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Abstract

The finite-sample performance of various bootstrap procedures is studied by simu-
lation in a linear regression model containing 2 endogenous regressors. Besides several
residual-based bootstrap procedures, we also consider the GMM bootstrap. The test
statistics include t-statistics based on k-class estimators and the robust subset quasi-LR
(MQLR) statistic. In the simulations, the restricted fully efficient (RFE) bootstrap DGP
based on Fuller estimates and the LIML t-statistic performs best of the Wald-type sta-
tistics. Unfortunately, the bootstrap only marginally reduces the conservativeness of the
subset MQLR statistic. Finally, the GMM bootstrap does not seem to improve upon the
asymptotic approximation. An empirical example illustrates the use of these procedures.
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1 INTRODUCTION

In the last decade, the econometric instrumental variables (IV) literature has focused on the

so-called weak instruments problem, i.e. situations where instruments are poorly correlated

with endogenous explanatory variables; see e.g. Dufour (2003) and Stock et al. (2002) for

reviews. When instruments are weak, inference based on standard test statistics in structural

models can be quite misleading; see e.g. Staiger and Stock (1997). To conduct accurate

inference in the case of weak identification, several (asymptotic) pivotal test statistics have

been proposed that are robust to weak identification including the AR statistic of Anderson

and Rubin (1949), the KLM statistic of Kleibergen (2002) and the CLR statistic of Moreira

(2003). When the complete parameter vector of the structural model is under test, infer-

ence based on these robust test statistics has (asymptotically) the correct size regardless of

the strength of identification. In structural models that include more than one endogenous

regressor, the parameter(s) of interest may only be a subset of the structural parameters. In

these models, however, many of the results obtained for the single endogenous regressor case

do not continue to hold for the individual structural coefficients. To solve this problem, two

approaches for testing subsets of parameters have been developed. One approach is based on

projection-type inference for subsets as initially proposed by Dufour and coauthors, see for

instance Dufour (1997), Dufour and Jasiak (2001), and Dufour and Taamouti (2005). How-

ever, these projection-type tests can lead to quite conservative inference; see for instance

Chaudhuri et al. (2010) and Chaudhuri and Zivot (2011) for two ways to reduce the conserv-

ativeness. The other approach, first suggested by Kleibergen (2004), is to conduct inference

on a subset of parameters by substituting estimates for the unspecified coefficients of the

structural equation. The analysis of Kleibergen and Mavroeidis (2011) shows that inference

based on this approach will asymptotically have the correct size, although again inference

might become conservative when instruments are weak.

The literature that has considered the use of the bootstrap in the weak instruments setting

is rather limited. Flores-Lagunes (2007) investigates the usefulness of correcting the bias

using the bootstrap, but he finds mixed results. Moreira et al. (2009) show that bootstrapping
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the LM test gives first-order correct inference in the weak instrument case, although the

bootstrap does not deliver higher-order refinement. In a sequel of papers, Davidson and

MacKinnon (2008, 2010 and 2011) propose a so-called restricted efficient (RE) residual

bootstrap, which appears to work quite well in the single endogenous regressor case. In

their 2010 paper (Section 5), a RE bootstrap procedure for IV t-statistics is suggested in

case the structural equation includes multiple endogenous regressors. However, they do

not investigate the performance of this bootstrap procedure. Recently, Kleibergen (2011)

has suggested a GMM bootstrap for the GMM analogues of the AR, KLM and CLR statistic

when the full parameter vector is under test. Using an Edgeworth approximation that exploits

the independence between the score and the appropriate information matrix, he shows that

the GMM bootstrap leads to higher-order refinement.

The main contribution of this paper is to investigate the finite-sample performance of

several bootstrap procedures for conducting inference about a single coefficient in a struc-

tural linear regression model containing 2 endogenous regressors. In this model, various

alternative estimators exist of the unspecified coefficient leading to more than one RE boot-

strap procedure. Besides residual-based bootstrap procedures, the performance of the GMM

bootstrap is investigated. We propose a modification to the GMM bootstrap of Kleibergen

(2011) to ensure that it works well when testing only a subset of the parameters. In addition

to several t-statistics, which are not robust to weak identification, the robust subset MQLR1

statistic (Moreira’s quasi-LR statistic; an extension of the LR statistic based on Kleibergen,

2007) is considered. This subset MQLR test statistic is as easy to use as the CLR test statis-

tic, although it actually is an approximation to it in case of multiple endogenous regressors.

As mentioned before, inference based on subset test statistics, which asymptotically have the

correct size, can lead to low rejection probabilities in some regions of the parameter space.

Hence, it is interesting to investigate if the bootstrap is able to reduce the conservativeness

of the subset MQLR test. We focus on the subset MQLR test, because simulation results

of Kleibergen and Mavroeidis (2011) indicate that inference based on this statistic leads
1Although QLR might be a better acronym for the quasi-LR test statistic, we follow the papers by Kleiber-

gen (and Mavroeidis) in notation.
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to almost the same conclusions as inference based on the LR statistic in the two endoge-

nous regressor case. Although the MQLR statistic depends on the AR and KLM statistic,

these statistics are not investigated individually because the analysis of Andrews et al. (2006)

shows that the LR statistic is the most powerful among the robust test statistics, at least in

the single endogenous regressor case.

The paper is organized as follows. In the next section, all the test statistics are introduced.

Besides the test statistics based on k-class estimators like 2SLS, Fuller and LIML, the subset

MQLR test is defined as well as its GMM counterpart. In Section 3, we discuss several boot-

strap procedures. Most are based on bootstrapping residuals, but we also consider the GMM

bootstrap. This latter bootstrap has to be adjusted for the fact that subsets are being tested.

In Section 4, we investigate the finite-sample performance of all the bootstrap procedures

by simulation. By first looking at the finite-sample properties of the original test statistics,

the Monte Carlo design is chosen in such a way that all peculiarities of the test statistics are

covered by it. Section 5 contains an empirical application that illustrates how to construct

confidence intervals by inverting test statistics. Finally, Section 6 concludes.

2 The Model and Test statistics

Although the test statistics below are easily defined for any number of endogenous regres-

sors, we consider the linear IV model with only two endogenous regressors denoted by

y  x     (1)

x  Z x   (2)

  Z  u (3)

where y, x and are n1 vectors and Z denotes a nk dimensional matrix of instruments.

The unknown coefficients are the scalar parameters ,  , and the two k  1 vectors  x and

. The i-th row of the N 3 matrix [ :  : u] is denoted by i  i  ui  and this zero-mean

triplet is assumed to be serially uncorrelated. When they are homoskedastic, they have a

contemporaneous 3  3 covariance matrix denoted by . In the Monte Carlo experiments,
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the disturbances are assumed to be normally distributed with a constant variance. However,

many of the test statistics in this section can be modified to deal with heteroskedasticity.

Although the structural equation in (1) does not include additional exogenous variables, they

can easily be included in the equation like

y  x    X  

where X denotes a n  m matrix of exogenous variables such that the subspace spanned

by the columns of X , denoted by SX, is contained in SZ. However, the system in

equations (1)-(3) results if all the included exogenous regressors have been partialled out

and modifying the degrees of freedom as needed. Therefore, we shall proceed assuming this

is the case and no exogenous regressors appear in the structural equation.

Suppose we are interested in testing H0 :   0. A Wald-type test statistic is given by

the t-statistic

t 0 
  0

SE 


where  is some k-class estimator of  and SE  denotes its standard error. In this

paper, we shall consider 2SLS (also known as GIVE or simply IV), LIML and Fuller (1977)

estimators. If the test statistic is based on 2SLS, then a heteroskedasticity-consistent variance

estimator could be used if heteroskedasticity is suspected. Although it is known that Wald-

type test statistics are not robust against weak instruments, see inter alia Dufour (1997), the

analysis in Davidson and MacKinnon (2008) shows that a bootstrapped version of the 2SLS

t-statistic seems to work reasonable well even when instruments are quite weak.

A little algebra shows that the 2SLS estimators for  and  are given by

  Py Px  PPxy

Px Px  PPxx

  Pxy Px  Pxx Py

Px Px  PPxx


where Prq  r PZq for r q  y x  and PZ  ZZ Z1Z . It is easy to see that  is

homogeneous of degree 1, 1 and 0 with respect to y, x and , while  is homogeneous of

degree 1, 0, 1 with respect to y, x and . The standard error of  is given by

SE   n12y  x  


P
PPxx  P2

x

12

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which is homogeneous of degree 1, 1 and 0 with respect to y, x , . Therefore, the t-

statistic is scale invariant with respect to y, x and . Furthermore, the t-statistic is location

invariant to  . To see this, let     , so that y  x      y  . Then

we have Py  Py  P and Pxy  Pxy  Px. For  based on y, we find

  PxyPx  Pxx Py

Px Px  PPxx

 Pxy  PxPx  PxxPy  P

Px Px  PPxx
   

A similar calculation for  shows that   , so the numerator of the t-statistic does not

change. In addition, we have

y  x    y  x  

so the standard error remains unchanged and therefore the t-statistic is invariant to  .

Besides the t-statistic based on 2SLS, we also consider t-statistics based on LIML-type

estimators because inference based on these estimators is often found to be more reliable

than based on 2SLS estimators. A k-class estimator of      depends on the random

quantities

M Z
rq  r MZq and 1rq  r q for r q  y x 

where MZ  I  PZ and is of the form

  X I  MZ 
X1X I  MZ y with X  [x : ].

Its variance can be estimated by

V ar   2
X

I  MZ X
1 with  2

  n1y  X  2.

When   1, the 2SLS estimator results, while the LIML estimator is obtained when    ,

where  is the smallest eigenvalue of the matrix Y MZY 1Y Y  with Y  [y : x : ]. It

is well-known that the distribution of the LIML estimator has fat tails, although the median

of LIML is typically much closer to the population values than IV. Furthermore, LIML is

invariant to normalization and much less susceptible to weak instruments than 2SLS; see
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e.g. Stock and Yogo (2005a) that LIML and Fuller estimators are even consistent under

many weak instrument asymptotics. The Fuller estimator results when   kcnk for

some constant c. Under standard asymptotics and c  1, the Fuller estimator has moments

to all orders (provided the sample size is large enough) and is approximately mean unbiased.

In a simulation study, Hahn et al. (2004) find that inference based on Fuller’s estimator

outperforms inference based on LIML when the instruments are weak. Although Fuller’s

modification depends on the tuning parameter c, we shall only consider the case c  1 in

this paper.

Since the residual-based bootstrap procedures rely on the parameter estimates under the

null hypothesis, let  0 denote the LIML estimator for  under the restriction   0. It

depends upon the smallest eigenvalue of the matrix Y 0MZY0
1Y 0Y0 for Y0  [y  0x :

]. Since this is a 2  2 matrix, the smallest eigenvalue can be calculated explicitly and

equals

0 
c1 


c2

1  4c2c3

2c3

with

c1  1M Z
y0y0

 2M Z
y0

1y0  M Z
1y0y0

c2  11y0y0  1y0
2

c3  M Z
M Z

y0y0
 M Z

y0
2

where y0  y0x . It is easy to see that the eigenvalue 0 is scale invariant with respect

to y0 and .

In the weak instrument literature, several (asymptotic) pivotal test statistics are proposed

that are robust to weak identification including the AR statistic, the KLM statistic and the

CLR statistic. These test statistics can be used for testing joint hypotheses on  and  , e.g.

H
0 :   0 and    0. If we only want to test a hypothesis about one coefficient, these

testing procedures can be modified resulting in so-called subset tests; see the introduction

for another approach based on projection methods. The main idea behind these subset tests

is to replace the nuisance parameter  with the LIML estimator  0. Kleibergen and
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Mavroeidis (2011) investigate the asymptotic properties of the subset AR, subset KLM and

approximate version of the subset LR test in linear IV models. In the single endogenous

regressor case, the analysis of Mikusheva (2010) shows that confidence intervals based on

the CLR test statistic seem to perform best. So, although this paper is mainly concerned with

testing, it seems reasonable to concentrate on LR-like test statistics. However, the asymptotic

distribution of the subset LR test depends on the smallest characteristic root of an m  1-

square matrix, where m denotes the number of endogenous regressors. Hence, Kleibergen

and Mavroeidis (2011) propose to use the subset MQLR test statistic, which equals the LR

test when all the m singular values are restricted to the smallest one. In their simulations, they

find that inference based on the subset MQLR statistic leads to almost the same conclusions

as inference based on the subset LR statistic. Hence, we focus on the performance of the

subset MQLR statistic applied in the linear IV setting. This test statistic can be written as a

function of the subset AR test, the subset KLM test and a root of a characteristic polynomial.

From Definition 1 from Kleibergen and Mavroeidis (2011), the subset AR statistic (times k)

for testing H0 :   0 reads

AR0  1
0

y  x0   0
PZ y  x0   0

where

0 


1

0

 0







1

0

 0

 with   1
n  k

y : X : W MZ y : X : W 

The subset Kleibergen Lagrange Multiplier (KLM) statistic is given by

KLM0 
1

0
y  x0   0

PZ  x 0: 0y  x0   0 (4)

where

 x0  Z Z1Z 


x  y  x0   0
0

0


0  Z Z1Z 


  y  x0   0

u0

0


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and

0 


1

0

 0







0

1

0

 and u0 


1

0

 0







0

0

1

 
A subset extension of the CLR statistic reads

MQLR0  1
2


AR0 rk0


AR0 rk0

2  4AR0KLM0rk0




where rk0 is the smallest characteristic root of M QL R0  T 0
T 0 with

T 0  Z Z12
  x0 : 0

 12
x :x :

and

12
x :x: 

 12
xx : 0

1
 x  12

xx : 12



in which

 xx :  n  k1x MZ ::x

x   n  k1MZ :x

  n  k1MZ :

and   y  x0    0. As noted before, this subset extension is an approximation

to the subset LR statistic that results under i.i.d. normal disturbances. However, this subset

MQLR is as easy to use as the LR statistic in the single endogenous regressor case.

Kleibergen and Mavroeidis (2011) show that the limiting distributions of all these subset

tests are bounded from above (for all values of ) by the limiting distributions that result

under the strong instrument assumption (with respect to ). However, when instruments

are weak, these subset tests can be quite conservative. Therefore, it is interesting to see if

the bootstrap improves upon the approximation based on the bounding limiting distributions.

Kleibergen and Mavroeidis (2011) note that the bounding results do not apply if the 2SLS

estimator of  is used instead of the LIML estimator. Since the bounding distribution of the

subset MQLR statistic is the same as the CLR statistic in the single endogenous regressor
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case, we can determine its p-value very fast by numerically integrating a one dimensional

function as shown in the Appendix.

To apply the GMM-based bootstrap, we shall also consider the GMM version of the sub-

set MQLR statistic. The following paragraph draws heavily from Kleibergen and Mavroeidis

(2009). Inference about the 2-dimensional parameter vector      in the GMM frame-

work is based on the k-dimensional moment equation

E[ fi]  0 i  1  n

For our model, the moment vector is given by

fi  Zi yi  xi  i

where Zi denotes the transpose of the i th row of the n  k matrix Z . Let fi  fi  
fn with fn  n1n

i1 fi denote the moment vector in deviation from its mean.

Besides the moment vector fi, its derivative with respect to  plays an important role in

GMM, which for our model reads

qi   ec


 fi

 

 

 xi

i

 Zi

 
 qx

i 

qi 

 
Similarly, let qi   qi  qn with qn  n1n

i1 qi. Suppose the Eicker-

White covariance matrix is used in the GMM approach, so that

V f f   n1
n

i1 fi  fi
  fn fn



Vq f   n1
n

i1 qi  fi
  qn fn



Vqq  n1
n

i1 qi qi 
  qnqn



The use of the Eicker-White covariance matrix makes the GMM statistics defined below

asymptotically valid in the presence of heteroskedasticity of unknown form. In a time series

setting, one could also use a HAC estimator which would make inference valid even in the

presence of autocorrelated disturbances. The weak instrument robust test statistics use the

following estimator for the derivative of the unconditional expectation of the Jacobian:

Dn  [qx
n  V x

q f  V f f 
1 fn : qn  Vq f  V f f 

1 fn]
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The projection of qr
n for r  x  onto fn ensures that Dn is asymptotically

uncorrelated with fn. Note that  denotes a 2-dimensional parameter vector, so for testing

the hypothesis H0 :   0, the subset testing approach uses 0  0  0where  0

is the continuous updating estimator (CUE; see Hansen et al. (1996)) of  given   0, i.e.

arg min


n fn0  
 V f f 0  

1 fn0   (5)

The minimum value of the objective function shown in (5) is actually the subset S-statistic

of Stock and Wright (2000), which can be seen as the GMM analogue of the AR statistic. To

connect the AR, KLM and MQLR statistics to their GMM counterparts, we note that Dn0

is related to 0    x0 : 0 in the following way

Dn0  n1Z Z 0

The relationship is only approximate because GMM is based on the CUE estimator and

the Eicker-White covariance matrix, while 0 is based on the LIML estimator and the

covariance matrix that exploits the homoskedasticity assumption. In addition, we have

fn0  n1Z  0 and V f f 0  n1Z Z 

where

fn0  n1
n

i1 fi 0  n1Z  0

V f f 0  n1
n

i1 0
2
i Zi Z


i  n2Z  00

Z

with 0  yi 0xi   0i . The GMM analogues of the AR and KLM statistic for

testing H0 :   0 are given by

S0  n fn0
 V f f 0

1 fn0

 nn1 0
Z n1Z Z1n1Z  0

 1
 y  x0   0

PZ y  x0   0  AR0
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and

KLM0  n fn0
 V f f 0

1 Dn0
 Dn0

 V f f 0
1 Dn0

1

Dn0
 V f f 0

1 fn0

 n

 n
1 0

Z 0
 0

Z Zn 0
1 0

n1Z  0

 1
 y  x0   0

PZ 0
y  x0   0  KLM0

Finally, the subset extension of the LR statistic in a GMM setting is given by

MQLR0  1
2[AR0 rk0
AR0 rk0

2  4AR0KLM0rk0]

where rk0 is a statistic that tests for a lower rank value of the expected value of the

Jacobian. Following Kleibergen and Mavroeidis (2009), we use the Cragg and Donald rank

statistic; see equation (22) and the Appendix of their paper.

3 Bootstrap Methods for IV Regression

Monte Carlo simulations reported by Davidson and MacKinnon (2008) show that the so-

called residual bootstrap outperforms the pairs bootstrap in the single endogenous regressor

case. The pairs bootstrap was suggested by Freedman (1984), who analyzed its properties

under strong instrument asymptotics. One of the reasons why the residual bootstrap works

so well is because its DGP is based on estimates under the null hypothesis, which among

other things eliminates the estimation error about the coefficient under test. Davidson and

MacKinnon (2008) consider two residual bootstrap methods and they find that the so-called

restricted efficient (RE) bootstrap delivers the most accurate inference in the single endoge-

nous regressor case. In Davidson and MacKinnon (2010), the following RE bootstrap is

suggested for more than one endogenous regressors. For testing H0 :   0, the parame-

ters in the structural equation (1) are estimated by 2SLS under the null hypothesis, e.g.

y  0x    
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Let  0 denote this estimate, which lead to the 2SLS residuals 0. Then the reduced

form equations (2) and (3) are estimated to obtain efficient estimates, i.e. estimates that

use all available information which are asymptotically equivalent to 3SLS. This is done by

adding the restricted 2SLS residuals 0 to the reduced form equations, i.e.

x  Z x  x 0 errors

  Z   0 errors

The OLS estimators are denoted by  x0 and 0. If 0  x  Z  x0 and

u0    Z 0 denote the residuals (disregarding x 0, then the RE bootstrap

DGP is given by

yi  0xi   0

i  i (6)

xi  Zi  x0 i
i  Zi 0 ui 

with 
i
i
ui

  F


0i

nn  k12 0i

nn  k12 u0i

 
Here, F denotes an estimator of the distribution of the triplet i  i  ui. This can either be

a parametric estimator, e.g. a multivariate normal distribution, or a non-parameter estimator,

e.g. the empirical distribution function (EDF). Of course, the wild bootstrap can also be used

if heteroskedasticity is suspected; see Davidson and MacKinnon (2010). In this paper, only

the i.i.d. bootstrap with respect to the residuals is considered, i.e. F is the EDF. Bootstrapped

test statistics are obtained by evaluating the test statistics in the bootstrap sample [y : x :

]. In Section 2, we have seen that the 2SLS t-statistic for testing the restriction   0

is invariant to  . This implies that the bootstrap 2SLS t-statistic is invariant to  0, so for

this test statistic i could be left out of the structural equation given in (6).

Note that the RE bootstrap is especially suited for the t-statistic based on 2SLS estima-

tion. However, as noticed earlier, LIML and Fuller estimators are partially robust to weak
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instruments, so exploiting these estimators might lead to better bootstrap DGPs. The next

bootstrap procedure is called the restricted fully efficient (RFE) bootstrap, since it not only

incorporates efficient estimators of the parameters in the reduced form equations, but also

uses an efficient estimator in the structural equation. In effect, the RFE bootstrap DGP is

the same as the RE bootstrap DGP, but uses the LIML estimator  0 instead of the 2SLS

estimator  0. Since all three equations in the bootstrap DGP are influenced by this, we

shall describe the bootstrap DGP explicitly. After the efficient estimate  0 is obtained

by LIML, calculate the efficient restricted residuals 0  y  x0    0. Then

estimate the reduced form equations, although now 0 is added to the equations, i.e.

x  Z x  x 0 errors (7)

  Z   0 errors (8)

leading to the OLS estimators  x0 and 0. If 0  x  Z  x0 and u0 
Z 0 denote the residuals of the reduced equations, then the restricted fully efficient

(RFE) bootstrap DGP is given by

yi  0xi   0

i  i

xi  Zi  x0 i (9)

i  Zi 0 ui 

with 
i
i
ui

  F


0i

nn  k12 0i

nn  k12 u0i

 
Note that the RFE bootstrap reduces to the RE bootstrap in case there is only one endogenous

regressor.

Due to the non-existing moments of the LIML estimator in finite samples, it seems log-

ical to also consider the Fuller estimator in the structural equation. In the Monte Carlo

experiments, the 2SLS based t-statistic is considered under both bootstrap DGPs, while the

Fuller and LIML based t-statistics are investigated under only the RFE bootstrap. Moreover,
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the KLM statistic is also based on efficient estimators of the reduced form parameters, viz.

0    x0 : 0. In fact, 0 is numerically identical to the OLS estima-

tors of  x and  in equations (7)-(8) when 0 is based on LIML. Therefore, we also

consider bootstrap DGPs that exploit 0 in the reduced equations. The RE and RFE

bootstrap DGPs are different from Moreira et al. (2009) in two ways: (i) they use restricted

estimators of the structural parameters in their bootstrap DGP and (ii) they incorporate effi-

cient estimators in the reduced equations.

Next, we turn to the GMM bootstrap as suggested by Kleibergen (2011). The advantage

of the GMM bootstrap is that only the moments under the null hypothesis are resampled, so

the reduced form equations are not involved in this bootstrap. The GMM bootstrap is just

the classical i.i.d. bootstrap applied to the centered moment vectors fi0. This centering

ensures that the expectation under the bootstrap DGP of f n  equals 0; see e.g. Hall and

Horowitz (1996). So, the bootstrap sample  f i 0 i  1  n is defined as

P[ f i 0  f j 0]  1
n
 1  i j  n

Using  f i 0 i  1  n, we define the bootstrap quantities

f n 0  n1
n

i1 f i 0

V f f 

0  n1

n

i1 f i 0 f i 0  f n 0 f n 0

Note, however, that in the original sample, the fi ’s result from a FOC for a minimum

of the subset S-statistic as shown in (5). To incorporate this FOC in the bootstrap, let

Ii  i  1  B denote the indices used to define the bootstrap sample, so that Ii is ran-

domly distributed over 1  n. Recall that fi   Zi yi  xi  i fn0, so we

can write

f i 0 
  ZIi yIi  0xIi   Ii  fn0

The average of the moment vector equals f n 0 
  n1 f i 0 

  fn0 and

can be viewed as a function of 0 and  . If  0 is defined as the value of   that solves

arg min
 

n f n 0 
 V f f 0 

1 f n 0 
 (10)
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then we obtain 0  0  0, which can be considered the bootstrap analogue of 0 
0  0. The GMM bootstrap than proceeds along the normal way using

f i 0  ZIi yIi  0xIi   0Ii  fn0

leading to the following bootstrapped GMM subset statistics

S0  n f n 0 V f f 01 fn0
KLM0  n f n 0 V f f 01 Dn0

 Dn0
 V f f 01 Dn0

1

Dn0
 V f f 01 fn0

Note that Dn0 is kept fixed in KLM0. The subset MQLR0 follows from the

values of S0, KLM0 and the value of rk0 that was obtained from the original

sample. Kleibergen (2011) also suggests a second GMM bootstrap, which resamples both

the moment vectors and their derivatives, i.e.  f j0
 qi0

. In simulations, however,

Kleibergen (2011) found that resampling the qi’s is of lesser importance and does not lead

to any further size improvements. So, we shall not consider this kind of GMM bootstrap in

the Monte Carlo simulations.

For all the test statistics, say  , B bootstrap replications, say j  j  1 B, are ob-

tained under the various bootstrap DGPs. For a t-statistic, the following estimator of the

equal-tail bootstrap p-value is used:

pet   2 min


1
B

B

j1 I   j  
1
B

B

j1 I  j  



For the MQLR statistic, the right-tail bootstrap p-value is used, i.e.

p   1
B

B

j1 I   j  

The null hypothesis is rejected if the appropriate bootstrap p-value is at most the nominal

significance level .
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4 Monte Carlo Simulations

In Section 2, it was shown that the 2SLS t-statistic is scale and location invariant. Under the

Gaussian assumption, the joint distribution for Y  [y : x : ] is of the form

Y  NZ[ : I2] In  

with the k  2 matrix    x :  and 2  1 vector     . Hence, the Fuller

and LIML estimators are also scale invariant and it is sufficient to consider the covariance

(=correlation) matrix

 


1  u

 1 

u  1

 
 1  : u

 : u u

 
where the correlations  and u parameterize the degree of endogeneity of x and. Since

there are two endogenous regressors, the concentration parameter is a 2 2 matrix, see e.g.

Stock and Yogo (2005b), and is given by

12
u  x : Z Z x : 12

u 

Note that the matrix concentration parameter depends on Z and  only through Z x :

Z, so we only have to consider two linear combinations of Z . By reparameteriza-

tion, this leads to the reduced form parameter vectors  x   x1  x2 0  0 and  
1 2 0  0.

In the weak-instrument asymptotics of Staiger and Stock (1997), the concentration para-

meter is kept fixed when the sample size goes to infinity. This can be achieved in two ways.

Either the parameters  x :  are in a 1


n neighborhood of 0 or the matrix Z Z is

somehow kept constant; see Davidson and MacKinnon (2008) for the latter approach in the

single endogenous regressors case. Suppose Z consist of k orthogonal vectors z1  zk with

a length of one, so that zi 2  1 and zi z j  0 for i  j . Then, we have

 x : Z Z x :  
  x x  x

  x  

  (11)
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If the matrix in (11) is positive definite, we can find a Cholesky decomposition which

suggests that we can parameterize Z x :  as an upper triangular matrix. Taking

 x  a 0  0 and   b c 0  0, we can keep the matrix in (11) constant while

varying the number of instruments k. Using a singular value decomposition, we find

12
u  1

2

 1
1  1

1  1
1  1

1
 1

1  1
1

1
1  1

1

 
Some algebra shows that the eigenvalues of the concentration matrix are equal to

  a2  b2  c2  2ab a2  b2  c2  2ab2  4a2c21 2

21 2


To keep the number of parameters manageable and spill-over effects from one endogenous

regressor to the other as small as possible, we set b  0. When  is positive (and b  0),

the smallest eigenvalue is an increasing function of . Since both parameters  and  can

be either weakly, moderately or strongly identified, we can distinguish a number of cases;

see also Stock and Wright (2000) and Chaudhuri and Zivot (2011). Here we focus on the

following four cases, Case I:  and  weakly identified, Case II:  weakly and  moderately

identified, Case III:  moderately and  weak and Case IV:  and  moderately identified.

To keep the number of tables limited, we do not consider situations in which the parameters

are strongly identified since they are of lesser importance. For the weakly identified case, we

set a2 and/or c2 to 2 and for the moderately identified case we set a2 and/or c2 equal to 25. In

the simulations, both size and power properties are investigated. In choosing the structural

parameters, we follow Dufour and Taamouti (2007) and take   05 and   1

First, we investigate how the rejection frequencies vary over the degree of simultane-

ity  u and the correlation between  and u given by . We take  ,  ,  
03 06 09, where the values 030609 are referred to as low, medium and high. How-

ever, not all combinations lead to a valid covariance matrix. For instance, if the endogene-

ity increases, then  has to increase as well. For the 27 33 combinations, only 21 are

permissible. Figures 1 and 2 show the rejection frequencies of H0 :   0 based on 20,000

replications, n  200 and k  10 for the 2SLS t-statistic (Figure 1) and the subset MQLR

statistic (Figure 2). From Figure 1, we conclude that Case I leads to the largest variation in
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the rejection frequencies. Furthermore, we observe that the rejection frequencies of the 2SLS

t-statistic increase as the endogeneity becomes stronger. The greatest variation is seen when

 is varied, the parameter that measures the endogeneity of the regressor whose coefficient

is under test. When  is medium to high, the 2SLS t-statistic exhibits huge size distortions

and rejection frequencies as high as 95% can be observed. Moreover, the rejection frequen-

cies do not seem to depend heavily on u and  (variation within a group of 9 consecutive

bars is less than the variation between the three groups). When  is moderately identified,

i.e. Case III and IV, the overrejection is only halve that of Case I and II, although large size

distortions are still present. Figure 2 shows the same information but now for the subset

MQLR statistic. Notice the significant change in scale of the vertical axis, which represents

the rejection frequencies. Only in Case II, the subset MQLR statistic has a little tendency

to overreject when endogeneity is small to medium. As expected, rejection frequencies are

very near the 5% level for Case IV. When  is weakly identified, the subset MQLR statistic

can lead to very conservative inference. This is especially so, when  is low. Overall, it

seems that all extreme outcomes in the rejection frequencies are included when the Monte

Carlo design is limited to the equal correlation case, i.e.   u    03 06 09.
Table 1 shows among other things the eigenvalues that result for the chosen Monte Carlo

design. When one (or both) of the parameters is weakly identified, the smallest eigenvalue

ranges from 11  20. The rejection frequencies reported in this table are obtained under

the null hypothesis and they are based on 5,000 Monte Carlo replications, n  200 and

k  10. Besides the results for the 2SLS t-statistic and the subset MQLR statistic, the table

shows the rejection frequencies for the t-statistics based on Fuller and LIML. Although their

rejection frequencies are highly correlated with the ones obtained by 2SLS, the overrejection

is much smaller for Fuller and the smallest for LIML t-statistics. Although the reduction of

the error in rejection probability (ERP) can be substantial, huge ERPs can still be observed

when correlation is high.

Table 2 shows the rejection frequencies under the null for inference based on the 2SLS

t-statistic when using the asymptotic critical value and bootstrap critical values obtained by

different bootstrap DGPs when k  5 10 and n  200. The use of the RE bootstrap seems
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to control the size when the correlation is low or medium, i.e.   03 06. When the

correlation is low, the test even becomes conservative. However, when the correlation is

high, the rejection frequencies are sometimes as high as 3 times the nominal level especially

when  is weakly identified, i.e. Case I and II. The use of the RFE Fuller bootstrap is able

to bring down the high rejection frequencies that are observed in the high correlation case.

Overall, the RFE bootstrap seems to control the size, although many rejection frequencies

are now significantly lower than the significance level. The last column shows the rejection

frequencies based on the RFE LIML bootstrap. Again the size seems to be correct, but

inference based on the bootstrapped 2SLS t-statistic becomes very conservative. In some

cases, the rejection frequencies are only halve the values that are obtained by the RFE Fuller

bootstrap. The use of the efficient KLM estimates 0 in the bootstrap DGP seems to have

little impact on the rejection frequencies. However, a significant increase in the frequencies

is observed in Case I when correlation is high leading to significant overrejection.

Table 3 shows the rejection frequencies under the null for inference based on the Fuller

t-statistic. It seems reasonable to only consider RFE bootstrap DGPs, since 2SLS is less

efficient than Fuller-based estimation. The overrejection as seen when using the asymp-

totic critical value is completely eliminated if inference is based on the classic RFE Fuller

bootstrap. None of the rejection frequencies are larger than the nominal significance level.

Again, the use of 0 in the bootstrap DGP has only a small effect on the rejection fre-

quencies, although again the rejection frequency becomes significantly too high in Case I

when   09. Looking at the results of the RFE LIML bootstrap, we see that the test can

become quite conservative similar to the 2SLS t-statistic case. In fact, there is little differ-

ence between the t-statistic based on 2SLS or Fuller under the RFE LIML bootstrap DGP.

Interestingly, the Fuller t-statistic under the RFE Fuller bootstrap leads to smaller ERPs than

the 2SLS t-statistic under the RFE Fuller bootstrap in case II and k  10. Apparently, the

robustness of the Fuller estimator to many weak instruments shows up in the simulation.

Table 4 shows the rejection frequencies under the null for inference based on the LIML

t-statistic. Looking at the rejection frequencies based on the asymptotic critical value, the

test is conservative for all correlation values considered in Case III, i.e.  is moder-
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ately/weakly identified. Furthermore, the ERPs are smaller than the ERPs of the 2SLS and

Fuller t-statistic. In this sense, the LIML t-statistic is the most robust statistic of the Wald-

type test statistics considered. Bootstrap inference based on the RFE Fuller bootstrap leads

to a correct size, although there is little difference between the bootstrapped Fuller t-statistic

and LIML t-statistic. The use of 0 in the bootstrap DGP seems to be helpful in pushing

the rejection frequencies to the nominal significance level in almost all cases. The results of

the RFE LIML bootstrap for the LIML t-statistic are almost identical to the results based on

the Fuller t-statistic under the RFE LIML bootstrap. Furthermore, the use of the RFE LIML

bootstrap leads to the lowest rejection frequencies of all bootstrap DGPs.

Table 5 shows the rejection frequencies under the null for inference based on the subset

MQLR statistic. As we have seen in Figure 2, the subset MQLR statistic can be very con-

servative when  is weakly identified, i.e. Case I and III. The RFE bootstrap is able to make

the subset MQLR statistic less conservative, although the reduction in ERP is much better

for k  5 than for k  10. Interestingly, the use of 0 in the bootstrap DGP reduces

the ERP for both k  5 and k  10, except in case I when   09. There is almost no

difference between inference based on the RFE LIML and the RFE Fuller bootstrap. Due to

the fat tail problems associate with RFE LIML, we prefer the RFE Fuller bootstrap.

Table 6 contains the results for the GMM subset test statistic MQLR0 using the

asymptotic p-value and its bootstrap analogue MQLR0 based on the GMM bootstrap.

Comparing the rejection frequencies of MQLR0 to MQLR0, we see that the per-

formance of the GMM-based MQLR0 is almost the same as MQLR0. Apparently,

the effect of using an Eicker-White covariance matrix when no heteroskedasticity is present

on the size is very small. However, the performance of inference based on the GMM boot-

strap is quite disappointing. For n  200, most of the rejection frequencies of MQLR0

can be substantial lower than MQLR0. To some extent, this is due to the fact that n is

rather small. When the sample size is enlarged to 500, we see some improvement for Case

II and IV. However, inference based on the GMM bootstrap remains extremely conservative

even for n  1000. This somewhat unexpected result clearly shows that the residual-based

bootstrap DGPs are clearly superior to the GMM bootstrap procedure. Hence, the GMM
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bootstrap will not be considered in the remainder of the paper.

Next, we look at the power properties of some of the test statistics as shown in Figures

3 and 4. Since power comparisons are only meaningful if the size is correct, only the RFE

Fuller bootstrap DGP is considered. To keep the number of figures manageable, the results

are shown when the correlation is low or high, i.e.   03 09. In Case I with   03,

when both  and  are weakly identified, all the considered test statistics have virtually no

power since their rejection frequencies stay well below the 5% level. This is not totally un-

expected since any test statistic will have low power due to the poorly identified parameters.

In Case I with   09, all test statistics display at least some power, although the Fuller

and LIML t-statistics also show biased behavior, i.e. the rejection frequencies reach their

minimum value for 0 different from the true value of . Irrespective of the correlation,

however, the estimated power curve of the bootstrapped MQLR statistic lies above the esti-

mated power curve of the MQLR statistic using the asymptotic p-value. In Case IV, when

both  and  are moderately identified, all estimated power curves are nearly identical, al-

though the Fuller and LIML t-statistics exhibit a drop in their curves for values far from

the true value when   09. In Case II, when  is weakly/moderately identified, we

again see that the use of the Fuller and LIML t-statistics result in biased tests, especially

when   09. The MQLR and its bootstrapped version lead to almost identical inference.

Surprisingly, in Case III, when  is moderately/weakly identified, the Fuller and LIML

based t-statistics are hugely more powerful than the MQLR and MQLR statistics. Overall,

we conclude that tests based on the Fuller and LIML t-statistics can be biased. Tests based

on the MQLR and MQLR statistics are size controlled, unbiased, and their power curves

depends on the identification strength of the parameters and the correlation structure of the

disturbances. It is unfortunate that the bootstrap is able to reduce the conservativeness of the

MQLR statistic in the case when it is least helpful, i.e. when the power is low.
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5 Empirical Example

In this section, we shall compare various 95% confidence intervals by inverting several as-

ymptotic and bootstrap tests in an empirical example. Blomquist and Dahlberg (1999) inves-

tigate inference based on IV methods in estimating linearized labor supply functions when

the budget constraints are non-linear. As noted by Blomquist (1996), a non-linear tax/transfer

system causes individuals’ budget constraints to be non-linear inducing endogeneity of net

wage rates and non-labor income. He used actual data to generate the hours of work in the

presence of non-linear budget constraints of 602 Swedish married men between 25 and 55

years of age; see also Johansson et al. (2010). For individual i , the model reads (using the

notation of this paper)

yi  xi  i  Xi y  i

xi  Zi x  Xi x  i

i  Zi  Xi  ui

where yi are hours worked, xi is the hourly wage rate andi is non-labor income. The vector

Xi contains the included exogenous variables, while the vector Zi contains the excluded

exogenous variables. There are three exogenous variables: (i) a constant (ii) a dummy for age

and (iii) the number of children, and there are 26 socio-demographic variables that are used

as instruments like dummies for the educational level of the individual, his wife, father and

mother, a dummy indicating home ownership, dummies for the region where the individual

lives, and the number of children in three different age groups. This equation was also

considered in Flores-Lagunes (2007) and we follow him by dividing the net wage rate by

100 to scale its coefficient.

First, we assess the quality of the instruments. The partial R2 of Shea (1997) is 0.0790

(0.0356) for the hourly wage rate xi and 0.1656 (0.1264) for the non-labor income i (ad-

justed R2 in parentheses). The F-version of the Cragg-Donald Wald statistic, nkk2gmin,

where k denotes the total number of instruments and k2 is the number of excluded instru-

ments is only 1.362. The Stock and Yogo (2005b) critical values for the Cragg-Donald F
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statistic for LIML t-statistics in case of two endogenous regressors are 1.96 (for 20% max.

LIML size) and 1.78 (for 25% max. LIML size), so the observed test statistic is smaller

than the critical value for a maximum rejection probability of 25% when the significance

level is 5%. Based on this test procedure, the instruments can be classified as weak. The

Sargan statistic for overidentication is 18.067 with an asymptotic p-value of 0.80. Assum-

ing homoskedasticity, Figure 5 shows 1 minus the p-value based on asymptotic and RFE

Fuller bootstrap distributions for relevant values of 0  0 when testing H0 :   0 or

H0 :    0. Interestingly, there is a large difference between the p-values of the MQLR

tests and the Wald-type tests. Since none of the p-values based on the asymptotic or boot-

strap distribution for the MQLR statistic are below 2.5%, the 95% confidence intervals are

unbounded for  as well as  . This is just indicating that the data is uninformative about these

two parameters. The p-values for the bootstrapped 2SLS t-statistic behave rather oddly, but

lead to the same conclusion as the MQLR statistic. In effect, its p-value does not decrease

since the bootstrap distribution is not centered at zero due to the severe bias in the 2SLS esti-

mates. Applying Fuller or LIML leads to nearly identical results, so only the results based on

LIML t-statistics are shown. The confidence intervals based on inverting the bootstrapped

LIML t-statistics are finite and shown in the upper panel of Table 7. From this table, we

see that the bootstrapped confidence intervals based on the LIML t-statistics are much wider

than the intervals based on the asymptotic approximation.

In this example, we obtain conflicting results, which might be due to the inclusion of

too many instruments. Hence, we looked into the specification of the four sets of educa-

tion dummy variables. It appears that there are eight classification levels for the education

of the husband and wife. The reference class (not represented by a dummy) refers to ‘not

completed primary school’, which account for less than 1% of the sample. Hence, we com-

bine level 1 and level 2 (‘completed primary school’) to act as the reference class. Next, we

combine level 3-5, i.e. take the sum of the mutually exclusive dummy variables, which is

mainly concerned with occupational training, into a dummy indicating low level education.

Medium level education is used to indicate educational level 6 and 7, while high level edu-

cation is used to indicate the highest educational level 8 (‘completed university’). Next, we

24



have looked into the five classification levels for the education of the father and mother. It

seems reasonable to assume that the educational levels of the parents are correlated with the

education level of their son. Since we already included the educational level of the son, the

contribution of the parents’ educational level might be limited. Moreover, there is much less

variation in the parents’ educational level since 76% of the fathers and 83% of the mothers

have only completed primary school. Looking at the significance of the coefficients of the

education dummies, the only relevant educational level seems to be whether or not the fa-

ther has obtained a university degree or other similar qualifications. In all, the number of

education dummies is reduced from 21 to 7, which leaves us with 15 instrumental variables.

Based on this smaller set of instruments, the partial R2 is 0.066 (0.0460) for the hourly

wage rate xi and 0.1476 (0.1287) for the non-labor income i (adjusted R2 in parentheses).

The F-version of the Cragg-Donald Wald statistic equals 2.524, which is almost equal to the

critical value for a maximum rejection probability of 10% when the significance level is 5%.

Sargan’s test statistic for overidentification becomes 9.683 with an asymptotic p-value of

0.47. Figure 6 shows 1 minus the p-value for the various test statistics after the new education

classification. All confidence intervals become finite and are shown in the bottom panel of

Table 7. The intervals based on the bootstrapped 2SLS t-statistics are again erratic due to

the high p-values when testing values far from the center. The bootstrap intervals based

on the FIML t-statistic are again wider compared to the intervals based on the asymptotic

approximation. Interestingly, for the intervals based on the MQLR statistic, we see that the

bootstrapped intervals are somewhat shorter than their asymptotic counterparts. Overall,

the empirical example shows that inference can heavily depend on the number of included

(weak) instruments. Especially the strange behavior of the bootstrapped 2SLS t-statistic is

evidence against using this test statistics.

6 CONCLUSION

In this paper, we have looked at bootstrapping Wald-type and weak instrument robust subset

test statistics in the linear regression model containing two endogenous regressors. We pro-
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pose the RFE (restricted fully efficient) bootstrap that incorporates also efficient estimates

of the structural equation as a modification of the RE (restricted efficient) bootstrap sug-

gested by Davidson and MacKinnon (2010). Besides the residual-based RFE bootstrap, we

have also adapted the GMM bootstrap proposed by Kleibergen (2011) to the subset test-

ing setting. In addition to the commonly used Wald-type test statistics, we included the

robust subset MQLR test statistic as proposed and investigated by Kleibergen and Mavroei-

dis (2011). The important features of this test statistic are that it uses efficient estimates, is

robust against weak identification and is as easy to use that the CLR statistic in the single

endogenous regressor case. Furthermore, its GMM counterpart allows for heteroskedasticity

of unknown form.

In the simulation study, huge size distortions are observed for t-statistics based on 2SLS,

LIML and Fuller estimators. We find that the RFE bootstrap performs significantly better

than the RE bootstrap and is able to control the size for the LIML and Fuller based t-statistics

when the instruments are weak. With respect to the size, the RFE bootstrap DGP based on

the Fuller estimator performs best, even when the LIML t-statistic is considered. Of course,

the RFE bootstrap cannot save the Wald-type test statistics when the parameter values are

taken to their extremes, e.g. the case when all instruments become irrelevant. This, how-

ever, is not the case for the robust subset MQLR statistic, which remains valid even if the

parameters are not identified. When the parameter of the endogenous regressor that is not be-

ing tested is weakly identified, inference based on the subset MQLR becomes conservative.

We see that the RFE bootstrap is able to reduce this conservativeness although sometimes

only marginally. In the simulations, the bootstrapped subset MQLR statistic is a little bit

more powerful, however, the difference is usually small. Although the GMM counterpart of

the subset MQLR statistic has comparable size properties as the ordinary MQLR statistic,

the results of its GMM bootstrapped version are disappointing: no improvement over the

asymptotic approximation is observed.

In the empirical example about estimating linearized labor supply functions when the

budget constraints are non-linear, the finite confidence intervals based on inverting the RFE

bootstrapped LIML t-test are in conflict with the infinite confidence intervals based on in-
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verting the subset MQLR test. Apparently, the situation in our empirical example is such that

the bootstrapped LIML t-statistic is more powerful than the subset MQLR statistic. How-

ever, when a number of insignificant instruments is dropped, the intervals based on both

approaches become finite and are more in line with each other.
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7 Appendix: Asymptotic p-value of MQLR

When  is a fixed non-trivial value, Theorem 1 of Kleibergen and Mavroeidis (2011) shows

that

MQLR0 0
d 1

2[1  k2  rk0
1 k2  rk0

2  4k2rk0]

where 0    x0 : 0 and 1 and k2 are independent 2
1 and 2

k2

distributed random variables. To derive an asymptotic approximation of the p-value for

MQLR0, we use the results obtained by Davidson and MacKinnon (2011). Using the

identity

1  k2  rk0
2  4k2rk0  1  k2  rk0

2  41rk0

we can reformulate the asymptotic distribution as

1
2


1 k2  rk0


1  k2  rk0

2  41rk0




which is the asymptotic equivalence of equation (A1) of Davidson and MacKinnon (2011)

for Z2 a 1 and Y
a k2. Making use of equation (A3) derived in Davidson and MacK-

innon (2011), we obtain the following expression for the asymptotic CDF of MQLR0

Fasx rk0 0 


2


 
x

0
F2

k2


x  rk01 z2x


ez22dz

where F2
k2
 denotes the cumulative distribution function of a (central) 2-distribution

with k  2 degrees of freedom. The integral can be approximated easily by numerical inte-

gration methods for given values of x and rk0. Of course, the asymptotic p-value condi-

tional on 0 is given by 1  FasMQLR0rk0 0. Theorem 6 of Kleibergen

and Mavroeidis (2011) shows that this value is an upper bound for the actual p-value without

imposing any restrictions on .
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Figure 1: Rejection frequencies of H0 :   0 based on the 2SLS t-statistic for n 
200 k  10 and 20,000 replications. Horizontal axis refers to the endogeneity of x ().
First/second/third set of 3 bars refers to u  030609.

0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u=0.3 0.6 0.9 u=0.3 0.6 0.9

Case I: a2=2 & c2=2


v

R
ej

ec
tio

n 
fre

qu
en

cy

 

 

0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u=0.3 0.6 0.9 u=0.3 0.6 0.9

Case II: a2=2 & c2=25


v

R
ej

ec
tio

n 
fre

qu
en

cy

 

 

0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u=0.3 0.6 0.9 u=0.3 0.6 0.9

Case III: a2=25 & c2=2


v

R
ej

ec
tio

n 
fre

qu
en

cy

 

 

0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u=0.3 0.6 0.9 u=0.3 0.6 0.9

Case IV: a2=25 & c2=25


v

R
ej

ec
tio

n 
fre

qu
en

cy

 

 

=0.3
=0.6
=0.9

=0.3
=0.6
=0.9

=0.3
=0.6
=0.9

=0.3
=0.6
=0.9

32



Figure 2: Rejection frequencies of H0 :   0 based on the subset MQLR statistic for
n  200 k  10 and 20,000 replications. Horizontal axis refers to the endogeneity of x
(). First/second/third set of 3 bars refers to u  030609.
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Figure 3: Power curves when testing H0 :   0 for   05, 0  05  15,
n  200 and k  10 based on 5,000 Monte Carlo replications and 999 bootstrap replications.
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Figure 4: Power curves when testing H0 :   0 for   05, 0  05  15,
n  200 and k  10 based on 5,000 Monte Carlo replications and 999 bootstrap replications.
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Figure 5: 1 minus p-value for H0 :   0 (upper graph) and H0 :    0 (lower graph)
based on asymptotic and the RFE bootstrap (99,999 bootstrap replications).
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Figure 6: 1 minus p-value for H0 :   0 (upper graph) and H0 :    0 (lower graph)
based on asymptotic and the RFE bootstrap (99,999 bootstrap replications).
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Table 1: Rejection frequencies (in percentage points) at   5% under the null hypothesis
H0 :   0 based on 5,000 Monte Carlo replications, k  10 and sample size n  200.
The ’s denote the eigenvalues of the concentration matrix.

a2 c2   Case  2SLS Fuller LIML MQLR
2 2 1.5 2.9 I 0.30 5.8 3.6 2.8 0.8
2 2 1.3 5.0 0.60 21.9 11.7 8.4 1.1
2 2 1.1 20.0 0.90 58.7 27.8 15.2 2.7
2 25 2.0 27.7 II 0.30 9.1 7.0 6.1 4.5
2 25 1.9 40.2 0.60 43.3 22.0 18.0 5.0
2 25 1.9 140.2 0.90 90.9 43.1 25.4 5.7

25 2 2.0 27.7 III 0.30 5.7 3.7 2.8 1.0
25 2 1.9 40.2 0.60 9.0 4.5 3.4 1.0
25 2 1.9 140.2 0.90 14.0 4.5 2.2 2.6
25 25 19.2 35.7 IV 0.30 6.3 5.2 5.0 3.9
25 25 15.6 62.5 0.60 16.1 6.8 6.1 4.9
25 25 13.2 250.0 0.90 36.4 7.8 6.1 4.7
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Table 2: Rejection frequencies (in percentage points) at   5% for the 2SLS t-statistic un-
der the null hypothesis H0 :   0 based on 5,000 Monte Carlo replications, 399 bootstrap
replications and sample size n  200.

RE 2SLS RFE Fuller RFE LIML
k Case  Asymp. Classic 0 Classic 0
5 I 0.30 1.8 1.7 2.3 1.1 1.5 0.5

0.60 8.2 3.2 3.7 1.6 2.4 0.6
0.90 33.3 11.9 15.5 4.4 9.0 0.7

II 0.30 3.5 3.1 2.9 2.6 2.6 2.5
0.60 19.1 4.1 3.8 2.5 2.4 2.2
0.90 57.8 7.4 6.5 2.3 2.2 2.1

III 0.30 3.1 3.5 4.0 2.2 2.7 1.1
0.60 4.1 3.0 3.3 1.7 2.2 0.9
0.90 6.4 4.1 4.7 2.1 3.1 0.8

IV 0.30 5.0 4.5 4.4 4.3 4.3 4.3
0.60 8.9 5.0 4.8 4.8 4.7 4.8
0.90 14.7 5.3 4.7 4.0 4.1 4.1

10 I 0.30 5.8 2.8 3.0 1.3 1.7 0.7
0.60 21.9 4.1 5.2 1.5 2.5 0.7
0.90 58.7 17.1 21.9 4.1 10.2 0.9

II 0.30 9.1 3.6 3.4 3.0 3.0 2.9
0.60 43.3 7.0 6.5 2.9 2.9 2.6
0.90 90.9 18.5 18.1 1.5 1.5 1.3

III 0.30 5.7 4.1 4.1 2.1 2.6 1.3
0.60 9.0 4.1 4.2 2.1 2.7 1.2
0.90 14.0 6.2 6.8 2.3 3.7 0.9

IV 0.30 6.3 4.6 4.3 4.0 4.0 3.9
0.60 16.1 5.6 5.1 4.0 3.8 3.8
0.90 36.4 8.3 5.8 3.1 3.2 3.1
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Table 3: Rejection frequencies (in percentage points) at   5% for the Fuller t-statistic un-
der the null hypothesis H0 :   0 based on 5,000 Monte Carlo replications, 399 bootstrap
replications and sample size n  200.

RFE Fuller RFE LIML
k Case  Asymp. Classic 0
5 I 0.30 1.5 1.0 1.3 0.5

0.60 6.7 1.6 2.3 0.7
0.90 23.5 4.1 7.1 0.8

II 0.30 3.0 2.4 2.4 2.4
0.60 13.9 2.7 2.5 2.5
0.90 34.7 2.0 1.7 1.7

III 0.30 2.8 2.4 2.8 1.1
0.60 3.3 2.1 2.5 1.2
0.90 3.5 2.1 2.4 1.1

IV 0.30 4.4 4.3 4.4 4.3
0.60 6.5 4.6 4.6 4.5
0.90 7.9 4.3 4.5 4.4

10 I 0.30 3.6 1.1 1.6 0.7
0.60 11.7 1.6 2.5 0.8
0.90 27.8 4.8 7.9 1.6

II 0.30 7.0 2.5 2.4 2.4
0.60 22.0 3.6 3.4 3.1
0.90 43.1 4.1 3.8 3.7

III 0.30 3.7 2.1 2.7 1.3
0.60 4.5 2.4 2.7 1.5
0.90 4.5 2.2 2.9 1.4

IV 0.30 5.2 4.1 4.0 4.0
0.60 6.8 4.3 4.3 4.3
0.90 7.8 3.4 3.4 3.4
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Table 4: Rejection frequencies (in percentage points) at   5% for the LIML t-statistic un-
der the null hypothesis H0 :   0 based on 5,000 Monte Carlo replications, 399 bootstrap
replications and sample size n  200.

RFE Fuller RFE LIML
k Case  Asymp. Classic 0
5 I 0.30 1.0 1.0 1.3 0.5

0.60 4.1 1.6 2.4 0.7
0.90 10.5 3.1 4.2 1.3

II 0.30 2.7 2.2 2.2 2.2
0.60 10.7 2.8 2.6 2.5
0.90 17.7 2.3 2.0 2.0

III 0.30 2.0 2.5 2.8 1.3
0.60 2.2 2.1 2.5 1.4
0.90 1.7 1.7 1.7 1.3

IV 0.30 4.1 4.5 4.5 4.5
0.60 5.6 4.6 4.6 4.7
0.90 6.5 4.1 4.3 4.3

10 I 0.30 2.8 1.0 1.2 0.6
0.60 8.4 1.3 1.9 0.8
0.90 15.2 4.2 5.2 2.0

II 0.30 6.1 2.3 2.3 2.3
0.60 18.0 3.6 3.6 3.3
0.90 25.4 4.3 4.0 4.0

III 0.30 2.8 2.1 2.4 1.4
0.60 3.4 2.2 2.4 1.6
0.90 2.2 1.7 1.8 1.6

IV 0.30 5.0 4.1 4.0 4.0
0.60 6.1 4.2 4.2 4.2
0.90 6.1 3.3 3.4 3.4
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Table 5: Rejection frequencies (in percentage points) at   5% for the subset MQLR
statistic under the null hypothesis H0 :   0 based on 5,000 Monte Carlo replications,
399 bootstrap replications and sample size n  200.

RFE Fuller RFE LIML
k Case  Asymp. Classic 0
5 I 0.30 0.9 1.5 2.8 1.6

0.60 1.0 2.1 3.2 2.0
0.90 3.4 4.6 7.1 4.5

II 0.30 5.7 6.0 6.1 5.9
0.60 4.9 5.0 5.1 5.0
0.90 5.0 4.9 5.0 4.9

III 0.30 1.1 1.7 2.7 1.7
0.60 1.4 2.2 3.5 2.3
0.90 2.6 3.8 5.8 3.7

IV 0.30 4.2 4.7 4.8 4.8
0.60 4.9 5.2 5.2 5.2
0.90 5.1 5.2 5.2 5.2

10 I 0.30 0.8 1.3 2.1 1.3
0.60 1.1 1.5 2.9 1.5
0.90 2.7 3.3 5.1 3.3

II 0.30 4.5 4.7 4.8 4.7
0.60 5.0 5.0 5.0 4.9
0.90 5.7 5.4 5.3 5.4

III 0.30 1.0 1.3 2.0 1.4
0.60 1.0 1.5 2.5 1.5
0.90 2.6 3.0 4.7 3.1

IV 0.30 3.9 4.0 4.1 4.0
0.60 4.9 5.0 5.1 5.1
0.90 4.7 4.4 4.6 4.5
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Table 6: Rejection frequencies (in percentage points) at   5% for the subset GMM statistic
MQLR under the null hypothesis H0 :   0 based on the GMM bootstrap, 5,000 Monte
Carlo replications, 399 bootstrap replications.

n  200 n  500 n  1000
k Case  MQLR MQLR MQLR MQLR MQLR MQLR MQLR
5 I 0.3 1.0 0.7 0.7 0.6 0.5 0.8 0.6

0.6 1.4 1.2 0.9 0.9 0.5 1.0 0.9
0.9 2.9 2.5 3.2 2.8 1.5 2.9 1.4

II 0.3 4.1 3.9 3.4 4.5 4.2 4.8 4.9
0.6 4.7 4.5 3.7 4.6 4.3 5.1 4.9
0.9 5.4 5.1 0.6 4.8 4.3 4.7 4.3

III 0.3 1.0 0.9 0.5 0.7 0.5 0.9 0.8
0.6 1.3 1.2 1.1 0.8 0.5 1.1 0.8
0.9 3.3 2.9 3.1 2.8 1.3 2.1 1.1

IV 0.3 4.2 4.3 3.2 4.6 4.1 3.9 3.8
0.6 4.8 4.3 3.7 4.7 4.3 4.7 4.3
0.9 4.9 4.4 0.1 4.9 4.3 4.8 4.5

10 I 0.3 0.6 0.5 0.1 0.7 0.4 0.6 0.4
0.6 1.0 0.6 0.4 0.7 0.3 0.9 0.4
0.9 2.9 2.0 1.8 2.9 0.8 2.3 0.9

II 0.3 5.1 4.7 1.9 4.1 3.3 4.5 3.9
0.6 5.0 4.6 1.9 4.6 3.4 4.1 3.4
0.9 5.4 5.1 0.2 4.9 3.6 4.5 3.5

III 0.3 1.1 1.1 0.2 0.7 0.4 0.8 0.4
0.6 1.1 1.0 0.4 1.0 0.4 1.0 0.5
0.9 2.8 1.9 1.0 2.0 0.6 2.2 0.9

IV 0.3 4.0 3.5 1.6 3.6 2.4 3.7 2.9
0.6 5.3 4.6 1.6 4.1 2.6 4.3 3.3
0.9 4.7 4.4 0.0 5.1 3.7 4.3 3.3
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Table 7: 95% confidence intervals for  and  (LCL/UCL=lower/upper confidence limit).

Test Statistic Method LCL  UCL  LCL  UCL 

Specification I: 29 instrumental variables

2SLS t-statistic Asymptotic 0035 0001 0.155 0.551
RFE Bootstrap    

LIML t-statistc Asymptotic 0047 0.001 0.165 0.689
RFE Bootstrap 0116 0.028 0035 1.157

MQLR Asymptotic    
RFE Bootstrap    

Specification II: 15 instrumental variables

2SLS t-statistic Asymptotic 0033 0.004 0.129 0.548
RFE Bootstrap 0131 0.030 0017 0.932

LIML t-statistc Asymptotic 0038 0.006 0.120 0.605
RFE Bootstrap 0061 0.023 0016 0.767

MQLR Asymptotic 0080 0.035 0118 0.951
RFE Bootstrap 0065 0.027 0040 0.837
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