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Abstract

In this paper an algorithm is developed for the exact Fisher information matrix
of a vector ARMAX Gaussian process, VARMAX. The algorithm developed in this
paper is composed by recursion equations at a vector-matrix level and some of these
recursions consist of derivatives. For that purpose appropriate differential rules are
applied. The derivatives are derived from a state space model for a vector process.
The chosen representation is such that the recursions extracted from the proposed
state space model are given in terms of expectations of derivatives of innovations
and not the process and observation disturbances. This enables us to produce an
implementable algorithm for the VARMAX process. The algorithm will be illustrated
by an example.

AMS 1991 subject classifications. Primary 62B10, 62M10, 62M12; secondary
15A57.

Keywords and phrases. Fisher information matrix, matrix differentiation, vector
ARMAX process, E4 Toolbox.

Introduction
This paper is devoted to the computation of the exact Fisher information matrix of a
m-dimensional time series {y1, . . . , yN} of length N , generated by a vector ARMAX,
or VARMAX, Gaussian process of order (p, e, s), {yt, t ∈ Z}, Z the set of integers. More
precisely, consider the vector difference equation representation of a dynamic linear system

pX
j=0

αj yt−j = γ0 +
eX
j=1

γj ut−j +
sX
j=0

βj wt−j , t ∈ Z (1)

where yt, ut and wt are, respectively, the observed output, the r-dimensional observed
input, and the unobserved errors, and where αj ∈ Rm×m, γj ∈ Rm×r, γ0 ∈ Rm×1, and
βj ∈ Rm×m are the associate parameter matrices. We additionally assume α0 ≡ β0 ≡ Im.
Starting the summation in the first sum of the right-hand side with 1 rather than with 0
turns out to be more convenient. Furthermore, there is no loss in generality in the sense
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that ut can always be redefined as ut−1. The error {wt, t ∈ Z} is a collection of independent
zero mean m-dimensional random variables with a positive definite covariance matrix Σ
and we assume, for all t, t0, E{ ut w>t0 } = 0, where > denotes transposition. We assume
either that ut is non stochastic or that ut is stochastic but that statistical inference is
performed conditionally on the values taken by ut. Note that observations for ut should
be available for t ≥ 1− e. If e = 0, we assume u0 = 0.
We use z to denote the backward shift operator, for example z ut = ut−1, then (1)

can be written as
α(z) yt = γ0 + γ(z) ut + β(z) wt (2)

where

α(z) =

pX
j=0

αj z
j ; γ(z) =

eX
j=1

γj z
j ; β(z) =

sX
j=0

βj z
j

are the associated polynomial matrices . The assumption det(α(z)) 6= 0, and det(β(z)) 6= 0
will be imposed so that the eigenvalues of the matrix polynomials α(z) and β(z) will be
outside the unit circle. The elements of α−1(z) and β−1(z) can then be written as power
series in z. An eigenvalue of a matrix polynomial A(z) is a root of the scalar equation
detA(z) = 0, where detA(z) is the determinant of A(z). Consequently, the characteristic
polynomial of the matrix polynomial A(z) is the polynomial detA(z) = 0. In [24], the
scalar version of (2) is considered. The authors have proved that the corresponding
asymptotic Fisher information matrix is singular if and only if the scalar polynomials α(z),
β(z) and γ(z) have at least one common root. In [20], the same property is considered
for the asymptotic Fisher information matrix of a VARMA process. The authors show
that the Fisher information matrix becomes singular if and only if the VARMA matrix
polynomials have at least one common eigenvalue. Although the approach considered in
this paper is the finite sample case and the property proved in [20] has not been studied
yet for the VARMAX case, we assume that the matrix polynomials α(z) and β(z) in (2)
have no common eigenvalues. This is to ensure stability of the system considered.
Estimation of the matrices α1,α2, ...,αp, β1,β2, ...,βs, γ0, γ1, γ2, ..., γe, and Σ has re-

ceived considerable attention in the time series and filtering theory literature [9], [10]. In
[11], the authors study the asymptotic properties of maximum likelihood estimates of the
coefficients of VARMAX processes, stored in a (`× 1) vector θ. In this paper

θ = vec(α1,α2, ...,αp,β1,β2, ...,βs, γ0, γ1, γ2, ..., γe). (3)

Under mild assumptions but assuming that the estimators are asymptotically unbiased,
the inverse of the asymptotic information matrix yields the Cramér-Rao bound, and pro-
vided that the estimators are asymptotically efficient, the asymptotic covariance matrix.
Therefore, tests on coefficients can be derived but also the reverse problem can be solved:
how long should be the series in order to obtain a given statistical significance, see [7].
In [30], an algorithm for the asymptotic Fisher information matrix of a VARMA process
is developed at the scalar-level. It is based on a frequency domain representation of the
Fisher information matrix, known as Whittle’s formula, see [40]. See also [12], [8]. In
[40], a scalar-level formula is developed for the asymptotic Fisher information matrix of
a VARMA process. Whereas in [14], the equivalence between a time and frequency do-
main representation of the asymptotic Fisher information matrix of a VARMA process is
displayed. This is done at the vector-matrix level.
The procedures used to evaluate the asymptotic information matrix rely on evaluating

integrals of a rational function over the unit circle. These integrals can be computed by
recurrences with respect to the degrees of the polynomials (e.g. [34], [33]). However,
the most efficient method consists in transforming the problem to the evaluation of the
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autocovariances of an ARMA model. Klein and Mélard have used this approach in [15]
by means of the algorithms developed in [38] or [6], the last one being slightly faster.
It is true that until recently the asymptotic covariance matrix of the general Gaussian
VARMA model has been stated only in terms of formulas involving integration over the
frequency domain, e.g. [30]. In [16], Klein and Mélard have been mainly concerned with
the single input single output (SISO) model but have also shown that their method can
be used for the VARMA model. For recent references about the asymptotic information
matrix, see [35].
More recently, the sample or exact information matrix has been studied. It is defined

as minus the mathematical expectation of the Hessian of the exact likelihood function,
evaluated at the final estimated value of the parameters. In [32] Porat and Friedlander
have described an algorithm for a univariate ARMA model with a deterministic additive
component. The method is both complex and computationally intensive. The number
of scalar operations is indeed of the order of N2, where N is the length of the sample.
Independently, in [41], [42] (based on [28]) and [36] the respective authors have given a
much more efficient algorithm, since the number of operations is proportional to N . The
method is based on the Kalman filter, and has been applied to the VARMA model by [41]
and [42], and to the general state space form by [36].
Although the algorithms in [41], [42] and [43], and Teircero in [36] need a number of

operations which is proportional to N , these are not very efficient because the number
of operations at each time is roughly proportional to the square of the size of the model.
That number is generally smaller than N but not much so that the improvement with
respect to the Porat and Friedlander method [32] can only be apparent. The reason for
keeping the computational burden as low as possible is that the information matrix can
be evaluated inside some optimization procedures. Mélard and Klein in [27] have given a
method for computing the exact information matrix of a univariate ARMA model. That
method is based on the alternative expression of the Gaussian exact likelihood in terms
of the Chandrasekhar equations outlined in [29] instead of the Kalman filter equations.
It is surprising that Terceiro in [36] has described the whole estimation procedure using
the more computationally efficient Chandrasekhar equations instead of the better known
Kalman filter recursions but that he has not mentioned at all that the Chandrasekhar
equations can also be used for deriving the information matrix. This was done in [22]
with an application to VARMA models but working with the prediction error of the
state vector made it difficult to handle correctly initial conditions (see also [18]) and to
generalize the approach to e.g. VARMAX models.
Meanwhile a software [37] called E4 has been developed on the basis of [36] but also of

more recent contributions (see [13]). Under the form of a Matlab toolbox it offers various
methods of estimation, signal extraction and decomposition for models represented in state
space form. E4 can handle seasonal polynomials and does accept missing data. There is no
problem to apply it to ARMA, ARMAX, SISO, VARMA, or VARMAX models. However,
there is no detailed exposition of the computation of the exact Fisher information matrix
beyond [36] and no detailed documentation of the various options related to the initial
state vector (maximum likelihood, exogenous first value, exogenous mean value, zero) and
the initial covariance matrix of the state vector (zero, Lyapunov or De Jong), except the
last one which refers to [4].
We consider the exact Fisher information matrix J(θ) of dimension of VARMAX

processes, as a generalization with some improvements of the method proposed in [27],
[21], and [22]. Its main contributions are the use of recursions at a vector-matrix level,
derivation of exact and explicit initial conditions, and computational performance. Indeed,
instead of writing recursions for each element of the information matrix, we write recur-
sions as consise as possible at the vector-matrix level. For that purpose, the differential
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rules used in [22] are applied. This implies the evaluation of the derivatives of wt (given
in (1)) with respect to the parameter vector θ whose form is defined in (3). Contrarily to
[22], the approach is based on derivatives of the estimated state vector, not on the error
of estimation of the state vector. A substantial complexity reduction is obtained. Com-
putational performance also follows, partly because Chandrasekhar equations are used.
A practical comparison with E4 is performed. The results are very close, although not
identical, depending on the model and the E4 options used. This is a confirmation of the
high quality of the relatively little known package. We suppose that relations similar to
ours were used but they are not documented.
Contrary to the statements of Zadrozny and Mittnik in [43, p. 107], the inverse of the

sample information matrix cannot be used to establish a Cramér-Rao bound because the
estimators are biased and the bias has a very complex structure [32, p. 128]. It is also
untrue that the covariance matrix of the parameter estimates can be obtained by inverting
the exact information matrix, because the estimators of such dynamic models are efficient
only asymptotically. However, the study of the exact information matrix is justified by the
fact that it differs from the asymptotic information matrix. In [32, p. 123], the authors
argued that only when N ≈ 500 does the asymptotic information matrix come near the
exact information matrix. Their numerical examples seem to indicate that the exact
information leads to larger standard errors than the asymptotic information. Simulation
studies of the univariate ARMAmodel in [2] also conclude that standard errors are slightly
underestimated for small and moderate samples. That doesn’t mean, however, that the
exact information matrix is better than its asymptotic version for deriving standard errors
of parameter estimates. There is no result about that, as far as we know.
The article is organized as follows. In Section II, we present the model. In Appendix

A, we merely substitute the Kalman filter equations by the Chandrasekhar equations
within Terceiro Lomba’s approach. In section III, we give a closed form expression for
the recursions needed to evaluate the information matrix as a whole. In section IV,
we examine the special case of the VARMAX model for which the two approaches are
compared in terms of the number of operations. In section V, we present some Monte
Carlo results.

1 The Model

1.1 The state space model

A state space model is introduced which describes a vector linear times series process
under its most general form. The following state space structure is considered.

xt+1 = φxt + Γut + Fwt (4)

yt = γ0 +Hxt + wt, (5)

where yt ∈ Rm is the vector of observations, xt ∈ Rn is the vector of the state variables,
ut ∈ Rr is the vector of exogenous variables, t ∈ N, wt ∈ Rm is a Gaussian white noise
process with E(wt) = 0, E(wtw>t ) = Σ ≥ 0, and φ, Γ, F , γ0, H are matrices of dimensions,
respectively, n×n, n×r, n×m,m×1,m×n, and E denotes the mathematical expectation.

1.2 The Chandrasekhar equations

We now introduce the exact likelihood function of a time series {y1, . . . , yN} of length N .
There are several ways to express it. Except for the closed form expression of a normal
multivariate density, the simplest representation is based on the Chandrasekhar recursion
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equations, these equations were introduced in [29] and are also the most computationally
efficient, even with respect to the Kalman filter. The Kalman filter consists of a collection
of recursions, one of them giving the covariance matrix of the prediction error Pt+1|t, see
e.g. [1].
The Chandrasekhar equations make use of smaller matrices given by

Bt = Bt−1 +HYt−1Xt−1Y >t−1H
> (6)

Kt = [Kt−1Bt−1 + φYt−1Xt−1Y >t−1H
>]B−1t (7)

Yt = [φ−Kt−1H]Yt−1 (8)

Xt = Xt−1 −Xt−1Y >t−1H>B−1t HYt−1Xt−1 (9)byt|t−1 = γ0 +Hbxt|t−1 (10)bxt+1|t = φbxt|t−1 + Γut +Kteyt (11)

where bxt|t−1 is the one-step-ahead prediction of the state vector,
eyt = yt − byt|t−1
= yt − γ0 −Hbxt|t−1, (12)

Bt = E[eytey>t ], and the matrices Xt, Yt and Kt have dimension m×m, n×m and n×m,
respectively. The initial conditions are: B1 = HP1|0H> + Σ, Y1 = φP1|0H> + FΣ,
K1 = Y1B

−1
1 , X1 = B

−1
1 . Note that the Riccati equation is stated by

Pt+1|t = φ̄tPt|t−1φ̄>t + FQF
> −KtBtK

>
t , (13)

where we denote φ̄t = (φ−KtH).
Given a time series of length N , minus the logarithm of the likelihood of the system

described by (1) and (2) is

l(θ) = − logL(θ) =
NX
t=1

½
m

2
log(2π) +

1

2
log |Bt|+ 1

2
ey>t B−1t eyt¾ , (14)

where we denote the parameters by the (`× 1) vector θ.

2 The exact Fisher Information Matrix at the vector-
matrix level

The exact information matrix J is given by the following (`× `) matrix

J(θ) = E
µ
∂2l(θ)

∂θ∂θ>

¶
, (15)

where the parameter vector θ as defined in (3) is used, and ` = m2(p+ s) +m(re+1). It
is shown in [27] and [23] (in the latter a formal proof is given, at the matrix level) that
the following holds true

J(θ)=
NX
t=1

"
1

2

µ
∂vecBt
∂θ>

¶>
(Bt ⊗Bt)−1

µ
∂vecBt
∂θ>

¶
+ E

(µ
∂eyt
∂θ>

¶>
B−1t

µ
∂eyt
∂θ>

¶)#
,

(16)
where vecX =col(col(Xij)ni=1)

n
j=1, see e.g. [26]. An alternative proof for (16) is given in

[32] at the scalar-level.
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In this section we set forth the differential rules needed for computing the exact Fisher
information matrix. The technique for evaluating the necessary derivatives of the recur-
sion equations is equivalent with [22] where the authors set forth state recursions with
forcing terms involving derivatives of an unobserved process and observation disturbances.
They lead to recursions whose forcing terms involve second moments of these derivatives.
At the general state space level it is not clear how the obtained recursions should be
evaluated. In [22] the recursions have been successfully derived at the vector-matrix level
for the VARMA model where the process disturbance, the observation disturbance, and
the innovation are identical. Consequently, the recursions are implementable for VARMA
models but not beyond. In this paper the approach of [42] and [36] is used. It con-
sists of expressing recursions in terms of expectations of derivatives of the bxt|t−1, not the
prediction error of the state vector

ext = xt − bxt|t−1. (17)

This leads to an explicit or implementable algorithm at the general state space level so
the VARMA or VARMAX version can be obtained by substituting the appropriate para-
meters of the corresponding state space form. We shall only illustrate the main recursion
for the general case but in Section 3 a complete set of recursions is provided for the
vector ARMAX process. The derived algorithm is then implementable. The suggested
differential rules are now displayed.
Consider a real, differentiable (m × n) matrix function X(θ) of real (` × 1) vector

θ = (θ1, · · · , θ`)>, where m, n and ` are positive integers. Let (m × n) matrices ∂rX =
(∂Xij/∂θr) with r = 1, · · · , ` be the first order derivatives of X(θ) in partial derivative
form with Xij being the first element (i, j) of X. Write dXij =

P`
r=1(∂Xij/∂θr)dθr,

where dθr is an arbitrary perturbation of θr. The (m × n) matrix dX = (dXij) is the
differential form of the first order derivative X(θ). An expression in differential form can
instantaneously be put into a partial derivative form by replacing d with ∂r for r = 1, . . . , `.
Let X(θ) and Y (θ) be real (m× n) and (n× p) differentiable matrix functions of the real
vector θ(`× 1), where m,n, p, and ` are positive integers. The usual scalar product rule
of differentiation yields

d(XY ) = (dX)Y +X(dY ).

Taking into account the property
¡
∂yt/∂θ

>¢ = 0 and
¡
∂ut/∂θ

>¢ = 0 (justified be-
cause the realisation does not depend on the parameters α1,α2, ...,αp, γ0, γ1, γ2, ..., γe,
β1,β2, ...,βs) and dΣ = 0, (11) yields

dx̂t+1|t = dφ x̂t|t−1 + φ dx̂t|t−1 + dΓ ut + dKt eyt +Kt deyt.
Let us vectorize the matrix X(θ) defined above according to the following rule

vecABC =
¡
C> ⊗A¢ vecB where A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×s

then the (mn× `) matrix ∂vecX(θ) / ∂θ> is the gradient form of first order derivatives of
X(θ) and can be defined as vecdX(θ) = (∂(vecX(θ)) / ∂θ>)d θ = dvecX(θ). Componen-
twise application of this rule to (11) gives

dbxt+1|t = ³bx>t|t−1 ⊗ In´ vecdφ+ φdbxt|t−1 + ¡u>t ⊗ In¢ vecdΓ+ ¡ey>t ⊗ In¢ vecdKt +Ktdeyt
=
³bx>t|t−1 ⊗ In´ ∂vecφ

∂θ>
dθ + φ

∂bxt|t−1
∂θ>

dθ +
¡
u>t ⊗ In

¢ ∂vecΓ
∂θ>

dθ

+
¡ey>t ⊗ In¢ ∂vecKt

∂θ>
dθ +Kt

∂eyt
∂θ>

dθ.
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We can now formulate the appropriate derivative of x̂t+1|t with respect to the vector θ

∂bxt+1|t
∂θ>

=
³bx>t|t−1 ⊗ In´ ∂vecφ

∂θ>
+φ

∂bxt|t−1
∂θ>

+
¡
u>t ⊗ In

¢ ∂vecΓ
∂θ>

+
¡ey>t ⊗ In¢ ∂vecKt

∂θ>
+Kt

∂eyt
∂θ>

.

(18)
Similarly for the derivative of eyt, to obtain from (12)

∂eyt
∂θ>

= −
½

∂γ0
∂θ>

+ (bx>t |t−1 ⊗ Im)∂vecH∂θ>
+H

∂bxt|t−1
∂θ>

¾
. (19)

We shall derive explicit recursions for E
©
(∂eyt/∂θ>)⊗ (∂eyt/∂θ>)ª>accordingly by using

the following rules [26].

Rule 1. (A⊗B)(C⊗D) = AC⊗BD, whereA ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k, and D ∈ Rq×l.
Rule 2. (A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D

Rule 3. (A⊗B)> = A> ⊗B>.
Rule 4. (A⊗B)−1 = A−1 ⊗B−1 if A−1 and B−1 exist.

Rule 5. Let A ∈ Rm×n, B ∈ Rp×q, then Mp,m(A⊗B)Mn,q = B ⊗A,

where the commutation matrix Mm,n ∈ Rmn×mn is defined by Mm,n =
mX
i=1

nX
j=1

(Hi j ⊗

H>
i j), where H

>
i j = enj (e

m
i )

>, and emi is the unit column vector of order m. Note also
the properties M>

n,m = Mm,n and M1,n = Mn,1 = In and taking the orthogonality into
account yields Mn,mMm,n = Imn.
Before formulating the next rule, we consider the random vectors x ∈ Rn and y ∈ Rm ,

jointly distributed with E(x)=μ1, E(y) = μ2 and E
©
(y − μ2)(x− μ1)

>ª = Ω, leads to.
Rule 6. E(x⊗ y) = vecΩ+ μ1 ⊗ μ2

For solving the first term of (16) the derivatives of the Chandrasekhar equations are
used, whereas the second term consists of the expected value of a stochastic component,
we therefore vectorize J(θ) according to

vecJ(θ) =
NX
t=1

(
1

2

∙µ
∂vecBt
∂θ>

¶
⊗
µ
∂vecBt
∂θ>

¶¸>
vec (Bt ⊗Bt)−1

+E
½
∂eyt
∂θ>

⊗ ∂eyt
∂θ>

¾>
vecB−1t

)
. (20)

The second term of (20) which is of interest, E
©
(∂eyt/∂θ>)⊗ (∂eyt/∂θ>)ª>, requires ad-

ditional recursions that shall be constructed by the differential rules used in [22]. It will
be illustrated for the derivatives of the Kalman one step ahead predictor x̂t+1|t and the
innovation eyt given in (11) and (12) respectively.
Equations (18) and (19) allow the right-hand side of (20) to be written in an appro-

priate way. This is fully done for the VARMAX case in Section 3. To successfully express
E
©
(∂eyt/∂θ>)⊗ (∂eyt/∂θ>)ª> for state space model (4) and (5), the following properties

are taken into account,

E
¡bxt+1|t ⊗ vt+1¢ = 0, E (ut+1 ⊗ vt+1) = 0,
E (xt+1 ⊗ vt+1) = 0, E

h¡
∂bxt|t−1/∂θ>¢> ⊗ vt+1i = 0,
7



to obtain

E
µ
∂eyt
∂θ>

⊗ ∂eyt
∂θ>

¶
=
nn
Mm,1(E(bx>t|t−1 ⊗ bx>t|t−1)⊗ Im)Mmn,n

o
⊗ Im

oµ∂vecH
∂θ>

⊗ ∂vecH
∂θ>

¶
+

½
Mmm

∙½
HE

µ
∂bxt|t−1
∂θ>

⊗ bx>t|t−1¶¾⊗ Im¸Mmn,`

¾µ
∂vecH
∂θ>

⊗ I`
¶

+

∙½
HE

µ
∂bxt|t−1
∂θ>

⊗ bx>t|t−1¶¾⊗ Im¸µI` ⊗ ∂vecH
∂θ>

¶
+ (H ⊗H)E

µ
∂bxt|t−1
∂θ>

⊗ ∂bxt|t−1
∂θ>

¶
+

∂γ0
∂θ>

⊗
µ
(E
³bx>t |t−1´⊗ Im)∂vecH∂θ>

+H E
µ
∂bxt|t−1
∂θ>

¶¶
+

µ
(E
³bx>t |t−1´⊗ Im)∂vecH∂θ>

+H E
µ
∂bxt|t−1
∂θ>

¶¶
⊗ ∂γ0

∂θ>

+
∂γ0
∂θ>

⊗ ∂γ0
∂θ>

, (21)

where the the commutation matrix Mab is defined in Rule 5. In the next section, the
construction of the algorithm for J(θ) is displayed. This will be done for the state-space
model (4) and (5) with an appropriate parametrization. The details are set forth in
Appendix A.

3 An algorithm for the vector ARMAX model
An appropriate choice for a parametrization of (4) and (5) is given by

φ =

⎛⎜⎜⎜⎜⎝
−α1 Im 0m

−α2 0m
. . .

...
. . . Im

−αh 0m · · · 0m

⎞⎟⎟⎟⎟⎠ , F =
⎛⎜⎜⎜⎝

β1 − α1
β2 − α2

...
βh − αh

⎞⎟⎟⎟⎠ , Γ =
⎛⎜⎜⎜⎝

γ1
γ2
...
γh

⎞⎟⎟⎟⎠ , (22)

and H =
¡
Im 0m . . . 0m

¢
(23)

and h = max(p, s, e), αi = 0m, i > p, βi = 0m, i > s, γi = 0m×r, i > e, and consequently
n = hm. More precisely the i-thm×1 block, i = 1, ..., h, of the state vector xt is composed
of

−
pX
j=i

αj yt−j+i−1 +
eX
j=i

γj ut−j+i−1 +
sX
j=i

βj wt−j+i−1, t ∈ Z. (24)

Note that ∂vecH/∂θ> = 0. Hence (19) simplifies to

∂eyt
∂θ>

= − ∂γ0
∂θ>

−H ∂x̂t|t−1
∂θ>

.

respectively and we obtain a main recurrence equation analogous to (32) of [22]:

E
µ
∂eyt
∂θ>

⊗ ∂eyt
∂θ>

¶
= (H ⊗H)E

µ
∂x̂t|t−1
∂θ>

⊗ ∂x̂t|t−1
∂θ>

¶
+

∂γ0
∂θ>

⊗
µ
H E

µ
∂bxt|t−1
∂θ>

¶¶
+

µ
H E

µ
∂bxt|t−1
∂θ>

¶¶
⊗ ∂γ0

∂θ>

+
∂γ0
∂θ>

⊗ ∂γ0
∂θ>

,
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but much shorter. Of course it is necessary to update the expectation in the right hand
side by using, from (18),

E
µ
∂x̂t+1|t
∂θ>

⊗ ∂x̂t+1|t
∂θ>

¶
= (φ⊗ φ)E

µ
∂x̂t|t−1
∂θ>

⊗ ∂x̂t|t−1
∂θ>

¶
+
nhn

E(x̂>t|t−1 ⊗ x̂>t|t−1)⊗ In
o
Mn,n2

i
⊗ In

oµ∂vecφ
∂θ>

⊗ ∂vecφ
∂θ>

¶
+

½
Mn,n

∙½
φE
µ
∂x̂t|t−1
∂θ>

⊗ x̂>t|t−1
¶¾
⊗ In

¸
M`,n2

¾µ
∂vecφ
∂θ>

⊗ I`
¶

+

µ
(E(x̂>t|t−1)⊗ In)

∂vecφ
∂θ>

¶
⊗
µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
+

∙
Mn,n

½
KtE

µ
∂eyt
∂θ>

⊗ x̂>t|t−1
¶
⊗ In

¾
M`,n2

¸µ
∂vecφ
∂θ>

⊗ I`
¶

+ (Kt ⊗ In)
½
E
µ
∂eyt
∂θ>

⊗ x̂>t|t−1
¶
⊗ In

¾µ
I` ⊗ ∂vecφ

∂θ>

¶
+ (φ⊗ In)

½
E
µ
∂x̂t|t−1
∂θ>

⊗ x̂>t|t−1
¶
⊗ In

¾µ
I` ⊗ ∂vecφ

∂θ>

¶
+
©
φ⊗ u>t ⊗ In

ª½
E
µ
∂x̂t|t−1
∂θ>

¶
⊗ ∂vecΓ

∂θ>

¾
+ (φ⊗Kt)E

µ
∂x̂t|t−1
∂θ>

⊗ ∂eyt
∂θ>

¶
+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗
µ³
E
³
x̂>t|t−1

´
⊗ In

´ ∂vecφ
∂θ>

¶
+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗
½
φE
µ
∂x̂t|t−1
∂θ>

¶¾
+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗
µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗
½
KtE

µ
∂eyt
∂θ>

¶¾
+
©£©

E
¡ey>t ⊗ ey>t ¢⊗ InªMm,nm

¤⊗ Inªµ∂vecKt

∂θ>
⊗ ∂vecKt

∂θ>

¶
+ (Kt ⊗ φ)E

µ
∂eyt
∂θ>

⊗ ∂x̂t|t−1
∂θ>

¶
+

½
KtE

µ
∂eyt
∂θ>

¶¾
⊗
µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
+ (Kt ⊗Kt)E

µ
∂eyt
∂θ>

⊗ ∂eyt
∂θ>

¶
, (25)

because

E [eyt] = 0, E £x̂t|t−1 ⊗ eyt¤ = 0, E ∙∂x̂t|t−1
∂θ>

⊗ eyt¸ = 0, E ∙ ∂eyt
∂θ>

⊗ eyt¸ = 0.
Indeed sample innovations eyt are zero mean uncorrelated random variables. Also E(x̂t|t−1⊗eyt) = 0 because x̂t|t−1 is in the space spanned by the observations till time t− 1 included,
whereas eyt is orthogonal to that space. The explanation is similar for ∂x̂t|t−1/∂θ> and
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∂eyt/∂θ>. Note that there are several ways to write terms in (25). We have made sure to
reduce computations for large n and `. Note that

E
µ
∂eyt
∂θ>

⊗ x̂>t|t−1
¶
= − ∂γ0

∂θ>
E(x̂>t|t−1)−HE

µ
∂x̂t|t−1
∂θ>

⊗ x̂>t|t−1
¶
.

For the implementation of the fundamental recurrence equation (25), we need four
additional recursions as follows:
1.

E
µ
∂x̂t+1|t
∂θ>

⊗ x̂>t+1|t
¶
=
nh
E(x̂>t|t−1 ⊗ x̂>t|t−1)⊗ In

i
Mn,n2

oµ∂vecφ
∂θ>

⊗ φ>
¶

+
h
E(x̂>t|t−1)⊗ In

iµ∂vecφ
∂θ>

¶
⊗ (u>t Γ>)

+

½
φE
µ
∂x̂t|t−1
∂θ>

⊗ x̂>t|t−1
¶¾

(I` ⊗ φ>)

+

µ
φE
µ
∂x̂t|t−1
∂θ>

¶¶
⊗ (u>t Γ>)

+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗ (E(x̂>t|t−1)φ>)

+

µ
(u>t ⊗ In)

∂vecΓ
∂θ>

¶
⊗ ¡u>t Γ>¢

+ [{(vecBt)> ⊗ In}Mm,mn]

µ
∂vecKt

∂θ>
⊗K>

t

¶
+KtE

µ
∂eyt
∂θ>

⊗ x̂>t|t−1
¶
(I` ⊗ φ>)

+

µ
KtE

µ
∂eyt
∂θ>

¶¶
⊗ (u>t Γ>). (26)

2.

E
µ
∂x̂t+1|t
∂θ>

¶
=
£
(Ex̂t|t−1)> ⊗ In

¤ ∂vecφ
∂θ>

+ (φ−KtH)E
µ
∂x̂t|t−1
∂θ>

¶
+ (u>t ⊗ In)

∂vecΓ
∂θ>

. (27)

3.

E
¡
x̂t+1|t ⊗ x̂t+1|t

¢
= (φ⊗ φ)E(x̂t|t−1 ⊗ x̂t|t−1) + (φ⊗ Γ)

£
E(x̂t|t−1)⊗ ut

¤
+ (Γ⊗ φ)

£
ut ⊗ E(x̂t|t−1)

¤
+ (Γ⊗ Γ) (ut ⊗ ut) + (Kt ⊗Kt) vecBt.

(28)

4.
E
¡
x̂t+1|t

¢
= φE(x̂t|t−1) + Γut.

This set of recursions is nevertheless much lighter than equations (52) to (65) in [22].
Of course the derivatives of the Chandrasekhar equations, equations (46) to (49) in [22],
recalled in Appendix A are also needed.
Computationally, the recursions are written in the less demanding form. Several times

Rules 1 and 5 of Section 2 have been used to put random variables next to each other to
set forth expectations whereas Rule 1 has been avoided when possible because otherwise
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the number of operations is increased without necessity. Indeed, the left hand side of Rule
1 requires mpnq + nqkl+mpnqkl multiplications, generally bigger than what is required
by the right hand side mnk + pql +mkpl multiplications.
To be complete we also need to state the initial values of the matrices in the Chan-

drasekhar equations, B1, Y1, K1, X1, as well as P1|0H, and their derivatives. This was
done in [22, Section 5, pp. 225-228] and doesn’t need to be repeated here to save space.
Note that the already complex initializations for E

¡
(∂ex1/∂θ>)⊗ (∂ex1/∂θ>)¢, with ex1

defined by (17) and other expressions (most of p. 229 ) were wrong and replaced by a
still more complex initialisation procedure described in [18]. Fortunately, things are much
simpler. Besides B1, K1, Y1, X1, and P1|0H, and their derivatives with respect to θ, the
following initial values are needed. Because of (24) for t = 1, after projection in the initial
state space we have for each subvector of dimension m

(x̂1|0)i =
eX
j=i

γj ui−j , (29)

for i = 1, ..., h, hence

E(x̂1|0)i =
eX
j=i

γjui−j , E(x̂1|0 ⊗ x̂1|0)i,g =
eX
j=i

eX
k=g

(γj ⊗ γk)(ui−j ⊗ ug−k),

E
µ
∂x̂1|0
∂θ>

¶
i

=
eX
j=i

(u>i−j ⊗ Im)
∂vecγj
∂θ>

,

E
∙µ

∂x̂1|0
∂θ>

¶
⊗ x̂>1|0

¸
i,g

=
eX
j=i

eX
k=g

¡
u>i−j ⊗ Im ⊗ u>g−k

¢µ∂vecγj
∂θ>

⊗ γ>k

¶
,

E
∙µ

∂x̂1|0
∂θ>

¶
⊗
µ
∂x̂1|0
∂θ>

¶¸
i,g

=
eX
j=i

eX
k=g

(u>i−j ⊗ Im ⊗ u>g−k ⊗ Im)
µ
∂vecγj
∂θ>

⊗ ∂vecγk
∂θ>

¶
.

for i, g = 1, ..., h. Note that i and g are block indices and that the elements of
¡
(∂vecγ1/∂θ>),

..., (∂vecγe/∂θ>)
¢>
are related to ∂vecΓ/∂θ> through a commutation matrixÃµ
∂vecγ1
∂θ>

¶>
, ...,

µ
∂vecγe
∂θ>

¶>!>
=Mhmr,hmr

∂vecΓ
∂θ>

. (30)

These initializations are slightly simpler than the erroneous initializations in [22] and
considerably much simpler than the iterative procedure in its corrected version [18]. Of
course, they are also more general here because they hold for VARMAX models , not
simply for VARMA models.

4 A numerical example and a comparison with the E4
Toolbox

In this section some numerical results are displayed for an example. Furthermore, the
results are compared with those of E4, a toolbox for Matlab ([37], [13]) which can be
used to evaluate the exact information matrix of general state space models. Our imple-
mentation is available at location http:\\homepages.ulb.ac.be\~gmelard\rech\km12prog.zip.
It is heavily based on [31] and [19], which were developed for VARMA models without
exogeneous variables.
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4.1 The example

The results obtained through the algorithm set forth in this paper shall be compared
with the values of the entries of the asymptotic Fisher information matrix of a VARMAX
process. First the asymptotic case is set forth on the basis of [25]. The VARMAX process
considered in this example is such that m = 2, r = 3 and p = q = s = e = 1. The
appropriate matrix polynomials are

α(L) =

µ
1 + α111 L α121 L
α211 L 1 + α221 L

¶
, β(L) =

µ
1 + β111 L β121 L
β211 L 1 + β221 L

¶
,

and

γ(L) =

µ
γ111 + γ112 L γ121 + γ122 L γ131 + γ132 L
γ211 + γ212 L γ221 + γ222 L γ231 + γ232 L

¶
. (31)

We further assume,

Σ =

µ
1 0
0 1

¶
and Ω =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ , (32)

where Ω denotes the instantaneous covariance matrix of the white noise process used to
generate u, assumed to be independent from w.The parameter vector configuration is
given by θ = vec(α1,β1, γ1, γ2), where

α1 =

µ
α111 α121
α211 α221

¶
, β1 =

µ
β111 β121
β211 β221

¶
, γ1 =

µ
γ111 γ121 γ131
γ211 γ221 γ231

¶
, γ2 =

µ
γ112 γ122 γ132
γ212 γ222 γ232

¶
.

4.2 The asymptotic Fisher information matrix

A partitioned form of the asymptotic Fisher information matrix multiplied by N , the
number of observations, is considered, this in order to display the interactions between
the different parameters involved,

F(θ) =
⎛⎝ Fαα(θ) Fαβ(θ) Fαγ(θ)
Fβα(θ) Fββ(θ) Fβγ(θ)
Fγα(θ) Fγβ(θ) Fγγ(θ)

⎞⎠ . (33)

Taking into consideration that the input u(t) and the white noise w(t) are orthogonal
processes leads to the property

Fγβ(θ) = 0. (34)

In [25], the authors focused on the γ parameters considering its crucial role in VAR-
MAX processes. The computations were extended here in order to compute the whole
asymptotic information matrix. The partitioned form of Fγγ(θ) is considered, to obtain

Fγγ(θ) =
µ Fγ1γ1(θ) Fγ1γ2(θ)
Fγ2γ1(θ) Fγ2γ2(θ)

¶
. (35)

The parametrization of input coefficient matrix γ =
¡
(vecγ1)>, (vecγ2)>

¢>
is given by

vecγ1 = (γ111 , γ
21
1 , γ

12
1 , γ

22
1 , γ

13
1 , γ

23
1 )

>, vecγ2 = (γ112 , γ
21
2 , γ

12
2 , γ

22
2 , γ

13
2 , γ

23
2 )

>.

The entries of Fγγ(θ), displayed in (35), are computed according to the expressions derived
in [25], to obtain

(Fγ1γ1(θγ))1,1i,j,l,f =
1

2πi

I
|z|=1

Tr
¡
β−1(z)EijRu(z)E>lfβ−∗(z)

¢ dz
z
,
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(Fγ1γ2(θγ))1,2i,j,l,f =
1

2πi

I
|z|=1

Tr z−1
¡
β−1(z)EijRu(z)E>lfβ−∗(z)

¢ dz
z
,

(Fγ2γ1(θγ))2,1l,f,i,j =
1

2πi

I
|z|=1

Tr z
¡
β−1(z)ElfRu(z)E>ijβ−∗(z)

¢ dz
z
,

(Fγ2γ2(θγ))2,2i,j,l,f =
1

2πi

I
|z|=1

Tr
¡
β−1(z)EijRu(z)E>lfβ−∗(z)

¢ dz
z
,

where i, l = 1, 2 and j, f = 1, 2, 3. The Cauchy integral is counterclockwise and the poles,
eigenvalues of the appropriate matrix polynomials, which are inside the unit circle |z| = 1
are used for the computations. The m × r matrix Eij = emi

¡
erj
¢>

where emi is the i-th
standard basis vector in Rm and erj is the j-th standard basis vector in Rr. The Hermitian
matrix Ru(z) is the spectral density of the input process ut, in this example it is driven
by a white noise process with covariance Ω given in (32), consequently, Ru(z) = (1/2π)I3,
where I3 is the 3-dimensional identity matrix. The representation β−∗(z) refers to the
complex conjugate transpose of β−1(z).
For this numerical illustration, like in [25] we assume α1 = 0, γ1 = 0, γ2 = 0, and
specific entries of the matrix polynomial β(z) with β111 = 6/5, β121 = 1/2, β211 = −(7/5)
and β221 = −(1/5). The basic assumption that the eigenvalues of the matrix polynomial
β(z) lie outside the unit circle is fulfilled since the eigenvalues are: (5/23)

¡−5± i√21¢
with modulus equal to 1.47442. We first choose (Fγ2γ2(θ))1,11,1,1,1, to obtain the following
circular integral expression

(Fγ2γ2(θ))1,11,1,1,1 =
1

2πi

I
|z|=1

Tr
¡
β−1(z)E11E>11β−∗(z)

¢ dz
z

= − 1

2πi

I
|z|=1

500 z (1− 15z + z2)
(50 + 50z + 23z2) (23 + 50z + 50z2)

dz

z
.

For applying Cauchy’s residue theorem we have to consider the poles whithin the unit circle
which are provided by the polynomial

¡
23 + 50z + 50z2

¢
. For evaluating the integral,

the algorithm developed in [6] or the computer program displayed in [34] and based on
the Peterka-Vidinčev [33] algorithm can be implemented. This yields (Fγ1γ1(θ))1,11,1,1,1 =
(Fγ2γ2(θ))2,21,1,1,1 = 7.82242. We proceed by computing an element of block Fγ1γ2(θ) and
Fγ2γ1(θ) involving the parameters γ132 and γ231 , to obtain

(Fγ2γ1(θ))2,11,3,2,3 =
1

2πi

I
|z|=1

Tr z
¡
β−1(z)E13E>23β−∗(z)

¢ dz
z

(36)

=
1

2πi

I
|z|=1

50 z2 (−25 + 89z + 70z2)
(50 + 50z + 23z2) (23 + 50z + 50z2)

dz

z

= −3.3552
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and

(Fγ1γ2(θ))1,22,3,1,3 =
1

2πi

I
|z|=1

Tr z−1
¡
β−1(z)E23E>13β−∗(z)

¢ dz
z

(37)

= − 1

2πi

I
|z|=1

50 (−70− 89z + 25z2)
(50 + 50z + 23z2) (23 + 50z + 50z2)

dz

z
.

= −3.3552.

A numerical confirmation of Fγ1γ2(θ) = F>γ2γ1(θ) is illustrated by the obtained equality
(Fγ2γ1(θ))2,11,3,2,3 = (Fγ1γ2(θ))1,22,3,1,3. We proceed analogously for the remaining γ parame-
ters, it yields the following submatrices of (35) rounded to 3 decimal places

Fγ1γ1(θ) = Fγ2γ2(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
7.822 2.780 0 0 0 0
2.780 2.500 0 0 0 0
0 0 7.822 2.780 0 0
0 0 2.780 2.500 0 0
0 0 0 0 7.822 2.780
0 0 0 0 2.780 2.500

⎞⎟⎟⎟⎟⎟⎟⎠
and

Fγ1γ2(θ) = F>γ2γ1(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
−5.495 0.163 0 0 0 0
−3.355 −0.890 0 0 0 0
0 0 −5.495 0.163 0 0
0 0 −3.355 −0.890 0 0
0 0 0 0 −5.495 0.163
0 0 0 0 −3.355 −0.890

⎞⎟⎟⎟⎟⎟⎟⎠ .

It can be seen that the submatrices of Fγγ(θ) are block Toeplitz matrices. The para-
metrization for the submatrix β is vecβ1 = (β111 ,β

21
1 ,β

12
1 ,β

22
1 )

>. We have according to
[25]

(Fββ(θ))c,si,j,l,f =
1

2πi

I
|z|=1

zc−sTr
¡
β−1(z)EijΣE>lfβ

−∗(z)Σ−1
¢ dz
z
,

the choice Σ = I2, where I2 is the two-dimensional identity matrix and c, s = 1, yields

(Fββ(θ))1,1i,j,l,f =
1

2πi

I
|z|=1

Tr
¡
β−1(z)EijE>lfβ

−∗(z)
¢ dz
z
,

where the m ×m matrix Eij = eie>j , the vectors ei and ej are respectively the i-th and
j-th standard basis vectors in Rm, m = 2, and i, j, l, f = 1, 2, to obtain (to 3 decimal
places)

Fββ(θ) =

⎛⎜⎜⎝
7.822 2.780 0 0
2.780 2.500 0 0
0 0 7.822 2.780
0 0 2.780 2.500

⎞⎟⎟⎠ .
First we set forth the general representation of the entries of the asymptotic Fisher infor-
mation submatrix Fαα(θ) which are computed according to [25], to obtain

(Fαα(θ))k,vi,j,l,f = (Fuαα(θ))k,vi,j,l,f + (Fwαα(θ))k,vi,j,l,f ,
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where

(Fuαα(θ))k,vi,j,l,f =
1

2πi

I
|z|=1

zk−vTr
¡
β−1(z)Eijα−1(z)γ(z)Ru(z)γ∗(z)α−∗(z)E>lfβ

−∗(z)Σ−1
¢ dz
z

(38)
and

(Fwαα(θ))k,vi,j,l,f =
1

2πi

I
|z|=1

zk−vTr
¡
β−1(z)Eijα−1(z)β(z)Σβ∗(z)α−∗(z)E>lfβ

−∗(z)Σ−1
¢ dz
z
.

(39)
In this example the submatrix associated with the (α,α) block is considered when α = 0
and we further have for the input matrix polynomial γ(z) = 0, the α parameters in the
Fisher information matrix are ordered accordingly, to obtain vecα1 = (α111 ,α

21
1 ,α

12
1 ,α

22
1 )

>.
Additionally, when Σ = α(z) = I2, and the indices k, v = 1, m = 2 combined with
i, j, l, f = 1, 2, yield (Fuαα(θ))k,vi,j,l,f = 0, since expression (38) depends on the input process
u(t) through the spectral density Ru(z) and the matrix polynomial γ(z). The Fisher in-
formation submatrix associated with block (α, α) is therefore given by (39) according
to

(Fαα(θ))1,1i,j,l,f =
1

2πi

I
|z|=1

Tr
¡
β−1(z)Eijβ(z)β∗(z)E>lfβ

−∗(z)
¢ dz
z
,

when summarized for all i, j, l, f = 1, 2, we obtain

Fαα(θ) =

⎛⎜⎜⎝
7.855 3.648 −8.979 −6.855
3.648 4.588 −0.170 −3.648
−8.979 −0.170 25.665 8.979
−6.855 −3.648 8.979 7.855

⎞⎟⎟⎠ .
The submatrix associated with αβ is considered. The entries of the appropriate Fisher
information submatrix are computed according to

(Fαβ(θ))k,si,j,l,f =
1

2πi

I
|z|=1

zk−sTr
¡−β−1(z)Eijα−1(z)β(z)ΣE>lfβ−∗(z)Σ−1¢ dzz , (40)

where the superscripts k = 0, . . . , p− 1 and s = 0, . . . , q − 1 and the subscripts i, j, l, f =
1, . . . ,m. The choice, Σ = α(z) = I2, combined with k, s = 1, m = 2 and i, j, l, f = 1, 2,
yields

(Fαβ(θ))1,1i,j,l,f =
1

2πi

I
|z|=1

Tr
¡−β−1(z)Eijβ(z)E>lfβ−∗(z)¢ dzz ,

when summarized, to obtain

Fαβ(θ) = F>βα(θ) =

⎛⎜⎜⎝
−1.229 1.246 2.747 1.678
−2.976 −1.431 −0.082 0.445
−7.693 −4.697 −8.921 −3.451
0.229 −1.246 −2.747 −2.678

⎞⎟⎟⎠ .
Note that the entries of Fβα(θ) are computed according to

(Fβα(θ))s,kl,f,i,j =
1

2πi

I
|z|=1

zs−kTr
¡−Σ−1β−1(z)ElfΣβ∗(z)α−∗(z)E>ijβ−∗(z)¢ dzz . (41)
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The entries of the submatrices Fαγ(θ) and Fγα(θ) are given by the following equations
when expressed by the Cauchy integrals

(Fαγ(θ))k,gi,j,l,f =
1

2πi

I
|z|=1

zk−gTr
¡−β−1(z)Eijα−1(z)γ(z)Ru(z)E>lfβ−∗(z)Σ−1¢ dzz (42)

and

(Fγα(θ))g,kl,f,i,j =
1

2πi

I
|z|=1

zg−kTr
¡−Σ−1β−1(z)ElfRu(z)γ∗(z)α−∗(z)E>ijβ−∗(z)¢ dzz , (43)

where the superscripts k = 0, . . . , p − 1 and g = 0, . . . , e, the subscripts i, j, l = 1, . . . ,m
and f = 1, . . . , r. Note that the above equations (41), (40), (42) and (43) are corrected
with respect to [25]. The property Fαγ(θ) = F>γα(θ) holds. When the input matrix
polynomial γ(z) = 0 then Fαγ(θ) = 0.
We have generated 1000 observations of u and w, using Gaussian deviates with mean 0

and variance 1 and then obtained y using (1) with α1 = 0, γ1 = 0, γ2 = 0, and β1 as given
above. The data are available at http:\\homepages.ulb.ac.be\~gmelard\rech\km12data.zip.
Now using the method in this paper we have computed the exact information matrix. This
model (and also simpler models) allowed us to check (and sometimes correct) the Matlab
program based on the theory. For these single simulated series of N = 1000 observations,
we obtained for the exact Fisher information multiplied by N

Fγ1γ1(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
7.678 2.735 0.450 0.084 −0.107 0.014
2.735 2.459 0.205 0.099 −0.098 −0.055
0.450 0.205 6.608 2.438 0.000 −0.114
0.084 0.099 2.438 2.324 0.131 0.012
−0.107 −0.098 0.000 0.131 7.481 2.661
−0.014 −0.055 −0.114 0.012 2.661 2.383

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Fγ2γ2(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
7.704 2.743 0.479 0.099 −0.100 0.003
2.743 2.462 0.213 0.104 −0.094 −0.057
0.479 0.213 6.634 2.450 0.015 −0.119
0.099 0.104 2.450 2.330 0.140 0.011
−0.100 −0.094 0.015 0.140 7.472 2.647
0.003 −0.057 −0.119 0.011 2.647 2.376

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Fγ1γ2(θ) = F>γ2γ1(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
−5.405 0.147 −0.274 0.057 −0.049 −0.107
−3.286 −0.864 −0.288 −0.117 0.095 0.012
−0.480 −0.110 −4.401 0.342 0.219 0.160
−0.221 −0.133 −2.883 −0.687 0.013 0.094
0.123 0.021 −0.212 −0.146 −5.274 0.126
0.076 0.064 −0.055 −0.115 −3.140 −0.793

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Fαα(θ) =

⎛⎜⎜⎝
7.834 3.639 −8.952 −6.835
3.639 4.580 −0.167 −3.639
−8.952 −0.167 25.593 8.951
−6.835 −3.639 8.951 7.834

⎞⎟⎟⎠ , Fββ(θ) =

⎛⎜⎜⎝
7.799 2.772 0.005 0.001
2.772 2.493 0.005 0.003
0.005 0.005 7.790 2.766
0.001 0.003 2.766 2.489

⎞⎟⎟⎠ ,

Fαβ(θ) = F>βα(θ) =

⎛⎜⎜⎝
−1.227 1.241 2.739 1.672
−2.970 −1.431 −0.083 0.443
−7.671 −4.685 −8.896 −3.440
0.229 −1.242 −2.739 −2.670

⎞⎟⎟⎠ .
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The results for the exact information matrix at θ = (α1,β1, γ1, γ2), where α1 = 0,
γ1 = 0, γ2 = 0, and β111 = 6/5, β121 = 1/2, β211 = −(7/5), β221 = −(1/5) are close to
those of the asymptotic information matrix. Note that the results are dependent on the
simulated values for u, since our exact information matrix is conditional on u. More
precisely, the blocks for γ would not be the same for another set of simulations whereas
those for α and β would be the same. Of course, in practice, the Fisher information
matrix is evaluated not at the unknown true value θ but, for example, at the maximum
likelihood estimate bθ, obtained for the series of observations. In that case, different blocks
for α and β will be obtained for another series. For N = 1000000, the results are given
in the Appendix B. That suggests the following conjecture that the convergence of the
exact Fisher information matrix to the asymptotic Fisher information matrix, established
by [17] for VARMA models should be extended to VARMAX models, at least under some
assumptions. Note also that the asymptotic information matrix considered here is not
conditional, which means that an alternative conditional definition should be used.

4.3 Comparison with the E4 Toolbox

We have mentioned in the introduction E4, a toolbox for Matlab ([37], [13]) which can
evaluate the exact information matrix of general state space models, and can be specialized
to VARMAX models. Note that E4 can be used to estimate the parameters of the models
by themselves or in composite formulation, unconstrained or subject to linear and/or
nonlinear constraints on the parameters, under standard conditions or in an extended
framework that allows for observation errors, missing data or vector GARCH errors.
For a comparison with E4, we have used the same simulated series as in the previous

subsection but with N = 100. We have then derived the exact information by using E4
with the several options for econd (ml or maximum likelihood, iu or exogenous first value,
au or exogeneous mean, or zero) and vcond (idejong or based on [4], lyapunov or zero). It
appears that for our model (and perhaps because of the particular configuration of the
coefficients), the econd=auto option is identical to econd = ml, the maximum likelihood
estimation of the initial state vector, and that the results for vcond = idejong and vcond =
lyapunov are identical.
We have first examined the blocks (α, γ) and (β, γ) of the exact information matrix

which were exactly 0 above. For some combinations of the options of E4, these blocks are
not exactly 0. This is the case for econd = ml or the maximum likelihood estimation of
the initial state vector. Note however that when econd = ml but vcond = zero (zero initial
covariance matrix of the state vector), the block (β, γ) is exactly 0 but not the block (α,
γ). E4 can also provide an approximation of the information matrix, the Watson and
Engle approximation [39].
We have looked further in Table 1 at the other option combinations of E4 for which

the blocks (α, γ) and (β, γ) are exactly zero, by comparing the E4 estimated standard
errors for the 20 parameters to those obtained by our exact method. To save space, Table
1 contains only the results for a subset of parameters, i.e. α111 , β

11
1 and γ232 . It appears

that the results are identical for the parameters α and β for these option combinations
vcond = lyapunov (or vcond = idejong) and econd = iu or econd = au or econd = zero. For
these parameters, they are not identical to our exact results (denoted by KM in the tables)
when vcond = zero or when econd = ml. The results are not identical for the parameters
γ. On the contrary, the Watson-Engle approximation is bad for the parameters α and β
but is nearly as good as the other E4 results for the parameters γ.
These results lead to the suggestion that, at least when e > 1, which is the case here,

none of the E4 state vector initializations corresponds to (29). In order to illustrate the
differences between the E4 options in a case where they are more sensitive than in the
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previous example, we have changed the generation of the exogenous variables so that
the first value is more different from zero and also from the mean value, in order to
increase the difference between the initial state vector options. As a matter a fact, we
have generated the three variable u by a VAR process with mean different from 0. To
emphasize the differences, we have also reduced the length of the series from 100 to 50. For
the reasons mentioned above, only vcond = lyapunov was considered. As shown in Table
2,.the results are different for the γ’s. None of the three options is uniformly better pour
the 12 parameters γ but econd = iu has the smallest standard deviation than econd = au or
econd = zero. A closer look at the E4 Toolbox manual [37] and at [3] reveals that they refer
to [5] for the deterministic case whereas the latter paper treats stochastic but uncorrelated
exogeneous variables. Apparently an equation like (29) is not mentioned. Nevertheless,
our analysis is confirmed by the E4 results, and, likewise, the power of E4, which can
handle a larger variety of state space models (including the case of nonstationary roots)
is also emphasized.

Table 1. For different option combinations of E4 and the method of the paper (KM),
results for the information matrix for the blocks (α, γ) and (β, γ), and for the standard
errors of the parameters α111 , β

11
1 , and γ232 . These results were obtained for simulated

time series of 100 observations. Underlined E4 standard errors are identical to our KM
results.

Method econd vcond (α, γ) (β, γ) α111 β111 γ232
E4 ml idejong 6= 0 6= 0 0.4217 0.4454 0.14579

lyapunov 6= 0 6= 0 0.4217 0.4454 0.14579
zero 6= 0 0 0.4198 0.4431 0.14579

iu idejong 0 0 0.4278 0.4517 0.14490
lyapunov 0 0 0.4278 0.4517 0.14490
zero 0 0 0.4265 0.4501 0.14576

au idejong 0 0 0.4278 0.4517 0.14576
lyapunov 0 0 0.4278 0.4517 0.14574
zero 0 0 0.4265 0.4501 0.14576

zero idejong 0 0 0.4278 0.4517 0.14576
lyapunov 0 0 0.4278 0.4517 0.14576
zero 0 0 0.4265 0.4501 0.14576

E4 Watson-Engle ml lyapunov 6= 0 6= 0 0.3448 0.3611 0.1467
ml zero 6= 0 6= 0 0.3457 0.3616 0.1468
iu lyapunov 6= 0 6= 0 0.3506 0.3682 0.1459

au/zero lyapunov 6= 0 6= 0 0.3741 0.3626 0.1470
not ml zero 6= 0 6= 0 0.3507 0.3683 0.1468

KM 0 0 0.4278 0.4517 0.14565
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Table 2. For some option combinations of E4 and the method of the paper (KM),
results for the standard errors of the parameters αij1 , β

ij
1 , i, j = 1, 2, and γij2 , i = 1, 2,

j = 1, 2, 3. These results were obtained for simulated time series of 50 observations.
Underlined E4 standard errors are the closest from KM results.

Method econd vcond α111 α211 α121 α221
E4 iu/au/zero lyapunov 0.6108 0.7244 0.5625 0.6672
KM 0.6108 0.7244 0.5625 0.6672

β111 β211 β121 β221
E4 iu/au/zero lyapunov 0.6452 0.7356 0.4555 0.6991
KM 0.6452 0.7356 0.4555 0.6991

γ111 γ211 γ121 γ221 γ131 γ231
E4 iu lyapunov 0.0877 0.1053 0.0843 0.1193 0.0594 0.1073

au lyapunov 0.0893 0.1072 0.0849 0.1180 0.0405 0.0573
zero lyapunov 0.0889 0.1052 0.0857 0.1193 0.0569 0.0936

KM 0.0875 0.1085 0.0861 0.1194 0.0613 0.1092
γ112 γ212 γ122 γ222 γ132 γ232

E4 iu lyapunov 0.1179 0.1554 0.1039 0.1439 0.0547 0.0948
au lyapunov 0.1201 0.1556 0.1021 0.1400 0.0423 0.0599
zero lyapunov 0.1201 0.1544 0.1045 0.1424 0.0529 0.0853

KM 0.1177 0.1532 0.1061 0.1443 0.0554 0.0958

5 Conclusion
This paper has established recursions at the matrix level for the exact Fisher informa-
tion matrix of a VARMAX stochastic process, conditionally with respect to exogenous
(deterministic or stochastic) variables. It can be seen as a generalization of [22] which
was restricted to VARMA processes but the approach is more useful and also simpler.
We could compare our results with E4, a Matlab Toolbox, which is aimed at estimation
of a more general state space model, including the evaluation of the gradient and the
exact information matrix. Note that, although the general principle stated by [36] is the
same, the expressions there are not given at the matrix level but at the scalar level, and
we could not find the detailed expressions in the literature, e.g. the papers cited in [13].
Our results are close to those obtained using E4 but not identical. We could pinpoint the
cause of discrepancy, more specifically that (29) is not supported by E4. For long series we
could also compare our results with the asymptotic information matrix, as proposed and
illustrated by [25]. That comparison leads to the suggestion of a conjecture generalizing
[17] from VARMA to VARMAX models. A first investigation of that conjecture indicates
that it will not be true without additional assumptions.
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Appendix A
In this Appendix, the derivatives of the Chandrasekhar equations are considered, using
the rule

dA−1 = −A−1 (dA) A−1
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to obtain

∂ (vecBt)
∂θ>

=
∂ (vecBt−1)

∂θ>
+
£¡
HYt−1X>

t−1
¢⊗H¤ ∂ (vecYt−1)

∂θ>
+ [(HYt−1)⊗ (HYt−1)] ∂ (vecXt−1)

∂θ>

+ [H ⊗ (HYt−1Xt−1)]
∂
¡
vecY >t−1

¢
∂θ>

, (44)

∂ (vecKt)

∂θ>
=
£¡
B−1t Bt−1

¢⊗ In¤ ∂ (vecKt−1)
∂θ>

+
£¡
B−1t HYt−1X>

t−1Y
>
t−1
¢⊗ In¤ ∂ (vecφ)

∂θ>

+
£
B−1t ⊗Kt−1

¤ ∂ (vecBt−1)
∂θ>

+
£¡
B−1t HYt−1X>

t−1
¢⊗ φ

¤ ∂ (vecYt−1)
∂θ>

− £B−1t ⊗ ¡Kt−1Bt−1B−1t
¢¤ ∂ (vecBt)

∂θ>

+
£¡
B−1t HYt−1

¢⊗ φYt−1
¤ ∂ (vecXt−1)

∂θ>

+
£¡
B−1t H

¢⊗ (φYt−1Xt−1)¤ ∂ ¡vecY >t−1¢
∂θ>

− £B−1t ⊗ ¡φYt−1Xt−1Y >t−1H>B−1t
¢¤ ∂ (vecBt)

∂θ>
, (45)

∂ (vecYt)
∂θ>

=
£
Y >t−1 ⊗ In

¤ ∂ (vecφ)
∂θ>

+ [Ik ⊗ φ]
∂ (vecYt−1)

∂θ>

− £¡Y >t−1H>¢⊗ In¤ ∂ (vecKt)

∂θ>

− [Ik ⊗ (KtH)]
∂ (vecYt−1)

∂θ>
, (46)

∂ (vecXt)
∂θ>

=
∂ (vecXt−1)

∂θ>
− £¡X>

t−1Y
>
t−1H

>B−1t HYt−1
¢⊗ Ik¤ ∂ (vecXt−1)

∂θ>

− £¡X>
t−1Y

>
t−1H

>B−1t H
¢⊗Xt−1¤ ∂ ¡vecY >t−1¢

∂θ>

+
£¡
X>
t−1Y

>
t−1H

>B−1t
¢⊗ ¡Xt−1Y >t−1H>B−1t

¢¤ ∂ (vecBt)
∂θ>

− £X>
t−1 ⊗

¡
Xt−1Y >t−1H

>B−1t H
¢¤ ∂ (vecYt−1)

∂θ>

− £Ik ⊗ ¡Xt−1Y >t−1H>B−1t HYt−1
¢¤ ∂ (vecXt−1)

∂θ>
. (47)

Appendix B
For N = 1000000 observations, we obtained

Fγ1γ1(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
7.833 2.784 0.007 −0.002 −0.018 −0.003
2.784 2.503 0.004 −0.001 −0.009 −0.004
0.007 0.004 7.830 2.781 0.011 −0.004
−0.002 −0.001 2.781 2.497 −0.005 −0.006
−0.018 −0.009 −0.011 −0.005 7.820 2.778
−0.003 −0.004 −0.005 −0.006 2.778 2.497

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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Fγ2γ2(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
7.833 2.784 0.007 −0.002 −0.018 −0.003
2.784 2.503 0.004 −0.001 −0.009 −0.004
0.007 0.004 7.830 2.781 −0.011 −0.005
−0.002 −0.001 2.781 2.497 −0.005 −0.006
−0.018 −0.009 −0.011 −0.005 7.820 2.778
−0.003 −0.004 −0.005 −0.006 2.778 2.497

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

Fγ1γ2(θ) = F>γ2γ1(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
−5.502 0.164 −0.003 0.001 0.011 −0.001
−3.362 −0.893 −0.004 −0.001 0.006 0.001
−0.015 −0.009 −5.507 0.158 0.005 −0.003
0.001 −0.002 −3.355 −0.891 0.007 0.003
0.020 0.005 0.004 −0.003 −5.496 0.161
0.008 0.005 0.006 0.001 −3.352 −0.889

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Fαα(θ) =

⎛⎜⎜⎝
7.855 3.648 −8.979 −6.855
3.648 4.588 −0.170 −3.648
−8.979 −0.170 25.665 8.979
−6.855 −3.648 8.979 7.855

⎞⎟⎟⎠ , Fββ(θ) =

⎛⎜⎜⎝
7.822 2.780 0.000 0.000
2.780 2.500 0.000 0.000
0.000 0.000 7.822 2.780
0.000 0.000 2.780 2.500

⎞⎟⎟⎠ ,
and finally

Fαβ(θ) = F>βα(θ) =

⎛⎜⎜⎝
−1.229 1.246 2.747 1.678
−2.976 −1.431 −0.082 0.445
−7.697 −4.697 −8.921 −3.451
0.229 −1.246 −2.747 −2.678

⎞⎟⎟⎠ .
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