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Abstract

This paper develops an ordered choice model for the federal funds rate target

with endogenous switching among three latent regimes and possibly endogenous

explanatory variables. Estimated for the Greenspan era (1987-2006), the new

model detects recurring switches among three policy regimes (interpreted as loose,

neutral and tight policy stances) in response to the state of economy, outperforms

the Taylor rule and the existing discrete-choice models both in and out of sam-

ple, correctly predicts out of sample 90% of the Fed decisions during the next

thirteen years, successfully handles the zero lower bound period by a prolonged

switch to a loose policy regime with no-change to the target rate (while the Taylor

rule and the conventional ordered probit model predict further cuts), and delivers

markedly different inference. The empirical results suggest that the endogeneity

of explanatory variables does matter in modelling monetary policy and can distort

the inference: the marginal effects on the choice probabilities can differ by several

times and even have the opposite signs.
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1 Introduction

Despite the discrete nature of monetary policy interest rates, the regime-switching be-

havior of central banks and endogeneity of policy shocks, we lack a model that properly

addresses all these three issues. The voluminous studies, which quantitatively formalize

how the US Federal Reserve System (Fed) and other central banks set their policy in-

terest rates, typically estimate monetary policy rules (central bank reaction functions)

using a regression model for a continuous dependent variable. However, during the last

three decades, the Fed has been and a growing number of other central banks have begun

setting their policy rates by discrete increments, typically of 25 basis points (bp), i.e. a

quarter of a percentage point. The discrete and censored nature of policy rates renders

a regression model for a continuous dependent variable inappropriate, and has moti-

vated the usage of latent class econometric techniques for an ordinal outcome (Dueker,

1999; Hamilton and Jorda, 2002; Hu and Phillips, 2004; Dolado et al., 2005; Piazzesi,

2005; Gerlach, 2007, 2011; Monokroussos, 2011). The monetary policy studies typically

employ a single-equation model that cannot let central bank actions be generated in

different regimes, though a regime-switching approach, built on the seminal work of

Hamilton (1989), is widely used in macroeconomic modeling. Besides, the existing lit-

erature largely ignores a problem of endogeneity (de Vries and Li, 2014), although the

forward-looking behavior of the Fed and financial markets as well as the autocorrelation

of monetary shocks can cause endogeneity due to a possible correlation between the

shocks and regressors.

In order to fill the gap in the literature and adequately address these concerns, I

develop a Switching Ordered Probit (Swopit) model that allows for the discreteness of
policy interest rates, the endogenous explanatory variables, and the endogenous regime

switching among three latent policy regimes, generating three types of status quo (no-

change) outcomes and asymmetric policy reactions. Methodologically, the Swopit model

generalizes to discrete outcomes the endogenous regime switching models, developed

for continuous outcomes by Kim et al. (2008) and Chang et al. (2017), and extends

the existing two-equation discrete-choice models for policy rates (see Figure 1): the

autoregressive conditional hazard —ordered probit (ACH-OP) model of Hamilton and

Jorda (2002) and the middle-inflated ordered probit (MIOP) models of Brooks et al.

(2012).

The Swopit model assumes three latent decisions represented by three ordered pro-

bit (OP) equations: a regime-switching equation and two regime-specific outcome equa-

tions. The regime switching among three latent regimes (interpreted as tight, neutral

and loose policy stances) is endogenously driven by a central bank response to observed
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and unobserved economic data and has time-varying transition probabilities. The neu-

tral regime generates only no-change outcomes. The outcome decisions in the tight and

loose regimes are driven by the observed data and the unobservables that can be con-

temporaneously correlated with the unobservables in the regime equation (in this sense

the regime switching is endogenous).

Figure 1. The Swopit model is an extention of the ACH-OP and MIOP models

The rationale behind the three-regime approach can be motivated by a stylized fact

that more than a half of the policy decisions of the Fed (and of many other central banks)

are the no-change decisions, which are made in three different economic circumstances

(and hence likely in different policy regimes), namely: in contractionary periods when

the policy rate moves only up; in policy maintaining periods when the rate remains

unchanged prior to policy reversals; and in expansionary periods when it moves only

down (see Figure 2). Many of the no-change decisions, situated between rate hikes during

policy contraction, are likely to be driven by different economic conditions compared

with many of those that are situated between cuts during policy expansion. Many of

the status quo decisions, clustered prior to policy reversals during maintaining periods,

are also likely to differ from those in expansionary or contractionary periods.
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Figure 2. FOMC decisions on federal funds rate target are made in different circum-
stances: during the expansionary (↓) , maintaining (=) or contractionary (↑) policy
periods

Notes. Both scheduled and unscheduled FOMC decisions during the 7/1987—1/2006 period. The expan-

sionary/contractionary periods are periods when the target changes in the same direction (down/up),

from the first to the last sequential unidirectional change (decrease/increase, respectively). The main-

taining periods are the status quo periods preceding the policy reversals

The Swopit model can accommodate the possible unobserved heterogeneity of abun-

dant status quo decisions by allowing them to be generated by three distinct decision-

making paths. In addition, the cuts and hikes can also be generated by distinct processes.

A trichotomous regime decision seems to be more realistic than a binary decision (change

or no change) if applied to ordinal data such as policy rate changes that assume neg-

ative, zero and positive values. The policymakers, who consider adjusting the policy

rate, have already decided in which direction they are going to change it. Furthermore,

a decision to increase or lower the rate may be driven by an asymmetric reaction to eco-

nomic data. Combining these two distinct decisions into one category in the MIOP and

ACH-OP models may seriously distort the inference. The empirical rejection of MIOP

model in favor of the Swopit model provides a compelling evidence of switching among

three policy regimes and asymmetric effects of explanatory variables on the decisions to

decrease or increase the policy rate. The conventional single-equation OP model leads

to inferences that are markedly different from those in the Swopit model: for example,

the marginal effects (ME) of the explanatory variables on the choice probabilities can

differ by several times and can even have the opposite directions. A flexible three-regime

structure of the Swopit model overcomes an important limitation of the single-equation
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ordered-choice models – the single crossing property – and lets the sign of the ME

change more than once when moving from the lowest choice to the highest one.

The federal funds rate target (target henceforth) is a principal tool of US monetary

policy and a key determinant of other short-term market interest rates. The target is

widely referenced and anticipated by financial markets all over the world. Unlike the

effective federal funds rate determined by the interactions of supply of and demand for

federal funds at the daily open market operations in the Federal Reserve Bank of New

York, the target is set administratively by the chairman of the Fed according to the

directives of the Federal Open Market Committee (FOMC). I use the FOMC scheduled

decisions as sample observations, and estimate the Fed reaction to the observed published

values of recent economic and daily financial data that the policymakers would have seen

at each FOMC meeting, employing the vintages of real-time data that do not include

subsequent revisions.

This approach is shown to provide a high economic relevance for modelling the tar-

get. Oscillating switches among three regimes evolving endogenously in response to the

state of the economy are detected during a relatively stable policy period such as the

Greenspan era, while the zero lower bound (ZLB) period is tackled by a prolonged switch

to a loose policy regime. I found that the next FOMC decision can be successfully pre-

dicted using the real-time values of the spread between the one-year treasury constant

maturity rate and effective federal funds rate, the forecast (“nowcast”) of the number of

housing units started for current quarter, the “nowcast”of the growth rate in the nom-

inal gross domestic product for current quarter, and the statement on monetary policy

released after the previous FOMC meeting. According to the Swopit model, the average

probability of neutral policy stance in the Greenspan era is 0.31, whereas the observed

frequency of status quo decisions is 0.64. Only a half of the no-change decisions is gen-

erated by the neutral policy reaction to economic conditions; another half originates in

the tight or loose policy regime. Even during the maintaining policy periods a half of the

status quo responses is generated in the tight or loose regime. The outcome decisions

tend to smooth the target by weakening the up- and downward policy inclinations and

leaving the target unchanged.

The Swopit model clearly outperforms the existing models (the Taylor rule, the OP

and MIOP models, and the models of Hu and Phillips (2004) and Piazzesi (2005)) in

the in- and out-of-sample forecasting. The Swopit model estimated for the Greenspan

era (7/1987-1/2006) predicts correctly about 90 percent of FOMC decisions to lower,

leave unchanged or raise the target both in and out of sample during the next thirteen

years. It is a challenging forecasting exercise because during the training sample the

target was always well above zero, while during the forecasting sample the target sharply
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approached the ZLB, stuck at it for seven years, and then began slowly moving up. The

Swopit model beats the competitors before and after the ZLB period, and incorrectly

predicts only four cuts during the ZLB period while the Taylor rule and the OP model

incorrectly predict 25 and 19 cuts, respectively.

If our interest is not in forecasting the Fed decisions but rather in the ex-post estima-

tion of the Fed policy rule, we must pay attention to a possible problem of endogeneity

in order to avoid a bias in the estimates. To allow for endogenous explanatory vari-

ables (EEV) in the Swopit model I implement the control function (CF) approach – a

two-stage instrumental variable method. I obtain the instruments using a market-based

proxy for monetary policy shocks – the difference between the observed and antici-

pated by the market FOMC decisions. The empirical results suggest that endogeneity

of explanatory variables does matter in the identification of the Fed policy rule and can

distort the inference: the marginal effects on the choice probabilities in the Swopit model

with controls for endogeneity can differ by several times and can have the opposite signs.

The performed Monte Carlo experiments suggest that the proposed maximum like-

lihood (ML) and CF estimators are consistent and provide a reliable inference in small

samples.

2 The switching ordered probit model

2.1 Model

Figure 3 shows the decision tree of the Swopit model. Let t (t = 1, 2, ..., T ) denote

one of the available T observations – meetings of the FOMC. Let yt be an observed

dependent variable – the change to the target made at meeting t. The Fed increases or

decreases its target by discrete increments, but leaves it unchanged at more than a half

of FOMC meetings. Let yt take positive, zero, or negative ordinal values coded by index

j (j = J−, ...,−1, 0, 1, ..., J+), among which an abundant and potentially heterogeneous

no-change outcome is coded as 0. Let yt be generated in one of three unobserved regimes,

coded by rt (rt = −1, 0, 1) and interpreted as monetary policy stances (loose, neutral, or

tight, respectively). Let the regime decision rt be determined by the continuous latent

variable r∗t – the desired target change, endogenously driven in response to the observed

data and unobservables according to the OP regime equation. Let the correspondence

between r∗t and rt be determined by unobserved thresholds in the usual ordered-response

fashion according to the matching rules. Let yt ≤ 0 (a decrease or no change) in the

loose regime (if rt = −1), yt = 0 (no change) in the neutral regime (if rt = 0), and

yt ≥ 0 (an increase or no change) in the tight regime (if rt = 1). In the loose and
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tight regimes, let yt be determined (also in the usual ordered-response fashion) by the

unobserved continuous latent variables y−∗t and y+∗
t , respectively, which represent the

potential outcomes in each regime and are driven in response to the observed data

and unobservables according to the OP outcome equations. Let the unobservables in

the outcome equations be contemporaneously correlated with the unobservables in the

regime equation.

To summarize, the Swopit model can be described by the following system

r∗t = xtβ + εt (regime equation),

rt =


−1

0

1

if

if

if

r∗t ≤ µ1

µ1 < r∗t ≤ µ2

r∗t > µ2

(regime matching rule),

y−∗t = x−t β
− + ε−t

y+∗
t = x+

t β
+ + ε+

t

(outcome equations),

yt =


j(j ≤ 0)

0

j(j ≥ 0)

if

if

if

rt = −1

rt = 0

rt = 1

and µ−j−1 < y−∗t ≤ µ−j

and µ+
j < y+∗

t ≤ µ+
j+1

(outcome (1)

matching

rules),

[
ε−t

εt

]
iid∼ N

(
0

0
,

[
σ2
− ρ−σσ−

ρ−σσ− σ2

])
(interdependence

between

the error terms in[
ε+
t

εt

]
iid∼ N

(
0

0
,

[
σ2

+ ρ+σσ+

ρ+σσ+ σ2

])
the regime and outcome

decisions),

where xt, x−t and x+
t are the observed row vectors, which in addition to the predetermined

covariance-stationary explanatory variables may also include the lags of yt (xt, x−t and

x+
t may or may not contain common elements); β, β

− and β+ are the vectors of unknown

slope parameters; εt, ε−t and ε
+
t are the independently and identically distributed (iid)

across t unobserved disturbance terms (εt, ε−t and ε
+
t are mutually independent at leads

and lags: E(εtε
−
t+τ ) = E(εtε

+
t+τ ) = 0 for ∀τ 6= 0); and µ1 ≤ µ2, −∞ = µ−J−−1 ≤ µ−J− ≤

... ≤ µ−0 = ∞ and −∞ = µ+
0 ≤ µ+

1 ≤ ... ≤ µ+
J++1 = ∞ are the unknown threshold

parameters. To allow for endogenous regime switching, let the joint distributions of

(εt; ε
−
t ) and (εt; ε

+
t ) be bivariate normal.
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Figure 3. Decision tree of the Swopit model

Conditional on the observed data, the probabilities of the outcome j are given by

Pr(yt = j|xt,x−t ,x+
t ) = Ij≤0 Pr(r∗t ≤ µ1 and µ

−
j−1 < y−∗t ≤ µ−j |xt,x−t )

+Ij=0 Pr(µ1 < r∗t ≤ µ2|xt) + Ij≥0 Pr(µ2 < r∗t and µ
+
j < y+∗

t ≤ µ+
j+1|xt,x+

t )

= Ij≤0 Pr(εt ≤ µ1 − xtβ and µ−j−1 − x−t β
− < ε−t ≤ µ−j − x−t β

−)

+Ij=0 Pr(µ1 − xtβ < εt ≤ µ2 − xtβ) (2)

+Ij≥0 Pr(µ2 − xtβ < εt and µ+
j − x+

t β
+ < ε+

t ≤ µ+
j+1 − x+

t β
+)

= Ij≤0[Φ2(µ1 − xtβ;µ−j − x−t β
−;ρ−)− Φ2(µ1 − xtβ;µ−j−1 − x−t β

−;ρ−)]

+Ij=0[Φ(µ2 − xtβ)− Φ(µ1 − xtβ)]

+Ij≥0[Φ2(−µ2 + xtβ;µ+
j+1 − x+

t β
+;−ρ+)− Φ2(−µ2 + xtβ;µ+

j − x+
t β

+;−ρ+)],

where Ij≤0 is an indicator function such that Ij≤0 = 1 if j ≤ 0, and Ij≤0 = 0 if j > 0

(Ij=0 and Ij≤0 are defined analogously); Φ is the cumulative distribution function (CDF)

of the standard normal distribution; and Φ2 is the CDF of the standardized bivariate

normal distribution. These probabilities can be computed as

Pr(yt = J−|xt,x−t ,x+
t ) = Φ2(µ1 − xtβ;µ−J− − x−t β

−; ρ−);

Pr(yt = j|xt,x−t ,x+
t )

= Ij≤0[Φ2(µ1 − xtβ;µ−j − x−t β
−;ρ−)− Φ2(µ1 − xtβ;µ−j−1 − x−t β

−;ρ−)]

+Ij=0[Φ(µ2 − xtβ)− Φ(µ1 − xtβ)] + Ij≥0[Φ2(−µ2 + xtβ;µ+
j+1 − x+

t β
+;−ρ+)

−Φ2(−µ2 + xtβ;µ+
j − x+

t β
+;−ρ+)] for J− < j < J+;
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Pr(yt = J+|xt,x−t ,x+
t ) = Φ2(−µ2 + xtβ;−µ+

J+ + x+
t β

+; ρ+).1

As is typical in the ordered-choice modelling, β, β− and β+ are identified only up

to scale and location, i.e. only jointly with the corresponding threshold parameters µ,

µ− and µ+, and the variances σ2, σ2
− and σ

2
+. To identify the parameters, the intercept

components of β, β− and β+ are fixed to zero, and the variances σ2, σ2
− and σ

2
+ are

fixed to one. The probabilities in (2), however, are absolutely estimable and invariant

to the identifying assumptions. They can be estimated using an ML estimator of the

vector of the parameters θ = (µ;β;µ−;β−; ρ−;µ+;β+; ρ+) that solves

max
θεΘ

T∑
t=1

J+∑
j=J−

ht,j ln[Pr(yt = j|xt,x−t ,x+
t ,θ)],

subject to the constraints: µ1 ≤ µ2, −∞ = µ−J−−1 ≤ µ−J− ≤ ... ≤ µ−0 = ∞ and

−∞ = µ+
0 ≤ µ+

1 ≤ ... ≤ µ+
J++1 = ∞, where htj is an indicator function such that

ht,j = 1 if yt = j and htj = 0 otherwise, and Θ is a parameter space. In general, the

parameters in θ are separately identified (up to scale and location) via the functional

form due to the nonlinearity of the OP equations (Wilde, 2000). There is no need for

exclusion restrictions on the specification of covariates in the latent equations (ensuring

that xt, x−t and x+
t are not identical) to avoid collinearity problems. The performed

Monte Carlo experiments (see Section 3) illustrate that the Swopit model is indeed

identified without exclusion restrictions.

In practice, however, the collinearity problems might still exist if many observations

lie within the middle quasi-linear range of normal CDF. If xt, x−t and x+
t are identical, the

simultaneous estimation of three OP equations may be subject to imperfect collinearity

and weak identification (the common symptoms of this problem are close-to-singular

Hessian matrix and large standard errors). The estimation can be cumbersome and

infeasible if sample size is not large enough as is often the case in monetary policy

modeling. The Swopit estimator can suffer from problems with the invertibility of the

Hessian matrix, because in small samples the likelihood function at the maximum can

be flat for an infinitely wide range of parameters’values. In this case, the exclusion

restrictions may be desirable.

The starting values for the slope and threshold parameters in θ can be obtained by,

for example, using the independent OP estimations of each latent equation. The starting

values for ρ− and ρ+ can be computed by maximizing the likelihood function over a grid

1The probabilities of the outcome j if ρ− = ρ+ = 0 (then εt, ε
−
t and ε

+
t are mutually independent,

and regime switching is exogenous) are shown in Online Appendix A.
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search, i.e. by changing the values of ρ− and ρ+ in small increments while holding the

other parameters at their estimates in the exogenous-switching model. The asymptotic

standard errors of θ̂ can be estimated from the Hessian matrix. The performed Monte

Carlo experiments suggest that the proposed estimator is consistent.

In general, neither the OP nor MIOP model is nested in the Swopit model, and vice

versa. However, these models are not strictly non-nested. They overlap under certain

parameter restrictions, namely, if their slope coeffi cients are all fixed to zero and only the

thresholds are estimated. Therefore, the comparison of the OP or MIOP model with the

Swopit model can be performed using a test for non-nested overlapping models, such as

the Vuong test (Vuong, 1989). An interesting special case when the Swopit model nests

the MIOP model occurs under certain parameter restrictions provided (i) the dependent

variable has only three outcome categories, (ii) both x−t and x+
t contain all regressors

in the MIOP regime equation, and (iii) xt contains all regressors in the MIOP outcome

equation (see Online Appendix B for a proof). In this case, the comparison of the

Swopit and MIOP models can be performed using a test for nested models, such as the

likelihood ratio (LR) test.

2.2 Marginal effects

Let xallt denote a vector that contains the values of all variables in xt, x−t and x+
t . The

ME of an explanatory variable k (the kth element of xallt ) on the probability of choice j

can be computed as

MEk,j,t = ∂ Pr(yt=j|θ)

∂xallt,k
= Ij≤0

{[
Φ

(
µ1−xtβ−ρ−(µ−j−1−x−t β

−)√
1−(ρ−)2

)
φ(µ−j−1 − x−t β

−)

−Φ

(
µ1−xtβ−ρ−(µ−j −x−t β

−)√
1−(ρ−)2

)
φ(µ−j − x−t β

−)

]
β−allk

−
[
Φ

(
µ−j −x−t β

−−ρ−(µ1−xtβ)√
1−(ρ−)2

)
− Φ

(
µ−j−1−x−t β

−−ρ−(µ1−xtβ)√
1−(ρ−)2

)]
φ(µ1 − xtβ)βallk

}
−Ij=0[φ(µ2 − xtβ)− φ(µ1 − xtβ)]βallk

+Ij≥0

{[
Φ

(
xtβ−µ2+ρ+(µ+j −x+t β

+)√
1−(ρ+)2

)
φ(µ+

j − x+
t β

+)

−Φ

(
xtβ−µ2+ρ+(µ+j+1−x+t β

+)√
1−(ρ+)2

)
φ(µ+

j+1 − x+
t β

+)

]
β+all
k

+

[
Φ

(
µ+j+1−x+t β

++ρ+(xtβ−µ2)√
1−(ρ+)2

)
− Φ

(
µ+j −x+t β

++ρ+(xtβ−µ2)√
1−(ρ+)2

)]
φ(xtβ − µ2)βallk

}
,

where φ is the probability density function (PDF) of the standard normal distribution,

and βallk , β
−all
k and β+all

k are the coeffi cients on the kth explanatory variable from xallt

in the regime equation, the outcome equation conditional on rt = −1 and the outcome

equation conditional on rt = 1, respectively (βallk , β
−all
k , or β+all

k is zero if the kth
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explanatory variable in xallt is not included into the corresponding equation). For a

discrete-valued explanatory variable, the ME should be computed as the change in the

probabilities when this variable changes by one increment and the others are held fixed.

A flexible three-part structure of the Swopit model is able to overcome a typical

shortcoming of the single-regime ordered-choice models, in which the MEs on the prob-

abilities of outcomes at the opposite ends of the ordered scale always have the opposite

signs, and the sign of the ME can only change once when moving from the smallest

category to the largest one (so-called single crossing property). In contrast, the Swopit

model lets a certain variable have the same sign of the ME on the probabilities of both

the largest and smallest choice categories, and also lets the sign of the ME change more

than once when moving from the smallest category to the largest one.

2.3 Allowing for endogenous explanatory variables

The Swopit model can be extended by relaxing the assumption that the explanatory

variables in xt, x−t and x+
t are not correlated with the corresponding error terms εt,

ε−t and ε
+
t . Accounting for endogeneity in nonlinear models, even relatively simple ones,

is more diffi cult to implement than in linear models. A simple mimicking of two-stage

least squares estimation of linear models (i.e. inserting fitted values from the reduced

form in place of endogenous regressors in the structural equations) does not generally

work for nonlinear models and often makes the endogeneity bias worse (Bhattacharya

et al., 2006; Terza et al., 2008).

To accommodate the EEVs in the Swopit model I implement the two-step CF ap-

proach, which was developed for nonlinear models by Smith and Blundell (1986), Newey

(1987) and Rivers and Vuong (1988), among others, and extensively applied to the

sample-selection, censored and disequilibrium models, as well as to the time-series mod-

els in the context of Markov-switching linear regressions (Kim, 2004). This method

introduces residuals from the ordinary least squares (OLS) regressions of each EEV on

the set of available instruments into the structural equations as additional regressors

(bias correction terms). These residuals are ideally those components of the EEVs that

are attributable to the unobserved monetary shocks. Although a joint ML estimation

procedure is asymptotically most effi cient, the two-step approach is computationally

simpler, requires fewer assumptions and provides a reasonable alternative: the Monte

Carlo experiments show that the two-step procedure can be more effi cient than the joint

one in finite samples (Kim, 2009). For a textbook exposition of CF method in discrete-

choice, censored and sample-selection models see Wooldridge (2010). For an overview of

CF approach in applied econometrics see Wooldridge (2015).
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To obtain the CF Swopit estimator, modify and augment system (1) with the reduced

forms for EEVs as follows:

r∗t = xtβ + wtγ + εt (regime equation),

rt =


−1

0

1

if

if

if

r∗t ≤ µ1

µ1 < r∗t ≤ µ2

r∗t > µ2

(regime matching rule),

y−∗t = x−t β
− + w−t γ

− + ε−t

y+∗
t = x+

t β
+ + w+

t γ
+ + ε+

t

(outcome equations),

yt =


j(j ≤ 0)

0

j(j ≥ 0)

if

if

if

rt = −1

rt = 0

rt = 1

and µ−j−1 < y−∗t ≤ µ−j

and µ+
j < y+∗

t ≤ µ+
j+1

(outcome (3)

matching

rules),

wt = ztδ + νt, w−t = z−t δ
− + ν−t , w+

t = z+
t δ

+ + ν+
t (reduced forms for EEVs),[

ε−t

εt

]
iid∼ N

(
0

0
,

[
σ2
− ρ−σσ−

ρ−σσ− σ2

]) (interdependence

between

the error terms[
ε+
t

εt

]
iid∼ N

(
0

0
,

[
σ2

+ ρ+σσ+

ρ+σσ+ σ2

])
in the regime

and outcome decisions),

where xt, x−t and x+
t are the observed row vectors that now contain only exogenous

explanatory variables; wt, w−t and w+
t are the observed row vectors that contain only

EEVs; zt, z−t and z+
t are the observed row vectors that contain all exogenous variables

including those in xt, x−t and x+
t , respectively; γ, γ

− and γ+ are the vectors of unknown

parameters; δ, δ− and δ+ are the matrices of unknown parameters; νt, ν−t and ν
+
t are

the row vectors of normally distributed unobserved error terms with zero means; and

the rest of variables and parameters are defined as in system (1).

Assume that each of three pairs (εt;νt), (ε−t ;ν−t ) and (ε+
t ;ν+

t ) is independent of,

respectively, zt, z−t and z+
t , and jointly normally distributed with zero mean. The

regressors wt, w−t and w+
t are endogenous if the structural error terms εt, ε

−
t and ε

+
t in

the above three pairs are correspondingly correlated with the reduced form error terms

νt, ν−t and ν
+
t . If there is no correlation in any of these pairs, there is no endogeneity

problem. Under the joint normality of these pairs, assume εt = νtλ+ζt, ε
−
t = ν−t λ

−+ζ−t

and ε+
t = ν+

t λ
+ + ζ+

t to obtain

r∗t = xtβ + wtγ + νtλ+ ζt,

y−∗t = x−t β
−+w−t γ

− + ν−t λ
− + ζ−t ,

y+∗
t = x+

t β
++w+

t γ
+ + ν+

t λ
+ + ζ+

t ,

where λ, λ− and λ+ are the vectors of unknown parameters; (ζt, ζ
−
t and ζ

+
t ) are the
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error terms that are assumed to be normally distributed with zero means and inde-

pendent of, respectively, (zt, z−t and z+
t ), (xt, x−t and x+

t ) and (νt, ν
−
t and ν

+
t ), and

therefore independent of (wt, w−t and w+
t ). Since εt, ε

−
t and ε

+
t have unit variance due

to normalization,

var(ζt) = var(εt − νtλ) = 1− var(νtλ),

var(ζ−t ) = var(ε−t − ν−t λ−) = 1− var(ν−t λ−),

var(ζ+
t ) = var(ε+

t − ν+
t λ

+) = 1− var(ν+
t λ

+).

Therefore, rewrite the probabilities to observe the outcome j in equation (2) as

Pr(yt = j|xt,x−t ,x+
t ,wt,w

−
t ,w

+
t )

= Ij≤0

[
Φ2

(
µ1−xtβ−wtγ−νtλ√

1−var(νtλ)
;
µ−j −x−t β

−−w−t γ
−−ν−t λ−√

1−var(ν−t λ−)
; ρ−
)

−Φ2

(
µ1−xtβ−wtγ−νtλ√

1−var(νtλ)
;
µ−j−1−x−t β

−−w−t γ
−−ν−t λ−√

1−var(ν−t λ−)
; ρ−
)]

+Ij=0

(
Φ(µ2−xtβ−wtγ−νtλ√

1−var(νtλ)
)− Φ(µ1−xtβ−wtγ−νtλ√

1−var(νtλ)
)

)
+Ij≥0

[
Φ2

(
−µ2+xtβ+wtγ+νtλ√

1−var(νtλ)
;
µ+j+1−x+t β

+−w+
t γ

+−ν+t λ+√
1−var(ν+t λ+)

;−ρ+

)
−Φ2

(
−µ2+xtβ+wtγ+νtλ√

1−var(νtλ)
;
µ+j −x+t β

+−w+
t γ

+−ν+t λ+√
1−var(ν+t λ+)

;−ρ+

)]
.

Since νt, ν−t and ν
+
t are not observed, in order to consistently estimate these prob-

abilities perform the following two-step procedure:

1. Run the OLS regressions of each EEV in wt, w−t and w+
t on all the exogenous

variables in zt, z−t and z+
t , respectively, to consistently estimate δ, δ

− and δ+ and

variances of νt, ν−t and ν
+
t , and save the residuals ν̂t, ν̂

−
t and ν̂

+
t .

2. Run the Swopit regression with xt, wt, ν̂t in the regime equation and with x−t ,
w−t , ν̂

−
t and x+

t , w+
t , ν̂

+
t in the outcome equations to consistently estimate the

scaled parameters (µ;β;γ;λ), (µ−;β−;γ−;λ−) and (µ+;β+;γ+;λ+).

The second-step parameters are scaled (because the variances of ζt, ζ
−
t and ζ

+
t are

not equal to one), and related to the original (unscaled) parameters as (µ;β;γ;λ) ≡√
1− var(νtλ)(µ;β;γ;λ). Since λ =

√
1− var(νtλ)λ, it follows that var(νtλ) =

[1 − var(νtλ)]var(νtλ); hence, 1 − var(νtλ) = 1/[1 + var(νtλ)] (and similarly for λ−

and λ+). Thus, we can obtain the consistent estimators of the original parameters as

(µ̂; β̂; γ̂; λ̂) ≡ (µ̂; β̂; γ̂; λ̂)/

√
1 + v̂ar(ν̂tλ̂),

(µ̂−; β̂
−

; γ̂−; λ̂
−

) ≡ (µ̂−; β̂
−

; γ̂−; λ̂
−

)/

√
1 + v̂ar(ν̂−t λ̂

−
),
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(µ̂+; β̂
+

; γ̂+; λ̂
+

) ≡ (µ+;β+;γ+;λ+)/

√
1 + v̂ar(ν̂+

t λ̂
+

),

where all terms on the right-hand side are available from the two-step CF estimation

procedure.

The usual t statistics on ν̂t, ν̂
−
t and ν̂

+
t from the second step can be used to test the

null hypotheses that wt, w−t and w+
t are exogenous, that is λ = λ− = λ+ = 0. Under

the null of exogeneity, εt = ζt, ε
−
t = ζ−t and ε

+
t = ζ+

t , so the distributions of ν̂t, ν̂
−
t

and ν̂+
t do not matter. However, if wt, or w−t , or w+

t is endogenous, the normality of

ν̂t, or ν̂
−
t , or ν̂

+
t is critical. The CF method imposes strong assumptions on the process

generating EEVs and does not generally work if they are discrete. Allowing for discrete

EEVs is notoriously diffi cult even in a single-equation instrumental-variable model of

discrete choice (Bhattacharya et al., 2006; Chesher and Smolinski, 2012). However, as

suggested by Terza et al. (2008), for each discrete EEV inwt, w−t orw+
t (denote them as

wd,t, w−d,t or w
+
d,t) we can run an ordered probit (or logit) first-stage regression, estimate

δ̂d, δ̂
−
d and δ̂

+

d , and then compute the generalized residuals ν̂d,t, ν̂
−
d,t and ν̂

+
d,t as:

T∑
t=1

ν̂d,tzt ≡
T∑
t=1

[wd,t−Φ(ztδ̂d)]φ(−ztδ̂d)

[1−Φ(ztδ̂d)]Φ(ztδ̂d)
zt = 0, (4)

and analogously for ν̂−d,t and ν̂
+
d,t. Derived from the first-order conditions that define

the ML estimates in the probit and logit models, the generalized residuals, analogously

to the OLS residuals in the linear regression model, satisfy the orthogonality condition

with the explanatory variables. Wooldridge (2014) argues that the CF approach with

generalized residuals might yield good estimates of average MEs and provide a reasonable

approximate solution to the endogeneity problem with discrete EEVs.

3 Finite sample performance

This section summarizes the results of conducted Monte Carlo experiments to assess

the finite sample performance of the ML and CF estimators of the Swopit model. The

simulations suggest that (i) the proposed ML estimator is consistent and demonstrate a

good performance in small samples; (ii) it requires roughly twice as many observations

per parameter for the Swopit model with no overlap among the covariates in latent

equations (and four times as many observations per parameter with a full overlap) to

achieve the same accuracy of the estimates as in the conventional OP model; (iii) the

Swopit model is identified even with no exclusion restrictions; though, the more exclusion

restrictions, the more accurate the estimates; and (iv) the implemented CF Swopit

estimator is consistent and provides a reliable small-sample inference in the presence of

EEVs.
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3.1 Effect of exclusion restrictions

To assess the effect of exclusion restrictions the repeated samples in the simulations are

generated by the Swopit data-generating process (DGP) in three different scenarios of

the overlap among the explanatory variables in three latent equations: “no overlap”

(each variable belongs only to one equation), a “partial overlap”(each variable belongs

to two equations) and a “complete overlap” (all three equations have the same set of

explanatory variables). Three sets of experiments are simulated; in each set the samples

are generated with the same number of observations per parameter in each scenario: 25

(with 225, 300 and 375 observations in the samples in the “no overlap”, “partial overlap”

and “complete overlap”scenarios, respectively), 50 (with 450, 600 and 750 observations,

respectively) and 75 observations per parameter (with 675, 900 and 1125 observations,

respectively).

Unlike the parameters, which are identified only up to scale and location, and are

of little interest in their own right, the choice probabilities and the MEs of regressors

on them are absolutely estimable functions (invariant to the identifying assumptions),

and are of main interest in empirical research. The reported Monte Carlo results assess

the accuracy and uncertainty of the estimates of the MEs of explanatory variables on

choice probabilities, estimated at the population medians of the covariates. The following

measures of finite sample performance (averaged for all regressors and choices, and across

all replications) are reported: bias – the absolute difference between the estimated and

true values of MEs; RMSE – the root mean square error of ME estimates relative to

their true values; coverage probability (CP) – the percentage of times the estimated

asymptotic 95% confidence intervals cover the true values of the MEs; and s.e. bias –

the absolute difference between the average of estimated standard errors and standard

deviation of ME estimates in the repeated samples divided by the standard deviation of

ME estimates, in percent.

Three explanatory variables g1,t, g2,t and g3,t are drawn once and held fixed in all

replications as g1,t
iid∼ N (2, 1), g2,t

iid∼ N (0, 1), and g3,t = -1 if ut ≤ 0.3, g3,t = 0 if 0.3 <

ut ≤ 0.7, or g3,t = 1 if 0.7 < ut, where ut
iid∼ U [0, 1]. The three simulated variables closely

mimic the explanatory variables in the empirical application such as houset, spreadt and

pbiast−1. The repeated samples are generated as follows: under the “no overlap”scenario

– with xt=g1,t, x−t =g2,t, x+
t =g3,t, β = 0.6, β

− = 0.8, β+ = 0.9, µ = (0.95, 1.45)
′
, µ− =

(-1.22, 0.03)
′
, µ+ = (-0.03, 1.18)

′
, and ρ− = ρ+ = 0; under the “partial overlap”scenario

– with xt=(g1,t,g2,t), x−t = (g1,t,g3,t), x+
t = (g2,t,g3,t), β = (0.6, 0.4)

′
, β− = (0.2, 0.3)

′
,

β+ = (0.3, 0.9)
′
, µ = (0.9, 1.5)

′
, µ− = (-0.67, 0.36)

′
, µ+ = (0.02, 1.28)

′
, and ρ− = ρ+

= 0; and under the “complete overlap”scenario – with xt= x−t = x+
t = (g1,t,g2,t,g3,t), β
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= (0.6, 0.4, 0.8)
′
, β− = (0.2, 0.8, 0.3)

′
, β+ = (0.4, 0.3, 0.9)

′
, µ = (0.85, 1.55)

′
, µ− =

(-1.2, 0.07)
′
, µ+ = (1.28, 2.5)

′
, and ρ− = ρ+ = 0. The values of the parameters were

calibrated to yield on average the following frequencies of the five outcome categories

(“large cut”, “small cut”, “no change”, “small hike”and “large hike”) of the dependent

variable: 7%, 14%, 58%, 14% and 7%, which are close to the empirical frequencies. For

each sample, the exogenous Swopit model is estimated using the same specifications of

the latent equations as in the above true DGPs.

TheMonte Carlo results summarized in Table 1 suggest that the exclusion restrictions

are not necessary for the identification and consistent estimation of the Swopit model. As

the sample size grows, the bias and RMSE reduce, and the CP approaches the nominal

value both with and without exclusion restrictions. Not surprisingly, the more exclusion

restrictions, the more accurate the estimates – for example, without the exclusion

restrictions (under the “complete overlap”scenario) the bias is 100% larger, and the s.e.

bias is 250% larger than in the case of no overlap among the regressors.

Table 1. Effect of exclusion restrictions on the performance of Swopit estimator

25 50 75

1.0 | 1.5 | 1.6 0.4 | 0.8 | 0.7 0.3 | 0.6 | 0.6

1.0 | 1.1 | 1.2 0.7 | 0.8 | 0.8 0.6 | 0.6 | 0.6

93.0 | 92.0 | 92.1 93.5 | 93.7 | 93.4 94.2 | 94.1 | 93.5

1.0 | 1.4 | 2.5 0.9 | 0.8 | 2.2 0.4 | 0.6 | 1.4

Coverage probability of ME estimates,
% (at 95% level)

   no overlap | partial overlap | complete overlap

Number of observations per parameter:

The overlap among the regressors in
the regime and outcome equations:

Bias of ME estimates
(=1 for "no overlap" with 25 obs/parameter)

RMSE of ME estimates
(=1 for "no overlap" with 25 obs/parameter)

Bias of ME standard error estimates
(=1 for "no overlap" with 25 obs/parameter)

3.2 Performance with endogenous explanatory variables

To analyze the finite sample performance of the CF Swopit estimator in the presence

of EEVs, the repeated samples in this set of experiments are generated according to

the system (3) with xt= 0, x−t = x+
t =g2,t, z−t = z+

t = (g1,t,g3,t), where g1,t
iid∼ N (2, 1),

g2,t
iid∼ N (0, 1), g3,t

iid∼ N (0, 1), γ = (0.6, 0.4)′, γ− = 0.5, γ+ = 0.5, β− = 0.6, β+ = 0.6,

µ = (0.91, 1.49)′, µ− = (-1.25, -0.04)
′
, µ+ = (0.4, 1.25)

′
, σ2 = σ2

− = σ2
+ = 1, ρ

− = ρ+

= 0, λ = (0.75, 0.75)′, λ− = λ+ = 0.75, var(ν−t ) = var(ν+
t ) = 0.36, and δ− = δ+ =
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(
0.9 0

0 0.9

)
.

There are two EEVs: the first one (instrumented by v1,t) enters wt and belongs only

to the regime equation, the second one (instrumented by g3,t) enters wt, w−t and w+
t and

belongs to all three equations. The only exogenous regressor g2,t is included in x−t and

x+
t in the outcome equations. The values of g1,t, g2,t and g3,t are drawn repeatedly and

independently for each replication. The estimations are performed using the standard

and CF Swopit estimators.

In the first round of experiments, the repeated samples are generated with 250, 500,

1000 and 2000 observations. The Monte Carlo results demonstrate (see Table 2) that

the CF estimator is consistent and provides reliable estimates in small samples: as the

sample size grows from 250 to 2000, the bias reduces by 90%; the RMSE and s.e. bias

reduce by 70%; and the CP moves from 91.8% to 94.4%, closer to the 95% nominal

value. The standard estimator that ignores the endogeneity performs much worse: the

bias reduces only by 5%; the RMSE reduces only by 30%; the s.e. bias reduces by 70%;

and the CP moves from 61.7% to 39.0%, away from the nominal level. The relative

performance of the standard estimator with respect to the CF one worsens as the sample

size grows: with 250 observations, its bias is eleven times as large as the bias of the CF

estimator, whereas with 2000 observations, it is hundred times as large. The bias of the

s.e. estimates in the standard estimator is only twice as small as that in the CF one.

Table 2. Performance of standard and CF Swopit estimators in the presense of endoge-
nous explanatory variables

250 500 1000 2000

Standard 10.9 10.6 10.5 10.4
CF 1.0 0.5 0.3 0.1
Standard 1.8 1.6 1.4 1.3
CF 1.0 0.7 0.4 0.3
Standard 61.7 48.9 41.8 39.0
CF 91.8 93.4 94.0 94.4
Standard 1.0 0.7 0.5 0.3
CF 2.6 1.4 1.0 0.7

Sample sizeEstimator

Bias of ME estimates
(= 1 for CF estimator with 250 observations)

RMSE of ME estimates
(= 1 for CF estimator with 250 observations)

Coverage probability of ME estimates,
% (at 95% level)

Bias of ME standard error estimates
(= 1 for standard estimator with 250 observations)

In the second round of experiments, the repeated samples are generated with 1000

observations but with the various degree of endogeneity strength (measured by the values

of λ, λ− and λ+). The simulations show (see Table 3) that as endogeneity becomes
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stronger, the performance of the CF estimator decreases but not sharply: the bias grows

by 10%; the RMSE grows by 20%; the s.e. bias is affected more severe – it increases by

170%; consequently, the CP slowly moves from 94.5% to 93.7%, away from the nominal

value. The performance of the standard Swopit estimator deteriorates much severe: the

bias almost doubles; the RMSE increases by 80%; the CP stays around 40%; the s.e.

bias, however, remains low. The relative performance of the standard estimator with

respect to the CF one worsens as the endogeneity strengthens: for instance, when it is

weak (strong) the bias of ME estimates is 29 (51) times as large as the bias of the CF

estimator.

Table 3. Effect of endogeneity strength on the performance of standard and CF Swopit
estimators

0.10 0.25 0.50 0.75 0.90

Standard 29.4 31.9 39.3 49.1 57.4
CF 1.0 1.0 1.0 1.2 1.1

Standard 2.3 2.5 2.9 3.6 4.2
CF 1.0 1.0 1.0 1.1 1.2

Standard 43.6 39.9 37.4 41.8 43.7
CF 94.5 94.5 94.4 94.0 93.7

Standard 1.0 1.0 0.8 1.1 0.9
CF 1.3 1.2 1.7 2.5 3.5

The strength of endogeneity
Estimator

Bias of ME estimates

RMSE of ME estimates

Coverage probability of ME
estimates, % (at 95% level)

Bias of ME standard error estimates

Notes. The degree of endogeneity strength is measured by the value of e in λ=(e,e)’, λ−=λ+=e. The

bias and RMSE are normalized to 1 for e=0.1.

In the third round of experiments, the repeated samples are generated with 1000

observations but with the various degree of instruments’ strength (measured by the

values of the diagonal elements of δ− and δ+). The simulations suggest (see Table 4)

that as the instruments become stronger, the performance of the CF estimator improves

sharply: the bias reduces by 94%; the RMSE reduces by 87%; the s.e. bias decreases by

84%; and the CP moves from 79% to 94%, closer to the nominal value. The performance

of the standard estimator also improves but not so sharply – the CP changes from 29%

to only 42%, and its relative performance with respect to the CF estimator worsens

significantly: with weak (strong) instruments the bias of ME estimates is 8 (40) times

as large as that in the CF estimator, the RMSE is larger by 37% (220%), and the s.e.

bias is smaller by 328% (122%).
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Table 4. Effect of the strength of instruments on the performance of standard and CF
Swopit estimators

0.10 0.25 0.50 0.75 0.90
Standard 8.2 7.1 4.6 3.0 2.4
CF 1.0 0.2 0.07 0.05 0.06
Standard 1.4 1.2 0.8 0.5 0.4
CF 1.0 0.4 0.2 0.14 0.13
Standard 29.0 35.5 37.0 38.5 41.8
CF 79.3 90.9 93.1 93.9 94.0
Standard 1.0 0.5 0.4 0.4 0.3
CF 4.3 1.0 1.0 0.8 0.7

Estimator
The strength of instruments

Bias of ME estimates

RMSE of ME estimates

Coverage probability of ME
estimates, % (at 95% level)

Bias of ME standard error estimates

Notes. The degree of instruments’strength is measured by the value of e in δ11=δ22=δ−=δ+=e . The

bias and RMSE are normalized to 1 for e =0.1.

4 Data and empirical results

This section estimates the Taylor rule, OP, MIOP and Swopit models to predict the next

FOMC decision on the target during the Greenspan’s era, provides the out-of-sample

forecasts for the next thirteen years during the Bernanke’s, Yelen’s and Powell’s terms,

compares the in- and out-of-sample performance of the competing models, contrasts the

fit of the Swopit model and the discrete-choice models for the target from the literature,

and accesses the effect of endogeneity.

4.1 FOMC decisions as sample observations

The FOMC makes interest rate decisions either at prescheduled meetings eight times

per year or occasionally at unscheduled meetings and by the discretion of the chairman

during intermeeting periods. Neither quarterly nor monthly interval matches a natural

FOMC decision-making cycle. Modeling relationship between monthly or quarterly av-

erages of the federal funds rate and economic variables can be subject to a problem

of reverse causation, especially if financial market data are included. The Fed closely

monitors daily market interest rates; on the other hand, market rates respond immedi-

ately to any Fed action. The identification of policy rules using aggregated (monthly

or quarterly) financial market data is not plausible. Instead, I use the FOMC meetings

as the sample observations, and forecast the next FOMC decision using the vintages of

real-time economic and daily financial data that do not include subsequent revisions and
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were truly available right before each FOMC scheduled meeting.

The dates of FOMC decisions, the sizes of target changes, and the values of dependent

variable yt are reported in Table C1 of Online Appendix C. I use the chronology of FOMC

decisions from the Fed’s Board of Governors, available from ALFRED2 and derived from

Thornton (2005) prior to 1994 and from the FOMC meeting transcripts and statements

after 1994. The sample consists of 150 observations during the 7/1987—1/2006 period

under the Greenspan’s chairmanship (with an exception for the first observation in the

sample – the FOMC meeting on July 7th, 1987 under the Volcker’s chairmanship).

Prior to 10/1989 the Fed often changed the target in multiples of 6.25 bp, but later

on the changes have been always made in multiples of 25 bp. The sample frequencies of

original target changes are as follows:

Change, bp -50 -25 -12.5 0 6.25 12.5 25 31.25 50 75

Frequency 9 14 1 93 3 1 23 1 4 1

I classified these 150 observations into the following five categories of the dependent

variable yt:

yt large cut small cut no change small hike large hike

Frequency 9 15 96 24 6

where “large hike/cut”is an increase/decrease more than 25 bp, “small hike/cut”is an

increase/decrease 25 bp or less but more than 6.25 bp, and “no change” is either no

change or a change no more than 6.25 bp.3

4.2 Explanatory variables and estimation results

A common simple benchmark in setting the monetary policy is the so-called Taylor

(1993) rule, according to which the Fed alters the federal funds rate ffrt using the

following formula: ffrt = r∗+inflt+0.5gapt+0.5(inflt−π∗), where r∗ —the equilibrium
real interest rate, inflt —the inflation rate over the previous four quarters, π∗ —the long-

run inflation target, and gapt —the output gap (the percent deviation of the real gross

domestic product (GDP) from the potential one). Taylor assumed r∗ = 2 and π∗ = 2.

2ALFRED, ArchivaL Federal Reserve Economic Data, is a collection of vintage versions of U.S.
economic data, compiled by the Federal Reserve Bank of St. Louis (https://alfred.stlouisfed.org/).

3The empirical results are similar with the alternative classifications, for example, such as: “large
hike/cut”is an increase/decrease more than 37.5 bp, “small hike/cut”is an increase/decrease between
37.5 bp and 12.5 bp, and “no change”is no change or change no more than 12.5 bp.
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Originally, Taylor’s point was that the Fed certainly does not follow a simple mechanical

rule and considers wider information in setting monetary policy, although inflation and

output gap are the only variables it should consistently and systematically respond to.

The performance of the original version of the Taylor rule actually broke down after 1993,

i.e. immediately out of sample (Ball and Tchaidze, 2002). Unfortunately, the Taylor

rule is based on an unrealistic assumption that policymakers possess reliable information

on the equilibrium real interest rate and output gap. In fact, the equilibrium real rate

and potential output are unobservable, and the FOMC members typically have different

judgments. The reliability of equilibrium real rate and output gap estimates in real time

is quite low. To provide a better description of FOMC decisions I estimate using OLS a

more general inertial forward-looking version of the Taylor rule for the target from the

observed real-time data (see Table C4 of Online Appendix C).

The studies that model target changes using a discrete choice approach report that

the Taylor-rule variables (inflation and output gap) do not provide the best forecasting

performance. Piazzesi (2005) finds that the two-year yield describes the Fed policy

better than the Taylor rules because: (i) yield data summarize the market anticipations

of future target moves; (ii) these market anticipations are based on a wide spectrum of

information, not just on a couple of variables; and (iii) yield data are available at higher

frequencies and are less affected by measurement errors than macroeconomic variables.

Hamilton and Jorda (2002), Kauppi (2012) and Van den Hauwe et al. (2013) report that

despite an extensive literature relating Fed policy to such macroeconomic variables as

inflation, output gap, capacity utilization, the spread between the six-month Treasury

bill and federal funds rate appears to be by far the most important predictor of the

target.

To estimate the OP, MIOP and Swopit models I selected the following four explana-

tory variables that exhibit a far more predictive power than the Taylor-rule measures of

inflation and output gap:

(1) spreadt – the difference between the one-year treasury constant maturity rate

and effective federal funds rate, three-business-day moving average. The term spread can

be seen as a low-dimension market-based precursor of future inflation and economic ac-

tivity (Mishkin, 1990; Estrella and Hardouvelis, 1991; Frankel and Lown, 1994; Estrella

and Mishkin, 1998). Bikbov and Chernov (2013) argue that monetary policy regimes

may not be estimated precisely if one uses information from only the short interest rate.

The real-time data on spreadt are retrieved from ALFRED.

(2) pbiast−1 – the binary indicator derived from the “policy bias”or “balance-of-

risks”statement made at the previous FOMCmeeting that takes value 1 if the statement

was “tightening”, 0 if the statement was “symmetrical”, and −1 if the statement was
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“easing”. During the 1983—1999 period at each meeting the FOMC issued a statement in

its domestic policy directive about its expectations for changes in the stance of monetary

policy in the nearest future. The directive was symmetric if it stated that a tightening or

an easing of policy were equally likely; otherwise, the directive was asymmetric toward

either a tightening or an easing (see Thornton and Wheelock (2000) for the history

of the policy directive). Since 2000, the policy directive was replaced by the FOMC

assessment of the balance of risks between the heightened inflation pressure and economic

weakness over the foreseeable future; and since 2003, the FOMC issued the separate risk

assessments for both inflation and economic growth. The balance-of-risks assessment

indicates the FOMC evaluation of whether the risks for the economy are biased towards

an economic slowdown (easing bias), towards higher inflationary pressure (tightening

bias) or whether the both risks are balanced (symmetrical assessment). As the earlier

policy bias directive, the balance-of-risks statements have persistently been interpreted

as an indicator of the likely future policy actions. Lapp and Pearce (2000) and Pakko

(2005) report that these FOMC statements have predictive power for the next decisions

on the target.

I took the values of pbiast−1 up to 1999 from Thornton and Wheelock (2000) and

derived them after 1999 from the FOMC statements and minutes.4 For example, the

“policy bias”directive released on May 18, 1999 was “tightening”:

“While the FOMC did not take action today to alter the stance of mone-

tary policy, the Committee was concerned about the potential for a buildup

of inflationary imbalances that could undermine the favorable performance

of the economy and therefore adopted a directive that is tilted toward the

possibility of a firming in the stance of monetary policy.”

By contrast, the “balance-of-risks”statement released on January 31, 2001 was “easing”:

“Nonetheless, the Committee continues to believe that against the back-

ground of its long-run goals of price stability and sustainable economic growth

and of the information currently available, the risks are weighted mainly to-

ward conditions that may generate economic weakness in the foreseeable

future.”

The “balance-of-risks”statement released on January 29, 2003 was “symmetrical”:

“In these circumstances, the Committee believes that, against the back-

ground of its long-run goals of price stability and sustainable economic growth

4https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm
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and of the information currently available, the risks are balanced with respect

to the prospects for both goals for the foreseeable future.”

(3) houset – the forecast of the total number of new privately owned housing units

started (in thousands) for current quarter 5 – a critical leading indicator of economic

strength, actively monitored by the Fed and frequently mentioned in the FOMC state-

ments (before 1/2014 – the Greenbook projections for the current quarter; since 1/2014

– the latest available data on housing starts at monthly frequency6). The real-time data

are retrieved from ALFRED and the Philadelphia Fed’s real-time data set.

(4) gdpt – the forecast of the quarter-over-quarter growth in the nominal gross

domestic product for the current quarter, percent change at annual rate, seasonally

adjusted (before 1/1992 – the Greenbook projections for the gross national product;

from 1/1992 through 12/2013 – the Greenbook projections for the GDP; since 1/2014

– the New York Fed staff forecast (nowcast) of the GDP). The real-time data are

retrieved from the Philadelphia Fed’s real-time data set and the New York Fed website7.

The values of employed variables are shown in Table C1 of Online Appendix C. The

sample descriptive statistics are reported in Table C2 of Online Appendix C. All variables

included in the OP, MIOP and Swopit models are stationary at the 0.01 significance level

according to the augmented Dickey-Fuller unit root test as documented in Table C3 of

Online Appendix C.

The top panel of Table 5 reports the estimated parameters of the Swopit model with

exogenous switching (ρ− = ρ+ = 0).8 The regime equation contains pbiast−1, spreadt
and houset. The outcome equations contain spreadt and gdpt in both regimes. The

past target rate decisions do not provide significant explanatory power if included in

the outcome equations (at the 0.41 level) or in the regime equation (at the 0.69 level).

Among the 150 FOMC actions during almost twenty years, the Swopit model predicts

correctly 122 decisions (among five choices) with the 5.4 bp mean absolute error (MAE)

and 81% accuracy (the percentage of correct predictions). The sample averages of the

predicted probabilities are 0.05, 0.05, 0.71, 0.15 and 0.03 for, respectively, “large cut”,

5The forecast for the current quarter provides more explanatory power than for one, two, three and
four quarters ahead.

6The Greenbook projections are not available to the public in real time, and released to the public
with a five-year lag. The actual values of housing starts are highly correlated with the Greenbook
projections for the current quarter (the first-order autocorrelation coeffi cient is 0.97), and provides
similar results if used for the entire sample.

7https://www.newyorkfed.org/research/policy/nowcast.html
8The short sample size (only 150 observations for 13 parameters) does not allow to accurately

estimate the correlations between the unobservables in the tight and loose regimes of the Swopit model
with exogenous regime switching. More data are needed to identify ρ− and ρ+ more precisely: the
Monte Carlo experiments indicate that the precision of correlation coeffi cients’estimates are the most
sensitive to the small sample size among all parameters.
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“small cut”, “no change”, “small hike”and “large hike”. In terms of three policy choices

(“decrease”, “no change”or “increase”) the accuracy is 87%. The Swopit model never

wrongly predicts the direction of target change.

The estimation outputs for the OP and MIOP models, which are estimated using

the same set of explanatory variables as in the Swopit model, are shown in the bottom

panel of Table 5. In the MIOP model, its outcome equation includes all regressors from

the Swopit model, and its regime equation includes houset and gdpt.

Table 5. Modeling target changes: estimated parameters of the Swopit, MIOP and OP
models

Loose regime Tight regime
pbias t­1 1.89 (0.37)***
spread t 1.93 (0.52)*** 1.47 (0.40)*** 3.30 (0.95)***
house t 5.72 (1.24)***
gdp t 0.42 (0.11)*** 0.78 (0.34)*
threshold 1 8.72 (2.00)*** ­0.09 (0.43) 3.98 (1.98)*
threshold 2 10.73 (2.18)*** 1.03 (0.45)* 8.01 (2.65)**

OP model

Regime equation Outcome equation

pbias t­1 0.82 (0.19)*** 1.06 (0.25)***
spread t 1.89 (0.26)*** 2.23 (0.33)***
house t 1.54 (0.45)*** 4.72 (2.07)* 1.82 (0.59)**
gdp t 0.30 (0.08)*** ­0.38 (0.20) 0.35 (0.10)***
threshold 1 0.97 (0.72) 3.95 (2.06) 1.38 (0.87)
threshold 2 2.01 (0.71)** 2.80 (0.92)**
threshold 3 5.62 (0.88)*** 6.19 (1.07)***
threshold 4 7.23 (0.95)*** 8.18 (1.16)***

Swopit model

MIOP model

Variables Regime equation
Output equations

Notes. Sample period: 7/1987—1/2006 (150 observations). ***/**/* denote the statistical significance

at the 0.1/1/5 percent level. The asymptotic standard errors are shown in parentheses. The Swopit

model with exogenous switching: ρ−=ρ+=0.

4.3 In- and out-of-sample comparison of competing models

Table 6 compares the in-sample fit of the Swopit model, the OP and MIOP models

(which are estimated with the same set of regressors as in the Swopit model), and the

inertial Taylor-type rule estimated by OLS. The Taylor-type rules are widely used (and
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abused) in monetary economics literature and central banking. The OP model, as a

natural starting point for discrete-choice modeling of monetary policy, is used in many

studies (e.g., Vanderhart, 2000; Dolado et al., 2005; Gerlach, 2007). The MIOP model

is applied in Brooks et al. (2012) to the policy rate of Bank of England.

Among the four competing models, the Taylor rule demonstrates the worst accuracy

and MAE, which is more than twice as large as that in the Swopit model. To compute the

discrete-choice predictions for the Taylor rule and make them compatible with the OP,

MIOP and Swopit predictions, I rounded the continuous-valued Taylor rule’s predictions

to the nearest discrete-valued choice.

Table 6. In-sample comparison with Taylor rule, the OP and MIOP models: the FOMC
desicions favor the Swopit model

Model: Taylor rule OP MIOP Swopit

McFadden R 2 0.42 0.46 0.51
AIC 209.1 201.8 188.1
BIC 233.2 235.0 227.2
Adj. noise­to­signal ratio for cuts 0.05 0.02 0.01
Adj. noise­to­signal ratio for no changes 0.44 0.41 0.29
Adj. noise­to­signal ratio for hikes 0.06 0.03 0.03
Accuracy (% of correct predictions) 0.62 0.71 0.76 0.81
MAE, basis points 11.5 8.1 6.6 5.4

Notes. Sample period: 7/1987—1/2006 (150 observations). MAE is the mean absolute difference between

the observed and predicted choices (the predicted choice is that with the highest predicted probability).

Adjusted noise-to-signal ratio (Kaminsky and Reinhart,1999), is defined as [B/(B+D)]/[A/(A+C )],

where A denotes the event that the decision is predicted and occurred, B denotes the event that the

decision is predicted but not occurred, C denotes the event that the decision is not predicted but

occurred, and D denotes the event that the decision is not predicted and not occurred.

The Swopit model is clearly superior to the OP and MIOP models according to the

McFadden R2, Akaike information criteria (AIC), BIC and the Vuong test (at the 0.01

and 0.05 significance levels, respectively), has the highest accuracy, the lowest MAE, and

the lowest adjusted noise-to-signal ratios, especially for the no-change outcomes. The

OP and MIOP models predict more no-change outcomes (110 and 113) than the Swopit

model (107), but they correctly predict only 88 and 92 of them, respectively, whereas

the Swopit model correctly predicts 92 no-change decisions. The empirical rejection of

the MIOP model in favor of the Swopit model implies that the impacts of explanatory

variables on the outcome decisions are asymmetric; hence, combining these two distinct
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decisions into one branch of the decision tree, as implemented in the MIOP model, may

seriously distort an inference. Indeed, the null hypothesis that the Fed policy reactions

are symmetrical (that is all parameters in the loose and tight regimes are equal) is

rejected by the LR-test (the p-value is 10−8). The OP model makes predictions that

are markedly different from those in the Swopit model: for example, as Table 7 reports,

the predicted MEs of the explanatory variables on the choice probabilities can differ by

several times and can even have the opposite directions.

Table 7. The MEs on the choice probabilities in the Swopit and OP models can differ
by several times and have opposite signs

Model: Swopit OP Swopit OP

Pr(y t = "small cut") ­0.33 (0.14)* 0.30 (0.21) ­0.09 (0.03)** 0.05 (0.04)

Pr(y t = "large cut") ­0.25 (0.08)**  ­0.75 (0.30)*** ­0.07 (0.03)* ­0.12 (0.03)***

ME of spread t ME of gdp t

Notes. ***/**/* denote the statistical significance at the 0.1/1/5 percent level. The asymptotic stan-

dard errors are shown in parentheses. The speciffi cations of the Swopit and OP models are reported in

Tables 5 and 6. The MEs are predicted for the values of explanatory variables observed at the FOMC

meeting on November 3, 2010.

How good is the fit of the Swopit model in comparison with the fit of other discrete-

choice models for target changes in the literature? Hu and Phillips (2004) and Piazzesi

(2005) model the target changes (in terms of three choices: “decrease”, “no change”or

“increase”) made at the scheduled FOMC meetings in the 2/1994—12/2001 and 2/1994—

12/1998 periods with 64 and 40 observations in the samples, respectively. I re-estimated

the Swopit model for the same samples as in Hu and Phillips (2004) and Piazzesi (2005).

As Table 8 reports, the Swopit model yields a substantially higher accuracy and

far better adjusted noise-to-signal ratios for all three choices, and especially for the no-

change outcomes. The models in Hu and Phillips (2004) and Piazzesi (2005) predict

too many zeros, and many of these predictions are wrong. The Swopit model overcomes

this typical shortcoming of single-equation discrete-choice models, which tend to overfit

the most popular choice – in the Swopit model the noise-to-signal ratios for no-change

outcome is 0.20 versus 0.45 in Hu and Phillips (2004), and 0.17 versus 0.72 in Piazzesi

(2005).

How well does the Swopit model, estimated for the Greenspan term, forecast out

of sample the next 107 FOMC decisions during the 3/2006—6/2019 period under the
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Bernanke’s, Yellen’s and Powell’s chairmanships (using the actual real-time values of

explanatory variables as they were known one day before each FOMC meeting)? During

the forecasting period, the target approaches the ZLB in December 2008 and remains

at the ZLB until December 2015. It is intriguing to see whether the three competing

model, estimated for the Greenspan period, in which the target was far above the zero,

will be able (i) to predict the FOMC decisions when the target was approaching the

ZLB (the 3/2006—12/2008 period), (ii) to avoid predicting a negative level of the target

during the ZLB period (the 1/2009—12/2015 period), and (iii) to predict the FOMC

decisions when the Fed began slowly increasing the target (the 1/2016—6/2019 period).

The one-step-ahead forecasts are obtained by the recursive re-estimations for the entire

sample since 1/1987.

Table 8. Comparison with Hu and Phillips (2004) and Piazzesi (2005): the FOMC
decisions favor the Swopit model

Sample:

Observed choice

Hu and Phillips
(2004)

Swopit
model Piazzesi (2005) Swopit

model

Decrease 0.69 0.92 0.00 1.00
No change 0.90 0.95 0.93 0.96
Increase 0.50 0.69 0.57 0.71
All choices 0.78 0.89 0.75 0.93

Decrease 0.08 0.02 n/a 0.00
No change 0.45 0.20 0.72 0.17
Increase 0.04 0.03 0.11 0.04

Adjusted noise­to­signal ratios

Accuracy (% of correct predictions)

2/1994 ­ 12/2001 2/1994 ­ 12/1998

Notes. The Swopit model is reestimated for the same samples as in Hu and Phillips (2004) and Piazzesi

(2005) with three choices (“decrease”, “no change”or “increase”) and with the same specification as in

Table 5.

Table 9 compares the out-of-sample forecasting performance of the Taylor rule, OP,

MIOP and Swopit models separately for the three periods. Before and after the ZLB

period, the Swopit model correctly predicts 83% and 82% of FOMC decisions (among

the five choices), respectively, and clearly outperforms the Taylor rule (35% and 61%),

the OP model (78% and 71%) and the MIOP model (78% and 75%) model. The MAE

of the forecasts in the OP model is 29% greater before the ZLB and 58% greater after

the ZLB than in the Swopit model. The MAE in the Taylor rule are greater by 214%
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and 118%, respectively. Among the 55 status quo outcomes during the ZLB period

when there was no scope for reducing the target further, the Swopit model (without

imposed restrictions that do not allow for further cuts and a negative level of the rate

target) correctly predicts 53 of them and incorrectly predicts only two cuts, while the

Taylor rule incorrectly predict 17 cuts and fails to adequately address the outset of the

ZLB. The OP and MIOP models correctly predict, respectively, 51 and 52 status quo

outcomes during the ZLB period, and perform worse than the Swopit model before and

after it. Overall, for the entire 3/2006—6/2019 period with 107 observations, the Swopit

model predicts correctly out-of-sample 92% of the FOMC decisions among three choices

(“decrease”, “no change”, “increase”).

Table 9. Out-of-sample comparison with Taylor rule, the OP and MIOP models: the
FOMC desicions favor the Swopit model

Model: Taylor rule OP MIOP Swopit

Accuracy (% of correct predictions) 0.35 0.78 0.78 0.83
MAE, basis points 23.9 9.8 8.7 7.6

Accuracy (% of correct predictions) 0.68 0.91 0.93 0.95
MAE, basis points 8.0 4.0 2.2 1.8

Accuracy (% of correct predictions) 0.61 0.71 0.75 0.82
MAE, basis points 9.8 7.1 6.3 4.5

Out­of­sample forecast for 3/2006­­12/2008 (before ZLB) period

Out­of­sample forecast for 1/2009­­12/2015 (during ZLB) period

Out­of­sample forecast for 1/2016­­6/2019 (after ZLB) period

Notes. MAE is the mean absolute difference between the observed and predicted choices (the predicted

choice is that with the highest predicted probability).

4.4 Surmounting the endogeneity problem

The model is cast in a predictive format. If we are instead interested in estimating the

Fed policy reactions to economic and financial developments, we must pay attention to a

possible correlation between the regressors and monetary policy shocks in order to avoid

a bias in the estimates.9 Although the model explains the next Fed decision using the

predetermined values of explanatory variables as they were known prior to each FOMC

9See de Vries and Li (2014) for a discussion of the problem of endogeneity and an assessment of the
magnitude of the bias in the conventional estimates of linear monetary policy rules; see also Kim (2004)
for endogeneity problem in the estimation of a forward-looking linear reaction function of the Fed with
an unknown break date.
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meeting (so there is no reverse causal effect from the shocks to the regressors), we however

should worry about a possible endogeneity of the regressors. The FOMC “policy bias”

directives or “balance-of-risks”assessments may contain internal Fed information about

a monetary shock at the next policy meeting; and the FOMC projections of economic

indicators may be correlated with the future monetary shocks. Hense, the variables

pbiast−1, houset and gdpt may be endogenous to the error terms. Since the market

participants use all available information to predict the upcoming policy actions, the

market interest rates may move in anticipation of FOMC decisions; thus, the variable

spreadt may also be endogenous.

Choice of instruments

To overcome a possible endogeneity problem, we can apply a CF estimation ap-

proach. The CF method introduces residuals from the regressions of EEVs on the set

of instruments into the structural equations as controls for endogeneity. These residuals

are presumably those components of the EEVs that are correlated with the unobserved

monetary shocks. The estimation of these residuals in this application raises a host of

issues such as the lack, validity and strength of the instruments. The typical instruments

employed in the literature are the lags of inflation, output gap, and other variables. As

Sims and Zha (2006) point out, identification in instrumental variables model is based

on claiming that a list of instrumental variables is available to control for the endogene-

ity of explanatory variables, but these instruments are available only because of a claim

that we know a priori that they do not belong directly to the central bank reaction

function and can affect monetary policy only through their effects on the future values

of regressors. However, it seems inherently implausible that, for instance, the central

bank response to an expected future 3-percent inflation rate does not depend on whether

the past inflation rate was 1 percent or 5 percent.

We can avoid these problems by using a market-based proxy for monetary shocks (the

differences between the actual Fed actions and the actions anticipated by the market) in

order to obtain strong and valid instruments. Suppose we have an estimate of monetary

shocks, denoted by surpriset. If the shocks are well estimated and our model is well

specified, the estimate of shocks should be correlated with the disturbances in the model:

surpriset = εtϕ+ ξt = ε−t ϕ
− + ξ−t = ε+

t ϕ
+ + ξ+

t ,

where ϕ, ϕ− and ϕ+ are the vectors of OLS coeffi cients; ξt, ξ
−
t and ξ

+
t are the zero-mean

error terms, which are neither correlated with εt, ε−t and ε
+
t nor with any explanatory

variable in xt, x−t , x+
t , wt, w−t and w+

t , and have variances that are much smaller than

those of, respectively, εtϕ, ε−t ϕ
− and ε+

t ϕ
+. The instruments in zt, z−t and z+

t can be

29



obtained for each continuous-valued EEV wc,t in wt, w−t and w+
t (for example, such

as houset) as the OLS residuals from the regression of wc,t on surpriset, and for the

each discrete-valued EEV wd,t in wt, w−t and w+
t (such as pbiast−1) as the generalized

residuals from the ordered probit (or logit) regression of wd,t on surpriset:

zc,t = wc,t − wc,tcov(wc,t, surpriset)/var(surpriset),

zd,t =
[wd,t−F (surprisetκ̂d)]f(−surprisetκ̂d)

[1−F (surprisetκ̂d)]F (surprisetκ̂d)
,

where κ̂d is the slope coeffi cient in the ordered probit (or logit) regression of wd,t on

surpriset; and F and f are the CDF and PDF of standard normal (or logistic) distri-

bution, respectively. Since var(εtϕ), var(ε−t ϕ
−) and var(ε+

t ϕ
+) are much larger than,

respectively, var(ξt), var(ξ
−
t ) and var(ξ+

t ), and since cov(wc,t, ξt) = cov(wc,t, ξ
−
t ) =

cov(wc,t, ξ
+
t ) = 0 and cov(εt, ξt) = cov(ε−t , ξ

−
t ) = cov(ε+

t , ξ
+
t ) = 0,

cov(zc,t, εt) = cov(wc,t − (εtϕ+ ξt)
cov(wc,t,εtϕ+ξt)

var(εtϕ+ξt)
, εt)

≈ cov(wc,t, εt)− cov(εt
cov(wc,t,εt)

var(εt)
, εt)− cov(ξt

cov(wc,t,εt)

ϕvar(εt)
, εt) = 0.

Analogously, cov(zc,t, ε
−
t ) = cov(zc,t, ε

+
t ) = 0. Thus, zc,t is correlated with wc,t but

not correlated with the error terms εt, ε−t and ε
+
t . Similarly, zd,t is correlated with wd,t

but not correlated with the error terms εt, ε−t and ε
+
t , because the generalized residual is

a discrete-choice counterpart of the OLS residual in the linear models and is orthogonal

to the regressor surpriset. For example, in the case of generalized logit residuals we

have:

cov(zd,t, εt) = cov(zd,t,
1
ϕ
surpriset − 1

ϕ
ξt) = −1

ϕ
cov(zd,t, ξt)

= −1
ϕ
cov(wd,t − F (surprisetκ̂d), ξt) = 1

ϕ
cov(F (surprisetκ̂d), ξt)

= 1
ϕ

T∑
t=1

1
1+exp(−surprisetκ̂d)

ξt = 1
ϕ

T∑
t=1

1
1+exp(−εtϕκ̂d) exp(−ξtκ̂d)

ξt

≈ 1
ϕ

T∑
t=1

1
1+exp(−εtϕκ̂d)

ξt = 0,

because var(εtϕ) is much larger than var(ξt), cov(wd,t, ξt) = 0, cov(εt, ξt) = 0 and

F (surprisetκ̂d) = 1/(1 + exp(−surprisetκ̂d)),
f(surprisetκ̂d) = F (surprisetκ̂d)[1− F (surprisetκ̂d)],

zd,t =
[wd,t−F (surprisetκ̂d)]f(−surprisetκ̂d)

[1−F (surprisetκ̂d)]F (surprisetκ̂d)
= wd,t − F (surprisetκ̂d).

Analogously, cov(zd,t, ε
−
t ) = cov(zd,t, ε

+
t ) = 0. Therefore, zc,t and zd,t are both the

relevant and exogenous instruments, and can be employed to estimate the Swopit model

using a two-step CF approach.
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The explanatory variables pbiast−1, houset and gdpt are more endogenous to mone-

tary shocks (the coeffi cients of correlation with surpriset are about 0.15) than spreadt
(coeffi cients of correlation with surpriset is only 0.06).

Measuring monetary policy shocks

Monetary shocks derived from the daily interest rate data are nearly the ideal mea-

sures of unanticipated changes to the target (Cochrane and Piazzesi, 2002). Financial

markets can flexibly employ a boundless spectrum of information in order to predict the

Fed decisions, surmounting the omitted-variable and time-varying-parameter problems

common in econometric estimations. Financial market instruments provide forecasts

that are clearly outperform those of the sophisticated time-series models and monetary

policy rules (Evans, 1998). A growing number of studies employs financial market re-

actions to Fed announcements to identify monetary policy shocks. Following Kuttner

(2001), Faust et al. (2004), Bernanke and Kuttner (2005) and Piazzesi and Swanson

(2008) I estimate the monetary shocks as policy surprises around FOMC decisions, that

is as the FOMC decisions unanticipated by the federal funds futures’market. The fed-

eral funds futures rates dominate all the other financial securities in forecasting Fed

monetary policy (Gürkaynak et al., 2007) and provide the effi cient forecasts of target

changes (Krueger and Kuttner, 1996). The use of the federal funds futures is attractive

also because obtaining the forecasts is simple, and there are no model-specification prob-

lems (Kuttner 2001). The one-day surprises are measured by market reaction to FOMC

actions using the change in the implied rate of current-month (or one-month-ahead)

federal funds futures on the day of policy action:

surpriseτ = n
n−τ (fτ − fτ−1),

where τ is the day of month when the policy action became known to market participants,

n is the number of days in the current month, fτ and fτ−1 are the current-month futures

rate on the day of policy action and on the day prior to policy action, respectively.

This measure of monetary policy shock, suggested by Kuttner (2001), differences out

any constant risk premia and other technical features in the federal funds market, is

unpredictable by financial market instruments known to market participants right before

the FOMC announcement, and is not distorted by time-varying risk premia over such

small interval (Piazzesi and Swanson, 2008).

The futures rate is computed as 100 minus the contract’s settlement price. The

contracts, known as “30-day federal funds futures”, are traded on the Chicago Mercantile

Exchange. Each contract is for interest on federal funds for one month calculated on a

30-day basis at a rate equal to the average overnight effective federal funds rate for the
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contract month. The data are retrieved from Quandl.10 The first multiplier is a scaling

factor that accounts for the number of remaining days in the month affected by a policy

action. If a policy action occurs on the first day of the month, the one-month futures

rate on the last day of the previous month is subtracted from the current-month futures

rate on the first day of the current month. If an FOMC decision comes on one of the

last three days of the month, the unscaled difference in the one-month futures rates is

used instead.

The timing of Fed actions (the dates when the market participants became aware

of them) is crucial for measuring monetary policy surprises. The effective dates of Fed

actions and the estimated monetary policy shocks are reported in Table C1 of Online

Appendix C.11 The dates when the FOMC decisions became effective do not completely

coincide with the dates when these decisions were made. Up to 1994, the decisions,

made at scheduled meetings, became effective on the next day. Since February 1994,

when the Fed began announcing its decision immediately after each FOMC scheduled

meeting, the decisions became effective on the same day. The employed chronology of

FOMC actions is taken from the Board of Governors of the Fed (via ALFRED) with the

following adjustment suggested by Kuttner (2001, 2003) on the basis of the analysis of

market reaction: a 25 bp cut on December 18, 1990 instead of December 19, 1990 as in

ALFRED.

Controlling for endogeneity: CF estimation results

To control for endogeneity with the above instruments it is suffi cient to include only

one bias correction term in each Swopit equation.12 At the first step of the CF estimation

procedure, I obtain the controls for endogeneity: ν̂t – as the OLS residuals from the

reduced-form regression of houset on the constant and the instruments zpbias,t, zspread,t
and zhouse,t; and ν̂

−
t and ν̂

+
t – as the OLS residuals from the regression of gdpt on the

constant and the instruments zspread,t and zgdp,t. At the second step of the CF procedure,

the residual ν̂t, ν̂
−
t and ν̂

+
t are included in the corresponding equations of the Swopit

model as the bias correction terms.

Table 10 reports the estimated consistent (unscaled) CF Swopit parameters with

exogenous switching (ρ− = ρ+ = 0). The usual t statistics for the coeffi cients on ν̂t,

ν̂−t and ν̂
+
t can be used to test for exogeneity. The coeffi cients on ν̂t, ν̂

−
t and ν̂

+
t are

10https://www.quandl.com
11The reported values of surpriset are multiplied by 10 in all estimations.
12The bias corection terms – the residuals in the reduced form regressions of each EEV on the

instruments at the first step of CF procedure are all highly correlated with surpriset and hence with
each other because all the instruments are constructed as the residuals in the regressions of each EEV on
surpriset only. Including all of them into the structural equations at the second step of CF procedure
would introduce strong multicollinearity and is not necessary.
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significant at the 0.020, 0.001 and 0.023 significance levels, respectively. The null of

exogeneity of the regressors is rejected.13 The inclusion of the controls for endogeneity

substantially improves the fit: the McFadden pseudo R2 increases from 0.51 to 0.62, the

MAE decreases from 5.4 bp to 3.4 bp, and the accuracy increases from 0.81 to 0.87. In

terms of three choices (”increase“, ”no change“, ”decrease“) the CF Swopit model with

the controls for endogeneity correctly predicts 93% of the next FOMC decisions, and is

clearly preferred to the standard Swopit model by AIC and BIC.

Table 10. Endogeneity does matter: the estimated parameters of the Swopit model using
CF approach

Loose regime Tight regime

pbias t­1 1.45 (0.31)***
spread t 1.75 (0.53)*** 1.49 (0.37)*** 1.69 (0.73)*
house t 6.14 (1.39)***
gdp t 0.55 (0.11)*** 0.84 (0.32)**
bias correction terms ­4.47 (1.92)* ­0.95 (0.25)*** ­1.45 (0.64)*
threshold 1 9.61 (2.32)*** 0.23 (0.41) 4.25 (1.74)*
threshold 2 11.03 (2.38)*** 1.57 (0.47)*** 7.34 (2.52)**

Variables Regime equation
Output equations

Notes. Sample period: 7/1987—1/2006 (150 observations). ***/**/* denote the statistical significance

at the 0.1/1/5 percent level. The asymptotic standard errors are shown in parentheses. Exogenous

switching: ρ−=ρ+=0. The explanatory variables are defined in Section 4.2. The dependent variable is

defined in Section 4.1. The bias correction terms νt, ν−t and ν+t are the controls for endogeneity.

The endogeneity of explanatory variables can cause a severe bias in the inference:

the MEs of the regressors on the choice probabilities in the standard Swopit model and

in the model with the controls for endogeneity can differ by several times, and can even

have the opposite signs, as Table 11 shows.

13Of course, the evidence in favor of endo/exogeneity should be interpreted conditional on the correct
model specification.
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Table 11. Endogeneity does matter: the MEs on the choice probabilities in the standard
and CF Swopit models can differ by several times and have opposite signs

Model: Swopit  CF Swopit Swopit CF Swopit

Pr(y t  = "no change'')    0.58 (0.16)*** 0.13 (0.13)  0.17 (0.04)*** 0.05 (0.04)

Pr(y t = "small cut") ­0.25 (0.13) 0.54 (0.18)** ­0.07 (0.03)* 0.20 (0.06)**

Pr(y t = "large cut") ­0.34 (0.11)**  ­0.67 (0.19)*** ­0.10 (0.04)* ­0.25 (0.05)***

ME of spread t ME of gdp t

Notes. ***/**/* denote the statistical significance at the 0.1/1/5 percent level. The asymptotic stan-

dard errors are shown in parentheses. The speciffi cations of the Swopit and CF Swopit models are

reported in Tables 5 and 10. The MEs are estimated at the values of explanatory variables observed at

the FOMC meeting on December 17, 1991.

4.5 Probabilities of latent regimes

Figure 4 shows the estimated probabilities of latent policy regimes in the CF Swo-

pit model for each scheduled FOMC decision during the Greenspan term. The av-

erage probabilities of the loose, neutral and tight regimes are 0.49, 0.28 and 0.23,

whereas the observed frequencies of cuts, no-change decisions and hikes are 0.16, 0.64

and 0.20, respectively. On average in the sample, the ratio of the probability of no

change conditional on the neutral regime to the unconditional probability of no change

Pr(yt = 0|rt = 0)/Pr(yt = 0) = 0.33/0.64 = 0.51. Loosely speaking, it means that only

about a half of no-change outcomes is generated in the neutral regime, and another half

of them is generated in either loose or tight policy regime. The outcome decisions tend to

leave the target unchanged by weakening the tightening and easing policy inclinations.

Figure 5 illustrates the correspondence of latent regime probabilities to the contrac-

tionary, maintaining and expansionary policy periods shown in Figure 2. The profiles

of regime probabilities differ considerably across the three policy periods. The Fed ac-

tions in the contractionary, maintaining and expansionary periods are dominated by the

tight, neutral and loose regimes, respectively. However, in the maintaining periods, the

average probability of neutral regime is only 0.46, hence about a half of the status quo

outcomes is generated by the tight or loose regimes even in the maintaining periods.
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Figure 4. Estimated probabilities of latent regimes and actual FOMC decisions

Notes. Sample period: 7/1987—1/2006 (150 observations). The estimates are obtained from the Swopit

model with the controls for endogeneity using CF approach (Table 10).

Figure 5. Average probabilities of latent regimes in different policy periods

Notes. Sample period: 7/1987—1/2006 (150 observations). The estimates are obtained from the CF

Swopit model with controls for endogeneity (Table 10). The policy periods are shown in Figure 2.
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Concluding remarks

This paper introduces a regime-switching ordered probit model with possibly endogenous

regressors for analyzing ordinal outcomes such as changes to the federal funds rate tar-

get. The empirical results demonstrate that ignoring the regime-switching environment

and the endogeneity of explanatory variables can lead to a seriously distorted statistical

inference. The new model outperforms the existing models for the federal funds rate tar-

get both in and out of sample. It can be used to more adequately represent the monetary

policy rules of many central banks, can be embedded in the multivariate macroeconomic

models to better understand the monetary policy effects, can significantly improve the

forecasts of Taylor-like rules and standard linear vector autoregressions, can challenge

the inference from vector autoregression impulse-response functions, and can also be

fruitfully applied to other ordinal data such as responses to treatment, changes to the

rankings, indices and prices, etc.
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Online Appendix A. Probabilities of discrete outcomes

if regime switching is exogenous

If ρ− = ρ+ = 0 then εt, ε−t and ε
+
t are mutually independent, and regime switching

is exogenous. Under an assumption that εt, ε−t and ε
+
t are iid, the probabilities of the

outcome j with exogenous switching are given by

Pr(yt = j|xt,x−t ,x+
t ) = Ij≤0 Pr(rt = −1|xt) Pr(yt = j|x−t , rt = −1)

+Ij=0 Pr(rt = 0|xt) + Ij≥0 Pr(rt = 1|xt) Pr(yt = j|x+
t , rt = 1)

= Ij≤0

{
Φ(µ1 − xtβ)[Φ(µj − x−t β

−)− Φ(µj−1 − x−t β
−)]
}

+Ij=0[Φ(µ2 − xtβ)− Φ(µ1 − xtβ)]

+Ij≥0

{
[1− Φ(µ2 − xtβ)][Φ(µj+1 − x+

t β
+)− Φ(µj − x+

t β
+)]
}
.

These probabilities can be computed as

Pr(yt = J−|xt,x−t ,x+
t ) = Φ(µ1 − xtβ)Φ(µ−J− − x−t β

−);

Pr(yt = j|xt,x−t ,x+
t )

= Ij≤0Φ(µ1 − xtβ)[Φ(µ−j − x−t β
−)− Φ(µ−j−1 − x−t β

−)]

+Ij=0[Φ(µ2 − xtβ)− Φ(µ1 − xtβ)]

+Ij≥0 [1− Φ(µ2 − xtβ)] [Φ(µ+
j+1 − x+

t β
+)− Φ(µ+

j − x+
t β

+)] for J− < j < J+;

Pr(yt = J+|xt,x−t ,x+
t ) = [1− Φ(µ2 − xtβ)] [1− Φ(µ+

J+ − x+
t β

+)].
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Online Appendix B. A special case when the Swopit

model nests the MIOP model

In general, the Swopit and MIOP models (see Figure 1) are not nested in each other,

but they are not strictly non-nested. They overlap if their slope coeffi cients are all fixed

to zero, and only the thresholds are estimated. However, there is an interesting special

case when the Swopit model does nest the MIOP model. The special case arises under

certain parameter restrictions provided (i) there are only three outcome categories of

the dependent variable, (ii) both x−t and x+
t in the Swopit outcome equations contain

all covariates in the MIOP regime equation, and (iii) xt in the Swopit regime equation

includes all covariates in the MIOP outcome equation.

To begin, I first describe the MIOP econometric framework. Then I explain under

which conditions the Swopit model nests the MIOP model.

The MIOP model

Let t (t = 1, 2, ..., T ) be one of the available T observations. Let yt be an observed

dependent variable that can take on a finite number J of ordinal values, coded by

index j (j = 1, 2, ..., J , J > 2), among which a potentially heterogeneous (“inflated”)

and often predominant response is coded as q, 1 < q < J . The observed outcome

yt can be generated in any of two states, coded as 1 or 0 and interpreted as latent

regimes in the time-series context or as latent segments of population in the cross-

section context. The realized states (regimes) rmt are only partially observed and of an

ordinal nature. The regime switching decision is determined by the continuous latent

variable rm∗t , endogenously driven in response to the observed data and unobservables

according to the binary probit regime equation. The correspondence between rm∗t and

rmt is determined by an unobserved threshold in the usual binary-response fashion. For

each t, only one out of two potential realizations of yt is observed. Conditional on being

in the regime rmt = 1, the observed outcome yt is determined (in the usual OP fashion)

by a continuous latent variable ym∗t , which is driven in response to the observed data and

unobservables according to an outcome equation. Conditional on being in the regime

rmt = 0, the observed outcome yt is always q.

To summarize, the MIOP model can be described by the following system
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rm∗t = xmt β
m + εmt (regime equation),

rmt =

{
1 if µm < rm∗t

0 if rm∗t ≤ µm
(regime matching rule)

ym∗1,t = xm1,tβ
m
1 + εm1,t (outcome equation),

yt = j if rmt = 1 and µm1,j−1 < ym∗1,t ≤ µm1,j, j = 1, 2, ..., J (outcome matching

yt = q, if rmt = 0 and 1 < q < J rules),[
εm1,t

εmt

]
iid∼ N

(
0

0
,

[
1 ρm

ρm 1

]) (interdependence

between the regime

and outcome decisions),

where xmt and xm1,t are the observed data row vectors; β
m and βm1 are the vectors of

unknown slope parameters; εmt and εm1,t are the iid (across t) unobserved disturbance

terms; εmt is independent of εm1,t at leads and lags: E(εmt ε
m
1,t+τ ) = 0 for ∀τ 6= 0; µm

and −∞ ≡ µm1,0 ≤ µm1,1 ≤ ... ≤ µm1,J ≡ ∞ are the unknown threshold parameters; the

joint probability density between εmt and ε
m
1,t is standardized bivariate normal with CDF

Φ2(εm;εm1 ;ρm).

The probabilities of the outcome j in the MIOP model are given by

Pr(ymt = j|xmt ,xm1,t) = Pr(rm∗t |xmt > µm and µm1,j−1 < ym∗1,t |xm1,t ≤ µm1,j)

+Ij=q Pr(rm∗t |xmt ≤ µm)

= Pr(εt > µm − xmt β
m and µm1,j−1 − xm1,tβ

m
1 < εm1,t ≤ µm1,j − xm1,tβ

m
1 )

+Ij=q Pr(εmt ≤ µm − xmt β
m)

= Φ2(−µm + xmt β
m;µm1,j − xm1,tβ

m
1 ;−ρm)

−Φ2(−µm + xmt β
m;µ1,j−1 − xm1,tβ

m
1 ;−ρm) + Ij=qΦ(µm − xmt β

m),

(A1)

where Ij=q is an indicator function such that Ij=q = 1 if j = q, and Ij=q = 0 if j 6= q.

A special case

Suppose a dependent variable ymt takes only three discrete values j coded as {−1, 0, 1},
and an inflated response is coded as 0 (q = 0).

The probabilities of observing the outcome j in the MIOP model are given according

to (A1) as
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Pr(yt = −1|xmt ,xm1,t) = Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm);

Pr(yt = 0|xmt ,xm1,t) = Φ(µm − xmt β
m)

+Φ2(−µm + xmt β
m;µm1,2 − xm1,tβ

m
1 ;−ρm)

−Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm);

Pr(yt = 1|xmt ,xm1,t) = Φ2(−µm + xmt β
m;−µm1,2 + xm1,tβ

m
1 ;ρm).

(A2)

The probabilities of observing the outcome j in the Swopit model are given according

to (2) as

Pr(yt = −1|xt,x−t ,x+
t ) = Φ2(µ1 − xtβ;µ−−1 − x−t β

−; ρ−);

Pr(yt = 0|xt,x−t ,x+
t ) = Φ2(µ1 − xtβ;−µ−−1 + x−t β

−;ρ−)

+Φ(µ2 − xtβ)− Φ(µ1 − xtβ) + Φ2(−µ2 + xtβ;µ+
1 − x+

t β
+;−ρ+);

Pr(yt = 1|xt,x−t ,x+
t ) = Φ2(−µ2 + xtβ;−µ+

1 + x+
t β

+; ρ+).

(A3)

Suppose now that x−t and x+
t in the Swopit outcome equations are identical to xmt

in the MIOP regime equation, and that xt in the Swopit regime equation is identical

to xm1,t in the MIOP outcome equation. Impose the following restrictions on the Swopit

parameters:

β+ = −β− = βm, β = βm1 , µ1 = µm1,1, µ2 = µm1,2, (A4)

µ+
1 = −µ−−1 = µm and − ρ− = ρ+ = ρm.

Then the probabilities of observing the outcome j in the Swopit model according to

(A3) can be written as

Pr(yt = −1|xmt ,xm1,t) = Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm);

Pr(yt = 0|xmt ,xm1,t) = Φ2(µm1,1 − xm1,tβ
m
1 ;µm − xmt β

m;ρm)

+Φ(µm1,2 − xm1,tβ
m
1 )− Φ(µm1,1 − xm1,tβ

m
1 ) + Φ2(−µm1,2 + xm1,tβ

m
1 ;µm − xmt β

m;−ρm)
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= 1− Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm)− Φ(−µm1,1 + xm1,tβ

m
1 )

+Φ(µm1,2 − xm1,tβ
m
1 )− Φ(µm1,1 − xm1,tβ

m
1 )

+1− Φ(µm1,2 − xm1,tβ
m
1 )− Φ2(−µm + xmt β

m;−µm1,2 + xm1,tβ
m
1 ; ρm)

= 1− Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm)− Φ2(−µm + xmt β

m;−µm1,2 + xm1,tβ
m
1 ; ρm)

= Φ(µm − xmt β
m) + Φ2(−µm + xmt β

m;µm1,2 − xm1,tβ
m
1 ;−ρm)

−Φ2(−µm + xmt β
m;µm1,1 − xm1,tβ

m
1 ;−ρm);

Pr(yt = 1|xmt ,xm1,t) = Φ2(−µm + xmt β
m;−µm1,2 + xm1,tβ

m
1 ;ρm),

which are identical to the probabilities in the MIOP model given by (A2).

In more general cases, when x−t and x+
t are not identical to xmt , but contain all

variables in xmt , and when xt is not identical to xm1,t, but contains all variables in xm1,t,

we can use additional restrictions by fixing the values of the coeffi cients on all extra

variables in xt, x−t and x+
t to zero. With these additional parameter restrictions, the

selected set of the explanatory variables in each Swopit outcome equation is identical to

the set of the variables in the MIOP regime equation, the selected set of the explanatory

variables in the Swopit regime equation is identical to the set of the variables in the

MIOP outcome equation, and the probabilities in the MIOP and Swopit models are

identical.

Notice that the restrictions in (A4), namely β+ = −β− = βm and µ+
1 = −µ−−1 = µm,

impose a sort of symmetry on the policy reactions in the tight and loose policy regimes

in the Swopit model, since they imply that the conditional probability of a hike in the

tight regime Pr(yt = 1|xt,x−t ,x+
t , rt = 1) is determined by the same mechanisms as the

conditional probability of a cut in the loose regime Pr(yt = −1|xt,x−t ,x+
t , rt = −1):

Pr(yt = 1|xt,x−t ,x+
t , rt = 1) = 1− Φ(µ+

1 − x+
t β

+) = 1− Φ(µm − xmt β
m)

= Φ(−µm + xmt β
m) = Φ(µ−−1 − x−t β

−) = Pr(yt = 1|xt,x−t ,x+
t , rt = 1).
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Online Appendix C. Supporting material for empiri-

cal application

Table C1. Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t surprise t inf t gap t

07­Jul­87 0 no change 08­Jul­87 6.6250 0 ­0.003 1.61 5.90 ­0.040 4.60 ­1.10

18­Aug­87 0 no change 19­Aug­87 6.6250 1 0.133 1.61 6.40 ­0.020 3.70 ­1.10

22­Sep­87 0.0625 no change 24­Sep­87 7.2500 0 0.497 1.60 6.80 0.010 3.90 ­0.90

03­Nov­87 ­0.5 large cut 04­Nov­87 7.3125 ­1 0.123 1.55 5.00 ­0.130 4.10 ­0.90

16­Dec­87 0 no change 17­Dec­87 6.8125 0 0.573 1.54 5.40 ­0.140 4.50 ­0.60

10­Feb­88 ­0.125 small cut 11­Feb­88 6.6250 0 0.163 1.55 4.90 0.030 4.10 ­0.50

29­Mar­88 0.25 small hike 30­Mar­88 6.5000 0 0.160 1.46 6.10 0.010 4.50 ­0.10

17­May­88 0 no change 18­May­88 7.0000 1 0.123 1.51 7.10 ­0.040 5.30 0.10

30­Jun­88 0.0625 no change 01­Jul­88 7.4375 1 ­0.183 1.49 8.20 ­0.070 4.70 0.50

16­Aug­88 0 no change 17­Aug­88 8.1250 1 0.010 1.47 7.30 ­0.040 4.50 0.50

20­Sep­88 0 no change 21­Sep­88 8.1250 1 ­0.107 1.47 6.50 0.020 4.40 0.40

01­Nov­88 0 no change 02­Nov­88 8.1250 1 ­0.250 1.46 6.70 0.032 5.00 0.00

14­Dec­88 0.3125 large hike 15­Dec­88 8.3750 1 0.500 1.51 7.00 0.018 5.10 0.30

08­Feb­89 0.125 small hike 09­Feb­89 9.0000 1 0.097 1.50 8.90 0.000 4.80 0.80

28­Mar­89 0 no change 29­Mar­89 9.7500 1 ­0.183 1.56 9.40 ­0.070 5.20 0.80

16­May­89 0.0625 no change 17­May­89 9.7500 0 ­0.847 1.44 7.30 ­0.022 5.00 1.00

06­Jul­89 ­0.25 small cut 07­Jul­89 9.5625 0 ­1.480 1.40 5.10 ­0.026 4.60 0.60

22­Aug­89 0 no change 23­Aug­89 9.0625 ­1 ­0.623 1.43 5.80 0.000 4.20 0.91

03­Oct­89 0 no change 04­Oct­89 9.0625 ­1 ­0.740 1.43 5.30 0.034 4.40 1.10

14­Nov­89 0 no change 15­Nov­89 8.5000 ­1 ­0.603 1.38 4.90 ­0.020 4.00 0.90

19­Dec­89 ­0.25 small cut 20­Dec­89 8.5000 0 ­0.883 1.39 4.50 ­0.169 4.20 0.70

07­Feb­90 0 no change 08­Feb­90 8.2500 0 ­0.070 1.37 5.20 ­0.014 4.30 0.20

27­Mar­90 0 no change 28­Mar­90 8.2500 0 0.043 1.47 7.60 0.000 5.80 0.60

15­May­90 0 no change 16­May­90 8.2500 0 0.000 1.30 6.80 0.000 4.70 0.60

03­Jul­90 0 no change 04­Jul­90 8.2500 ­1 ­0.283 1.21 5.70 0.000 4.70 0.30

21­Aug­90 0 no change 22­Aug­90 8.0000 ­1 ­0.423 1.19 5.70 0.000 5.00 0.30

02­Oct­90 0 no change 03­Oct­90 8.0000 ­1 ­0.483 1.09 2.60 0.021 4.90 0.20

13­Nov­90 ­0.25 small cut 16­Nov­90 7.7500 ­1 ­0.420 1.10 1.30 0.000 5.00 ­0.90

18­Dec­90 ­0.25 small cut 18­Dec­90 7.2500 ­1 ­0.240 1.02 0.90 ­0.233 4.20 ­1.10
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t surprise t inf t gap t

06­Feb­91 0 no change 07­Feb­91 6.2500 ­1 0.283 1.00 3.30 0.000 5.20 ­2.80

26­Mar­91 0 no change 27­Mar­91 6.0000 0 0.253 0.95 2.10 0.000 7.00 ­3.00

14­May­91 0 no change 15­May­91 5.7500 0 0.373 1.01 3.00 0.019 3.70 ­3.60

03­Jul­91 0 no change 05­Jul­91 5.7500 0 ­0.033 1.05 8.10 0.000 4.10 ­3.50

20­Aug­91 0 no change 21­Aug­91 5.5000 ­1 ­0.007 1.05 4.90 0.124 4.20 ­3.30

01­Oct­91 0 no change 02­Oct­91 5.2500 ­1 0.027 1.06 4.50 ­0.011 4.20 ­3.50

05­Nov­91 ­0.25 small cut 06­Nov­91 5.0000 ­1 ­0.067 1.02 3.50 ­0.125 3.90 ­4.00

17­Dec­91 ­0.5 large cut 20­Dec­91 4.5000 0 ­0.123 1.08 2.70 ­0.238 3.40 ­4.50

05­Feb­92 0 no change 06­Feb­92 4.0000 ­1 0.147 1.14 4.30 ­0.013 4.10 ­4.50

31­Mar­92 0 no change 01­Apr­92 4.0000 ­1 0.633 1.25 4.70 0.010 3.80 ­3.90

19­May­92 0 no change 20­May­92 3.7500 0 0.160 1.21 4.90 0.000 4.30 ­3.80

01­Jul­92 ­0.5 large cut 02­Jul­92 3.7500 ­1 0.067 1.17 4.80 ­0.363 4.00 ­3.70

18­Aug­92 0 no change 19­Aug­92 3.2500 ­1 0.060 1.23 3.40 0.026 2.90 ­4.20

06­Oct­92 0 no change 07­Oct­92 3.0000 ­1 ­0.343 1.24 3.40 0.052 3.50 ­4.10

17­Nov­92 0 no change 18­Nov­92 3.0000 ­1 0.623 1.23 4.50 ­0.100 2.70 ­3.90

22­Dec­92 0 no change 23­Dec­92 3.0000 0 0.780 1.24 6.20 0.039 3.70 ­3.30

03­Feb­93 0 no change 04­Feb­93 3.0000 0 0.257 1.30 6.20 ­0.012 2.90 ­2.80

23­Mar­93 0 no change 24­Mar­93 3.0000 0 0.337 1.22 6.70 ­0.044 4.30 ­2.60

18­May­93 0 no change 19­May­93 3.0000 1 0.263 1.26 4.20 ­0.026 3.30 ­2.90

07­Jul­93 0 no change 08­Jul­93 3.0000 1 0.250 1.28 4.40 0.027 2.80 ­3.10

17­Aug­93 0 no change 18­Aug­93 3.0000 0 0.337 1.28 4.80 0.000 2.50 ­3.30

21­Sep­93 0 no change 22­Sep­93 3.0000 0 0.240 1.28 3.50 0.000 2.20 ­2.70

16­Nov­93 0 no change 17­Nov­93 3.0000 0 0.497 1.36 6.60 0.023 2.80 ­1.90

21­Dec­93 0 no change 22­Dec­93 3.0000 0 0.597 1.40 7.40 0.000 2.70 ­1.70

04­Feb­94 0.25 small hike 04­Feb­94 3.0000 0 0.420 1.44 7.20 0.117 3.40 ­1.10

22­Mar­94 0.25 small hike 22­Mar­94 3.2500 0 1.073 1.37 5.70 ­0.034 2.60 ­0.90

17­May­94 0.5 large hike 17­May­94 3.7500 0 1.463 1.41 6.20 0.133 3.10 ­0.70

06­Jul­94 0 no change 06­Jul­94 4.2500 1 0.780 1.38 5.20 ­0.050 3.30 ­0.70

16­Aug­94 0.5 large hike 16­Aug­94 4.2500 0 1.307 1.33 4.40 0.145 3.10 ­0.20

27­Sep­94 0 no change 27­Sep­94 4.7500 1 1.137 1.41 4.80 ­0.200 3.00 ­0.10

15­Nov­94 0.75 large hike 15­Nov­94 4.7500 0 1.203 1.41 6.10 0.140 3.50 0.50

20­Dec­94 0 no change 20­Dec­94 5.5000 1 1.713 1.42 6.90 ­0.169 2.60 0.80

01­Feb­95 0.5 large hike 01­Feb­95 5.5000 0 1.057 1.49 6.40 0.052 3.30 0.80

28­Mar­95 0 no change 28­Mar­95 6.0000 1 0.263 1.34 5.80 0.103 3.50 0.50

23­May­95 0 no change 23­May­95 6.0000 0 0.043 1.27 3.50 0.000 3.60 0.20
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t surprise t inf t gap t

06­Jul­95 ­0.25 small cut 06­Jul­95 6.0000 ­1 ­0.837 1.33 3.90 ­0.012 3.00 ­0.50

22­Aug­95 0 no change 22­Aug­95 5.7500 0 0.153 1.37 4.60 0.000 2.70 ­0.30

26­Sep­95 0 no change 26­Sep­95 5.7500 0 ­0.073 1.40 5.10 0.000 2.60 ­0.20

15­Nov­95 0 no change 15­Nov­95 5.7500 0 ­0.263 1.45 4.80 0.060 2.70 0.00

19­Dec­95 ­0.25 small cut 19­Dec­95 5.7500 0 ­0.437 1.38 3.90 ­0.103 2.70 0.10

31­Jan­96 ­0.25 small cut 31­Jan­96 5.5000 0 ­0.453 1.39 4.30 ­0.070 2.60 ­0.30

26­Mar­96 0 no change 26­Mar­96 5.2500 0 0.173 1.47 4.50 ­0.031 2.70 ­0.40

21­May­96 0 no change 21­May­96 5.2500 0 0.380 1.48 5.60 0.000 2.70 0.40

03­Jul­96 0 no change 03­Jul­96 5.2500 1 ­0.283 1.39 4.50 ­0.050 3.00 0.40

20­Aug­96 0 no change 20­Aug­96 5.2500 1 0.370 1.43 4.50 ­0.042 3.00 0.50

24­Sep­96 0 no change 24­Sep­96 5.2500 1 0.547 1.43 4.20 ­0.125 2.60 0.70

13­Nov­96 0 no change 13­Nov­96 5.2500 1 0.190 1.45 4.00 0.000 2.90 0.70

17­Dec­96 0 no change 17­Dec­96 5.2500 1 0.117 1.41 4.50 0.011 2.70 0.80

05­Feb­97 0 no change 05­Feb­97 5.2500 1 0.250 1.41 4.60 ­0.030 2.30 1.00

25­Mar­97 0.25 small hike 25­Mar­97 5.2500 0 0.503 1.45 6.40 0.026 2.20 1.40

20­May­97 0 no change 20­May­97 5.5000 1 0.300 1.43 3.90 ­0.113 2.90 1.70

02­Jul­97 0 no change 02­Jul­97 5.5000 1 ­0.567 1.44 4.80 ­0.016 2.60 1.70

19­Aug­97 0 no change 19­Aug­97 5.5000 1 ­0.037 1.44 3.90 ­0.013 2.20 1.90

30­Sep­97 0 no change 30­Sep­97 5.5000 1 ­0.090 1.43 4.50 0.000 1.90 2.00

12­Nov­97 0 no change 12­Nov­97 5.5000 1 ­0.083 1.43 5.40 ­0.042 2.40 1.90

16­Dec­97 0 no change 16­Dec­97 5.5000 0 ­0.223 1.47 6.10 ­0.010 2.20 1.90

04­Feb­98 0 no change 04­Feb­98 5.5000 0 ­0.303 1.48 4.40 0.000 2.00 2.00

31­Mar­98 0 no change 31­Mar­98 5.5000 1 ­0.120 1.56 4.50 0.000 2.50 2.10

19­May­98 0 no change 19­May­98 5.5000 1 ­0.170 1.60 4.20 ­0.026 2.30 2.00

01­Jul­98 0 no change 01­Jul­98 5.5000 1 ­0.680 1.55 3.70 ­0.005 2.70 1.90

18­Aug­98 0 no change 18­Aug­98 5.5000 0 ­0.403 1.58 3.60 0.012 2.00 1.70

29­Sep­98 ­0.25 small cut 29­Sep­98 5.5000 ­1 ­0.980 1.63 4.20 0.060 2.10 2.00

17­Nov­98 ­0.25 small cut 17­Nov­98 5.0000 0 ­0.663 1.57 3.20 ­0.058 2.20 2.00

22­Dec­98 0 no change 22­Dec­98 4.7500 0 ­0.243 1.69 4.20 ­0.017 2.50 2.30

03­Feb­99 0 no change 03­Feb­99 4.7500 0 ­0.177 1.68 4.40 0.000 2.70 2.70

30­Mar­99 0 no change 30­Mar­99 4.7500 0 ­0.110 1.75 5.10 0.000 1.70 2.70

18­May­99 0 no change 18­May­99 4.7500 1 ­0.030 1.66 4.80 ­0.036 1.80 2.70

30­Jun­99 0.25 small hike 30­Jun­99 4.7500 1 0.213 1.64 4.70 ­0.040 2.50 2.70

24­Aug­99 0.25 small hike 24­Aug­99 5.0000 0 0.190 1.64 5.00 0.022 1.80 2.40

05­Oct­99 0 no change 05­Oct­99 5.2500 1 ­0.070 1.61 6.10 ­0.042 2.60 2.60
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t surprise t inf t gap t

16­Nov­99 0.25 small hike 16­Nov­99 5.2500 0 0.057 1.64 5.90 0.086 2.70 2.50

21­Dec­99 0 no change 21­Dec­99 5.5000 0 0.447 1.62 6.40 0.016 2.60 2.20

02­Feb­00 0.25 small hike 02­Feb­00 5.5000 1 0.537 1.64 6.10 ­0.054 1.80 2.30

21­Mar­00 0.25 small hike 21­Mar­00 5.7500 1 0.427 1.74 7.30 ­0.031 2.00 2.70

16­May­00 0.5 large hike 16­May­00 6.0000 1 0.250 1.65 7.90 0.052 2.40 3.20

28­Jun­00 0 no change 28­Jun­00 6.5000 1 ­0.397 1.61 6.80 ­0.020 2.10 3.00

22­Aug­00 0 no change 22­Aug­00 6.5000 1 ­0.263 1.53 4.80 ­0.017 1.30 2.20

03­Oct­00 0 no change 03­Oct­00 6.5000 1 ­0.550 1.57 5.70 0.000 2.10 1.80

15­Nov­00 0 no change 15­Nov­00 6.5000 1 ­0.410 1.56 5.90 0.000 2.20 1.70

19­Dec­00 0 no change 19­Dec­00 6.5000 ­1 ­0.893 1.52 4.70 0.052 2.20 1.30

31­Jan­01 ­0.5 large cut 31­Jan­01 6.0000 ­1 ­1.193 1.59 2.40 0.005 1.90 0.10

20­Mar­01 ­0.5 large cut 20­Mar­01 5.5000 ­1 ­1.223 1.65 4.20 0.056 2.40 0.10

15­May­01 ­0.5 large cut 15­May­01 4.5000 ­1 ­0.650 1.62 3.80 ­0.078 1.90 ­0.10

27­Jun­01 ­0.25 small cut 27­Jun­01 4.0000 ­1 ­0.427 1.62 3.50 0.050 1.60 ­0.10

21­Aug­01 ­0.25 small cut 21­Aug­01 3.7500 ­1 ­0.263 1.64 2.50 0.016 1.90 ­0.40

02­Oct­01 ­0.5 large cut 02­Oct­01 3.0000 ­1 ­0.487 1.56 ­0.50 ­0.069 1.90 ­0.60

06­Nov­01 ­0.5 large cut 06­Nov­01 2.5000 ­1 ­0.423 1.51 ­2.00 ­0.100 3.00 ­1.80

11­Dec­01 ­0.25 small cut 11­Dec­01 2.0000 ­1 0.363 1.54 ­1.80 0.000 3.00 ­1.90

30­Jan­02 0 no change 30­Jan­02 1.7500 ­1 0.470 1.57 3.30 0.015 1.30 ­1.80

19­Mar­02 0 no change 19­Mar­02 1.7500 0 0.850 1.65 5.40 ­0.026 1.00 ­1.10

07­May­02 0 no change 07­May­02 1.7500 0 0.553 1.65 4.10 0.000 1.30 ­1.50

26­Jun­02 0 no change 26­Jun­02 1.7500 0 0.380 1.65 3.20 0.000 1.70 ­1.60

13­Aug­02 0 no change 13­Aug­02 1.7500 ­1 ­0.013 1.65 3.50 0.034 1.10 ­1.50

24­Sep­02 0 no change 24­Sep­02 1.7500 ­1 ­0.030 1.67 4.30 0.025 1.80 ­1.30

06­Nov­02 ­0.5 large cut 06­Nov­02 1.7500 0 ­0.223 1.68 2.90 ­0.194 1.50 ­1.70

10­Dec­02 0 no change 10­Dec­02 1.2500 0 0.260 1.66 3.10 0.000 1.80 ­1.70

29­Jan­03 0 no change 29­Jan­03 1.2500 0 0.073 1.77 3.80 0.000 1.20 ­2.40

18­Mar­03 0 no change 18­Mar­03 1.2500 0 ­0.073 1.82 4.30 0.048 0.70 ­2.30

06­May­03 0 no change 06­May­03 1.2500 ­1 ­0.020 1.76 3.10 0.037 1.60 ­2.60

25­Jun­03 ­0.25 small cut 25­Jun­03 1.2500 ­1 ­0.267 1.70 2.40 0.150 1.00 ­2.70

12­Aug­03 0 no change 12­Aug­03 1.0000 ­1 0.283 1.74 4.60 0.000 1.40 ­2.40

16­Sep­03 0 no change 16­Sep­03 1.0000 ­1 0.163 1.80 5.90 0.000 1.70 ­2.70

28­Oct­03 0 no change 28­Oct­03 1.0000 ­1 0.273 1.84 5.20 0.000 1.30 ­2.00

09­Dec­03 0 no change 09­Dec­03 1.0000 ­1 0.350 1.93 5.50 0.000 1.20 ­1.90

28­Jan­04 0 no change 28­Jan­04 1.0000 ­1 0.183 1.92 6.60 0.000 1.00 ­1.60
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t surprise t inf t gap t

16­Mar­04 0 no change 16­Mar­04 1.0000 ­1 0.153 1.90 6.60 0.000 1.30 ­2.00

04­May­04 0 no change 04­May­04 1.0000 0 0.537 1.89 6.20 ­0.006 1.60 ­1.60

30­Jun­04 0.25 small hike 30­Jun­04 1.0000 0 1.123 1.97 7.40 ­0.010 1.60 ­1.20

10­Aug­04 0.25 small hike 10­Aug­04 1.2500 0 0.667 1.93 4.90 0.022 1.70 ­1.30

21­Sep­04 0.25 small hike 21­Sep­04 1.5000 0 0.480 1.98 4.50 0.017 1.00 ­1.40

10­Nov­04 0.25 small hike 10­Nov­04 1.7500 0 0.673 1.98 5.20 0.000 1.50 ­1.40

14­Dec­04 0.25 small hike 14­Dec­04 2.0000 0 0.513 1.98 5.60 0.000 1.50 ­1.30

02­Feb­05 0.25 small hike 02­Feb­05 2.2500 0 0.473 1.97 5.10 0.000 1.40 ­1.20

22­Mar­05 0.25 small hike 22­Mar­05 2.5000 0 0.617 2.15 7.20 0.000 2.10 ­1.00

03­May­05 0.25 small hike 03­May­05 2.7500 0 0.377 2.02 6.30 0.000 1.90 ­1.20

30­Jun­05 0.25 small hike 30­Jun­05 3.0000 0 0.260 2.00 5.60 0.000 2.20 ­1.00

09­Aug­05 0.25 small hike 09­Aug­05 3.2500 0 0.400 2.01 5.90 0.000 1.90 ­0.30

20­Sep­05 0.25 small hike 20­Sep­05 3.5000 0 0.210 2.00 5.80 0.015 1.40 ­0.60

01­Nov­05 0.25 small hike 01­Nov­05 3.7500 0 0.360 2.10 6.60 0.000 2.20 ­0.50

13­Dec­05 0.25 small hike 13­Dec­05 4.0000 1 0.173 2.00 5.60 0.000 2.10 ­0.30

31­Jan­06 0.25 small hike 31­Jan­06 4.2500 1 0.127 2.10 6.30 0.000 2.00 ­0.40

28­Mar­06 0.25 small hike 28­Mar­06 4.5000 1 0.077 2.10 8.20 0.000 1.90 ­0.10

10­May­06 0.25 small hike 10­May­06 4.7500 1 0.170 2.00 7.00 ­0.007 2.50 0.20

29­Jun­06 0.25 small hike 29­Jun­06 5.0000 1 0.257 1.90 5.90 ­0.015 3.10 0.00

08­Aug­06 0 no change 08­Aug­06 5.2500 1 ­0.150 1.80 5.30 ­0.040 2.50 0.50

20­Sep­06 0 no change 20­Sep­06 5.2500 1 ­0.210 1.70 4.00 0.000 2.30 0.50

25­Oct­06 0 no change 25­Oct­06 5.2500 1 ­0.163 1.60 4.00 0.000 2.40 0.10

12­Dec­06 0 no change 12­Dec­06 5.2500 1 ­0.320 1.50 2.90 0.000 2.60 0.10

31­Jan­07 0 no change 31­Jan­07 5.2500 1 ­0.133 1.50 5.70 0.000 2.20 0.30

21­Mar­07 0 no change 21­Mar­07 5.2500 1 ­0.307 1.40 5.50 2.20 0.20

09­May­07 0 no change 09­May­07 5.2500 1 ­0.317 1.40 5.50 2.20 0.40

28­Jun­07 0 no change 28­Jun­07 5.2500 1 ­0.313 1.50 6.00 1.40 0.40

07­Aug­07 0 no change 07­Aug­07 5.2500 1 ­0.463 1.30 3.60 2.00 0.60

18­Sep­07 ­0.5 large cut 18­Sep­07 5.2500 0 ­1.027 1.30 3.50 1.90 0.50

31­Oct­07 ­0.25 small cut 31­Oct­07 4.7500 0 ­0.827 1.20 2.30 2.00 0.50

11­Dec­07 ­0.25 small cut 11­Dec­07 4.5000 0 ­1.220 1.20 1.90 2.20 0.50

30­Jan­08 ­0.5 large cut 30­Jan­08 3.5000 ­1 ­1.200 1.00 3.30 2.40 ­0.30

18­Mar­08 ­0.75 large cut 18­Mar­08 3.0000 ­1 ­1.477 1.00 2.70 2.70 ­0.40

30­Apr­08 ­0.25 small cut 30­Apr­08 2.2500 0 ­0.307 0.90 ­0.60 2.30 ­1.20

25­Jun­08 0 no change 25­Jun­08 2.0000 0 0.563 1.00 1.90 2.00 ­0.50
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t inf t gap t

05­Aug­08 0 no change 05­Aug­08 2.0000 0 0.230 0.90 4.30 2.60 ­0.70

16­Sep­08 0 no change 16­Sep­08 2.0000 0 ­0.350 0.90 5.50 2.90 ­0.90

29­Oct­08 ­0.5 large cut 29­Oct­08 1.5000 ­1 0.720 0.80 2.90 2.30 ­2.30

16­Dec­08 ­0.75 large cut 16­Dec­08 1.0000 ­1 0.347 0.70 ­2.40 1.20 ­3.10

28­Jan­09 0 no change 28­Jan­09 0.1250 ­1 0.283 0.50 ­4.30 0.80 ­5.10

18­Mar­09 0 no change 18­Mar­09 0.1250 ­1 0.500 0.40 ­3.30 0.90 ­5.70

29­Apr­09 0 no change 29­Apr­09 0.1250 ­1 0.340 0.50 ­1.00 1.70 ­6.40

24­Jun­09 0 no change 24­Jun­09 0.1250 ­1 0.260 0.50 ­1.60 2.30 ­6.10

12­Aug­09 0 no change 12­Aug­09 0.1250 ­1 0.330 0.60 1.60 1.20 ­7.70

23­Sep­09 0 no change 23­Sep­09 0.1250 ­1 0.257 0.60 3.10 1.50 ­7.20

04­Nov­09 0 no change 04­Nov­09 0.1250 ­1 0.260 0.70 3.10 1.20 ­7.60

16­Dec­09 0 no change 16­Dec­09 0.1250 ­1 0.253 0.60 4.60 1.60 ­7.60

27­Jan­10 0 no change 27­Jan­10 0.1250 ­1 0.190 0.60 4.70 1.20 ­7.20

16­Mar­10 0 no change 16­Mar­10 0.1250 ­1 0.230 0.60 4.20 0.80 ­7.30

28­Apr­10 0 no change 28­Apr­10 0.1250 ­1 0.250 0.60 4.60 0.90 ­6.90

23­Jun­10 0 no change 23­Jun­10 0.1250 ­1 0.117 0.60 4.80 0.90 ­6.80

10­Aug­10 0 no change 10­Aug­10 0.1250 ­1 0.077 0.60 3.80 0.90 ­7.70
21­Sep­10 0 no change 21­Sep­10 0.1250 ­1 0.047 0.60 3.60 1.10 ­7.20
03­Nov­10 0 no change 03­Nov­10 0.1250 ­1 0.020 0.60 2.80 1.10 ­6.80
14­Dec­10 0 no change 14­Dec­10 0.1250 ­1 0.130 0.50 2.80 0.60 ­6.60
26­Jan­11 0 no change 26­Jan­11 0.1250 ­1 0.100 0.60 5.70 0.90 ­6.04

15­Mar­11 0 no change 15­Mar­11 0.1250 ­1 0.100 0.60 4.80 1.10 ­5.76
27­Apr­11 0 no change 27­Apr­11 0.1250 ­1 0.130 0.60 6.10 1.50 ­5.81
22­Jun­11 0 no change 22­Jun­11 0.1250 ­1 0.083 0.50 5.80 2.20 ­5.77
09­Aug­11 0 no change 09­Aug­11 0.1250 ­1 0.023 0.60 5.10 1.90 ­6.00
21­Sep­11 0 no change 21­Sep­11 0.1250 ­1 ­0.003 0.60 5.30 2.10 ­6.16
02­Nov­11 0 no change 02­Nov­11 0.1250 ­1 0.047 0.60 3.90 1.50 ­5.96
13­Dec­11 0 no change 13­Dec­11 0.1250 ­1 0.033 0.60 4.30 1.10 ­5.46
25­Jan­12 0 no change 25­Jan­12 0.1250 ­1 0.027 0.70 3.30 1.50 ­5.64

13­Mar­12 0 no change 13­Mar­12 0.1250 ­1 0.063 0.70 3.40 1.80 ­5.01
25­Apr­12 0 no change 25­Apr­12 0.1250 ­1 0.047 0.70 3.50 1.80 ­4.66
20­Jun­12 0 no change 20­Jun­12 0.1250 ­1 0.007 0.70 2.80 1.70 ­4.50
01­Aug­12 0 no change 01­Aug­12 0.1250 ­1 0.033 0.80 3.80 1.60 ­4.76
13­Sep­12 0 no change 13­Sep­12 0.1250 ­1 0.030 0.80 4.30 1.30 ­4.53
24­Oct­12 0 no change 24­Oct­12 0.1250 ­1 0.030 0.90 4.30 1.40 ­4.03
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t inf t gap t

12­Dec­12 0 no change 12­Dec­12 0.1250 ­1 0.010 0.90 2.60 1.20 ­4.14
30­Jan­13 0 no change 30­Jan­13 0.1250 ­1 0.020 0.90 3.70 1.60 ­3.81

20­Mar­13 0 no change 20­Mar­13 0.1250 ­1 ­0.010 0.90 4.20 1.40 ­3.66
01­May­13 0 no change 01­May­13 0.1250 ­1 ­0.017 1.00 2.20 1.40 ­3.49
19­Jun­13 0 no change 19­Jun­13 0.1250 ­1 0.020 1.00 2.10 0.80 ­3.88
31­Jul­13 0 no change 31­Jul­13 0.1250 ­1 0.023 1.00 4.30 1.50 ­4.09

18­Sep­13 0 no change 18­Sep­13 0.1250 ­1 0.047 0.90 4.20 1.50 ­3.53
30­Oct­13 0 no change 30­Oct­13 0.1250 ­1 0.030 1.00 3.30 1.40 ­3.63
18­Dec­13 0 no change 18­Dec­13 0.1250 ­1 0.050 1.00 2.80 1.10 ­3.42
29­Jan­14 0 no change 29­Jan­14 0.1250 ­1 0.040 1.00 3.77 1.70 ­4.26

19­Mar­14 0 no change 19­Mar­14 0.1250 ­1 0.047 0.91 1.69 1.50 ­3.75
30­Apr­14 0 no change 30­Apr­14 0.1250 ­1 0.013 0.95 2.89 1.53 ­3.45
18­Jun­14 0 no change 18­Jun­14 0.1250 ­1 0.010 1.00 3.44 1.54 ­3.98
30­Jul­14 0 no change 30­Jul­14 0.1250 ­1 0.023 0.89 1.63 1.54 ­3.71

17­Sep­14 0 no change 17­Sep­14 0.1250 ­1 0.027 1.09 2.92 1.80 ­3.77
29­Oct­14 0 no change 29­Oct­14 0.1250 0 0.020 1.02 3.36 1.90 ­3.45
17­Dec­14 0 no change 17­Dec­14 0.1250 0 0.090 1.03 2.74 1.59 ­3.26
28­Jan­15 0 no change 28­Jan­15 0.1250 0 0.057 1.09 1.66 1.70 ­1.92

18­Mar­15 0 no change 18­Mar­15 0.1250 0 0.140 0.90 0.94 1.20 ­1.62
29­Apr­15 0 no change 29­Apr­15 0.1250 0 0.113 0.93 0.57 1.41 ­1.31
17­Jun­15 0 no change 17­Jun­15 0.1250 0 0.147 1.04 2.40 1.50 ­2.13
29­Jul­15 0 no change 29­Jul­15 0.1250 0 0.183 1.17 2.45 1.50 ­1.81

17­Sep­15 0 no change 17­Sep­15 0.1250 0 0.303 1.13 2.19 1.55 ­3.23
28­Oct­15 0 no change 28­Oct­15 0.1250 0 0.140 1.21 1.43 1.61 ­2.99
16­Dec­15 0.25 small hike 16­Dec­15 0.1250 1 0.537 1.17 1.55 1.50 ­2.95
27­Jan­16 0 no change 27­Jan­16 0.3750 1 0.090 1.15 0.34 1.50 ­1.60

16­Mar­16 0 no change 16­Mar­16 0.3750 1 0.340 1.18 1.26 1.40 ­2.07
27­Apr­16 0 no change 27­Apr­16 0.3750 1 0.210 1.09 0.74 1.54 ­1.85
16­Jun­16 0 no change 16­Jun­16 0.3750 1 0.187 1.17 2.30 1.55 ­2.14
27­Jul­16 0 no change 27­Jul­16 0.3750 1 0.150 1.19 2.56 1.70 ­1.94

21­Sep­16 0 no change 21­Sep­16 0.3750 1 0.207 1.14 2.38 1.60 ­1.65
02­Nov­16 0 no change 02­Nov­16 0.3750 1 0.280 1.05 1.55 1.63 ­1.46
14­Dec­16 0.25 small hike 14­Dec­16 0.3750 1 0.450 1.32 2.48 1.70 ­1.37
01­Feb­17 0 no change 01­Feb­17 0.6250 1 0.197 1.23 2.66 1.81 ­0.84
15­Mar­17 0.25 small hike 15­Mar­17 0.6250 1 0.390 1.29 3.19 1.78 ­0.77
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Table C1 (contd). Data used in estimations

Date of
FOMC

decision

Target
change

Dependent
variable y t

Effective date
of FOMC

action
target t­1 pbias t­1 spread t house t gdp t inf t gap t

03­May­17 0 no change 03­May­17 0.8750 1 0.197 1.22 2.33 1.92 ­0.59
14­Jun­17 0.25 small hike 14­Jun­17 0.8750 1 0.293 1.17 2.25 1.71 ­0.51
26­Jul­17 0 no change 26­Jul­17 1.1250 1 0.070 1.22 1.95 1.90 ­0.29

20­Sep­17 0 no change 20­Sep­17 1.1250 1 0.143 1.18 1.34 1.60 ­0.02
01­Nov­17 0 no change 01­Nov­17 1.1250 1 0.293 1.13 3.05 1.76 0.16
13­Dec­17 0.25 small hike 13­Dec­17 1.1250 1 0.517 1.29 3.92 1.58 0.42
31­Jan­18 0 no change 31­Jan­18 1.3750 1 0.407 1.19 3.09 1.71 0.61

21­Mar­18 0.25 small hike 21­Mar­18 1.3750 1 0.647 1.24 2.73 1.80 0.79
02­May­18 0 no change 02­May­18 1.6250 1 0.550 1.32 3.22 1.90 0.16
13­Jun­18 0.25 small hike 13­Jun­18 1.6250 1 0.610 1.35 3.08 2.00 0.11
01­Aug­18 0 no change 01­Aug­18 1.8750 1 0.523 1.17 2.83 2.05 0.34
26­Sep­18 0.25 small hike 26­Sep­18 1.8750 1 0.663 1.28 2.26 1.98 6.05
08­Nov­18 0 no change 08­Nov­18 2.1250 1 0.523 1.20 2.61 2.02 6.24
19­Dec­18 0.25 small hike 19­Dec­18 2.1250 0 0.463 1.26 2.44 1.99 6.34
30­Jan­19 0 no change 30­Jan­19 2.3750 0 0.200 1.26 2.17 2.10 0.80

20­Mar­19 0 no change 20­Mar­19 2.3750 0 0.113 1.23 1.37 2.00 0.53
01­May­19 0 no change 01­May­19 2.3750 0 ­0.040 1.14 2.08 1.98 0.57
19­Jun­19 0 no change 19­Jun­19 2.3750 0 ­0.347 1.27 1.36 1.66 0.78

Notes. For the definitions of the variables see Section 4. The reported original values of surpriset are

multiplied by 10 in all estimations.
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Table C2. Sample descriptive statistics

Variable Mean Median Standard
deviation Minimum Maximum

First­order
autocorrelation

coefficient

Δ y t 0.02 0.00 0.81 ­0.50 0.50 0.43

pbias t­1 ­0.01 0.00 0.74 ­1.00 1.00 0.68

spread t 0.08 0.12 0.51 ­1.48 1.71 0.75

house t 1.52 1.49 0.25 0.95 2.15 0.97

gdp t 4.96 4.90 1.72 ­2.00 9.40 0.72

target t 4.80 5.25 2.23 1.00 9.81 0.99

target t 4.80 5.25 2.23 1.00 9.75 0.99

infl t 2.88 2.70 1.22 0.70 7.00 0.88

gap t ­0.41 ­0.30 1.88 ­4.50 3.20 0.98

surprise t ­0.01 0.00 0.07 ­0.36 0.15 0.15

Notes. Sample period: 7/1987—1/2006 (150 observations). For the definitions of the variables see

Section 4. The reported original values of surpriset are multiplied by 10 in all estimations.
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Table C3. Tests for unit roots

Δ y t
12/1987­7/2019

(254 obs.)
FOMC

decisions C 3 ­4.24 0.0007

pbias t­1
9/1987­7/2019

(256 obs.)
FOMC

decisions C 1 ­4.07 0.0013

spread t
8/1987­7/2019

(257 obs.)
FOMC

decisions C 0 ­5.85 0.0000

house t
1/1959­1/2017

(680 obs.) monthly C, LT 16 ­4.23 0.0043

gdp t
8/1987­7/2019

(257 obs.)
FOMC

decisions C 0 ­6.25 0.0000

surprise t
8/1987­1/2014

(213 obs.)
FOMC

decisions C 0 ­16.54 0.0000

Variable

The Augmented Dickey­Fuller (ADF) unit root tests
Sample
period

(and size)

Data
frequency

Deterministic
terms*

Lag
length

t­
statistic P­value**

Notes. * C - constant, LT - linear trend; ** MacKinnon (1996) one-sided p-values. For the definitions

of the variables see Section 4. The lag order of the lagged first differences of the dependent variable

in the ADF tests is selected according to a criterion of no serial correlation among the ADF regression

residuals.
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Table C4. Modeling the target level: estimated parameters of the Taylor rule

Variables OLS estimates target t

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ Probability of F­stat.: 0.000
constant 0.11 (0.04)** 0.993
target t­1 0.93 (0.02)*** 0.993
infl t 0.09 (0.03)*** 5.36
gap t 0.07 (0.01)*** SER: 0.192

Rbar­squared:
R­squared:

Residual SS:

Dependent variable:

Notes. Sample period: 7/1987—1/2006 (150 observations). ***/**/* denote the statistical significance

at the 0.1/1/5 percent level. The asymptotic standard errors are shown in parentheses.

I estimate using OLS an inertial forward-looking version of the Taylor rule for the tar-

get from the observed real-time data: targett = α0 + α1targett−1 + α2inflt + α3gapt,

where targett —the target set at the FOMC meeting t, annualized percentage points;

targett−1 —the target observed prior to the meeting t, annualized percentage points;

inflt —the real-time forecast of the core inflation rate for the current quarter, season-

ally adjusted, annualized percentage points (before 1/2000 – the Greenbook projection

for quarter-over-quarter core consumer price index (CPI) inflation rate; from 1/2000

through 12/2013 – the Greenbook projection for quarter-over-quarter core personal

consumption expenditures (PCE) inflation rate, chain weight; since 1/2014 – the me-

dian forecast of the annualized quarter-over-quarter percent changes of the core PCE

inflation rate for the current quarter the Survey of Professional Forecasters (SPF) pro-

vided by Philadelphia Fed); gapt —the real-time forecast of the output gap, the difference

between the actual and potential output expressed as a percent of potential output, for

current quarter (before 1/2014 – the Greenbook projections for current quarter of the

output gap; since 1/2014 the projection of the output gap for current quarter is de-

rived from the Congressional Budget Offi ce’s estimate of potential real GDP level and

median forecast of the real GDP level in the SPF, seasonally adjusted); and α0, α1, α2

and α3 —the unknown OLS parameters to be estimated. The real-time data on targett,

targett−1, inflt and gapt are retrieved from Philadelphia Fed’s real-time data set14 and

ALFRED. The forecasts of inflt and gapt for the current quarter provided similar or

better explanatory power than the one-, two-, three- and four-quarter ahead forecasts..

14https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/
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Table C5. The estimated scaled parameters from the second step of the CF Swopit
model with controls for endogeneity

Loose regime Tight regime

pbias t­1 2.00 (0.43)***
spread t 2.40 (0.73)*** 1.75 (0.43)*** 2.79 (1.21)*
house t 8.45 (1.91)***
gdp t 0.65 (0.13)*** 1.38 (0.53)**
ν s,t ­6.16 (2.64)* ­1.11 (0.29)*** ­2.41 (1.06)*
threshold 1 13.22 (3.19)*** 0.27 (0.48) 7.03 (2.88)*
threshold 2 15.18 (3.28)*** 1.83 (0.55)*** 12.13 (4.16)**

Variables Regime equation
Output equations

Notes. Sample period: 7/1987—1/2006 (150 observations). ***/**/* denote the statistical significance at

the 0.1/1/5 percent level. The asymptotic standard errors are shown in parentheses. For the definitions

of the variables see Section 4.
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