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 60, 72,

84, 96, 108, 120 months and each of the yields has 480 monthly observations, i.e.

N = 22 and T = 480.

I start my analysis with a preliminary investigation of the distribution of the

US yield curve factors. As the factors are unobservable but the yields are, I first

construct crude estimates of factors using linear combinations of the yields. Such

a preliminary analysis would provide some clues on the factor densities before the

comprehensive analysis of the yield curve factors using the dynamic Nelson-Siegel

model. I follow the common practice in the literature by computing the level factor

using the 10-year yield, the slope factor by taking the difference between the 10-

year and 3-month yields, and the curvature by taking twice the 2-year yield minus

the sum of the 3-month and 10-year yields, see for example Diebold and Li (2006);

Koopman et al. (2010). Figure 1 displays the resulting factors.

[Insert Figure 1 about here]

Following the structure of the state equation in the dynamic Nelson-Siegel model

I first estimate a Vector AutoRegression of the first order (VAR(1)) using these

observed factors. For the prior specifications, I fix the parameters of the base prior

at µ0 = (0.05,−0.04,−0.003)′, a = 5, ν = 5 and v = 1 and estimate α where

α ∈ [0.1, 3]. For the specific values of µ0, I first filter the crude estimates of the

factors using an AR(1) filter with autoregressive coefficients close to 1 and then

I take the average of the filtered values. I could also set all values to zero but

such a setting would be unrealistic (especially for the level factor) as it implies that

the unconditional means of the factors are zero. Standard VAR(1) model with a

multivariate normal error distribution is denoted as VAR(1)-N model and the model

12I thank Michel van der Wel for making the data available to me.
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where the error distributions follow a DPM is denoted as VAR(1)-DPM.13 The results

of the VAR(1)-N and VAR(1)-DPM models are presented in Table 1.

[Insert Table 1 about here]

The results in Table 1 confirm the previous findings about the persistence of the

factors, see Diebold and Li (2006), Diebold et al. (2006) and Christensen et al. (2009)

among others. All of the autoregressive coefficient estimates (posterior means) are

above or around 0.90. The estimates of the (off-)diagonal elements are uniformly

higher (lower) for the VAR(1)-DPM indicating that the autoregressive coefficient

matrix is closer to identity matrix when the DPM structure is used. An interesting

result is that in many cases the precision of these parameter estimates of the VAR(1)-

DPM model is higher compared to VAR(1)-N model. This may also be due to the

fact that I use crude estimates of the factors and VAR(1)-DPM model can account

for the measurement errors much better than VAR(1)-N model. This is also reflected

to the much higher marginal likelihood value of the VAR(1)-DPM model.

The estimates of the DPM parameters and comparison with that of the VAR(1)-

N model are displayed in Figure 2. Results indicate two different types of periods.

The first period captures the years between mid 1980s and mid 2000s which is the

period of Great Moderation, see for example McConnell and Perez-Quiros (2000),

and Barnett and Chauvet (2011). This period is reflected as low values of the

variance estimates in VAR(1)-DPM model contrasting the second period excluding

the Great Moderation. In the other period the volatility of the factors is relatively

higher, which is also reflected to the estimates of the intercepts, most notably for

the slope and curvature factors, and to the estimates of the correlation coefficients.

[Insert Figure 2 about here]

13The estimation of these models is carried out as discussed previously in Section 3 using the
observed factors.
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An interesting finding from the preliminary analysis is that the intercepts of the

level and slope factors are more stable than the remaining parameters trough the

sample period.14 This leads me to consider a specific case of DNS-DPM model,

where only the variance parameter is assumed to follow a DPM but the intercept

parameters are assumed to be constant. Following Jensen and Maheu (2010) I

denote this model as DNS-DPMP. The estimation of this model is identical to the

DNS-DPM model explained in detail in Section 3 with only (21) replaced by

q0,f = 2
3
2 (2π)−

3
2
Γ3( ν+1

2 )
Γ3( ν

2 )
|V |

ν
2

|V+(εt−µ)(εt−µ)′|
ν+1
2

, (28)

and the state equation in (3) replaced by


f1,t

f2,t

f3,t

 =


µ1

µ2

µ3

+


ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33




f1,t−1

f2,t−1

f3,t−1

+


ε1,t

ε2,t

ε3,t

 . (29)

The results in the preliminary analysis indicate that the off-diagonal elements

of the autoregressive coefficients matrix play a negligible role in the dynamics of

the yield curve factors. Unreported results using DNS models with Gaussian errors

as well as with DPM structures indicate a very similar picture.15 To limit the

computational burden and to keep the model more parsimonious, I restrict the off-

diagonal elements to be zero in the main analysis using the DNS framework, see

Hautsch and Yang (2010) for similar restrictions.

Specifiying the decay parameter λ is necessary to complete the DNS model spec-

ification. In many applications of the Nelson-Siegel model the value of λ is fixed to

0.0609 or 0.077, see for example Diebold and Li (2006); Diebold et al. (2006); Yu and

14This stability increases even further when the off-diagonal elements of the autoregressive co-
efficient matrix are restricted to zero. Results of this model are available upon request by the
author.

15Results are available upon request by the author.
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Zivot (2011). The value 0.0609 (0.077) maximizes the loading on the curvature, at

exactly 30 months (23.3 months). Fixing the value of λ prior to estimation facilitates

the estimation of the model without loosing much explanatory power. As the focus

of the paper is on estimating the density of the factors I follow this common practice

by fixing λ at 0.0609. Indeed, the sensitivity analysis provided at the end of this

section where I estimate λ along with other parameters reveals similar conclusions.

The estimates of the factors using the DNS-DPM model and the differences of

these estimates from those of the DNS-DPMP and DNS-N models are displayed in

Figure 3. The first graph in the figure shows the factor estimates using the DNS-

DPM model. The factor estimates follow a similar path with the factors constructed

using the linear combinations of the yields in Figure 1. However, factors estimated

using the DNS-DPM model are much smoother than the linear combinations as

expected. The differences of the estimates from the competing models reveal an

interesting pattern. While the differences between the factor estimates of the DNS-

DPM model and the DNS-DPMP model are limited the same does not hold for the

DNS-N model, most notably, for the periods with high volatility in the preliminary

analysis.

[Insert Figure 3 about here]

In Figure 4 I display the course of the posterior standard deviations of the factors

through the sample period. Interestingly, there is a unique pattern for all three fac-

tors in the sense that posterior standard deviations of the factors are much lower for

the models that use the DPM structure compared to the standard model. Moreover,

for the level and curvature factor, the precision is even higher for the DNS-DPM

model compared to the DNS-DPMP model. This shows the increasing precision of

the factor estimates when the distribution of the factors is modeled semiparametri-

cally using the DPM.

[Insert Figure 4 about here]
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The parameter estimates of the competing models are shown in Table 2 with

the variance of the measurement errors displayed in Table 3. The evolution of the

parameters that follow the DPM and comparison of those with the estimates of the

competing models are displayed in Figure 5.

[Insert Table 2 about here]

[Insert Table 3 about here]

[Insert Figure 5 about here]

First, in line with the findings from the preliminary analysis, the estimates of the

autoregressive parameters are increasing when the DPM structure is used. Despite

the increasing persistence, or put differently, despite the higher values of the esti-

mates of the autoregressive parameters, the posterior standard deviations of these

parameters are much lower than those in the standard model. This leads to the con-

clusion that the autoregressive parameters can be estimated much precisely using

the model with DPM structure.

Second, the same also applies to the estimates of the intercept parameters when

these are considered for the DNS-N and DNS-DPMP model in the sense that pos-

terior standard deviations of the intercept parameters are much lower when DNS-

DPMP model is considered. The increase in the persistence of the level and slope

factors is accommodated with lower values (in absolute terms) in the intercept es-

timates leading to a similar mean level for these factors when these two models

are considered. For the curvature factor, although the persistence increases, the

intercept also increases in absolute terms leading to a mean that is higher than (in

absolute terms) its counterpart using DNS-N model.

Third, the estimates of the variances of the measurement errors in (2), i.e. the

diagonal elements of the R in Table 3 indicates an increasing precision when the semi-

parametric structure is used. When the DNS-N model is compared to DNS-DPMP
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and DNS-DPM models it is seen that the variances is decreasing significantly in the

short end of the yield curve when the semiparametric structure is used. While for the

medium term yields variances are almost identical, there is only a marginal increase

in variances in the long end with the use of the semiparametric structure. This

implies that yield curve factors can explain even a greater portion of the variation

of the entire space of the yields when the semiparametric structure is used.

When the parameters with DPM distribution are analyzed, it is seen that the

estimates of the parameters related to the covariance matrix of the factor errors are

very similar for the DNS-DPM and DNS-DPMP model. Interestingly, estimates of

the intercept parameters for the DNS-DPM model are fluctuating around the value

estimated by the DNS-DPMP model, while the estimate of the DNS-N model is

greater than that of the DNS-DPMP accommodating these fluctuations. Neverthe-

less, these fluctuations are limited in magnitude with the only exceptions around

1980 which are the two extreme peaks of the historical interest rates observed dur-

ing the change of the Federal Reserve’s monetary target. It seems that the DPM

model categorizes these observations as a separate cluster leading to the interpre-

tation of these observations as outliers. Volatility estimates are in line with the

preliminary analysis in the sense that the effect of the Great Moderation and the

change in the Federal Reserve’s monetary policy together with the effects of the

recessions of 1970s, 1980s, and the recent 2007-9 crisis are nicely captured by the

changing volatility with both DNS-DPM and DNS-DPMP models. The volatility of

the curvature factor indicated by the DNS-DPMP model is slightly higher than the

volatility indicated by the DNS-DPM model. This is due to the fact that part of

the volatility is captured by the variation in the intercept parameter. Similar to the

estimates of the intercept the estimate of the volatility around 1980 is extremely high

(the estimates in the figure is truncated to increase the visual quality of the graph)

again leading to the interpretation of this observation as an outlier. As a result of
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this changing volatility, the volatility estimate of the DNS-N model accommodates

this with a volatility that is higher than the estimates of the volatility of the DPM

models during the periods of Great Moderation and with a lower volatility during

volatile periods.

The estimates of the correlation coefficients show that while the estimates of

the DNS-N model are close to zero, the estimates of the DNS-DPM (DNS-DPMP)

model are around 0.30 (0.30) for the correlation between the level and slope factors’

error terms and around 0.20 (0.10) for the correlation between the level and curva-

ture factors’ error terms. An interesting finding is that these correlations decrease

significantly or changing signs during the volatile periods. This implies that dur-

ing turbulent times the correlation between the long term yields (level factor) and

the short and medium term yields (slope and curvature factors) are decreasing (or

changing signs for the level-curvature correlation). As the turbulent times mostly

correspond to the recessions, the dynamics of the yields with different maturities

changes as the short term yields and corresponding spreads are more affected by

the changes in the monetary policy to stimulate the economy while longer yields are

affected mostly by the inflation expectations in the longer term, see Diebold et al.

(2006), Ang et al. (2008) and Christensen et al. (2010) among others. The correla-

tion coefficients of the slope and curvature factors’ error terms are closer to zero with

limited fluctuations. Again the extreme observations of 1980s enter here as a nega-

tive correlation during these periods unlike the other periods. These results show a

nonlinear dependence structure between the factors which is nicely captured using

the semiparametric structure. As in the volatility case, the estimate of the DNS-N

model balances between the changing correlations leading to moderate estimates of

the correlations.

I display the estimates of the precision parameter α and the average number

of clusters together with the in-sample posterior predictive density (I-S predictive
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density) in the bottom panel of Table 2. The estimates of the DNS-DPMP and DNS-

DPMmodels are very close to each other indicating that indeed the second moment is

the main driving force of the DPM structure. In both cases the estimate of α is close

to one resulting in the average number of clusters around six. Unreported results

show that the mode of the distribution of the number of clusters with more than 60

observations (5 years in total) is two indicating that on average there are two major

periods with different characteristics and most of the remaining clusters capture

aberrant observations. Interestingly, in many draws of the MCMC sampler the

recent 2007-9 crisis is identified as a separate cluster different than the period before

mid 1980s indicating a new period (cluster) though more information is required for

more conclusive results. The I-S predictive density points a dramatic increase when

switching from the DNS-N model to the DNS-DPMP model and a further increase

when switching from the DNS-DPMP model to the DNS-DPM model, albeit limited.

This indicates the necessity of a flexible modeling approach that can capture various

different characteristics of the US sovereign bond yields.

As a final measure of model fit I display the posterior predictive p (ppp) value

of the models for each maturity in Table 4. The objective functions are the sample

kurtosis and skewness as I want to measure how successfully the model can capture

the non-Gaussian characteristics of the data.

[Insert Table 4 about here]

The results for the DNS-N model show that while the state-space structure can

still capture the kurtosis of the data for various maturities to some extent it cannot

do so for the skewness of the data as many of the ppp values are close to 0. On the

contrary, semiparametric models perform quite well in capturing both the kurtosis

and skewness. Additionally, the DNS-DPM model can capture the skewness of the

yields better than the DNS-DPMP model although the increase in ppp values are
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limited. This is due to the fact the DNS-DPM specification models the intercepts

semiparametrically allowing for skewed distributions.

4.1 Sensitivity check of DP hyperparameters and the decay

parameter

The estimation of the Bayesian semiparametric dynamic Nelson-Siegel model sofar

involves the estimation of the precision parameter α but does not involve the esti-

mation of the hyperparameters, Λ, of the base prior G0 and the estimation of the

decay parameter λ. Estimation of the hyperparameters is a straightforward exten-

sion of the model given that conjugate hyperpriors on these parameters can easily

be assigned. However, as the number of observations in this likelihood function re-

lated to the hyperparameters is the number clusters, the informative content of the

likelihood is limited and a careful selection of the hyperprior distribution is crucial.

Instead, I prefer to fix the hyperparameters and perform a prior sensitivity analysis,

see Jensen and Maheu (2010) for a similar analysis. I, therefore, re-estimate the

model using the following six different hyperparameter settings

• Prior 2: G0(µ0, a, ν, S) = N − IW (µ0, 10, 5, 5 ∗ 1 ∗ I3)

• Prior 3: G0(µ0, a, ν, S) = N − IW (µ0, 15, 5, 5 ∗ 1 ∗ I3)

• Prior 4: G0(µ0, a, ν, S) = N − IW (µ0, 5, 10, 10 ∗ 1 ∗ I3)

• Prior 5: G0(µ0, a, ν, S) = N − IW (µ0, 5, 15, 15 ∗ 1 ∗ I3)

• Prior 6: G0(µ0, a, ν, S) = N − IW (µ0, 10, 10, 10 ∗ 1 ∗ I3)

• Prior 7: G0(µ0, a, ν, S) = N − IW (µ0, 15, 15, 15 ∗ 1 ∗ I3).

Posterior results are displayed in Table 5. Results show that while autoregressive

parameters are in general not so sensitive to the different settings of hyperparam-

eters, the parameter of the curvature is marginally sensitive to the choice of the
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degrees of freedom ν of the variance parameter. With the increasing ν the autore-

gressive parameter of the curvature is decreasing, albeit only marginally. This also

affects the I-S predictive density to some extent causing a limited decrease. It seems

that the choice of a does not influence the results as changes in the value of this

parameter are not as effective as changes in the value of ν. A similar pattern can

also be observed for the estimates of the precision parameter α and the number of

clusters. While changes in a do only have a minor effect on these estimates, the

effect of the changes in ν is relatively higher. Notice that, an increase in ν implies

a more informative prior on the variance structure causing to less variation in the

clusters, i.e. to fewer number of clusters. Still, this effect is limited in the sense that

in most extreme cases the number of clusters decreases only from six to four. As a

result the estimates of α also decrease to a limited extent. Overall, results are quite

robust to the different parameter settings.

In the estimation of the DNS models I fixed the decay parameter λ in order to

facilitate the density estimation of the factors. Although the smooth factor loading

structure of the DNS model provides superior identification for yield curve factors,

still, elaboration of this may provide further insights especially on the effects for

factor density estimation. Therefore, as a last sensitivity check I estimate a DNS-

DPM model together with the λ which is denoted as DNS-DPM-λ model. The

details on the estimation of λ is provided in Appendix A. The results related to

this model are displayed in Table 6 while the results related to the measurement

errors and ppp values are displayed in the last column of the Table 3 and Table 4

respectively.

[Insert Table 6 about here]

The λ parameter is estimated as 0.069 with a posterior standard deviation of

0.011, thus the frequently used values 0.0609 and 0.077 lie in the 95% highest poste-

rior density interval. Results in Table 6 indicates that the autoregressive parameters
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are quite similar to the DNS-DPM. The estimate of α and accordingly the estimated

number of clusters (posterior means) increase marginally while the posterior modes

are identical when the number of clusters are considered. Unreported results show

that the dynamics of the parameters with DPM structure are identical to that of

the DNS-DPM model. Hence, estimation of the λ hardly effects the DPM structure

of the model. The results about the variance of the measurement errors in the last

column of the Table 3 indicate that while there is a minor deduction in the variance

when the first three maturities are considered at the short end, on the contrary, an

increase in the variance is observed at the long end. One reason for this observation

is the increasing uncertainty with the estimation of the λ. Another reason especially

for the difference in the short and long end is due to the fact that the estimate of

the λ is slightly larger than the fixed value. While small values of the decay pa-

rameter produce slow decay and provide a better fit to the curve at the long end,

large values produce fast decay and provide a better fit to the curve at the short

end. This effect can also be seen in the last column of the Table 4, where the ppp

values are displayed. While the ppp value for the skewness indicates a better fit to

the actual data for the shortest end this reverses for the long end as a result of a

greater λ estimate than the fixed value. Overall, the changes are minor when λ is

also estimated along with other model parameters and results related to the DPM

structure remain unchanged.

5 Conclusion

In this paper, I put forward the Bayesian semiparametric dynamic Nelson-Siegel

model to estimate the density of the yield curve factors in the dynamic Nelson-

Siegel model. Estimating the density of the factors explicitly enables to model

various characteristics of the US sovereign bond yields such as skewness, fat tails

and nonlinear dependence between the underlying factors using a unified approach.
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Specifically, I model the distribution of the underlying factors semiparametrically

using Dirichlet process mixtures. I provide an algorithm that is easy to implement

and that makes use of the full conditional posterior distribution. Consequently, the

sensitivity of the algorithm to the choice of the prior distributions is very limited.

In the empirical application I show that this unified methodology of the Bayesian

semiparametric dynamic Nelson-Siegel model captures several aspects of the US trea-

sury bond yields data. I locate two different periods with different characteristics of

volatility dynamics. Moreover, the results indicate that the correlation between the

errors of the factors are usually higher than the correlations indicated by a standard

dynamic Nelson-Siegel model. However, this dependence decreases or switches signs

during turbulent periods pointing out a nonlinear dependence structure between the

factors.

The model and the resulting algorithm proposed in this paper can be used for

other applications as well. In fact, the model falls into the class of the dynamic

factor models, which in turn is a special case of the general state-space models. As

the Bayesian inference as well as the accompanying algorithm are not dependent on

the specific Nelson-Siegel factor loadings structure, several applications of the state-

space models can be extended to allow for semiparametric structure in the state

equation. Therefore, the methodology in this paper provides a unified approach to

model different types of non-Gaussian behavior in a wide variety of applications of

state-space models.
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Appendix A Full conditional posterior distribu-

tions

In this section I describe the full conditional posterior distributions of the parame-

ters that are common to both the model with DPM structure and the model with

Gaussian innovations. Conditional on the remaining parameters these distributions

can be obtained by the product of the prior distributions and the likelihood function

described in Section 3.1 and 3.2.

A.1 Sampling of autoregressive parameters, F

Conditional on the states f0:T and the parameters θ1:T the state equation in (3) can

be rewritten as a Vector AutoRegression (VAR) of first order as follows

ft = µt + Fft−1 + ϵt and ϵt ∼ N(0, Qt). (A.1)

Redefining the variables such that

zt = ft − µt for t = 1, · · · , T

xt = ft−1 for t = 0, · · · , T − 1,
(A.2)

(A.1) can be rewritten as

zt = Fxt + ϵt and ϵt ∼ N(0, Qt). (A.3)

In compact form the model becomes

Z = FX + U, (A.4)
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where Z = (z1, z2, · · · , zT ), X = (x1, x2, · · · , xT ) and U = (ϵ1, ϵ2, · · · , ϵT ). Using the

fact that vec(AB) = (B′ ⊗ I)vec(A), where
⊗

stands for the Kronecker product,

the following univariate model can be written

vec(Z) = (X ′ ⊗ I3) ∗ vec(F ) + vec(U)

z = (X ′ ⊗ I3) ∗ vec(F ) + u

where Cov(u) = Ω = diag(Q1, Q2, · · · , QT ).

(A.5)

Using the multivariate normal prior N(µ
vec(F )

,Σvec(F )) in (11) the posterior distri-

bution is Gaussian, vec(F )|z ∼ N(µvec(F ),Σvec(F )), with the following parameters

Σvec(F ) =
(
Σ−1

vec(F ) + (X ′ ⊗ I3)
′Ω−1(X ′ ⊗ I3)

)−1

µvec(F ) = Σvec(F )

(
Σ−1

vec(F )µvec(F )
+ (X ′ ⊗ I3)

′Ω−1(X ′ ⊗ I3)vec(F )OLS

)
where vec(F )OLS = ((X ′ ⊗ I3)

′Ω−1(X ′ ⊗ I3))
−1(X ′ ⊗ I3)

′Ω−1z.

(A.6)

A.2 Sampling of covariance matrix in the measurement equa-

tion, R

First, I rewrite the measurement equation

yt = Hft + ηt. (A.7)

Since R is the covariance matrix of ηt, R can be sampled from the inverse-Wishart

distribution IW (νR, SR) with the degrees of freedom parameter νR = νR + T and

with the shape parameter SR = SR +
∑T

t=1(yt −Hft)(yt −Hft)
′.
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A.3 Sampling factors, ft

Conditional on the remaining model parameters, drawing f0:T can be implemented

using standard Bayesian inference. This constitutes running the Kalman filter first

and running a simulation smoother using the filtered values for drawing smoothed

states as in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). In the first

step, start the recursion for t = 1, . . . , T

ft|t−1 = µt + Fft−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Qt

ηt|t−1 = yt −Hft|t−1

ζt|t−1 = HPt|t−1H
′ +R

Kt = Pt|t−1H
′ζ ′t|t−1

ft|t = ft|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(A.8)

and store ft|t and Pt|t. For f0|0 and P0|0, notice that, in the steady state E(f) =

E(µ) + FE(f) and E(P ) = FE(P )F ′ +E(Q) leading to E(f) = (I3 − F )−1E(µ) and

vec(E(P )) = (I3 − F
⊗

F )−1vec(Q)t. Moreover, since the initial state is the state

before observing data by definition, µ and Q can be sampled from the base prior G0.

The last filtered state fT |T and its covariance matrix PT |T correspond to the

smoothed estimates of the mean and the covariance matrix for period T . Having

stored all the filtered values, simulation smoother involves the following backward

recursions for t = T − 1, . . . , 1

η∗t+1|t = ft+1 − µt+1 − Fft|t

ζ∗t+1|t = FPt|tF
′ +Qt+1

ft|t,ft+1 = ft|t + Pt|tF
′ζ∗−1
t+1|tη

∗
t+1|t

Pt|t,Pt+1 = Pt|t − Pt|tF
′ζ∗−1
t+1|tFPt|t.

(A.9)
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Intuitively, the simulation smoother updates the states using the same principle

as in the Kalman filter with the state equation replaced by the measurement equation

in the Kalman filter and updates are with respect to all available information using

backward recursion. For updating the initial states, using the state equation f0|t,f1 =

F−1(f1−µ1) and P0|t,P1 = F−1(P1+Q1)F
′−1 can be written for the first observation.

Given the mean ft|t,ft+1 and the covariance matrix Pt|t,Pt+1 , the states can be sampled

from ft ∼ N(ft|t,ft+1 , Pt|t,Pt+1) for t = 0, ..., T .

A.4 Sampling decay parameter, λ

To sample λ from its conditional posterior distribution we can use (2). Unfortunately,

the resulting distribution does not have a standard form, and thus, Gibbs sampling

cannot be implemented. Therefore, I setup a Metropolis-Hastings (MH) (Metropolis

et al., 1953; Hastings, 1970) step for sampling λ. As the candidate density an obvious

alternative is to use a t-distribution with maximum likelihood estimates of λ and its

variance. However, this involves non-linear optimization procedures complicating

the estimation process further. Instead given the existing evidence on the decay

parameter I use a t-distribution with a degrees of freedom 10 and with mean 0.07

and standard deviation 0.01. This candidate distribution put a high probability mass

on both 0.0609 and 0.77, the two values that are used for fixing the decay parameter

in many applications of the DNS model. The resulting MH sampler performs quite

well with a high acceptance rate for all models.
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Table 1: Posterior results for the VAR(1)-DPM and VAR(1)-N models

VAR(1)-N VAR(1)-DPM

Level Slope Curvature Level Slope Curvature

µf 0.107 -0.028 -0.117
(0.050) (0.070) (0.067)

ϕ1j 0.990 -0.034 -0.038 0.995 0.0037 -0.025
(0.006) (0.013) (0.023) (0.007) (0.013) (0.023)

ϕ2j 0.018 0.930 -0.119 0.013 0.945 -0.094
(0.009) (0.016) (0.029) (0.008) (0.013) (0.024)

ϕ3j 0.019 -0.016 0.847 0.006 -0.015 0.900
(0.008) (0.014) (0.026) (0.008) (0.013) (0.025)

σ2
f 0.136 0.222 0.176

(0.009) (0.015) (0.011)

ρ1j 1 0.066 0.285
(0.045) (0.042)

ρ2j 0.066 1 0.205
(0.045) (0.043)

ρ3j 0.285 0.205 1
(0.042) (0.043)

α 0.442
(0.316)

# of 2.848
clusters (0.992)

Marginal
Likelihood -739.92 -494.62

Note: VAR(1) is the Vector AutoRegressive (VAR) model with first-order autoregressive
dynamics. VAR(1)-N stands for the VAR(1) model with Gaussian innovations, while
VAR(1)-DPM stands for the VAR(1) model with DPM innovations. µf for f = 1, 2, 3
is the unconditional mean of the factor errors (intercept of the factors). σ2

f is the
variance of the factor error terms, whereas ρi,j denotes the correlation of the error term
of the ith factor for i = 1, 2, 3 with the jth factor error term j ∈ {1, 2, 3, \i}. ϕi,j is
the jth autoregressive coefficient in the equation of the ith factor for i, j = 1, 2, 3. α
is the precision parameter of the DP. The values indicate the posterior means of the
parameters with the posterior standard deviations in parenthesis. For the estimation of
the models I use the sample period from January 1970 through December 2009. 60,000
simulations from the posterior distribution are used for inference. The first 10,000 draws
are discarded as burn-in sample and the remaining 50,000 draws, where I kept every 10th

draw, are used for posterior inference in the models. The convergence of the sampler is
checked using statistical and visual inspection and in all model specifications convergence
is assured.
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Table 3: Posterior results (in basis points) for the variances of
the measurement errors for the competing models

DNS-N DNS-DPMP DNS-DPM DNS-DPM-λ

M3 12.58 (0.94) 12.20 (0.93) 12.18 (0.90) 12.23 (1.24)
M6 2.19 (0.21) 2.01 (0.20) 2.00 (0.19) 1.87 (0.48)
M9 0.82 (0.09) 0.74 (0.08) 0.74 (0.08) 0.67 (0.24)
M12 0.55 (0.05) 0.55 (0.05) 0.56 (0.05) 0.59 (0.06)
M15 0.72 (0.06) 0.75 (0.06) 0.75 (0.06) 0.77 (0.08)
M18 0.65 (0.05) 0.67 (0.05) 0.67 (0.05) 0.68 (0.06)
M21 0.63 (0.05) 0.64 (0.05) 0.64 (0.05) 0.63 (0.05)
M24 0.41 (0.03) 0.41 (0.03) 0.41 (0.03) 0.40 (0.03)
M27 0.31 (0.02) 0.31 (0.02) 0.31 (0.02) 0.29 (0.03)
M30 0.27 (0.02) 0.27 (0.02) 0.27 (0.02) 0.26 (0.03)
M33 0.22 (0.02) 0.22 (0.02) 0.22 (0.02) 0.22 (0.02)
M36 0.20 (0.02) 0.20 (0.02) 0.19 (0.02) 0.20 (0.02)
M39 0.25 (0.02) 0.25 (0.02) 0.25 (0.02) 0.25 (0.02)
M42 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.25 (0.02)
M45 0.28 (0.02) 0.28 (0.02) 0.28 (0.02) 0.28 (0.02)
M48 0.35 (0.03) 0.35 (0.03) 0.35 (0.03) 0.35 (0.03)
M60 0.41 (0.03) 0.40 (0.03) 0.40 (0.03) 0.37 (0.05)
M72 0.74 (0.06) 0.73 (0.06) 0.72 (0.06) 0.68 (0.07)
M84 0.75 (0.06) 0.73 (0.06) 0.73 (0.06) 0.85 (0.18)
M96 0.61 (0.07) 0.61 (0.07) 0.61 (0.07) 0.96 (0.42)
M108 1.84 (0.16) 1.89 (0.17) 1.89 (0.16) 2.46 (0.70)
M120 4.46 (0.34) 4.52 (0.35) 4.52 (0.34) 5.42 (1.13)

Note: Mτ indicates the yields with maturity τ . The results show the
posterior means and posterior standard deviations (in parenthesis) of
the variance of the measurement errors in (2), i.e. the diagonal elements
of R. DNS-DPM-λ stands for the model where the decay rate parameter
λ is also estimated along with the other model parameters. See Table 2
for further details.
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Table 5: Posterior results for the DNS-DPM models with different hyperpa-
rameter settings

Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 Prior 7

ϕ11 0.987 0.987 0.985 0.985 0.986 0.986
(0.003) (0.003) (0.004) (0.004) (0.003) (0.003)

ϕ22 0.978 0.977 0.978 0.978 0.978 0.978
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

ϕ33 0.947 0.946 0.937 0.932 0.937 0.932
(0.018) (0.018) (0.018) (0.018) (0.018) (0.019)

α 0.97 0.98 0.77 0.64 0.75 0.57
(0.50) (0.50) (0.46) (0.43) (0.46) (0.41)

# of 6.01 6.05 4.79 4.04 4.69 3.64
clusters (1.84) (1.92) (1.75) (1.69) (1.82) (1.61)

I-S pred.
density 9540 9532 9506 9444 9497 9445

Note: The values indicate the posterior means of the parameters with the posterior
standard deviations in parenthesis. See Table 2 for further details.

Table 6: Posterior results for the DNS-DPM-λ
model

Level Slope Curvature

ϕii 0.986 0.977 0.952
(0.003) (0.009) (0.019)

α 1.04
0.50

λ 0.069
0.011

# of 6.41
clusters 1.78

I-S pred.
density 9582

Note: DNS-DPM-λ stands for the model where the
decay rate parameter λ is also estimated along with
the other model parameters. The values indicate the
posterior means of the parameters with the posterior
standard deviations in parenthesis. See Table 2 for
further details.
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Figure 1: Estimates of factors using linear combinations of the yields
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Note: The solid line is the level factor computed using the 10-year yield. The dotted line is the
slope factor computed by taking the difference between the 10-year and 3-month yields and the
dashed line is the curvature factor computed by taking twice the 2-year yield minus the sum of the
3-month and 10-year yields. I use the zero-coupon yields over the period January 1970 - December
2009 for computations.
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Figure 2: Posterior means of the parameters for the VAR-N and VAR-DPM model
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Figure 3: Posterior means of the factors for the DNS-DPM model and differences
with those for the DNS-DPMP and DNS-N models
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Note: DNS is the dynamic Nelson-Siegel model proposed by Diebold and Li (2006). DNS-N is the
DNS model with Gaussian innovations, while DNS-DPM(P) is the model with DPM innovations
where both the mean and the variance (only the variance) of the innovations have a DP prior. In
the first graph, the solid, the dotted, and the dashed lines represent posterior means of the level,
slope, and curvature factors, respectively, estimated using the DNS-DPM model. In the remaining
graphs the solid lines correspond to the differences of factor estimates (posterior means) of the
competing models.
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Figure 4: Posterior standard deviations of the factors for the DNS-DPM, DNS-
DPMP and DNS-N models
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Note: The solid, the dotted, and the dashed lines represent posterior standard deviations of the
factors estimated using DNS-DPM, DNS-DPMP, and DNS-N models, respectively. The first graph
displays the results for the level factors, whereas the second and the third graph display the results
for the slope and curvature factors, respectively. See Figure 3 for further details.
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Figure 5: Posterior means of the parameters for the DNS-DPM, DNS-DPMP and
DNS-N models
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Note: The solid lines correspond to the estimates of the time varying parameters due to the DPM
structure which are not displayed in Table 2. The dotted lines represent the corresponding estimates
using DNS-N model displayed also in Table 2. See Table 2 for further details.
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