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The major challenge of econometrics is assessing the essentials of relationships between
empirical phenomena, where this has to be based on data which could not be collected from
controlled experiments. This calls for inference procedures which can handle both exogenous
and endogenous explanatory variables. For proper interpretation of econometric inference
various assumptions of a technical statistical nature should hold, whereas for some of these
conditions their validity cannot be corroborated. Therefore, they simply have to be adopted,
either on the basis of conventions or other often highly subjective convictions. In this note
we demonstrate that some of these crucial but statistically unveri�able assumptions can be
replaced by others, in order to make inferences not only more credible, but by the same stroke
more robust, e¢ cient and accurate as well.

1 A simple though unidenti�ed model

Consider the two linear equations

y
(1)
i = �y

(2)
i + 
1z

(1)
i + 
2z

(2)
i + "i; (1)

y
(2)
i = �1z

(1)
i + �2z

(2)
i + vi; (2)

which model two endogenous variables y(1)i and y(2)i for observations i = 1; :::; n: Let the random
disturbances be such that "i � NID(0; �2") and vi � NID(0; �2v); withE("ivi) = �"v = �"v�"�v;
where j�"vj < 1; �" > 0 and �v > 0: We suppose that

E("iz
(j)
i ) = E(viz

(j)
i ) = 0 for j = 1; 2: (3)

So, in both equations the two variables z(j)i ; for which we may assume z
(j)
i � NID(0; �2

z(j)
); are

predetermined, or even exogenous. However, we have E(y(2)i "i) 6= 0 when �"v 6= 0: Then the two
variables y(j)i are jointly dependent. The �rst equation is the structural (causal) relationship
for y(1)i and the second is the reduced form equation for y(2)i : The three coe¢ cients of the
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structural equation (1) are not identi�ed by the two orthogonality conditions E("iz
(j)
i ) = 0:

We will clarify this and examine by what alternative further restricting assumptions their
identi�cation can be achieved.
Continuing to use obvious notation for variances and covariances we easily obtain the

following relationships between second moments

�y(1)y(2) = ��2y(2) + 
1�y(2)z(1) + 
2�y(2)z(2) + �y(2)"; (4)

�y(1)z(1) = ��y(2)z(1) + 
1�
2
z(1) + 
2�z(1)z(2) ; (5)

�y(1)z(2) = ��y(2)z(2) + 
1�z(1)z(2) + 
2�
2
z(2) ; (6)

�y(2)z(1) = �1�
2
z(1) + �2�z(1)z(2) ; (7)

�y(2)z(2) = �1�z(1)z(2) + �2�
2
z(2) : (8)

Note that by virtue of the Law of Large Numbers such second moments regarding observed
variables can directly be estimated consistently by their sample equivalent. This is not the
case for �y(2)"; simply because " has not been observed. The equations (5) through (8) do no
longer contain such a covariance involving an unobserved disturbance term, because we did
already substitute the four orthogonality conditions (3).
From the two equations (7) and (8) consistent estimators for the two reduced form coe¢ -

cients �1 and �2 directly follow. Denoting sample second moments by putting a hat on �; we
�nd from

�̂y(2)z(1) = �̂1�̂
2
z(1) + �̂2�̂z(1)z(2) ;

�̂y(2)z(2) = �̂1�̂z(1)z(2) + �̂2�̂
2
z(2) ;

that �
�̂1
�̂2

�
=

�
�̂2z(1) �̂z(1)z(2)
�̂z(1)z(2) �̂2z(2)

��1�
�̂y(2)z(1)
�̂y(2)z(2)

�
= (Z 0Z)�1Z 0y(2); (9)

where the n � 2 matrix Z and n � 1 vector y(2) are de�ned in the obvious way. Hence, as is
well-known, reduced form coe¢ cients are identi�ed and can be estimated consistently by the
method of moments (MM), which in this case is equivalent to least-squares (LS). From yet
another equation in second moments

�2y(2) = �
2
1�
2
z(1) + 2�1�2�z(1)z(2) + �

2
2�
2
z(2) + �

2
v; (10)

we easily �nd a consistent MM estimator for �2v; namely

�̂2v = �
2
y(2) � �̂

2
1�̂
2
z(1) � 2�̂1�̂2�̂z(1)z(2) � �̂

2
2�̂
2
z(2) =

1

n
y(2)0[I � Z(Z 0Z)�1Z 0]y(2): (11)

Due to the presence of the unknown term �y(2)"; identifying �, 
1 and 
2 and obtaining
consistent estimators for them from the three equations (4), (5) and (6) is only possible by
incorporating extra information. We will �rst review three options for this that have been
discussed in the econometric literature for over half a century already, and next two further
options, which have been suggested only very recently. We shall also try to indicate the
advantages and disadvantages of these various approaches with respect to what in our opinion
should be the major aspirations in econometrics.
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2 Inference aspirations

In econometrics we want our inferences to be: credible, robust, e¢ cient and accurate. These
four qualities refer to the following. Although we have to accept that econometric inferences
will be based on particular assumptions that simply have to be adopted, which neither can be
imposed by brute force nor be veri�ed empirically, we nevertheless often have a choice regarding
which assumptions to adopt, or whether to formulate them very strictly or less restrictively.
While adopting purely hypothetical and rather abstract assumptions may provide �as it seems
�a fertile starting point in producing inference in economic theory, it cannot serve empirical
econometrics in the same way, simply because in that �eld the assumptions made should not
be incompatible with reality. Although employing sound econometric theory built on premises
which do not hold for the data under study might still be labelled conditionally valid, it is at
the same time misleading and of no practical use.
So, in econometrics both illusory and elusive assumptions should best be avoided as much

as possible. Nevertheless, the extent of the credibility of the adopted restrictions will be deter-
mined largely by subjective preferences. It is obvious, though, that less binding assumptions
are usually more credible. Designing inferences such that they apply to less binding assump-
tions also boosts robustness. Robustness as such refers to appropriateness of the inference
technique under a wide set of assumptions. However, robustness usually comes with a price
in terms of reduced e¢ ciency. The asymptotic e¢ ciency of inferences and their precision in
�nite samples is often expressed by measures such as (asymptotic) root mean squared error,
(local) power of tests, or length of con�dence intervals. Naturally, we will prefer the inference
technique which achieves higher precision than its competitors, but self-evidently here we will
as a rule face trade-o¤ dilemmas between e¢ ciency and robustness. Usually these cannot be
enhanced both at the same time. Finally, we want our inferences to be accurate, by which
we mean that they should ful�ll their claimed precision. Hence, estimated standard errors of
estimators should concur closely with the actual corresponding standard deviations, and the
actual type I error probability of tests should be close to the nominal signi�cance level aimed
at, whereas the actual coverage probability of con�dence sets should be close to their claimed
con�dence coe¢ cient.
Regarding the classic simultaneous equations model, which we did set out above in simpli-

�ed rudimentary form, and which has been studied intensively since World War II, it may seem
almost impossible that a new and useful technique can still be added to the existing econome-
tricians toolbox. Nonetheless, we will suggest one below, and claim that what we nicknamed
kinky least squares (KLS) has a very high CREA-factor. Very often it creates jointly more
Credibility, Robustness, E¢ ciency and Accuracy than the existing techniques.

3 Five routes towards identi�cation

First we discuss three strategies that have been very well documented in the literature1 already,
and next two that have been suggested only very recently. They all claim to allow consistent
estimation of the coe¢ cients of the structural equation for y(1)i : Note that in practice what
we denote here as the separate vectors of explanatory variables y(2)i ; z

(1)
i ; z

(2)
i might actually

be vectors including more than one variable. However, allowing for that would complicate

1For a concise and easily accessible though rather complete overview of the merits and pitfalls of the standard
approaches, see Larcker and Rusticus (2010).
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the notation substantially, but not lead to qualitatively very di¤erent results, although having
an unequal number of elements in 
1 and 
2 would require some special attention. The �ve
distinct routes towards identi�cation that we are aware of are the following.

A. Assuming �"v = 0: This restriction implies �y(2)" = 0; so that y
(2)
i is predetermined. Then

the structural equation can be estimated consistently by LS. Of course, if in fact �"v 6= 0, then
simultaneity is neglected and the LS estimator is inconsistent2, which jeopardizes the accuracy
of standard LS inference. Because the LS residuals are orthogonal to all the regressors by
construction, it is impossible to use them to test the validity of the restriction �y(2)" = 0: Such
a test is only feasible when the structural equation is identi�ed. This requires that it obeys at
least one exclusion restriction. However, according to established wisdom, such a restriction
cannot be tested either, unless the equation is identi�ed. Hence, for this option A it does not
seem that its credibility is easily substantiated. Thus, its accuracy is often doubtful.

B. Assuming 
2 = 0: Note that our model is symmetric in z(1)i and z(2)i ; so assuming 
1 = 0
would have similar consequences. If this exclusion restriction is valid then the remaining
coe¢ cients are identi�ed. The two equations (5) and (6) contain two unknowns now and
direct application of MM yields�

�̂

̂1

�
=

�
�̂y(2)z(1) �̂2z(1)
�̂y(2)z(2) �̂z(1)z(2)

��1�
�̂y(1)z(1)
�̂y(1)z(2)

�
= (Z 0X)�1Z 0y(1); (12)

where X is the n�2 matrix with (y(2)i z
(1)
i ) on the i

th row. This is the well-known instrumental
variables (IV) estimator (and in a more general setting we would have found the 2SLS estima-
tor). It is consistent. However, when at least one of the instruments is weak, it will su¤er from
�nite sample bias almost as severe as inconsistent LS and have very poor e¢ ciency too. These
problems aggravate, and the IV estimator becomes inconsistent, when the exclusion restriction

2 = 0 is in fact invalid. Then 
2z

(2)
i has to be accommodated by the disturbance term with

the e¤ect that orthogonality of this implied disturbance and z(2)i ceases to be a possibility.
Because the equations (4) through (6) do not identify 
2 the exclusion restriction cannot be
tested from them. Hence, any inference on � and 
1 based on this restriction is not credible
without strong supplementary (from external sources) evidence on its validity.
The exclusion restriction issue refers to the classic problem of identifying the direct (causal)

e¤ect of y(2) on y(1) when y(2) itself depends on y(1): To measure this direct e¤ect of endogenous
explanatory variable y(2) on y(1) variable z(2) is an e¤ective instrument if: (a) it has no direct
e¤ect on y(1) (
2 = 0); (b) but only an indirect e¤ect via y

(2) (�2 6= 0). If the e¤ect of z(2) on
y(2) is not very strong (�2�z(2) is relatively small), then the instrument is weak and both � and

1 are only weakly identi�ed, which results in poor e¢ ciency plus poor accuracy. If �2 = 0
then � and 
1 are not identi�ed, irrespective whether or not the exclusion restriction 
2 = 0
holds. The strength of instruments can always be assessed by estimating the reduced form,
but statistical testing of the exclusion restriction is in the present context impossible.

C. Extending the reduced form equation. Instead of imposing restrictions, one can
also try to extend the information, by disentangling disturbance vi and exploiting (alleged?)
explanatory variables earlier omitted from the reduced form equation. Then this may lead to

2More consequences for LS of neglected simultaneity are analyzed in Kiviet and Niemczyk (2010).
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an extra component �3z
(3)
i in (2) with also an extra corresponding orthogonality condition.

Assuming now that �3 6= 0; whereas z(3)i has coe¢ cient zero in the structural equation, we can
�nd consistent IV estimators for �; 
1 and 
2 from the three equations (5), (6) and

�y(1)z(3) = ��y(2)z(3) + 
1�z(1)z(3) + 
2�
2
z(3) : (13)

Whether this approach is e¤ective hinges upon the strength of instrument z(3)i and the credibil-
ity of its zero coe¢ cient in the structural equation. As always, the strength can be measured,
but it is likely to be poor, given that omission of this variable was �rst seen as acceptable.
Again, the exclusion restriction is untestable (because in the present case it does not concern an
overidenti�cation restriction). Hence, faith in its credibility gained from other than statistical
sources is again crucial. Note that in the end cases C and B have much in common. Where
B achieves identi�cation by imposing a restriction on the structural form, C does by no longer
imposing an earlier implicit restriction on the reduced form.

D. Assuming 
2 = 
20: If the exclusion restriction seems inappropriate, and one does no
longer aim at estimating 
2 because information on its value can be obtained from other
sources, then estimates for � and 
1 can be obtained directly from (5) and (6). This yields�

�̂

̂1

�
=

�
�̂y(2)z(1) �̂2z(1)
�̂y(2)z(2) �̂z(1)z(2)

��1�
�̂y(1)z(1) + 
20�̂z(1)z(2)
�̂y(1)z(2) + 
20�̂

2
z(2)

�
= (Z 0X)�1Z 0y(1) + (Z 0X)�1Z 0Z

�
0

20

�
: (14)

Of course, this modi�ed IV estimator is inconsistent when the assumption on 
2 is incorrect.
However, such an assumption can be made more �exible, for instance, by assuming 
2 to be the
realization of a random drawing. This approach, and some Bayesian extensions, have been put
forward recently by Kraay (2011) and Timothy et al. (2011). Although they replace the often
very incredible exclusion restriction by a possibly much less restrictive and therefore also more
credible assumption on 
2; the resulting e¢ ciency and accuracy will still be highly dependent
on the validity of the instruments (3) and on their strength.

E. Assuming �y(2)" = �0: Yet another option is to make an assumption on actual the degree
of simultaneity. This leads to a procedure which does not require to impose any untestable
exclusion restrictions, and neither is its e¢ ciency and accuracy dependent on the strength of
instruments. More details are given in Kiviet (2011). The essentials are as follows. De�ning
the tth row of X now to contain (y(2)i z

(1)
i z

(2)
i ) and substituting �y(2)" = �0�y(2)�"; the equations

(4) through (6) yield0@ �̂

̂1

̂2

1A = (X 0X)�1X 0y(1) + (X 0X)�1

0@ n�0�̂y(2) �̂"
0
0

1A : (15)

Here �̂" is the square root of the consistent estimator for �2" given by

�̂2" =
1

1� �20[1� y(1)0Z(Z 0Z)�1Z 0y(1)=y(1)0y(1)]
y(1)0[I �X(X 0X)�1X 0]y(1)

n
: (16)
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This estimator involves application of LS, which is next modi�ed in such a way that the various
moment equations are being respected, securing consistency. At �rst sight, it seems unfeasible,
because it requires the value of the unobservable �y(2)": But then any MM estimator, including
IV, is actually unfeasible, because they are obtained by substituting �z(j)" = 0; whereas �z(j)" is
unobservable too (and, in addition, the exclusion restrictions it requires for just identi�cation
are untestable). So, estimator (15) is certainly not necessarily less credible than other MM
estimators. Moreover, its credibility can be enhanced by extending the underlying adopted
assumption to the interval �y(2)" 2 [�Ly(2)"; �

U
y(2)"

]: Of course, the wider this interval is, the more
robust (although less e¢ cient) the resulting inference will be. We do admit that (15) is an
odd estimator, and it is curious that LS after a modi�cation produces a useful estimator of
coe¢ cients which under the usual notions are not even identi�ed. However, making an interval
assumption on the simultaneity has apparently su¢ cient identifying power. All in all, Kinky
LS seems an appropriate name for this uncommon estimator.

4 Where does KLS lead to?

KLS based inference can only be used e¤ectively in practice by exploiting the limiting dis-
tribution of estimator (15), provided this is reasonably accurate for its properties in �nite
samples. In Kiviet (2011) initial results can be found which demonstrate that under normality
of all the regressor variables and the structural disturbance, the expression for the limiting
distribution of KLS is remarkably simple. Moreover, in simulation experiments inference in
�nite samples proves to be highly accurate when built on the true value of the simultaneity
coe¢ cient. Already for moderately strong instruments it is more accurate and e¢ cient than
IV based inference, and especially so when the instruments are weak. KLS inference can be
made more credible and more robust by extending the interval [�L

y(2)"
; �U
y(2)"

]: If the true value
is in the interval this means that KLS inference will be too prudent (the coverage probability
of con�dence intervals is much higher than required) but can still often be more e¢ cient than
IV inference. Only when the true value of the simultaneity coe¢ cient is not in the adopted
interval KLS inference becomes inaccurate and may be worse than IV inference. Presently,
work is underway to provide full proofs for cases with an arbitrary number of endogenous and
exogenous regressors, supplemented with applications which will throw new light on estab-
lished empirical results which are based on IV inference exploiting often weak and possibly
even invalid instruments. In principle, it will then be possible to test the allegedly untestable
exclusion restrictions by KLS!
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